JP2006289940A - Phase change-type optical information recording medium - Google Patents

Phase change-type optical information recording medium Download PDF

Info

Publication number
JP2006289940A
JP2006289940A JP2005277237A JP2005277237A JP2006289940A JP 2006289940 A JP2006289940 A JP 2006289940A JP 2005277237 A JP2005277237 A JP 2005277237A JP 2005277237 A JP2005277237 A JP 2005277237A JP 2006289940 A JP2006289940 A JP 2006289940A
Authority
JP
Japan
Prior art keywords
layer
recording
optical information
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277237A
Other languages
Japanese (ja)
Inventor
Kiyoto Shibata
清人 柴田
Hajime Yuzurihara
肇 譲原
Katsunari Hanaoka
克成 花岡
Yujiro Kaneko
裕治郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005277237A priority Critical patent/JP2006289940A/en
Publication of JP2006289940A publication Critical patent/JP2006289940A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical information recording medium which enables a sufficient contrast to be available in a blue wavelength range, and a high amorphous stability under high temperature environments and successful preservation reliability. <P>SOLUTION: This phase change-type optical information recording medium uses a reversible phase transition phenomenon between a crystalline phase and and an amorphous phase by laser light irradiation with 405±15 nm wavelength. In addition, the medium has at least a phase change recording layer, formed on a substrate and a lower dielectric material layer positioned under the phase change recording layer, and an upper dielectric material layer and a reflective layer positioned above the phase change recording layer. Besides, the recording layer is composed mainly of GeαSbβ(5<α<25, 75<β<95), and contains an additional element for cubic crystallization which totals 10 to 40 atomic% to the main component, and the crystalline structure of the recording layer is the cubic crystal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、相変化型光情報記録媒体、特に記録ピットの記録再生信号レベルが2値より多い相変化型多値記録媒体に関するものであり、大容量データストレージ、デジタルビデオディスクに応用される。   The present invention relates to a phase change type optical information recording medium, and more particularly to a phase change type multilevel recording medium having a recording / reproducing signal level of a recording pit higher than binary, and is applied to a large capacity data storage and a digital video disk.

(記録材料と2値記録)
現在実用化されている光情報記録媒体として、結晶状態と非晶質(アモルファス)状態の可逆的相変化を利用したいわゆる相変化型光情報記録媒体が知られている。記録材料としては、GeTe−SbTe擬似2元系組成を有していて、GeSbTeなどの化合物組成に代表されるGe−Sb−Te3元合金材料、およびSb70Te30共晶組成近傍を主成分とし、Ag−In−Sb−Teに代表されるSbTe共晶系材料がある。前者のGeSbTe系材料はDVD−RAMとして、後者のAgInSbTe共晶系材料は、CD−RW,DVD−RWおよびDVD+RWとして広く実用化されている。これらの相変化型光記録媒体は、いずれも螺旋状もしくは同心円状の溝を有するプラスチック基板上に、下部保護層,記録層,上部保護層,反射層などを積層した構造を有し、記録層の結晶とアモルファスにおける光学定数変化および前記積層構造の多重干渉を利用して反射率を制御し、2値情報の記録・再生を行なうものである。
(Recording material and binary recording)
A so-called phase change type optical information recording medium using a reversible phase change between a crystalline state and an amorphous state is known as an optical information recording medium currently in practical use. As the recording material, a GeTe—Sb 2 Te 3 pseudo binary composition, a Ge—Sb—Te ternary alloy material represented by a compound composition such as Ge 2 Sb 2 Te 5 , and Sb 70 Te 30 are used. There are SbTe eutectic materials typified by Ag-In-Sb-Te, which are mainly composed of eutectic compositions. The former GeSbTe material is widely used as a DVD-RAM, and the latter AgInSbTe eutectic material is widely used as a CD-RW, DVD-RW, and DVD + RW. Each of these phase change optical recording media has a structure in which a lower protective layer, a recording layer, an upper protective layer, a reflective layer, and the like are laminated on a plastic substrate having spiral or concentric grooves. The reflectance is controlled by using the optical constant change in the crystal and amorphous and the multiple interference of the laminated structure, and binary information is recorded / reproduced.

(高速化・高密度化の流れ)
一方、近年デジタル化の進展やブロードバンドの普及に伴って扱う情報量が増大し、高密度かつ高速でデータを記録・再生できる新たな記録システムが求められている。このような背景から、記録再生波長の短波長化や開口数NA(Numerical Aperture)の増大により、集光ビーム径を小さくし、記録されるマークのサイズを小さくして、高密度化および高速化を狙った技術開発が盛んに行なわれている。例えば、現行の記録型DVDは、記録再生波長λ=650〜660nm、開口数NA=0.65で、記録容量が4.7GBであるが、記録再生波長をλ=400〜420nmと短波長化し、開口数NA=0.85とした記録容量20GB以上の光記録システムが提案されている(特許文献1)。
(High-speed and high-density flow)
On the other hand, with the progress of digitalization and the spread of broadband in recent years, the amount of information handled has increased, and a new recording system capable of recording and reproducing data at high density and high speed has been demanded. Against this backdrop, by shortening the recording / reproducing wavelength and increasing the numerical aperture (NA), the diameter of the focused beam is reduced, the size of the recorded marks is reduced, and the density and speed are increased. Technological development aimed at is actively conducted. For example, the current recordable DVD has a recording / reproducing wavelength λ = 650-660 nm, a numerical aperture NA = 0.65, and a recording capacity of 4.7 GB, but the recording / reproducing wavelength is shortened to λ = 400-420 nm. An optical recording system with a numerical aperture NA = 0.85 and a recording capacity of 20 GB or more has been proposed (Patent Document 1).

(NA0.85の問題点)
このような高速大容量光記録再生装置には、現在急速に普及しているDVD−ROMや記記録型DVDの記録再生およびCD−ROM,CD−R,CD−RW等の記録再生ができること、すなわち、下位互換が取れることが望まれている。しかしながら、前記システムは、高NA化のために、同じピックアップを用いてCDやDVDとの記録・再生互換を確保するのが難しくなる上、指紋などの汚れから記録媒体面を防ぐために専用カートリッジを必要し、媒体の物理形状的にも互換が取りにくくなってしまうという問題を抱えていた。
(Problems with NA of 0.85)
Such a high-speed and large-capacity optical recording / reproducing apparatus is capable of recording / reproducing a DVD-ROM or a recordable DVD and a CD-ROM, CD-R, CD-RW, etc. That is, it is desired that backward compatibility can be achieved. However, the above-mentioned system makes it difficult to ensure recording / playback compatibility with CDs and DVDs using the same pickup due to high NA, and a dedicated cartridge is used to prevent the recording medium surface from dirt such as fingerprints. Necessary, and the physical shape of the medium is difficult to be compatible.

(多値記録の従来技術)
これに対し、開口数NAを従来の記録型DVDシステムの0.65程度に保ったままで、高密度化および高速化を実現する技術として多値記録方式が注目されている。我々は、アモルファス記録マークの周辺結晶部に対する占有率の違いで多値情報を記録し、記録容量20GB以上を達成する方法について提案している(非特許文献1)。
このシステムはワーキングディスタンスが従来のように広く取れるため、CD−RWや記録型DVDと同様に専用ケースを必要としないベアディスクが使用できる。また、光学系のNAが従来のDVDと同じなので、1つの光学系でCDおよびDVDを含めた3世代の互換が取りやすいというメリットがある。
(Conventional technology of multi-value recording)
On the other hand, a multi-value recording method has attracted attention as a technique for realizing higher density and higher speed while keeping the numerical aperture NA at about 0.65 of the conventional recordable DVD system. We have proposed a method for recording multi-value information by the difference in the occupation ratio of the amorphous recording mark with respect to the peripheral crystal part and achieving a recording capacity of 20 GB or more (Non-patent Document 1).
Since this system has a wide working distance as in the prior art, a bare disk that does not require a special case can be used like a CD-RW or a recordable DVD. In addition, since the NA of the optical system is the same as that of a conventional DVD, there is an advantage that the three generations including the CD and the DVD can be easily interchanged with one optical system.

(多値記録の保存課題)
多値記録方式において信号品質上重要なことは、媒体が高温環境に置かれてもマーク形状の変化や結晶状態の変化がないことである。反射率差で多段階に多階調を記録する多値記録方式では、高温環境下での反射率変化に対する許容値は、従来の2値記録よりも厳しくなる。この点において、SbTe共晶組成を母体とする記録材料では、保存信頼性が充分とは言えない。特に、記録速度の高速化に対して、SbTe共晶系材料ではSb比を高くせざるを得ないが、これはアモルファスの安定性すなわちマークの保存信頼性を悪化させる方向であり、高速化と保存特性の両立はトレードオフの関係になってしまう。多値記録媒体に関する他の従来例として特許文献2があるが、このような保存上の課題については全く認識されておらず、また、これを解決するための技術的な開示や示唆も一切ない。
(Storage task of multi-level records)
What is important in terms of signal quality in the multi-level recording method is that there is no change in mark shape or crystal state even when the medium is placed in a high temperature environment. In the multi-value recording method in which multi-gradation is recorded in multiple steps with the difference in reflectance, the allowable value for the change in reflectance under a high temperature environment becomes stricter than that in the conventional binary recording. In this respect, a recording material having a SbTe eutectic composition as a base cannot be said to have sufficient storage reliability. In particular, the SbTe eutectic material inevitably increases the Sb ratio for increasing the recording speed, but this is in the direction of deteriorating the stability of the amorphous, that is, the storage reliability of the mark. Compatibility of storage characteristics is a trade-off relationship. There is Patent Document 2 as another conventional example of a multi-value recording medium, but such a storage problem is not recognized at all, and there is no technical disclosure or suggestion for solving this problem. .

(GeSb系材料の課題)
カルコゲン元素を主成分としない記録材料として、GeSb共晶系を主成分とする系がある(特許文献3)。GeSb共晶系材料は、SbTe共晶系材料に比べて、アモルファス相の安定性が高いことが知られている。これは、SbTe共晶組成の結晶化温度が、たかだか120℃であるのに対し、GeSb共晶組成のそれが255℃と高いことによる。しかしながら、特許文献3に開示されたGeSb共晶系材料は、いずれも405nmの青紫波長域において、コントラスト(結晶状態とアモルファス状態の反射率)が小さく、多値信号の分別性が悪くなる問題があった。すなわち、多値記録方式は反射信号を多段階に分けて記録する方式であるため、各レベル間の反射率差を大きくし、各信号の分別性を良好にすることが復調時のエラーを低減する上で望ましいわけであるが、GeSb共晶系材料のコントラストはSbTe共晶系材料のそれよりも小さくなってしまい、良好な多値記録特性が得られていなかった。
(Problems of GeSb-based materials)
As a recording material not containing a chalcogen element as a main component, there is a system mainly containing a GeSb eutectic system (Patent Document 3). It is known that the GeSb eutectic material has higher amorphous phase stability than the SbTe eutectic material. This is because the crystallization temperature of the SbTe eutectic composition is at most 120 ° C., whereas that of the GeSb eutectic composition is as high as 255 ° C. However, all of the GeSb eutectic materials disclosed in Patent Document 3 have a problem that the contrast (reflectance in the crystalline state and the amorphous state) is small in the violet wavelength region of 405 nm, and the separability of the multilevel signal is deteriorated. there were. In other words, since the multi-level recording method is a method of recording the reflected signal in multiple stages, increasing the difference in reflectance between each level and improving the discrimination of each signal reduces the error during demodulation. However, it is desirable that the contrast of the GeSb eutectic material is smaller than that of the SbTe eutectic material, and good multi-value recording characteristics have not been obtained.

特開平10−326435号公報Japanese Patent Laid-Open No. 10-326435 特開2001−84591号公報JP 2001-84591 A 特開2002−344719号明細書JP 2002-344719 A Data Detection using Pattern Recognition,International Symposium on Optical Memory 2001,Technical Digest 2001,Pd-27)(Data Detection using Pattern Recognition, International Symposium on Optical Memory 2001, Technical Digest 2001, Pd-27)

本発明の課題は、上記のような問題点を解決し、青色波長域において充分なコントラストが得られ、高温環境下でのアモルファス安定性が高く、保存信頼性の良好な光情報記録媒体を提供することである。   An object of the present invention is to provide an optical information recording medium that solves the above-described problems, provides a sufficient contrast in the blue wavelength region, has high amorphous stability in a high temperature environment, and has good storage reliability. It is to be.

上記課題は、以下の本発明の(1)〜(8)によって解決される。
(1)「波長405±15nmのレーザ光照射による結晶とアモルファスの可逆的な相転移現象を利用した相変化型光情報記録媒体であって、少なくとも基板上に相変化記録層、該相変化記録層の下側に位置する下部誘電体層、該相変化記録層の上側に位置する上部誘電体層および反射層を有するとともに、該記録層がGeαSbβ(5<α<25,75<β<95)を主成分とし、かつ、該主成分に対して総量で10原子%を越え、40原子%以下の立方晶化のための添加元素を含み、該記録層の結晶構造が立方晶系に属することを特徴とする光情報記録媒体。」
(2)「前記添加元素が、Zn,Ga,Sn,In,Biより選ばれる少なくとも1元素からなることを特徴とする前記(1)に記載の光情報記録媒体。」
(3)「前記記録層が、前記添加元素として10<Sn≦30原子%のSnを含み、該記録層に占める(Sb+Sn)の比が、70≦(Sb+Sn)<85原子%であることを特徴とする前記(1)又は(2)に記載の光情報記録媒体。」
(4)「記録マークを形成する領域がビーム走査方向に互いに等しい面積に分割され(以後、この時間的に識別された仮想領域をセルと記す)、且つ前記セルに対して1つの記録マークが形成されていて、この記録マークが前記セルに対して占有する割合の情報として多値記録されることを特徴とする前記(1)乃至(3)のいずれかに記載の光情報記録媒体。」
(5)「対物レンズの開口数NAが、NA=0.65±0.3の光学系を用いて記録再生を行なう光情報記録媒体であって、厚さ0.6±0.05mmの基板の成膜面側にグルーブ溝が設けられ、該グルーブ溝が一定の周期及び位相変調されたウオブルを有し、該グルーブ溝形状がトラックピッチ=0.43〜0.50μm、溝幅=0.20〜0.30μmであることを特徴とする前記(4)に記載の光情報記録媒体。」
(6)「前記セル長が0.20〜0.30μmであることを特徴とする前記(4)又は(5)に記載の光情報記録媒体。」
(7)「前記反射層が、AgまたはAg合金よりなり、その膜厚が140nm以上、300nm以下であることを特徴とする前記(1)乃至(6)のいずれかに記載の光情報記録媒体。」
(8)「前記反射膜が、AgまたはAg合金からなり、少なくとも基板上に反射層,下部誘電体層,相変化記録層,上部誘電体層,接着層,カバー基板,あるいは反射層,硫化防止層,下部誘電体層,相変化記録層,上部誘電体層,接着層,カバー基板をこの順に有することを特徴とする前記(1)乃至(6)のいずれかに記載の光情報記録媒体。」
The said subject is solved by the following (1)-(8) of this invention.
(1) “A phase change type optical information recording medium using a reversible phase transition between crystal and amorphous by irradiation with laser light having a wavelength of 405 ± 15 nm, comprising at least a phase change recording layer on the substrate, and the phase change recording A lower dielectric layer positioned below the layer, an upper dielectric layer positioned above the phase change recording layer, and a reflective layer, and the recording layer is GeαSbβ (5 <α <25, 75 <β <95 ) As a main component, and the total amount of the main component exceeds 10 atomic% and contains 40 atomic% or less of an additive element for crystallization, and the crystal structure of the recording layer belongs to the cubic system An optical information recording medium characterized by that. "
(2) “The optical information recording medium according to (1), wherein the additive element is made of at least one element selected from Zn, Ga, Sn, In, and Bi.”
(3) “The recording layer contains 10 <Sn ≦ 30 atomic% of Sn as the additive element, and the ratio of (Sb + Sn) in the recording layer is 70 ≦ (Sb + Sn) <85 atomic%. The optical information recording medium according to (1) or (2), characterized in that it is characterized.
(4) “A region where a recording mark is formed is divided into equal areas in the beam scanning direction (hereinafter, this temporally identified virtual region is referred to as a cell), and one recording mark is formed for the cell. The optical information recording medium according to any one of (1) to (3), wherein the optical information recording medium is formed and multi-value recorded as information of a ratio occupied by the recording mark with respect to the cell.
(5) “Optical information recording medium for recording / reproducing using an optical system having an objective lens numerical aperture NA of NA = 0.65 ± 0.3, and a substrate having a thickness of 0.6 ± 0.05 mm Groove groove is provided on the film forming surface side, the groove groove has a wobble with a constant period and phase modulation, the groove groove shape has a track pitch = 0.43 to 0.50 μm, and a groove width = 0. The optical information recording medium according to (4), wherein the optical information recording medium is 20 to 0.30 μm. ”
(6) The optical information recording medium according to (4) or (5), wherein the cell length is 0.20 to 0.30 μm.
(7) The optical information recording medium according to any one of (1) to (6), wherein the reflective layer is made of Ag or an Ag alloy and has a thickness of 140 nm or more and 300 nm or less. . "
(8) “The reflective film is made of Ag or an Ag alloy, and at least a reflective layer, a lower dielectric layer, a phase change recording layer, an upper dielectric layer, an adhesive layer, a cover substrate, or a reflective layer on a substrate, anti-sulfurization The optical information recording medium according to any one of (1) to (6) above, comprising a layer, a lower dielectric layer, a phase change recording layer, an upper dielectric layer, an adhesive layer, and a cover substrate in this order. "

面積変調方式による相変化型多値記録媒体において、記録再生波長が405nm付近の青色レーザの場合でも充分なコントラストが得られ、実用的な低いSDRと良好な保存特性を両立する光記録媒体が提供できた。   In an area-modulation type phase-change type multi-value recording medium, an optical recording medium that provides sufficient contrast even in the case of a blue laser having a recording / reproducing wavelength of about 405 nm and that has both a practically low SDR and good storage characteristics is provided. did it.

(多値技術の説明)
本発明で用いる多値記録に関して以下に述べる。
図1に、マーク占有率とRf信号の関係を示す。
記録マークは各セルの略中心に位置している。記録マークが、書換え可能な相変化材料あるいは基板の凹凸形状として記録された位相ピットでも同じ関係となる。記録マークが、基板の凹凸形状として記録された位相ピットの場合は、Rf信号の信号利得が最大になるように、位相ピットの光学的溝深さがλ/4(λは記録再生レーザの波長)である必要がある。Rf信号値は、記録再生用の集光ビームがセルの中心に位置する場合の値で与えられ、1つのセルに占める記録マークの占有率の大小によって変化する。一般的に、Rf信号値は、記録マークが存在しないときに最大となり、記録マークの占有率が最も高いときに最小となる。
(Description of multi-value technology)
The multi-value recording used in the present invention will be described below.
FIG. 1 shows the relationship between the mark occupancy and the Rf signal.
The recording mark is located at the approximate center of each cell. The same relationship applies to phase pits in which the recording marks are recorded as rewritable phase change materials or asperities on the substrate. When the recording mark is a phase pit recorded as an uneven shape on the substrate, the optical groove depth of the phase pit is λ / 4 (λ is the wavelength of the recording / reproducing laser) so that the signal gain of the Rf signal is maximized. ). The Rf signal value is given as a value when the recording / reproducing focused beam is located at the center of the cell, and changes depending on the occupation ratio of the recording mark in one cell. In general, the Rf signal value is maximum when no recording mark exists, and is minimum when the occupation ratio of the recording mark is the highest.

このような面積変調方式により、例えば、記録マークパタン数(多値レベル数)=6で多値記録を行なうと、各記録マークパタンからのRf信号値は図2のような分布を示す。Rf信号値は、その最大値と最小値の幅(ダイナミックレンジDR)を1として正規化された数値で表記されている。記録再生は、λ=650nm,NA=0.65(集光ビーム径=約0.8μm)の光学系を用いて行ない、セルの円周方向長さ(以下、セル長と記す)を約0.6μmとした。このような多値記録マークは、図3のような記録ストラテジで、Pw,Pe,Pbのパワーおよびその開始時間をパラメータとして、レーザ変調することで形成できる。   For example, when multi-value recording is performed with the number of recording mark patterns (number of multi-value levels) = 6 by the area modulation method, the Rf signal values from the respective recording mark patterns show a distribution as shown in FIG. The Rf signal value is represented by a numerical value normalized with the width (dynamic range DR) of the maximum value and the minimum value being 1. Recording / reproduction is performed using an optical system with λ = 650 nm and NA = 0.65 (condensed beam diameter = about 0.8 μm), and the circumferential length of the cell (hereinafter referred to as cell length) is about 0. .6 μm. Such a multi-valued recording mark can be formed by laser modulation using the recording strategy as shown in FIG. 3 with the powers of Pw, Pe, and Pb and their start times as parameters.

上述のような多値記録方式においては、記録線密度を上げていく(=トラック方向のセル長を短くしていく)と、次第に集光ビーム径に対してセル長さの方が短くなり、対象となるセルを再生するとき、集光ビームが対象となる前後のセルにはみ出すようになる。このため、対象となるセルのマーク占有率が同じでも、前後セルのマーク占有率の組み合わせにより、対象となるセルから再生されるRf信号値が影響を受ける。
すなわち、前後のマークとの符号間干渉が起こるようになる。この影響で、図2に示すように、各パタンにおけるRf信号値は偏差を持った分布になる。対象となるセルがどの記録マークのパタンであるかを誤り無く判定するためには、各記録マークから再生されるRf信号値の間隔が、前記偏差以上に離れている必要がある。図2の場合、各記録マークのRf信号値の間隔と偏差はほぼ同等であり、記録マークパタンの判定ができる限界になっている。
In the multi-value recording method as described above, when the recording linear density is increased (= the cell length in the track direction is shortened), the cell length gradually becomes shorter than the focused beam diameter, When the target cell is reproduced, the focused beam protrudes to the target cell before and after the target cell. For this reason, even if the mark occupancy of the target cell is the same, the Rf signal value reproduced from the target cell is affected by the combination of the mark occupancy of the preceding and subsequent cells.
That is, intersymbol interference occurs with the front and rear marks. Due to this influence, as shown in FIG. 2, the Rf signal value in each pattern has a distribution with a deviation. In order to determine without error which recording mark pattern the target cell has, the interval between the Rf signal values reproduced from each recording mark needs to be more than the deviation. In the case of FIG. 2, the intervals and deviations of the Rf signal values of the recording marks are almost equal, which is a limit for determining the recording mark pattern.

この限界を打破する技術として、連続する3つのデータセルを用いた多値判定技術(DDPR技術)が提案されている。この技術は、連続する3つのデータセルの組み合わせパタン(8値記録時、8=512通り)からなる多値信号分布を学習し、そのパターンテーブルを作成するステップと、未知データの再生信号結果から3連続マークパタンを予測した後、前記パターンテーブルを参照して再生対象となる未知信号を多値判定するステップとからなる。これにより、再生時に符号間干渉が生じるような従来のセル密度あるいはSDR値においても、多値信号判定のエラー率を低くすることが可能になった。ここで、SDR値とは、多値階調数をnとした時の各多値信号の標準偏差σiの平均値と、多値Rf信号のダイナミックレンジDRとの比=Σσi/(n×DR)で表わされ、2値記録におけるジッターに相当する信号品質である。一般に、多値階調数nを一定とすると、多値信号の標準偏差σiが小さいほど、且つダイナミックレンジDRが大きいほどSDR値は小さくなり、多値信号の分別性が良くなって、エラー率は低くなる。逆に、多値階調数nを大きくすると、SDR値は大きくなりエラー率は高くなる。このような多値判定技術を用いると、例えば、多値階調数を8に増やして、各Rf信号値の分布が重なり合ってしまう図4のような場合でも、エラーレート10E−5台で8値の多値判定が可能となる。 As a technique for overcoming this limitation, a multi-value determination technique (DDPR technique) using three consecutive data cells has been proposed. In this technique, a step of learning a multi-value signal distribution composed of a combination pattern of three consecutive data cells (8 3 = 512 patterns at the time of 8-level recording) and creating a pattern table thereof, and a reproduction signal result of unknown data After the three continuous mark patterns are predicted, the unknown signal to be reproduced is determined in multiple values with reference to the pattern table. This makes it possible to reduce the error rate of multilevel signal determination even in the conventional cell density or SDR value that causes intersymbol interference during reproduction. Here, the SDR value is the ratio of the average value of the standard deviation σi of each multilevel signal when the number of multilevel gradations is n to the dynamic range DR of the multilevel Rf signal = Σσi / (n × DR The signal quality is equivalent to the jitter in binary recording. In general, if the number n of multi-value gradations is constant, the SDR value becomes smaller as the standard deviation σi of the multi-value signal is smaller and the dynamic range DR is larger, and the separability of the multi-value signal is improved. Becomes lower. On the contrary, when the multi-value gradation number n is increased, the SDR value is increased and the error rate is increased. Using such a multi-value determination technique, for example, even when the number of multi-value gradations is increased to 8 and the distributions of the Rf signal values overlap each other, the error rate is 10E-5 with 8 units. Multi-valued determination of values is possible.

(請求項1、2について)
本発明の光情報記録媒体の構成においては、記録層がGeαSbβ(5<α<25,75<β<95)を主成分とし、かつ、該主成分に対して、総量で10原子%を越え、40原子%以下の添加元素を含み、結晶層が立方晶を有している。
本発明者らが鋭意研究したところによれば、共晶組成近傍のGeαSbβ(5<α<25,75<β<95)は、Sb同様の菱面体構造(六方晶系)を有し、青色波長において充分なコントラストが得られないが、同組成を主成分として、総量で10原子%を越え、40原子%以下のZn,Ga,Sn,In,Biからなる添加元素(以下、立方晶安定化元素と記す)を含むと、結晶系が立方晶を示すようになり、かつ、青色波長において従来のSbTe共晶系よりも大きなコントラストが得られるようになることがわかった。立方晶安定化元素は、前記Zn,Ga,Sn,In,Biより選ばれる少なくとも1元素からなる。立方晶安定化元素は、総量10原子%以下では立方晶が発現しないため、10原子%を越えることが望ましい。また、記録特性や保存特性を損なわないように、40原子%以下であることが望ましい。
(About claims 1 and 2)
In the configuration of the optical information recording medium of the present invention, the recording layer contains GeαSbβ (5 <α <25, 75 <β <95) as a main component, and the total amount exceeds 10 atomic% with respect to the main component. And 40 atomic% or less of additive elements, and the crystal layer has a cubic crystal.
As a result of intensive studies by the present inventors, GeαSbβ (5 <α <25, 75 <β <95) in the vicinity of the eutectic composition has a rhombohedral structure (hexagonal system) similar to Sb, and is blue. Although sufficient contrast cannot be obtained at the wavelength, an additive element composed of Zn, Ga, Sn, In, and Bi in a total amount exceeding 10 atomic% and having a total amount exceeding 10 atomic% (hereinafter referred to as cubic stability) It was found that the crystal system becomes cubic and the contrast becomes higher than that of the conventional SbTe eutectic system at the blue wavelength. The cubic stabilizing element is composed of at least one element selected from Zn, Ga, Sn, In, and Bi. When the total amount of the cubic stabilizing element is 10 atomic% or less, cubic crystals do not appear, so it is desirable to exceed 10 atomic%. Moreover, it is desirable that it is 40 atomic% or less so as not to impair the recording characteristics and storage characteristics.

結晶相が立方晶を示すようになると、コントラストが大きくなるメカニズムについては未だ解明できていないが、両者で光学定数に大きな差が現れることが分かっている。例えば、Ge23Sb77とGe23Sb52Sn25の光学定数は表1の通りである。
コントラストに影響する結晶とアモルファスの屈折率差Δnおよび消衰係数差Δkを比較すると、立方晶安定化元素(本発明で、「立方晶化添加元素」とも云う)のSnを含み、結晶相が立方晶系に属するGe23Sb52Sn25の屈折率差がより大きいことが分かる。このことから、一つには、記録層が立方晶の場合、原子の充填密度が上がったり、光入射面すなわちディスク面内方向に特定の結晶面が配向するために、結晶相の屈折率が小さくなり、結晶相の反射率が大きくなって、より大きなコントラストが得られるものと考えられる。
When the crystal phase becomes a cubic crystal, the mechanism by which the contrast is increased has not yet been elucidated, but it has been found that there is a large difference in optical constants between the two. For example, the optical constants of Ge 23 Sb 77 and Ge 23 Sb 52 Sn 25 are as shown in Table 1.
Comparing the refractive index difference Δn and the extinction coefficient difference Δk between the crystal and the amorphous substance that affect the contrast, the crystal phase contains Sn of the cubic stabilizing element (also referred to as “cubicizing additive element” in the present invention), and the crystalline phase is It can be seen that the refractive index difference of Ge 23 Sb 52 Sn 25 belonging to the cubic system is larger. From this, for example, when the recording layer is cubic, the packing density of atoms is increased, or a specific crystal plane is oriented in the light incident surface, that is, the in-plane direction of the disk, so that the refractive index of the crystal phase is small. Therefore, it is considered that the reflectance of the crystal phase is increased and a larger contrast can be obtained.

Figure 2006289940
Figure 2006289940

結晶構造の同定は、初期化(結晶化)処理した光情報記録媒体を上部保護層から剥離し、X線入射角を0.2〜0.5°として、記録層の面内X線回折を取ることで確認できる。六方晶系は、Sbの結晶構造を引き継いだ菱面体構造に指数付けされる。すなわち、X線の波長がλ=1.54Å(CuのKα線)のとき、面指数(003),(012),(104)および(110)に指数付けされる2θ=23.7°,28.7°,40.1°および42.0°付近に回折ピークが現れる。一方、立方晶系の場合、六方晶系に見られた2θ=24°および40°付近の回折ピークが消失し、2θ=29°および42°付近に、(200)および(220)に指数付けされる回折ピークが顕著に現れる。これらにより、六方晶と立方晶の識別が可能である。   The crystal structure is identified by peeling the initialized (crystallized) optical information recording medium from the upper protective layer, setting the X-ray incident angle to 0.2 to 0.5 °, and performing in-plane X-ray diffraction of the recording layer. It can be confirmed by taking. The hexagonal system is indexed to a rhombohedral structure that inherits the crystal structure of Sb. That is, when the wavelength of the X-ray is λ = 1.54 mm (Cu Kα ray), 2θ = 23.7 ° indexed to the plane indices (003), (012), (104) and (110), Diffraction peaks appear around 28.7 °, 40.1 ° and 42.0 °. On the other hand, in the case of the cubic system, the diffraction peaks near 2θ = 24 ° and 40 ° seen in the hexagonal system disappear, and (200) and (220) are indexed near 2θ = 29 ° and 42 °. Diffraction peaks appear prominently. From these, hexagonal crystals and cubic crystals can be distinguished.

添加元素として、記録層には、Ag,Au,Cu,Cr,Zr,B,Te,Mn,Al,Si,Pb,Mg,N,P,La,Ce,Cd,Tb,Dy等から選ばれる添加元素を含むことができる。添加元素の好適な含有量は、15原子%以下、より好ましくは10原子%以下、さらに好ましくは8原子%である。   As the additive element, the recording layer is selected from Ag, Au, Cu, Cr, Zr, B, Te, Mn, Al, Si, Pb, Mg, N, P, La, Ce, Cd, Tb, Dy, and the like. Additional elements can be included. A suitable content of the additive element is 15 atomic% or less, more preferably 10 atomic% or less, and still more preferably 8 atomic%.

記録層の望ましい膜厚は、5〜20nmである。5nm未満では記録層が薄すぎ充分な反射率が得られない。一方、20nmよりも厚いと熱容量が大きくなり記録感度が悪くなる。また、アモルファスマークのエッジが乱れ、SDRが高くなってしまう。   A desirable film thickness of the recording layer is 5 to 20 nm. If the thickness is less than 5 nm, the recording layer is too thin to obtain a sufficient reflectance. On the other hand, if it is thicker than 20 nm, the heat capacity is increased and the recording sensitivity is degraded. Further, the edge of the amorphous mark is disturbed and the SDR becomes high.

(請求項3について)
本発明の光情報記録媒体の構成においては、該立方晶安定化元素がSnを含み、その含有量が10<Sn≦30原子%であることが望ましい。Snは、この系において、記録層の結晶化温度を下げ、初期化を容易にする作用がある。しかし、Sn含有量が30原子%を越えると、記録層の結晶化温度が低くなり過ぎるので、保存特性上好ましくない。また、現状、量産レベルで入手可能な10数mW出力の青色レーザダイオードで良好なマーク形成を行なうためには、該記録層に占める(Sb+Sn)の比が、70≦(Sb+Sn)<85原子%であることが望ましい。(Sb+Sn)量が70原子%以下では、結晶化速度が遅くなってしまい、例えば多値記録において良好なSDRが得られない。また、実用上、転送レートが低くなってしまう。逆に、(Sb+Sn)量が85原子%を越えると、結晶化速度が速すぎ、アモルファスマークの形成が困難になり、同様に良好なSDRが得られない。
(Claim 3)
In the configuration of the optical information recording medium of the present invention, it is desirable that the cubic stabilizing element contains Sn, and the content thereof is 10 <Sn ≦ 30 atomic%. In this system, Sn has a function of lowering the crystallization temperature of the recording layer and facilitating initialization. However, if the Sn content exceeds 30 atomic%, the crystallization temperature of the recording layer becomes too low, which is not preferable in terms of storage characteristics. In addition, in order to perform good mark formation with a blue laser diode with an output of several tens of mW, which is currently available at mass production level, the ratio of (Sb + Sn) in the recording layer is 70 ≦ (Sb + Sn) <85 atomic%. It is desirable that When the amount of (Sb + Sn) is 70 atomic% or less, the crystallization speed is slow, and for example, good SDR cannot be obtained in multi-value recording. In practice, the transfer rate is lowered. On the other hand, if the amount of (Sb + Sn) exceeds 85 atomic%, the crystallization speed is too high and it becomes difficult to form amorphous marks, and similarly good SDR cannot be obtained.

(請求項5、6について)
本発明の光情報記録媒体の構成においては、成膜面側にトラックピッチ=0.43〜0.50μm、溝幅=0.20〜0.30μmのグルーブ溝を有する厚さ0.6mmの基板を用いることが多値記録の上で好ましい。ここで、グルーブの溝幅とは、溝底面の最も深い部分の寸法を表わす。また、基板厚さ0.6mmとは、望ましくは、0.6±0.05mm、より望ましくは0.6±0.02mm、最も望ましくは0.6±0.01mmをさす。この好ましい例によれば、トラックピッチが0.43〜0.50μm、溝幅が0.20〜0.30μm、基板厚さが0.6mmなので、記録型DVDと同じNA=0.65の光学系と波長405±15nmのレーザを用いて、良好な多値記録・再生が可能である。
(Claims 5 and 6)
In the configuration of the optical information recording medium of the present invention, a 0.6 mm thick substrate having groove grooves with a track pitch = 0.43 to 0.50 μm and a groove width = 0.20 to 0.30 μm on the film forming surface side. Is preferable in terms of multilevel recording. Here, the groove width of the groove represents the dimension of the deepest portion of the groove bottom surface. The substrate thickness of 0.6 mm is preferably 0.6 ± 0.05 mm, more preferably 0.6 ± 0.02 mm, and most preferably 0.6 ± 0.01 mm. According to this preferable example, the track pitch is 0.43 to 0.50 μm, the groove width is 0.20 to 0.30 μm, and the substrate thickness is 0.6 mm. Using the system and a laser with a wavelength of 405 ± 15 nm, good multilevel recording / reproduction is possible.

波長405nmのレーザとNA=0.65の光学系を用いた場合、トラックピッチは、レーザビームの収束直径に相当する0.50μm以下が望ましい。これよりもトラックピッチが広いと、例えば、デジタルハイビジョン放送の2時間録画に必要な20数GBの記憶容量を得るために、多値記録のセル密度を上げなくてはならず、符号間干渉が大きくなって、良好な再生信号品質が得られなくなってしまう。逆に、トラックピッチが0.43μm未満になると、隣接トラック間でのクロスイレースやクロストークが顕著になり、同様に信号品質を落としてしまう。また、トラッキングにプッシュプル法を用いる場合、グルーブ記録に適した溝深さ18〜30nmにおいて、プッシュプル信号の信号振幅が小さくなるため、安定したトラッキングサーボが困難になる。このような理由から、トラックピッチは0.43〜0.50μmであることが望ましい。   When a laser with a wavelength of 405 nm and an optical system with NA = 0.65 are used, the track pitch is preferably 0.50 μm or less corresponding to the convergent diameter of the laser beam. If the track pitch is wider than this, for example, in order to obtain a storage capacity of 20 or more GB necessary for 2-hour recording of digital high-definition broadcasting, the cell density of multi-level recording must be increased, and intersymbol interference occurs. As a result, the quality of the reproduced signal cannot be obtained. On the contrary, when the track pitch is less than 0.43 μm, cross erase and cross talk between adjacent tracks become prominent, and the signal quality is similarly lowered. Further, when the push-pull method is used for tracking, the signal amplitude of the push-pull signal becomes small at a groove depth of 18 to 30 nm suitable for groove recording, so that stable tracking servo becomes difficult. For this reason, the track pitch is preferably 0.43 to 0.50 μm.

一方、グルーブの溝幅は0.30μm以下であることが望ましい。前記トラックピッチの範囲でこれよりも溝幅が広くなると、溝形状のランド部分が狭くなり過ぎ、プッシュプル信号振幅が小さくなってしまうとともに、充分な振幅のウォブル信号を得るのが困難になってしまう。また、狭いランド部の形状を均一に形成するために、基板成形やスタンパの原盤作製が非常に困難になる。逆に、溝幅を0.20μm未満にすると、記録マークがランド部にはみ出しやすくなるので、クロスイレースにより信号品質が劣化してしまう。また、グルーブ溝深さ18〜30nmにおいて、反射率およびダイナミックレンジは溝幅が広いほど高くなるため、SDRを充分に低くするためには、溝幅は0.25〜0.30μmであることがより望ましい。
上記のような溝形状により、本発明による光記録媒体は、記録型DVDと同じNA=0.65の光学系を用いて、波長405±15nmで記録再生が可能となり、一つの光学系でDVDとの互換を取りやすくなる。
On the other hand, the groove width of the groove is preferably 0.30 μm or less. If the groove width is wider than this within the track pitch range, the groove-shaped land portion becomes too narrow, the push-pull signal amplitude becomes small, and it becomes difficult to obtain a wobble signal with sufficient amplitude. End up. Further, since the shape of the narrow land portion is uniformly formed, it is very difficult to mold the substrate and manufacture the stamper master. On the other hand, if the groove width is less than 0.20 μm, the recording mark easily protrudes from the land portion, so that the signal quality is deteriorated by the cross erase. In addition, in the groove groove depth of 18 to 30 nm, the reflectivity and the dynamic range become higher as the groove width becomes wider. Therefore, in order to sufficiently reduce the SDR, the groove width should be 0.25 to 0.30 μm. More desirable.
Due to the groove shape as described above, the optical recording medium according to the present invention can be recorded and reproduced at a wavelength of 405 ± 15 nm using the same optical system of NA = 0.65 as that of the recordable DVD. It becomes easy to take compatibility with.

(媒体の構成について)
本発明による相変化型光情報記録媒体の構成例を図5に示す。
図のように、透明基板上(1)に、下部保護層(2)、相変化記録層(3)、上部保護層(4)、反射層(5)の順に積層し、有機保護層(6)を形成した後に、同じ厚さのカバー基板(7)を貼り合わせる。
(About media configuration)
A configuration example of the phase change optical information recording medium according to the present invention is shown in FIG.
As shown in the figure, on the transparent substrate (1), the lower protective layer (2), the phase change recording layer (3), the upper protective layer (4), and the reflective layer (5) are laminated in this order, and the organic protective layer (6 ), A cover substrate (7) having the same thickness is bonded.

基板(1)の材料には、ポリカーボネート,アクリル,ポリオレフィンなどの透明樹脂を用いることができる。中でもポリカーボネート樹脂は、CDやDVDにおいて実績があり、安価な上に、波長400nm付近でも高い透過率を示すため最も好ましい。基板にはグルーブ溝が形成されており、その深さは18〜30nm程度である。   As the material of the substrate (1), a transparent resin such as polycarbonate, acrylic or polyolefin can be used. Of these, polycarbonate resins are most preferable because they have a track record in CDs and DVDs, are inexpensive, and exhibit high transmittance even in the vicinity of a wavelength of 400 nm. Grooves are formed in the substrate, and the depth is about 18 to 30 nm.

下部保護層(2)および上部保護層(4)の材料には、金属や半導体の酸化物,硫化物,窒化物,炭化物等の透明性が高い高融点材料を用いることができる。具体的には、SiOx,ZnO,SnO,Al,TiO,In,MgO,ZrO,Ta等の金属酸化物,Si,AlN,TiN,BN,ZrN等の窒化物,ZnS,TaS等の硫化物,SiC,TaC,BC,WC,TiC,ZrC等の炭化物が挙げられ、単体もしくは混合物として用いることができる。同保護層に最適な材料は、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して決定される。中でも、ZnSを60〜90mol%含むSiOとの混合膜は、繰り返し記録、高温環境下での膜自身の結晶化や化学変化、膜変形がないため望ましい。 For the material of the lower protective layer (2) and the upper protective layer (4), a high-melting point material having high transparency such as metal, semiconductor oxide, sulfide, nitride, and carbide can be used. Specifically, SiOx, ZnO, SnO 2, Al 2 O 3, TiO 2, In 2 O 3, MgO, ZrO 2, Ta 2 O metal oxide such as 5, Si 3 N 4, AlN , TiN, BN , nitrides such as ZrN, ZnS, a sulfide such as TaS 4, SiC, TaC, B 4 C, WC, TiC, include carbides such as ZrC, it can be used as alone or mixture. The optimum material for the protective layer is determined in consideration of the refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion and the like. Among these, a mixed film with SiO 2 containing 60 to 90 mol% of ZnS is preferable because it does not cause repeated recording, crystallization of the film itself in a high temperature environment, chemical change, and film deformation.

下部保護層(2)の膜厚は、30〜200nmが望ましい。下部保護層(2)を2層あるいは多層にする場合もある。繰り返し記録した場合に記録回数が一万回を超えると、記録層(3)と下部保護層(2)の間で保護層を構成する元素の記録層内への拡散が起きるため、界面にバリア性の高い炭化物や窒化物からなる層を設けてもよい。また、下部保護層(2)の膜厚が薄い場合、記録パワーが高いと熱による基板変形を起こすため、基板(1)側に熱伝導の高い膜を設けても良い。   The thickness of the lower protective layer (2) is preferably 30 to 200 nm. The lower protective layer (2) may be two layers or multiple layers. If the number of times of recording exceeds 10,000 in the case of repeated recording, the elements constituting the protective layer diffuse into the recording layer between the recording layer (3) and the lower protective layer (2). A layer made of highly specific carbide or nitride may be provided. Further, when the lower protective layer (2) is thin, if the recording power is high, the substrate is deformed by heat. Therefore, a film having high thermal conductivity may be provided on the substrate (1) side.

上部保護層(4)も下部保護層(2)と同じZnS・SiO膜を用いるのが良い。上部保護層(4)の膜厚は、8〜20nmであることが望ましい。膜厚が8nmより薄いと、機械的強度が低下し、繰り返し記録特性上好ましくない。また、レーザーエネルギーの大部分が反射層(5)に伝熱し、マーク幅が小さくなってしまうため、ダイナミックレンジDRが取れなくなってしまう。また、感度が低く、パワーマージンのない非実用的な媒体になってしまう。逆に、膜厚が20nmより厚いと放熱効果が薄れ、急冷構造が得られないばかりか、逆に隣接トラック間のクロスイレースや前後マーク間の熱干渉が増大してしまう。 The upper protective layer (4) is preferably made of the same ZnS · SiO 2 film as the lower protective layer (2). The film thickness of the upper protective layer (4) is preferably 8 to 20 nm. If the film thickness is thinner than 8 nm, the mechanical strength is lowered, which is not preferable in terms of repeated recording characteristics. Further, most of the laser energy is transferred to the reflective layer (5), and the mark width becomes small, so that the dynamic range DR cannot be obtained. In addition, the sensitivity is low and the medium becomes impractical without a power margin. On the other hand, if the film thickness is greater than 20 nm, the heat dissipation effect is reduced and a rapid cooling structure cannot be obtained. Conversely, cross erase between adjacent tracks and thermal interference between front and rear marks increase.

上部保護層(4)も、下部保護層(2)同様、2層あるいは多層にする場合もある。特に、反射層(5)にAgまたはAg合金を用いる場合、反射層(5)側のZnS・SiO上部保護層(4)の一部を硫黄を含まない誘電体材料で置換し、バリア層とするのが望ましい。バリア層としては、ZnO,SnO,Al,TiO,In,MgO,ZrO,Ta等の金属酸化物,Si,AlN,TiN,BN,ZrN等の窒化物,SiC,TaC,BC,WC,TiC,ZrC等の炭化物、およびこれらの混合物が用いられる。バリア層の膜厚は2〜6nm程度である。 Similarly to the lower protective layer (2), the upper protective layer (4) may have two layers or multiple layers. In particular, when Ag or an Ag alloy is used for the reflective layer (5), a part of the ZnS · SiO 2 upper protective layer (4) on the reflective layer (5) side is replaced with a dielectric material not containing sulfur, and the barrier layer Is desirable. As the barrier layer, metal oxides such as ZnO, SnO 2 , Al 2 O 3 , TiO 2 , In 2 O 3 , MgO, ZrO 2 , Ta 2 O 5 , Si 3 N 4 , AlN, TiN, BN, ZrN Nitride such as SiC, TaC, B 4 C, WC, TiC, ZrC and the like, and mixtures thereof are used. The film thickness of the barrier layer is about 2 to 6 nm.

(請求項7について)
本発明の光情報記録媒体の構成においては、反射層(5)として熱伝導率の高いAgを主成分とするのが最も好適である。Agに添加される元素としては、Au,Pd,Pt,Ru,Cu,Zn,Nd,Ce,In,Bi,その他遷移金属元素、希土類元素等が適している。これらの不純物添加により、Ag膜の高温環境下で凝集や結晶粒成長を抑制できる。ただし、その総含有量は、Agの良好な熱伝導率を損ねることのないよう、望ましくは2原子%以下、より望ましくは1原子%以下、最も望ましくは0.5原子%以下である。
(About claim 7)
In the configuration of the optical information recording medium of the present invention, the reflective layer (5) is most preferably composed mainly of Ag having a high thermal conductivity. As elements added to Ag, Au, Pd, Pt, Ru, Cu, Zn, Nd, Ce, In, Bi, other transition metal elements, rare earth elements, and the like are suitable. By adding these impurities, aggregation and crystal grain growth can be suppressed under the high temperature environment of the Ag film. However, the total content is desirably 2 atomic% or less, more desirably 1 atomic% or less, and most desirably 0.5 atomic% or less so as not to impair the good thermal conductivity of Ag.

反射膜(5)の膜厚としては、140〜300nmが望ましい。膜厚が140nmより薄いと、放熱が不充分になり、マークエッジがばらついてSDR増大の原因となる。反射膜の膜厚は、上部保護層を構成する材料の熱伝導率との組み合わせによって、140〜300nmの範囲で最適な膜厚が選定されうる。例えば、バリア層が比較的熱伝導性の低い酸化物系を多く含む場合、200〜300nmがSDRが低くなり好ましい。反射膜の膜厚は、300nmより厚くしても、記録特性や感度には変化がなくなり、逆に、成膜時の加熱により媒体の機械特性を悪化させてしまうため、300nm以下が望ましい。   The thickness of the reflective film (5) is preferably 140 to 300 nm. If the film thickness is less than 140 nm, heat dissipation is insufficient, and the mark edges vary to cause an increase in SDR. The optimum film thickness of the reflective film can be selected in the range of 140 to 300 nm depending on the combination with the thermal conductivity of the material constituting the upper protective layer. For example, when the barrier layer contains a large amount of an oxide system having a relatively low thermal conductivity, 200 to 300 nm is preferable because the SDR is lowered. Even if the thickness of the reflective film is greater than 300 nm, the recording characteristics and sensitivity are not changed, and conversely, the mechanical characteristics of the medium are deteriorated by heating during film formation.

(請求項8について)
本発明の光情報記録媒体の構成においては、図5に示した構成と各膜の順が逆の構成が好適である。
すなわち、記録マークを書くための溝が設けられた基板の上にAgまたはAg合金反射層、硫化防止層、下部保護層、記録層、上部保護層の順に積層する。この構成によれば、膜を支持する基板に安価な基板を用い、光入射面側は複屈折の小さい基板を用いることにより特性を向上することができる。多値記録においては、入射面に垂直な方向及び斜め方向の複屈折が高い場合により特性が悪化しやすい。複屈折の点からは、光入射面側にガラス基板が理想的であるが、コストが高く、扱いにくいため、できるだけ光弾性定数の小さいプラスチック基板を用いるのが良い。また、光ピックアップの対物レンズの開口数が0.65より高く0.85程度になると、光入射側の基板の厚さをNA0.65の場合である0.6mmより薄くする必要がある。この場合、媒体を構成する各層を積層するための基板は、0.6mmよりも厚い基板が用いられる。NA0.85の場合は、1.1mm厚の溝のついた基板を用いて各層を形成した後、0.1mm厚の非常に薄い基板を貼り合わせる。
(About claim 8)
In the configuration of the optical information recording medium of the present invention, a configuration in which the order of each film is reversed from the configuration shown in FIG. 5 is preferable.
That is, an Ag or Ag alloy reflective layer, an antisulfuration layer, a lower protective layer, a recording layer, and an upper protective layer are laminated in this order on a substrate provided with a groove for writing a recording mark. According to this configuration, it is possible to improve the characteristics by using an inexpensive substrate as the substrate supporting the film and using a substrate having a small birefringence on the light incident surface side. In multi-value recording, the characteristics are likely to deteriorate due to high birefringence in the direction perpendicular to the incident surface and in the oblique direction. From the viewpoint of birefringence, a glass substrate is ideal on the light incident surface side, but it is expensive and difficult to handle. Therefore, it is preferable to use a plastic substrate having a photoelastic constant as small as possible. Further, when the numerical aperture of the objective lens of the optical pickup is higher than 0.65 and about 0.85, the thickness of the substrate on the light incident side needs to be thinner than 0.6 mm which is the case of NA 0.65. In this case, a substrate thicker than 0.6 mm is used as a substrate for laminating each layer constituting the medium. In the case of NA 0.85, each layer is formed using a substrate with a 1.1 mm thick groove, and then a very thin substrate of 0.1 mm thickness is bonded.

以下、本発明による相変化型光情報記録媒体の実施例および比較例を示す。
なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
Examples of the phase change optical information recording medium according to the present invention and comparative examples will be described below.
The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description which limits, it is not restricted to these aspects.

実施例1〜6、比較例1〜6
溝深さ21nm、溝幅0.28μm、トラックピッチ0.46μm、周期900kHz・振幅15nmのWobbleが入ったグルーブ溝を有する厚さ0.6mm、直径120mmのポリカーボネート基板(製品名ST3000、帝人バイエルポリテック社製)を用意し、ZnS:SiO=70:30(mol%)からなる下部保護層44nm、表2に示す材料組成からなる相変化記録層14nm、ZnS:SiO=80:20(mol%)からなる上部保護層12nm、SiCからなる耐硫化バリア層3nm、Ag99.5Bi0.5からなる反射層200nmをスパッタリング法により順次積層した。
この上に、紫外線硬化樹脂(大日本インキ製SD318)を7μm塗布形成して有機保護層とし、紫外線硬化型樹脂(日本化薬DVD003)を用いて0.6mm厚のカバー基板を貼り合わせて図5構造を作製し、実施例1〜6および比較例1〜6の光情報記録媒体を得た。
Examples 1-6, Comparative Examples 1-6
A polycarbonate substrate with a groove depth of 21 mm, a groove width of 0.28 μm, a track pitch of 0.46 μm, a groove groove containing a wobble with a period of 900 kHz and an amplitude of 15 nm (product name ST3000, Teijin Bayer Polytech) Made of ZnS: SiO 2 = 70: 30 (mol%), a lower protective layer 44 nm consisting of ZnS: SiO 2 = 70: 30 (mol%), a phase change recording layer 14 nm consisting of the material composition shown in Table 2, ZnS: SiO 2 = 80: 20 (mol) %), An anti- sulfur barrier layer made of SiC 3 nm, and a reflective layer 200 nm made of Ag 99.5 Bi 0.5 were sequentially laminated by sputtering.
On top of this, 7 μm of UV curable resin (Dainippon Ink SD318) is applied to form an organic protective layer, and a 0.6 mm thick cover substrate is bonded using UV curable resin (Nippon Kayaku DVD003). Five structures were produced, and optical information recording media of Examples 1 to 6 and Comparative Examples 1 to 6 were obtained.

次に、これらの媒体の記録層を初期化(結晶化)した。初期化は、波長780nm、ビーム径200μm×1μm(半径方向×トラック方向)の大口径LDを用いた初期化装置を用いて、記録媒体を線速3.0m/sで回転させながら、送りピッチ36μm/回転で、大口径LDを半径方向に送りながら行なった。
次に、波長405nmのLD(レーザダイオード)、NA0.65の対物レンズからなるピックアップヘッドが搭載された記録再生装置を用い、上記媒体の多値記録特性を評価した。多値記録方法としては、記録線速6.0m/s、基本セル長を0.24μm(記録周波数25MHz)とし、この中に8値の多値記録を行なった。すなわち、反射率の最も高い未記録部をM0とし、マークをM1〜M7の7段階に変化させて8値とした。記録マークは、図6に示す発光波形を発生させて記録した。すなわち、記録パワー(Pw)を最大12mW、消去パワー(Pe)を記録パワーの62%、ボトムパワー(Pb)を0.1mWとした。また、記録パワー照射時間Tmpを一定とし、セル中心に対称にマークを記録するため、記録パワーを照射するための開始時間を基準クロックからTmsシフトさせた。マークの長さはボトムパワー(Pb)の照射時間Tclで調整した。小さいマークほど、Tmsを長くし、Tclを短くする。表3にこれらの条件を示す。また、再生パワーは0.5mWとした。
Next, the recording layer of these media was initialized (crystallized). Initialization is performed by using an initialization apparatus using a large-diameter LD having a wavelength of 780 nm and a beam diameter of 200 μm × 1 μm (radial direction × track direction) while rotating the recording medium at a linear velocity of 3.0 m / s. The measurement was performed while feeding a large-diameter LD in the radial direction at 36 μm / rotation.
Next, the multi-valued recording characteristics of the medium were evaluated using a recording / reproducing apparatus equipped with an LD (laser diode) having a wavelength of 405 nm and a pickup head composed of an objective lens having an NA of 0.65. As the multi-value recording method, the recording linear velocity was 6.0 m / s, the basic cell length was 0.24 μm (recording frequency 25 MHz), and 8-value multi-value recording was performed. That is, the unrecorded portion having the highest reflectance is set to M0, and the mark is changed to seven levels of M1 to M7 to obtain eight values. The recording mark was recorded by generating the light emission waveform shown in FIG. That is, the maximum recording power (Pw) was 12 mW, the erasing power (Pe) was 62% of the recording power, and the bottom power (Pb) was 0.1 mW. In addition, since the recording power irradiation time Tmp was constant and the mark was recorded symmetrically at the center of the cell, the start time for irradiation of the recording power was shifted by Tms from the reference clock. The length of the mark was adjusted by the bottom power (Pb) irradiation time Tcl. The smaller the mark, the longer Tms and the shorter Tcl. Table 3 shows these conditions. The reproduction power was 0.5 mW.

Figure 2006289940
Figure 2006289940

Figure 2006289940
Figure 2006289940

実施例1〜6および比較例1〜6の光情報記録媒体のダイナミックレンジDRを調べるために、各レベルの多値信号を連続して15セルずつM0からM7の順に繰り返し記録し、M0とM7の反射率差をDRとして測定した。   In order to examine the dynamic range DR of the optical information recording media of Examples 1 to 6 and Comparative Examples 1 to 6, multilevel signals of each level are repeatedly recorded in the order of M0 to M7 in 15 cells, and M0 and M7 are recorded. The reflectance difference was measured as DR.

実施例1〜6は、いずれも総量で10原子%を越え、40原子%以下のZn,Ga,Sn,In,Biからなる立方晶安定化元素を含むため、結晶層が立方晶系(表中cub.)に属し、190〜200mVの高いDRが得られた。
これに対し比較例1〜6は、記録層中の立方晶安定化元素がいずれも10原子%以下のため、結晶系が六方晶系(表中hex.)のままであり、105〜120mVの低いDRしか得られなかった。
なお、結晶構造の同定は、初期化処理した光情報記録媒体を上部保護層から剥離し、X線波長をλ=1.54Å、入射角を0.2〜0.5°として、記録層の面内X線回折を取り、回折ピークの指数付けから判断した。
Since Examples 1 to 6 all contain a cubic stabilizing element composed of Zn, Ga, Sn, In, and Bi in a total amount of more than 10 atomic% and 40 atomic% or less, the crystalline layer is cubic (Table A high DR of 190 to 200 mV was obtained.
On the other hand, in Comparative Examples 1 to 6, since the cubic stabilizing elements in the recording layer were all 10 atomic% or less, the crystal system remained hexagonal (hex in the table), and 105 to 120 mV. Only low DR was obtained.
The crystal structure is identified by peeling the initialized optical information recording medium from the upper protective layer, setting the X-ray wavelength to λ = 1.54 mm, and the incident angle from 0.2 to 0.5 °. In-plane X-ray diffraction was taken and judged from indexing of diffraction peaks.

実施例7〜14、比較例7〜16
記録層材料の組成を表4とした以外はすべて同様にして、実施例7〜14および比較例7〜11の光情報記録媒体を得た。初期化後、図6および表3に示したライトストラテジで、M0からM7信号のランダム記録を行ない、各レベルの反射信号の変動の揺らぎ、すなわち前述のSDRを測定した。SDRの測定は、まず、サンプリング周波数1GHzで80sector(1sectorあたり1221個のセル数)のデータを取りこむ。ランダムデータ記録時、1sectorの先頭にM0、M7各5bitの連続データからなる同期信号を記録している。再生した信号は、図7のような流れにより、フィルターを通して、トラック1周に存在する数kHzレベル以下の大きな反射信号の変動を除去した後に、同期信号を用いてAGC処理を行なう。このAGC処理とはM0、M7連続信号の振幅を基準に、その後に記録されているランダム信号の振幅変動差をなくし、一定レベルの振幅をもった信号に加工することである。さらにその後、波形等価回路(EQ)を通して、特にM1、M2マークのように振幅の小さな信号を増幅させる。この信号を取りこんで各レベルの反射電位の標準偏差を求め、SDR値を求めた。
Examples 7-14, Comparative Examples 7-16
Optical information recording media of Examples 7 to 14 and Comparative Examples 7 to 11 were obtained in the same manner except that the composition of the recording layer material was changed to Table 4. After initialization, random recording of the M0 to M7 signals was performed using the write strategy shown in FIG. 6 and Table 3, and fluctuations in the reflected signal at each level, that is, the aforementioned SDR was measured. In the SDR measurement, first, data of 80 sec (the number of 1221 cells per 1 sec) is acquired at a sampling frequency of 1 GHz. At the time of random data recording, a synchronization signal composed of continuous data of 5 bits each of M0 and M7 is recorded at the head of 1 sector. The reproduced signal is subjected to AGC processing using a synchronizing signal after removing a large reflected signal fluctuation of several kHz or less existing around one track through a filter according to the flow shown in FIG. This AGC processing is to process a signal having a certain level of amplitude by eliminating the amplitude fluctuation difference of the random signal recorded thereafter with reference to the amplitude of the M0 and M7 continuous signals. After that, a signal having a small amplitude is amplified through the waveform equivalent circuit (EQ), particularly the M1 and M2 marks. This signal was taken in, the standard deviation of the reflected potential at each level was determined, and the SDR value was determined.

表4に、X線回折から同定された記録層の結晶構造と、上記同期信号の振幅から求めたDRとSDRの値および保存試験結果を示す。保存試験結果の判定は、ランダム記録した媒体を80℃、85%RHの高温高湿環境下に200時間放置した後、試験前に記録したマークを再生して、SDR増加が0.2%以下の場合を○、0.2%を越えた場合を×とした。表4の結果から、以下のことがわかる。   Table 4 shows the crystal structure of the recording layer identified from the X-ray diffraction, the DR and SDR values obtained from the amplitude of the synchronization signal, and the storage test results. Judgment of the storage test result is determined by leaving the randomly recorded medium in a high temperature and high humidity environment of 80 ° C. and 85% RH for 200 hours, then reproducing the mark recorded before the test, and increasing the SDR by 0.2% or less. The case of ◯ was marked with ○, and the case of exceeding 0.2% was marked with ×. From the results in Table 4, the following can be understood.

Figure 2006289940
Figure 2006289940

実施例7〜14は、いずれも、立方晶安定化元素のSnを10<Sn≦30原子%含むため、結晶層が立方晶系に属し、190〜200mVの高いDRを示す。また、該記録層に占める(Sb+Sn)の比が70≦(Sb+Sn)<85原子%であるため、量産レベルで入手可能な10数mW出力の青色レーザダイオードを用いて、SDR2.8%以下の良好な記録が可能であった。しかも、記録層がGeSb共晶系を主成分とするため、保存後のSDR上昇もすべて0.2%以下で信頼性に優れていた。
これに対し、比較例7〜9の媒体は、記録層が従来のSbTe共晶系を主成分とするため、DRが150〜160mVと低く、初期SDRが2.8%を越えてしまい、再生装置マージンのない媒体であった。また、保存後のSDR上昇も0.2%を越え、信頼性の低い媒体であった。
比較例10〜12の媒体は、立方晶安定化元素量が10原子%以下なので、結晶層が六方晶系に属し、DRが低く、SDRが高いため、全く実用に供しない媒体であった。このため、保存試験に関しては実施していない。
比較例13〜16の媒体は、(Sb+Sn)量が85原子%を越えているため、結晶化速度が速すぎ、10数mW出力の青色レーザダイオードでは、充分な冷却速度が得られないため、アモルファスマークが半径方向に細くなってしまい、DRが小さくなって良好なSDRが得られない。
In each of Examples 7 to 14, since the cubic stabilizing element Sn is included in 10 <Sn ≦ 30 atomic%, the crystal layer belongs to the cubic system and exhibits a high DR of 190 to 200 mV. Further, since the ratio of (Sb + Sn) in the recording layer is 70 ≦ (Sb + Sn) <85 atomic%, a blue laser diode with 10 mW output available at mass production level is used, and the SDR is 2.8% or less. Good recording was possible. In addition, since the recording layer has a GeSb eutectic system as a main component, the SDR increase after storage was all 0.2% or less and excellent in reliability.
On the other hand, in the media of Comparative Examples 7 to 9, since the recording layer is mainly composed of the conventional SbTe eutectic system, the DR is as low as 150 to 160 mV, and the initial SDR exceeds 2.8%. It was a medium with no equipment margin. Further, the SDR increase after storage exceeded 0.2%, and the medium was low in reliability.
In the media of Comparative Examples 10 to 12, since the amount of the cubic stabilizing element is 10 atomic% or less, the crystal layer belongs to the hexagonal system, the DR is low, and the SDR is high. For this reason, no preservation test has been conducted.
In the media of Comparative Examples 13 to 16, since the amount of (Sb + Sn) exceeds 85 atomic%, the crystallization speed is too high, and a blue laser diode with 10 mW output cannot provide a sufficient cooling rate. The amorphous mark becomes thin in the radial direction, and the DR becomes small and a good SDR cannot be obtained.

多値記録の際の単位セル領域内のマークパタンの占有率とRf信号の関係を示す図である。It is a figure which shows the relationship between the occupation rate of the mark pattern in the unit cell area | region in the case of multi-value recording, and Rf signal. 面積変調方式を用いた記録マークパタンとRf信号の関係を示す図である。It is a figure which shows the relationship between the recording mark pattern using an area modulation system, and Rf signal. 多値記録によるパタンマークのための記録ストラテジ例を示す図である。It is a figure which shows the example of a recording strategy for the pattern mark by multi-value recording. 本発明の記録マークパタンの違いによるRf信号の関係を示す他の図である。It is another figure which shows the relationship of the Rf signal by the difference in the recording mark pattern of this invention. 本発明の相変化型光情報記録媒体の構成例を示す図である。It is a figure which shows the structural example of the phase change type | mold optical information recording medium of this invention. 本発明における記録ストラテジの1例を示す図である。It is a figure which shows an example of the recording strategy in this invention. 本発明の記録ストラテジによるマークパタンの再生信号の処理法の1例を示す他の図である。It is another figure which shows an example of the processing method of the reproduction signal of the mark pattern by the recording strategy of this invention.

符号の説明Explanation of symbols

1 基板
2 下部保護層
3 相変化記録層
4 上部保護層
5 金属反射層
6 有機保護層
7 カバー基板
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower protective layer 3 Phase change recording layer 4 Upper protective layer 5 Metal reflective layer 6 Organic protective layer 7 Cover substrate

Claims (8)

波長405±15nmのレーザ光照射による結晶とアモルファスの可逆的な相転移現象を利用した相変化型光情報記録媒体であって、少なくとも基板上に相変化記録層、該相変化記録層の下側に位置する下部誘電体層、該相変化記録層の上側に位置する上部誘電体層および反射層を有するとともに、該記録層がGeαSbβ(5<α<25,75<β<95)を主成分とし、かつ、該主成分に対して総量で10原子%を越え、40原子%以下の立方晶化のための添加元素を含み、該記録層の結晶構造が立方晶系に属することを特徴とする光情報記録媒体。 A phase change optical information recording medium using a reversible phase transition phenomenon between a crystal and an amorphous state by irradiation with a laser beam having a wavelength of 405 ± 15 nm, comprising at least a phase change recording layer on a substrate and a lower side of the phase change recording layer A lower dielectric layer located on the upper side, an upper dielectric layer located above the phase change recording layer, and a reflective layer, and the recording layer is mainly composed of GeαSbβ (5 <α <25, 75 <β <95). And a total amount exceeding 10 atomic% and not more than 40 atomic% of an additive element for crystallization, and the crystal structure of the recording layer belongs to a cubic system. Optical information recording medium. 前記添加元素が、Zn,Ga,Sn,In,Biより選ばれる少なくとも1元素からなることを特徴とする請求項1に記載の光情報記録媒体。 The optical information recording medium according to claim 1, wherein the additive element comprises at least one element selected from Zn, Ga, Sn, In, and Bi. 前記記録層が、前記添加元素として10<Sn≦30原子%のSnを含み、該記録層に占める(Sb+Sn)の比が、70≦(Sb+Sn)<85原子%であることを特徴とする請求項1又は2に記載の光情報記録媒体。 The recording layer includes Sn as an additive element of 10 <Sn ≦ 30 atomic%, and a ratio of (Sb + Sn) in the recording layer is 70 ≦ (Sb + Sn) <85 atomic%. Item 3. The optical information recording medium according to Item 1 or 2. 記録マークを形成する領域がビーム走査方向に互いに等しい面積に分割され(以後、この時間的に識別された仮想領域をセルと記す)、且つ前記セルに対して1つの記録マークが形成されていて、この記録マークが前記セルに対して占有する割合の情報として多値記録されることを特徴とする請求項1乃至3のいずれかに記載の光情報記録媒体。 A region for forming a recording mark is divided into equal areas in the beam scanning direction (hereinafter, this temporally identified virtual region is referred to as a cell), and one recording mark is formed for the cell. 4. The optical information recording medium according to claim 1, wherein multi-value recording is performed as information of a ratio occupied by the recording mark with respect to the cell. 対物レンズの開口数NAが、NA=0.65±0.3の光学系を用いて記録再生を行なう光情報記録媒体であって、厚さ0.6±0.05mmの基板の成膜面側にグルーブ溝が設けられ、該グルーブ溝が一定の周期及び位相変調されたウオブルを有し、該グルーブ溝形状がトラックピッチ=0.43〜0.50μm、溝幅=0.20〜0.30μmであることを特徴とする請求項4に記載の光情報記録媒体。 An optical information recording medium that performs recording and reproduction using an optical system having a numerical aperture NA of an objective lens of NA = 0.65 ± 0.3, and is a film formation surface of a substrate having a thickness of 0.6 ± 0.05 mm Groove groove is provided on the side, the groove groove has a wobble with a constant period and phase modulation, and the groove groove shape has a track pitch = 0.43 to 0.50 μm, a groove width = 0.20-0. The optical information recording medium according to claim 4, wherein the optical information recording medium is 30 μm. 前記セル長が0.20〜0.30μmであることを特徴とする請求項4又は5に記載の光情報記録媒体。 The optical information recording medium according to claim 4, wherein the cell length is 0.20 to 0.30 μm. 前記反射層が、AgまたはAg合金よりなり、その膜厚が140nm以上、300nm以下であることを特徴とする請求項1乃至6のいずれかに記載の光情報記録媒体。 The optical information recording medium according to claim 1, wherein the reflective layer is made of Ag or an Ag alloy and has a thickness of 140 nm or more and 300 nm or less. 前記反射膜が、AgまたはAg合金からなり、少なくとも基板上に反射層,下部誘電体層,相変化記録層,上部誘電体層,接着層,カバー基板,あるいは反射層,硫化防止層,下部誘電体層,相変化記録層,上部誘電体層,接着層,カバー基板をこの順に有することを特徴とする請求項1乃至6のいずれかに記載の光情報記録媒体。
The reflective film is made of Ag or an Ag alloy, and includes at least a reflective layer, a lower dielectric layer, a phase change recording layer, an upper dielectric layer, an adhesive layer, a cover substrate, or a reflective layer, an antisulfuration layer, and a lower dielectric layer on the substrate. 7. The optical information recording medium according to claim 1, further comprising a body layer, a phase change recording layer, an upper dielectric layer, an adhesive layer, and a cover substrate in this order.
JP2005277237A 2005-03-18 2005-09-26 Phase change-type optical information recording medium Pending JP2006289940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277237A JP2006289940A (en) 2005-03-18 2005-09-26 Phase change-type optical information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005078841 2005-03-18
JP2005277237A JP2006289940A (en) 2005-03-18 2005-09-26 Phase change-type optical information recording medium

Publications (1)

Publication Number Publication Date
JP2006289940A true JP2006289940A (en) 2006-10-26

Family

ID=37411028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277237A Pending JP2006289940A (en) 2005-03-18 2005-09-26 Phase change-type optical information recording medium

Country Status (1)

Country Link
JP (1) JP2006289940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111523A1 (en) 2007-03-15 2008-09-18 Ishida Co., Ltd. Merchandise display body and method of manufacturing the same
CN114260444A (en) * 2021-12-31 2022-04-01 中南大学 Defect-rich metal bismuth and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111523A1 (en) 2007-03-15 2008-09-18 Ishida Co., Ltd. Merchandise display body and method of manufacturing the same
CN114260444A (en) * 2021-12-31 2022-04-01 中南大学 Defect-rich metal bismuth and preparation method and application thereof
CN114260444B (en) * 2021-12-31 2022-09-27 中南大学 Defect-rich metal bismuth and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4577891B2 (en) Optical recording medium
JP2005025900A (en) Optical recording medium, optical recording and reproducing device, optical recording device, optical reproducing device, and data recording and reproducing method, data recording method, and data reproducing method on optical recording medium
JP4354733B2 (en) Optical recording medium
JP4078237B2 (en) Optical recording medium, optical recording method, and optical recording apparatus
US7626915B2 (en) Phase-change optical recording medium and recording and reproducing method thereof
JP3679107B2 (en) Two-layer phase change information recording medium and recording method therefor
JP2004155177A (en) Information recording medium
JP2004220699A (en) Optical recording medium
JP4073581B2 (en) Optical information recording medium and optical recording method
US20050180309A1 (en) Information recording medium, a method for recording information and a method for manufacturing a medium
JP2006289940A (en) Phase change-type optical information recording medium
JP2006099927A (en) Phase transition type optical recording medium
JP4546851B2 (en) Information recording method and optical recording medium
JP2007157258A (en) Optical recording medium
JP2006212880A (en) Phase change type optical recording medium
JP4393806B2 (en) Optical recording medium
JP2005243218A (en) Optical recording medium
JP4607062B2 (en) Optical recording medium
JP3655298B2 (en) Information recording medium
JP2006351080A (en) Optical information recording medium, its manufacturing method, and its recording method
JP2005174423A (en) Phase-variable multi-level information recording medium and its recording method
JP4437727B2 (en) Optical recording medium
JP2005149616A (en) Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark
JP2006079696A (en) Optical information recording medium
JP2007118557A (en) Multi-layer phase changing type optical recording medium