JP2006288034A - Transmitter-receiver - Google Patents

Transmitter-receiver Download PDF

Info

Publication number
JP2006288034A
JP2006288034A JP2005102943A JP2005102943A JP2006288034A JP 2006288034 A JP2006288034 A JP 2006288034A JP 2005102943 A JP2005102943 A JP 2005102943A JP 2005102943 A JP2005102943 A JP 2005102943A JP 2006288034 A JP2006288034 A JP 2006288034A
Authority
JP
Japan
Prior art keywords
power transmission
power
coil
side device
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005102943A
Other languages
Japanese (ja)
Inventor
Wataru Kawasaki
渉 河▲崎▼
Shinji Yamamoto
真嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005102943A priority Critical patent/JP2006288034A/en
Publication of JP2006288034A publication Critical patent/JP2006288034A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter-receiver that can charge a plurality of receiving-side devices by one transmission-side device. <P>SOLUTION: The transmitter-receiver comprises: a charger 50 having a transmission coil 51 that transmits electromagnetic energy; and an electric automobile 30 having a receiving coil 32 that receives the electromagnetic energy transmitted by the transmission coil 51. The electric automobile 30 comprises a rectifying circuit 33 connected to the receiving coil 32, and the charger 50 comprises an ampere meter 54 that detects an exciting current flowing to the transmission coil 51, and a movement control circuit 58 that detects the variation of a distance between the transmission coil 51 and the receiving coil 32 on the basis of the variation of the exciting current detected by the ampere meter 54. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁エネルギを送出する送電コイルを有した送電側装置と、送電コイルによって送出された電磁エネルギを受け取る受電コイルを有した受電側装置とを備えた送受電装置に関するものである。   The present invention relates to a power transmission / reception device including a power transmission side device having a power transmission coil for transmitting electromagnetic energy and a power reception side device having a power reception coil for receiving electromagnetic energy transmitted by the power transmission coil.

従来の送受電装置として、自走車に搭載された一次コイルと、駐車場に駐車している電気自動車に搭載された二次コイルとが対面する位置に自走車を移動させ、一次コイルと二次コイルとを電磁結合させて充電するものが知られている(例えば、特許文献1参照。)。   As a conventional power transmission / reception device, the self-propelled vehicle is moved to a position where the primary coil mounted on the self-propelled vehicle and the secondary coil mounted on the electric vehicle parked in the parking lot face each other. There is known one that is charged by electromagnetically coupling a secondary coil (for example, see Patent Document 1).

特開平9−215211号公報(第5頁、第15図)Japanese Patent Laid-Open No. 9-215111 (5th page, FIG. 15)

しかしながら、従来の送受電装置においては、1台の自走車で1台の電気自動車に対してしか充電することができないので、複数台の電気自動車に対して充電するためには複数台の自走車が必要であった。複数台の自走車を備えた送受電装置においては、自走車複数台分の電源容量を用意しなければならず、電力会社との契約容量も大きくなる。また、複数台の自走車を備えた送受電装置においては、複数台の自走車に電力を供給するため、おおもとの配線が太く重くなる。   However, in the conventional power transmission / reception device, since one self-propelled vehicle can charge only one electric vehicle, a plurality of self-propelled vehicles can be charged to charge a plurality of electric vehicles. A running car was necessary. In a power transmission / reception device equipped with a plurality of self-propelled vehicles, it is necessary to prepare a power supply capacity for a plurality of self-propelled vehicles, and a contract capacity with an electric power company also increases. Further, in a power transmission / reception device including a plurality of self-propelled vehicles, power is supplied to the plurality of self-propelled vehicles, so that the original wiring is thick and heavy.

車一台分の駐車エリアを駐車区画とし、複数の駐車区画の集まりを駐車場とすると、複数の自走車が駐車場内を動き回れるようにシステムを構成した場合には、複数の自走車の全てを監視制御するか、複数の自走車が相互に通信して協調動作するなど複雑な制御系が必要となる。また、複数の自走車を用いつつ簡易な制御とするには、駐車区画毎に自走車を1台ずつ置いて各自走車が駐車区画から出ないようにするのが合理的であるが、この場合には、駐車区画の大きさや形が事前に決められてしまい自由に変更できないという制約を生ずるとともに、駐車区画毎に対応可能な車の大きさが決められてしまうという問題がある。   If the system is configured so that multiple self-propelled vehicles can move around in the parking lot, where the parking area for one car is the parking area and the collection of multiple parking areas is the parking lot, multiple self-propelled vehicles Therefore, a complicated control system is required such as monitoring and controlling all of the above, or a plurality of self-propelled vehicles communicating with each other to cooperate. For simple control while using a plurality of self-propelled vehicles, it is reasonable to place one self-propelled vehicle for each parking section so that each self-propelled vehicle does not exit the parking section. In this case, there are problems that the size and shape of the parking section are determined in advance and cannot be freely changed, and the size of the car that can be handled for each parking section is determined.

本発明は、従来の問題を解決するためになされたもので、複数の受電側装置に対して1つの送電側装置で充電することができる送受電装置を提供することを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides a power transmission / reception device capable of charging a plurality of power reception side devices with one power transmission side device.

本発明の送電側装置は、電磁エネルギを受け取る受電コイルと、前記受電コイルに接続された負荷回路とを有した受電側装置に前記電磁エネルギを送出する送電側装置において、前記電磁エネルギを送出する送電コイルと、前記送電コイルに流れる励磁電流を検出する電流検出手段と、前記電流検出手段によって検出された前記励磁電流の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有した構成を有している。   The power transmission side device of the present invention transmits the electromagnetic energy in the power transmission side device that transmits the electromagnetic energy to the power reception side device having a power reception coil that receives the electromagnetic energy and a load circuit connected to the power reception coil. A change in the distance between the power transmission coil and the power receiving coil is detected based on a change in the excitation current detected by the power transmission coil, the excitation current flowing in the power transmission coil, and the current detection means. And a distance detecting means.

この構成により、本発明の送電側装置は、複数の受電側装置に対して1つの送電側装置で充電することができる。   With this configuration, the power transmission side device of the present invention can charge a plurality of power reception side devices with one power transmission side device.

また、本発明の送電側装置は、電磁エネルギを受け取る受電コイルと、前記受電コイルによって受け取った前記電磁エネルギに応じた強度の磁界を発生させる磁界発生手段とを有した受電側装置に前記電磁エネルギを送出する送電側装置において、前記電磁エネルギを送出する送電コイルと、前記磁界発生手段によって発生させられた前記磁界の強度を検出する磁界強度検出手段と、前記磁界強度検出手段によって検出された前記磁界の強度の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有した構成を有している。   According to another aspect of the present invention, there is provided a power transmission side device including: a power reception coil that receives electromagnetic energy; and a magnetic field generation unit that generates a magnetic field having a strength corresponding to the electromagnetic energy received by the power reception coil. A power transmission coil for transmitting the electromagnetic energy, a magnetic field strength detection means for detecting the strength of the magnetic field generated by the magnetic field generation means, and the magnetic field strength detection means detected by the magnetic field strength detection means. It has a configuration having distance detection means for detecting a change in the distance between the power transmission coil and the power reception coil based on a change in the strength of the magnetic field.

この構成により、本発明の送電側装置は、複数の受電側装置に対して1つの送電側装置で充電することができる。   With this configuration, the power transmission side device of the present invention can charge a plurality of power reception side devices with one power transmission side device.

また、本発明の送電側装置は、前記送電側装置自身を移動させる移動手段と、前記距離検出手段の検出結果に基づいて移動を制御する移動制御手段とを有した構成を有している。   Moreover, the power transmission side device of the present invention has a configuration including a moving unit that moves the power transmission side device itself and a movement control unit that controls movement based on a detection result of the distance detection unit.

この構成により、本発明の送電側装置は、自動的に適切な状態で送電側装置から受電側装置に電磁エネルギを伝達することができる。   With this configuration, the power transmission side device of the present invention can automatically transmit electromagnetic energy from the power transmission side device to the power reception side device in an appropriate state.

また、本発明の送電側装置は、前記受電側装置は、前記磁界発生手段によって発生させられる前記磁界を所定の情報に応じて断続させる磁界断続手段を有し、前記磁界強度検出手段によって検出された前記磁界の断続に基づいて前記所定の情報を取得する情報取得手段と、前記送電側装置自身を移動させる移動手段と、前記情報取得手段によって取得された前記所定の情報に基づいて移動を制御する移動制御手段とを有した構成を有している。   In the power transmission side device of the present invention, the power receiving side device has magnetic field interrupting means for interrupting the magnetic field generated by the magnetic field generating means according to predetermined information, and is detected by the magnetic field strength detecting means. The information acquisition means for acquiring the predetermined information based on the intermittentness of the magnetic field, the movement means for moving the power transmission side device itself, and the movement control based on the predetermined information acquired by the information acquisition means And a movement control means.

この構成により、本発明の送電側装置は、受電側装置からの情報に基づいて送電側装置が移動するので、より適切な状態で送電側装置から受電側装置に電磁エネルギを伝達することができる。   With this configuration, the power transmission side device of the present invention moves the power transmission side device based on information from the power reception side device, and therefore can transmit electromagnetic energy from the power transmission side device to the power reception side device in a more appropriate state. .

また、本発明の送電側装置は、前記送電コイルに交流電圧を印加して前記送電コイルを励磁する励磁手段を有し、前記励磁手段は、前記送電コイルが送出する前記電磁エネルギを前記距離検出手段によって検出された前記距離の減少に応じて減少させる交流電圧を前記送電コイルに印加する構成を有している。   The power transmission side device of the present invention further includes an excitation unit that applies an AC voltage to the power transmission coil to excite the power transmission coil, and the excitation unit detects the electromagnetic energy transmitted by the power transmission coil as the distance detection. It has the structure which applies the alternating voltage reduced according to the reduction | decrease of the said distance detected by the means to the said power transmission coil.

この構成により、本発明の送電側装置は、不要な電磁エネルギが送電コイルから送出されることを抑止することができるので、不要な電力の消費を抑止することができる。   With this configuration, the power transmission side device of the present invention can suppress unnecessary electromagnetic energy from being transmitted from the power transmission coil, and therefore can suppress consumption of unnecessary power.

また、本発明の送電側装置は、前記受電側装置は、前記受電コイルによって受け取った前記電磁エネルギを電力として蓄えるバッテリを動力源として有した自動車であり、前記送電側装置自身が前記自動車の車体下に入ったことを検出する車体下検出手段と、前記送電コイルに交流電圧を印加して前記送電コイルを励磁する励磁手段とを有し、前記励磁手段は、前記送電側装置が前記自動車の車体下に入ったことが前記車体下検出手段によって検出されたときに、前記送電コイルを励磁する構成を有している。   The power transmission side device of the present invention is an automobile having a battery that stores the electromagnetic energy received by the power reception coil as electric power as a power source, and the power transmission side device itself is a vehicle body of the automobile. Vehicle bottom detection means for detecting that the vehicle has entered the bottom, and excitation means for exciting the power transmission coil by applying an AC voltage to the power transmission coil. The power transmission coil is configured to excite the power transmission coil when it is detected by the vehicle body lower detection means that the vehicle has entered the vehicle body.

この構成により、本発明の送電側装置は、不要な電磁エネルギが送電コイルから送出されることを抑止することができるので、不要な電力の消費を抑止することができる。   With this configuration, the power transmission side device of the present invention can suppress unnecessary electromagnetic energy from being transmitted from the power transmission coil, and therefore can suppress consumption of unnecessary power.

また、本発明の送電側装置は、前記送電側装置自身が自動車の車体下に入ったことを検出する車両センサと、駐車区画の区切り線を検出する路面センサとを有した構成を有している。   In addition, the power transmission side device of the present invention has a configuration including a vehicle sensor that detects that the power transmission side device itself is under the vehicle body and a road surface sensor that detects a partition line of a parking section. Yes.

この構成により、本発明の送電側装置は、送電側装置1台で複数の自動車に対して送電できる。なお、送電側装置を待機位置から駐車区画に誘導する方法としては、区切り線の本数による方法に限らず様々な方法があり得る。例えば、路面に誘導用反射板を置くことによって、誘導用反射板の部分と、誘導用反射板以外の部分とで反射率が異なることを利用した方法があり得る。また、路面に磁石(永久磁石又は電磁石)を配置し、分岐地点の磁石の磁力を強くすることによって、探索を容易にする方法もあり得る。   With this configuration, the power transmission side device of the present invention can transmit power to a plurality of automobiles with one power transmission side device. Note that the method for guiding the power transmission side device from the standby position to the parking section is not limited to the method based on the number of separation lines, and may be various methods. For example, there may be a method that utilizes the fact that a reflectance is different between a portion of the guiding reflector and a portion other than the guiding reflector by placing a guiding reflector on the road surface. There can also be a method of facilitating the search by arranging a magnet (permanent magnet or electromagnet) on the road surface and increasing the magnetic force of the magnet at the branch point.

また、本発明の送受電装置は、電磁エネルギを送出する送電コイルを有した送電側装置と、前記送電コイルによって送出された前記電磁エネルギを受け取る受電コイルを有した受電側装置とを備え、前記受電側装置は、前記受電コイルに接続された負荷回路を有し、前記送電側装置は、前記送電コイルに流れる励磁電流を検出する電流検出手段と、前記電流検出手段によって検出された前記励磁電流の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有した構成を有している。   The power transmission / reception device of the present invention includes a power transmission side device having a power transmission coil for transmitting electromagnetic energy, and a power reception side device having a power reception coil for receiving the electromagnetic energy transmitted by the power transmission coil, The power receiving side device has a load circuit connected to the power receiving coil, and the power transmission side device detects current exciting means flowing in the power transmitting coil, and the exciting current detected by the current detecting means. And a distance detecting means for detecting a change in the distance between the power transmitting coil and the power receiving coil based on the change of the power receiving coil.

この構成により、本発明の送受電装置は、複数の受電側装置に対して1つの送電側装置で充電することができる。   With this configuration, the power transmitting and receiving device of the present invention can charge a plurality of power receiving devices with one power transmitting device.

また、本発明の送受電装置は、電磁エネルギを送出する送電コイルを有した送電側装置と、前記送電コイルによって送出された前記電磁エネルギを受け取る受電コイルを有した受電側装置とを備え、前記受電側装置は、前記受電コイルによって受け取った前記電磁エネルギに応じた強度の磁界を発生させる磁界発生手段を有し、前記送電側装置は、前記磁界発生手段によって発生させられた前記磁界の強度を検出する磁界強度検出手段と、前記磁界強度検出手段によって検出された前記磁界の強度の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有した構成を有している。   The power transmission / reception device of the present invention includes a power transmission side device having a power transmission coil for transmitting electromagnetic energy, and a power reception side device having a power reception coil for receiving the electromagnetic energy transmitted by the power transmission coil, The power receiving side device has a magnetic field generating means for generating a magnetic field having a strength corresponding to the electromagnetic energy received by the power receiving coil, and the power transmitting side device has the strength of the magnetic field generated by the magnetic field generating means. A configuration having magnetic field strength detection means for detecting, and distance detection means for detecting a change in the distance between the power transmission coil and the power reception coil based on a change in the strength of the magnetic field detected by the magnetic field strength detection means. Have.

この構成により、本発明の送受電装置は、複数の受電側装置に対して1つの送電側装置で充電することができる。   With this configuration, the power transmitting and receiving device of the present invention can charge a plurality of power receiving devices with one power transmitting device.

本発明は、複数の受電側装置に対して1つの送電側装置で充電することができる送受電装置を提供することができるものである。   The present invention can provide a power transmission / reception device capable of charging a plurality of power reception side devices with one power transmission side device.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
まず、本発明の第1の実施の形態に係る送受電装置の構成について説明する。
(First embodiment)
First, the configuration of the power transmission / reception device according to the first embodiment of the present invention will be described.

図1(a)に示すように、本実施の形態に係る送受電装置10は、路面に区切り線(例えば白線や有色の線等)で描かれた1行4列の4区画の駐車区画20aからなる駐車場20と、駐車区画20aに駐車させられた複数台の電気自動車30と、駐車区画20aに駐車させられた電気自動車30に充電する1台の充電装置50と、充電装置50に電力を供給する商用電源71と、充電装置50を商用電源71に接続するケーブル72とを備えている。   As shown in FIG. 1A, the power transmission / reception device 10 according to the present embodiment includes a parking section 20a of four sections of one row and four columns drawn on a road surface with a dividing line (for example, a white line or a colored line). A parking lot 20, a plurality of electric vehicles 30 parked in the parking section 20a, a charging device 50 for charging the electric vehicle 30 parked in the parking section 20a, and power to the charging device 50 And a cable 72 for connecting the charging device 50 to the commercial power supply 71.

図2から図4までに示すように、電気自動車30は、動力源であるバッテリ31と、充電装置50から送られる電磁エネルギを受け取り電力に変換する受電コイル32と、受電コイル32から出力される電流を整流しバッテリ31を充電する負荷回路としての整流回路33とを備えており、受電側装置を構成している。   As shown in FIGS. 2 to 4, the electric vehicle 30 is output from the battery 31 that is a power source, the receiving coil 32 that receives electromagnetic energy sent from the charging device 50 and converts it into electric power, and the receiving coil 32. And a rectifier circuit 33 as a load circuit that rectifies the current and charges the battery 31, and constitutes a power receiving side device.

また、充電装置50は、高周波交流を電磁エネルギとして送出する送電コイル51と、直流を高周波交流に変換し交流電圧を送電コイル51に印加して送電コイル51を励磁する励磁手段としての充電回路52と、商用電源71からの交流を整流して直流にし充電回路52に送る整流回路53と、送電コイル51に流れる電流を計測する電流検出手段としての電流計54と、充電装置50自身が自動車の車体下に入ったことを検出する車体下検出手段としての車両センサ55と、駐車区画20a(図1参照。)の区切り線を検出する路面センサ56と、充電装置50自身を移動させる移動手段としての移動部57と、充電装置50自身の移動を制御するための移動制御信号を移動部57に送出する移動制御回路58とを備えており、送電側装置を構成している。   In addition, the charging device 50 includes a power transmission coil 51 that transmits high-frequency alternating current as electromagnetic energy, and a charging circuit 52 that serves as an excitation unit that excites the power transmission coil 51 by converting direct current to high-frequency alternating current and applying an alternating voltage to the power transmission coil 51. A rectifier circuit 53 that rectifies alternating current from the commercial power supply 71 and sends it to the charging circuit 52; an ammeter 54 as current detection means for measuring the current flowing through the power transmission coil 51; As a vehicle sensor 55 serving as a vehicle body lowering detection unit that detects that the vehicle has entered the vehicle body, a road surface sensor 56 that detects a dividing line of the parking section 20a (see FIG. 1), and a moving unit that moves the charging device 50 itself. And a movement control circuit 58 for sending a movement control signal for controlling the movement of the charging device 50 itself to the moving unit 57. Constitute a.

ここで、車両センサ55は、超音波スピーカとマイクとを組み合わせて超音波の反射を利用するものや、静電容量変化を検出する近接センサ等で構成されている。   Here, the vehicle sensor 55 is configured by a combination of an ultrasonic speaker and a microphone that uses ultrasonic reflection, a proximity sensor that detects a change in capacitance, and the like.

また、路面センサ56は、発光ダイオードとフォトトランジスタとを組み合わせて光の反射を利用するもの等で構成されている。   The road surface sensor 56 is configured by a combination of a light emitting diode and a phototransistor that utilizes light reflection.

また、移動部57は、車輪57aと、車輪57aを駆動する図示していないモータと、モータを駆動するパワートランジスタ等で構成される図示していない電子回路とを有している。   The moving unit 57 includes a wheel 57a, a motor (not shown) that drives the wheel 57a, and an electronic circuit (not shown) that includes a power transistor that drives the motor.

また、移動制御回路58は、車両センサ55が検出した情報や、路面センサ56が検出した情報に基づいて移動制御信号を生成するようになっている。   The movement control circuit 58 generates a movement control signal based on information detected by the vehicle sensor 55 and information detected by the road surface sensor 56.

なお、図5に示すように、充電装置50の送電コイル51、電気自動車30の受電コイル32の自己インダクタンスをそれぞれL、Lとし、送電コイル51及び受電コイル32を相対させたときの相互インダクタンスをMとし、充電装置50の充電回路52、電気自動車30の整流回路33のインピーダンスをそれぞれZ、Zとすると、インピーダンスZは、「数1」で表される(例えば、「電気回路(1)」大野克郎著 ISBN4−274−13166−1 96頁を参照。)。
As shown in FIG. 5, the self-inductances of the power transmission coil 51 of the charging device 50 and the power reception coil 32 of the electric vehicle 30 are respectively L 1 and L 2, and the mutual power when the power transmission coil 51 and the power reception coil 32 are opposed to each other. When the inductance is M and the impedances of the charging circuit 52 of the charging device 50 and the rectifying circuit 33 of the electric vehicle 30 are Z 1 and Z 2 , respectively, the impedance Z 1 is expressed by “Equation 1” (for example, Circuit (1) "by Katsuro Ohno, see ISBN 4-274-13166-1 page 96).

送電コイル51の自己インダクタンスL、受電コイル32の自己インダクタンスL、整流回路33のインピーダンスZが一定であるので、充電回路52のインピーダンスZは、「数1」に示すように、送電コイル51及び受電コイル32の相互インダクタンスMの関数となる。ここで、相互インダクタンスMは、送電コイル51と、受電コイル32との間の距離が近くなるほど大きくなる。したがって、充電回路52のインピーダンスZは、送電コイル51と、受電コイル32との間の距離が近くなるほど大きくなる。即ち、送電コイル51と、受電コイル32との間の距離の変化は、送電コイル51に印加される交流電圧の変化と、送電コイル51に流れる電流の変化とに基づいて検出することができる。例えば、送電コイル51に印加される交流電圧が一定である場合、送電コイル51と、受電コイル32との間の距離は、送電コイル51に流れる電流が小さくなっているとき近くなっていて、大きくなっているとき遠くなっている。 Since the self-inductance L 1 of the power transmission coil 51, the self-inductance L 2 of the power receiving coil 32, and the impedance Z 2 of the rectifier circuit 33 are constant, the impedance Z 1 of the charging circuit 52 is transmitted as shown in “Equation 1”. This is a function of the mutual inductance M of the coil 51 and the power receiving coil 32. Here, the mutual inductance M increases as the distance between the power transmission coil 51 and the power reception coil 32 decreases. Therefore, the impedance Z 1 of the charging circuit 52 includes a power transmission coil 51, the distance becomes as large near between the power receiving coil 32. That is, the change in the distance between the power transmission coil 51 and the power reception coil 32 can be detected based on the change in the AC voltage applied to the power transmission coil 51 and the change in the current flowing in the power transmission coil 51. For example, when the AC voltage applied to the power transmission coil 51 is constant, the distance between the power transmission coil 51 and the power reception coil 32 is close when the current flowing through the power transmission coil 51 is small, and is large. It ’s farther away.

そして、移動制御回路58は、充電回路52によって送電コイル51に印加する交流電圧の変化と、電流計54によって計測された送電コイル51に流れる電流の変化とに基づいて、送電コイル51と、電気自動車30の受電コイル32との間の距離の変化を検出するようになっており、距離検出手段を構成している。   And the movement control circuit 58 is based on the change of the alternating voltage applied to the power transmission coil 51 by the charging circuit 52, and the change of the electric current which flows into the power transmission coil 51 measured by the ammeter 54. A change in the distance to the power receiving coil 32 of the automobile 30 is detected, and constitutes a distance detecting means.

また、移動制御回路58は、移動制御回路58自身が検出した送電コイル51及び受電コイル32間の距離の変化に基づいて、送電コイル51及び受電コイル32間の距離が最も近くなるように移動制御信号を生成するようになっており、移動制御手段を構成している。なお、移動制御回路58は、送電コイル51及び受電コイル32間の距離が最も近くなるように移動制御信号を生成するときのアルゴリズムとして、山登り法(例えば、「最適化アルゴリズム」長尾智晴著 ISBN4−7856−3112−0を参照。)等の広く知られた方法を用いるようになっている。   In addition, the movement control circuit 58 performs movement control so that the distance between the power transmission coil 51 and the power reception coil 32 is closest based on the change in the distance between the power transmission coil 51 and the power reception coil 32 detected by the movement control circuit 58 itself. A signal is generated and constitutes a movement control means. Note that the movement control circuit 58 uses a hill-climbing method (for example, “Optimization algorithm” written by Tomoharu Nagao, ISBN4-) as an algorithm for generating a movement control signal so that the distance between the power transmission coil 51 and the power reception coil 32 is the shortest. 7856-3112-0.) Is widely used.

次に、送受電装置10の動作について説明する。   Next, the operation of the power transmission / reception device 10 will be described.

図1(a)に示すように1列目に対して2列目側とは反対側の所定の待機位置で充電装置50が待機しているとき、図6に示すように、充電装置50の移動制御回路58は、駐車区画20aの1列目から4列目に向かう矢印50a(図1参照。)で示す方向の移動を移動部57に開始させる(S81)。   When the charging device 50 is waiting at a predetermined standby position on the side opposite to the second row side with respect to the first row as shown in FIG. 1A, as shown in FIG. The movement control circuit 58 causes the moving unit 57 to start moving in the direction indicated by the arrow 50a (see FIG. 1) from the first row to the fourth row of the parking section 20a (S81).

次いで、移動制御回路58は、路面センサ56で検出した区切り線の本数が奇数本、即ち1本、3本、5本又は7本になるまで、路面センサ56で検出した区切り線の本数が奇数本になったか否かを判断する(S82)。   Next, the movement control circuit 58 detects that the number of separation lines detected by the road surface sensor 56 is an odd number, that is, the number of separation lines detected by the road surface sensor 56 is an odd number until the number becomes 1, 3, 5, or 7. It is determined whether or not a book has been reached (S82).

移動制御回路58は、充電装置50が駐車区画20a内に入った結果、路面センサ56で検出した区切り線の本数が奇数本になったとS82において判断すると、充電装置50自身が自動車の車体下に入ったと車両センサ55が検出したか否かを判断する(S83)。   If the movement control circuit 58 determines in S82 that the number of separation lines detected by the road surface sensor 56 has become an odd number as a result of the charging device 50 entering the parking section 20a, the charging device 50 itself is placed under the vehicle body. It is determined whether or not the vehicle sensor 55 detects that the vehicle has entered (S83).

移動制御回路58は、充電装置50が自動車の車体下に入ったと車両センサ55が検出していないとS83において判断すると、路面センサ56で検出した区切り線の本数が偶数本、即ち2本、4本、6本又は8本になったか否かを判断する(S84)。そして、移動制御回路58は、路面センサ56で検出した区切り線の本数が偶数本になっていないとS84において判断すると、再びS83の処理を実行する。   When the movement control circuit 58 determines in S83 that the vehicle sensor 55 has not detected that the charging device 50 has entered the vehicle body, the number of separation lines detected by the road surface sensor 56 is an even number, that is, two, four, and four. It is determined whether the number of books, six, or eight has been reached (S84). If the movement control circuit 58 determines in S84 that the number of separation lines detected by the road surface sensor 56 is not an even number, it executes the process of S83 again.

また、移動制御回路58は、図1(d)に示すように充電装置50が自動車の車体下に入ったと車両センサ55が検出したとS83において判断すると、矢印50aで示す方向の移動を移動部57に停止させ(S85)、送電コイル51からの電磁エネルギの送出を充電回路52に開始させる(S86)。なお、充電装置50は、商用電源71からケーブル72を介して供給される交流を整流回路53によって直流にした後、充電回路52によって高周波交流に変換して交流電圧を送電コイル51に印加することによって、送電コイル51から高周波交流を電磁エネルギとして送出する。   When the movement control circuit 58 determines in S83 that the vehicle sensor 55 has detected that the charging device 50 has entered the vehicle body as shown in FIG. 1D, the movement control circuit 58 moves the movement in the direction indicated by the arrow 50a. 57 is stopped (S85), and the charging circuit 52 is started to send electromagnetic energy from the power transmission coil 51 (S86). Note that the charging device 50 converts the alternating current supplied from the commercial power supply 71 via the cable 72 to direct current by the rectifier circuit 53, then converts the alternating current to high frequency alternating current by the charging circuit 52 and applies the alternating voltage to the power transmission coil 51. Thus, high-frequency alternating current is transmitted from the power transmission coil 51 as electromagnetic energy.

次いで、移動制御回路58は、電流計54の測定結果に基づいて送電コイル51及び受電コイル32間の距離が最も近くなったか否かを判断する(S87)。   Next, the movement control circuit 58 determines whether or not the distance between the power transmission coil 51 and the power reception coil 32 is closest based on the measurement result of the ammeter 54 (S87).

移動制御回路58は、送電コイル51及び受電コイル32間の距離が最も近くなったとS87において判断すると、送電コイル51を介して充電回路52に電気自動車30のバッテリ31を充電させる(S88)。一方、移動制御回路58は、送電コイル51及び受電コイル32間の距離が最も近くなっていないとS87において判断すると、送電を開始してから所定時間が経過したか否かを判断する(S89)。   If the movement control circuit 58 determines in S87 that the distance between the power transmission coil 51 and the power reception coil 32 is the shortest, the movement control circuit 58 causes the charging circuit 52 to charge the battery 31 of the electric vehicle 30 via the power transmission coil 51 (S88). On the other hand, if the movement control circuit 58 determines in S87 that the distance between the power transmission coil 51 and the power reception coil 32 is not the shortest, it determines whether or not a predetermined time has elapsed since the start of power transmission (S89). .

移動制御回路58は、送電を開始してから所定時間が経過していないとS89において判断すると、送電コイル51及び受電コイル32間の距離が近付く方向に移動部57に移動させ(S90)、再びS87の処理を実行する。   When the movement control circuit 58 determines in S89 that the predetermined time has not elapsed since the start of power transmission, the movement control circuit 58 moves the movement unit 57 in the direction in which the distance between the power transmission coil 51 and the power reception coil 32 approaches (S90), and again. The process of S87 is executed.

また、移動制御回路58は、充電回路52に電気自動車30のバッテリ31をS88において充電させ終わったときや、充電装置50が車体下に入った自動車が受電コイル32を持っていない等の理由によって、送電の開始から所定時間が経過したとS89において判断したとき、送電コイル51からの電磁エネルギの送出を充電回路52に停止させる(S91)。   In addition, the movement control circuit 58 causes the charging circuit 52 to charge the battery 31 of the electric vehicle 30 in S88, or the vehicle in which the charging device 50 enters the vehicle body does not have the power receiving coil 32. When it is determined in S89 that a predetermined time has elapsed from the start of power transmission, the charging circuit 52 stops the transmission of electromagnetic energy from the power transmission coil 51 (S91).

次いで、移動制御回路58は、駐車区画20a外から出るべく、矢印50aで示す方向の移動を移動部57に開始させ(S92)、路面センサ56で検出した区切り線の本数が偶数本になるまで、路面センサ56で検出した区切り線の本数が偶数本になったか否かを判断する(S93)。   Next, the movement control circuit 58 causes the moving unit 57 to start moving in the direction indicated by the arrow 50a to get out of the parking section 20a (S92) until the number of separation lines detected by the road surface sensor 56 becomes an even number. Then, it is determined whether or not the number of dividing lines detected by the road surface sensor 56 has become an even number (S93).

移動制御回路58は、図1(b)に示すように充電装置50が自動車の車体下に入ることなく駐車区画20a外に出た結果、路面センサ56で検出した区切り線の本数が偶数本になったとS84において判断したときや、充電装置50が充電終了後に駐車区画20a外に出た結果、路面センサ56で検出した区切り線の本数が偶数本になったとS93において判断したとき、路面センサ56で検出した区切り線の本数が8本になったか否かを判断する(S94)。   As shown in FIG. 1B, the movement control circuit 58 determines that the number of separation lines detected by the road surface sensor 56 is an even number as a result of the charging device 50 exiting the parking section 20a without entering the vehicle body. When it is determined in S84 that the road surface sensor 56 has been charged, or when it is determined in S93 that the number of separation lines detected by the road surface sensor 56 has become an even number as a result of the charging device 50 exiting the parking section 20a after charging is completed, It is determined whether or not the number of separation lines detected in (8) has become eight (S94).

移動制御回路58は、路面センサ56で検出した区切り線の本数が8本になっていない、即ち路面センサ56で検出した区切り線の本数が2本、4本又は6本であるとS94において判断すると、矢印50aで示す方向への移動を移動部57に継続させながら再びS82の処理を実行する。一方、移動制御回路58は、図1(c)に示すように路面センサ56で検出した区切り線の本数が8本になったとS94において判断すると、矢印50aで示す方向とは反対の矢印50b(図1参照。)で示す方向に移動部57を移動させて充電装置50を待機位置に戻す(S95)。   In S94, the movement control circuit 58 determines that the number of separation lines detected by the road surface sensor 56 is not eight, that is, the number of separation lines detected by the road surface sensor 56 is two, four, or six. Then, the process of S82 is executed again while the movement unit 57 continues to move in the direction indicated by the arrow 50a. On the other hand, when the movement control circuit 58 determines in S94 that the number of separation lines detected by the road surface sensor 56 has become eight as shown in FIG. 1C, the movement control circuit 58 uses an arrow 50b ( The moving unit 57 is moved in the direction indicated by FIG. 1 to return the charging device 50 to the standby position (S95).

以上に説明したように、送受電装置10は、駐車場20に駐車している複数台の電気自動車30に対して1台の充電装置50で充電することができる。   As described above, the power transmission / reception device 10 can charge a plurality of electric vehicles 30 parked in the parking lot 20 with one charging device 50.

また、送受電装置10は、送電コイル51に流れる励磁電流に基づいて送電コイル51及び受電コイル32間の距離の変化を充電装置50が検出することができ、送電コイル51及び受電コイル32間の距離の変化に基づいて充電装置50が移動するので、自動的に従来より適切な状態で充電装置50から電気自動車30に電磁エネルギを伝達することができる。したがって、送受電装置10は、駐車している電気自動車30の位置や向きに関わらず、充電が必要な電気自動車30を充電装置50によって次々と充電することができる。   In addition, the power transmission / reception device 10 allows the charging device 50 to detect a change in the distance between the power transmission coil 51 and the power reception coil 32 based on the excitation current flowing through the power transmission coil 51. Since the charging device 50 moves based on the change in distance, electromagnetic energy can be automatically transmitted from the charging device 50 to the electric vehicle 30 in a more appropriate state than before. Therefore, the power transmission / reception device 10 can sequentially charge the electric vehicles 30 that need to be charged by the charging device 50 regardless of the position and orientation of the parked electric vehicle 30.

また、送受電装置10は、S88における充電中に電流計54によって計測された電流と、S88における充電時間とに基づいて、おおよその充電量を算出することができる。   In addition, the power transmitting and receiving device 10 can calculate an approximate charge amount based on the current measured by the ammeter 54 during charging in S88 and the charging time in S88.

また、送受電装置10は、送電コイル51及び受電コイル32間の距離の変化を充電装置50に検出させるための特別な構成を電気自動車30に設ける必要がないので、簡単な構成で送電コイル51及び受電コイル32間の距離の変化を充電装置50に検出させることができる。   In addition, since the power transmission / reception device 10 does not need to provide the electric vehicle 30 with a special configuration for causing the charging device 50 to detect a change in the distance between the power transmission coil 51 and the power reception coil 32, the power transmission coil 51 has a simple configuration. And the change of the distance between the receiving coils 32 can be made to detect the charging device 50.

また、送受電装置10は、充電装置50が自動車の車体下に入ったことを充電装置50が検出したときのみ充電装置50が送電コイル51を励磁するので、不要な電磁エネルギが送電コイル51から送出されることを抑止することができるので、不要な電力の消費を抑止することができる。   Moreover, since the charging device 50 excites the power transmission coil 51 only when the charging device 50 detects that the charging device 50 has entered the vehicle body, the power transmission / reception device 10 generates unnecessary electromagnetic energy from the power transmission coil 51. Since transmission can be suppressed, unnecessary power consumption can be suppressed.

なお、送受電装置10は、電気自動車30の車体下に充電装置50が入った直後から充電が開始されるまで、電気自動車30の受電コイル32に充電装置50の送電コイル51が近づくに従って、充電装置50の充電回路52の出力電圧を弱くして充電装置50の送電コイル51が出力する電磁エネルギを減少させるようになっていれば、不要な電磁エネルギが送電コイル51から送出されることを更に抑止することができ、不要な電力の消費を更に抑止することができる。ここで、充電装置50は、送電コイル51が出力する電磁エネルギを、電流計54によって計測された電流に基づいて、正確に制御することができる。   The power transmission / reception device 10 is charged as the power transmission coil 51 of the charging device 50 approaches the power receiving coil 32 of the electric vehicle 30 until charging starts immediately after the charging device 50 enters the vehicle body of the electric vehicle 30. If the electromagnetic energy output from the power transmission coil 51 of the charging device 50 is reduced by weakening the output voltage of the charging circuit 52 of the device 50, it is further confirmed that unnecessary electromagnetic energy is transmitted from the power transmission coil 51. It can be suppressed, and unnecessary power consumption can be further suppressed. Here, the charging device 50 can accurately control the electromagnetic energy output from the power transmission coil 51 based on the current measured by the ammeter 54.

また、送受電装置10は、送電の開始から所定時間が経過したときに送電コイル51からの送電をS91において停止させるようになっているが、送電の開始から所定範囲を移動したときに送電コイル51からの送電をS91において停止させるようになっていても良い。   The power transmission / reception device 10 is configured to stop the power transmission from the power transmission coil 51 in S91 when a predetermined time has elapsed from the start of power transmission. The power transmission from 51 may be stopped in S91.

また、移動制御回路58は、S95において充電装置50を矢印50bで示す方向の待機位置に戻すようになっているが、矢印50bで示す方向に充電装置50を待機位置に戻す際にも各駐車区画20aにおいて充電装置50に充電を再度試みさせるようになっていても良い。矢印50bで示す方向に充電装置50が待機位置に戻る際にも各駐車区画20aにおいて充電装置50に移動制御回路58が充電を再度試みさせるようになっている場合、矢印50aで示す方向に充電装置50が通り過ぎた後で駐車区画20aに電気自動車30が駐車したとしても、充電装置50が待機位置に戻る際にすぐさま充電を開始することができる。   Further, the movement control circuit 58 returns the charging device 50 to the standby position in the direction indicated by the arrow 50b in S95, but each parking is also performed when the charging device 50 is returned to the standby position in the direction indicated by the arrow 50b. The charging device 50 may be made to try charging again in the section 20a. Even when the charging device 50 returns to the standby position in the direction indicated by the arrow 50b, if the movement control circuit 58 causes the charging device 50 to try charging again in each parking section 20a, the charging is performed in the direction indicated by the arrow 50a. Even if the electric vehicle 30 is parked in the parking section 20a after the device 50 has passed, the charging can be started immediately when the charging device 50 returns to the standby position.

なお、送受電装置10は、区切り線の本数によって充電装置50を待機位置から駐車区画20aに誘導するようになっているが、充電装置50を待機位置から駐車区画20aに誘導する方法としては、図7や図8に示す方法等もある。   In addition, although the power transmission / reception apparatus 10 guides the charging device 50 from the standby position to the parking section 20a according to the number of separation lines, as a method of guiding the charging apparatus 50 from the standby position to the parking section 20a, There are also the methods shown in FIGS.

図7に示す方法は、路面に誘導用反射板21を置くことによって、誘導用反射板21の部分と、誘導用反射板21以外の部分とで反射率が異なることを利用し誘導する方法である。   The method shown in FIG. 7 is a method of guiding by using the fact that the reflecting plate 21 is placed on the road surface and the reflectance of the portion of the guiding reflecting plate 21 is different from that of the portion other than the guiding reflecting plate 21. is there.

図8に示す方法は、路面に磁石(永久磁石又は電磁石)22を配置し、分岐地点の磁石22の磁力を強くすることによって、探索を容易にしている方法である。即ち、充電装置50は、強い磁力を検出すると分岐地点であることを判断できる。なお、図8中、磁石22の大きさは、磁力の強さを表している。   The method shown in FIG. 8 is a method that facilitates searching by disposing a magnet (permanent magnet or electromagnet) 22 on the road surface and increasing the magnetic force of the magnet 22 at the branch point. That is, the charging device 50 can determine that it is a branch point when it detects a strong magnetic force. In FIG. 8, the size of the magnet 22 represents the strength of the magnetic force.

(第2の実施の形態)
まず、本発明の第2の実施の形態に係る送受電装置の構成について説明する。
(Second Embodiment)
First, the structure of the power transmission / reception apparatus according to the second embodiment of the present invention will be described.

なお、本実施の形態に係る送受電装置の構成のうち、第1の実施の形態に係る送受電装置10(図1参照。)の構成と同様な構成については、送受電装置10の構成と同一の符号を付して詳細な説明を省略する。   Note that, among the configurations of the power transmission / reception device according to the present embodiment, the configuration similar to the configuration of the power transmission / reception device 10 (see FIG. 1) according to the first embodiment is the same as the configuration of the power transmission / reception device 10. The same reference numerals are assigned and detailed description is omitted.

本実施の形態に係る送受電装置の構成は、図9に示すように、受電側装置としての電気自動車130と、送電側装置としての充電装置150とを電気自動車30(図2参照。)及び充電装置50(図2参照。)に代えて送受電装置10が備えた構成と同様である。   As shown in FIG. 9, the configuration of the power transmission / reception device according to the present embodiment includes an electric vehicle 130 (see FIG. 2) and an electric vehicle 130 as a power reception side device and a charging device 150 as a power transmission side device. The configuration is the same as that of the power transmission / reception device 10 instead of the charging device 50 (see FIG. 2).

電気自動車130の構成は、磁界を発生させる磁界発生手段としての誘導コイル131と、整流回路33が出力した直流を高周波交流に変換し交流電圧を誘導コイル131に印加して誘導コイル131を励磁する発振回路132と、バッテリ31及び発振回路132の何れに整流回路33を接続するかを切り替えるスイッチ133と、スイッチ133の切り替えを制御するスイッチ制御回路134とを電気自動車30が備えた構成と同様である。   The configuration of the electric vehicle 130 includes an induction coil 131 as a magnetic field generating means for generating a magnetic field, and a DC output from the rectifier circuit 33 is converted into a high-frequency AC and an AC voltage is applied to the induction coil 131 to excite the induction coil 131. The electric vehicle 30 has the same configuration as the oscillation circuit 132, the switch 133 that switches whether the rectifier circuit 33 is connected to the battery 31 or the oscillation circuit 132, and the switch control circuit 134 that controls switching of the switch 133. is there.

充電装置150の構成は、直流を高周波交流に変換し交流電圧を送電コイル51に印加して送電コイル51を励磁する励磁手段としての充電回路151と、電気自動車130の誘導コイル131が発生させた磁界の強度を検出する磁界強度検出手段としての磁気センサ152と、移動制御回路153とを、充電回路52(図2参照。)、電流計54(図2参照。)及び移動制御回路58(図2参照。)に代えて充電装置50が備えた構成と同様である。   The configuration of the charging device 150 is generated by a charging circuit 151 serving as an exciting unit that converts direct current into high-frequency alternating current and applies an alternating voltage to the power transmission coil 51 to excite the power transmission coil 51, and an induction coil 131 of the electric vehicle 130. A magnetic sensor 152 as a magnetic field strength detecting means for detecting the strength of the magnetic field, and a movement control circuit 153 include a charging circuit 52 (see FIG. 2), an ammeter 54 (see FIG. 2), and a movement control circuit 58 (see FIG. 2). The configuration is the same as that of the charging device 50 instead of 2).

ここで、発振回路132は、図10に示すように、整流回路33が出力する直流電流を蓄積するキャパシタ132aと、予め定められた一定時間間隔で信号を出力するタイマ132bと、キャパシタ132aが蓄積する電力の電圧をタイマ132bが出力する信号を契機に検出する電圧検出回路132cと、一定電圧の高周波交流信号を発生する発振器132dと、発振器132dが発生させた一定電圧の高周波交流信号を電圧検出回路132cが検出した電圧に応じて増幅する増幅器132eとを備えている。なお、キャパシタ132aは、自身が蓄積している電力の電圧が電圧検出回路132cによって検出されるとき、自身が蓄積している電力を全て放出するようになっている。   Here, as shown in FIG. 10, the oscillation circuit 132 stores a capacitor 132a that stores the direct current output from the rectifier circuit 33, a timer 132b that outputs a signal at a predetermined time interval, and a capacitor 132a. A voltage detection circuit 132c that detects the voltage of the power to be triggered by a signal output from the timer 132b, an oscillator 132d that generates a high-frequency AC signal of a constant voltage, and a voltage detection of a high-frequency AC signal of a constant voltage generated by the oscillator 132d. And an amplifier 132e that amplifies the voltage according to the voltage detected by the circuit 132c. The capacitor 132a discharges all the electric power stored therein when the voltage of the electric power stored therein is detected by the voltage detection circuit 132c.

また、充電回路151は、送電コイル51に電磁エネルギを送出させるとき、図11に示すように、送電コイル51への電磁エネルギの送出を継続する一定の送出継続期間Aと、送電コイル51への電磁エネルギの送出を休止する一定の送出休止期間Bとを繰り返すようになっている。   In addition, when the charging circuit 151 sends the electromagnetic energy to the power transmission coil 51, as shown in FIG. 11, as shown in FIG. 11, the charging circuit 151 continues to send the electromagnetic energy to the power transmission coil 51, and to the power transmission coil 51. A certain transmission suspension period B in which the transmission of electromagnetic energy is suspended is repeated.

また、移動制御回路153の構成は、磁気センサ152によって検出された磁界の大きさに基づいて送電コイル51及び受電コイル32間の距離が最も近くなったか否かを判断するようになっていることを除き、移動制御回路58の構成と同様である。したがって、移動制御回路153は、距離検出手段及び移動制御手段を構成している。   Further, the configuration of the movement control circuit 153 is configured to determine whether or not the distance between the power transmission coil 51 and the power reception coil 32 is closest based on the magnitude of the magnetic field detected by the magnetic sensor 152. Except for, the configuration of the movement control circuit 58 is the same. Therefore, the movement control circuit 153 constitutes a distance detection unit and a movement control unit.

次に、本実施の形態に係る送受電装置の動作について説明する。   Next, the operation of the power transmission / reception device according to the present embodiment will be described.

なお、本実施の形態に係る送受電装置の動作は、以下に述べる動作を除いて第1の実施の形態に係る送受電装置10(図1参照。)の動作と同様である。したがって、本実施の形態に係る送受電装置の動作のうち、以下に述べる動作以外の動作については、説明を省略する。   The operation of the power transmission / reception device according to the present embodiment is the same as that of the power transmission / reception device 10 (see FIG. 1) according to the first embodiment except for the operations described below. Therefore, among the operations of the power transmission / reception device according to the present embodiment, descriptions of operations other than those described below are omitted.

電気自動車130のスイッチ133は、電磁エネルギの断続的な送出が充電装置150によって開始されたときに整流回路33及び発振回路132を接続している。したがって、送電コイル51から送出された電磁エネルギは、受電コイル32によって交流電力に変換された後、整流回路33によって直流電力に変換されて、発振回路132のキャパシタ132aに図11に示すように直流電力として蓄積される。   A switch 133 of the electric vehicle 130 connects the rectifier circuit 33 and the oscillation circuit 132 when intermittent charging of electromagnetic energy is started by the charging device 150. Therefore, the electromagnetic energy sent from the power transmission coil 51 is converted into AC power by the power receiving coil 32, and then converted into DC power by the rectifier circuit 33, and the DC current is applied to the capacitor 132a of the oscillation circuit 132 as shown in FIG. Accumulated as electric power.

また、タイマ132bは、キャパシタ132aへの直流電力の蓄積が開始されると始動し、送出継続期間Aが経過する度に電圧検出回路132cに信号を出力する。したがって、電圧検出回路132cは、キャパシタ132aが蓄積する電力の電圧を送出継続期間Aが経過する度に検出する。   The timer 132b is started when the accumulation of DC power in the capacitor 132a is started, and outputs a signal to the voltage detection circuit 132c every time the transmission continuation period A elapses. Therefore, the voltage detection circuit 132c detects the voltage of the electric power stored in the capacitor 132a every time the transmission continuation period A elapses.

そして、増幅器132eは、発振器132dが発生させた一定電圧の高周波交流信号を電圧検出回路132cが検出した電圧に正比例させて送出継続期間Aが経過する度に増幅し、増幅した高周波交流信号(図11参照。)を送出休止期間Bが経過するまで誘導コイル131に出力する。   Then, the amplifier 132e amplifies the constant frequency high frequency AC signal generated by the oscillator 132d in direct proportion to the voltage detected by the voltage detection circuit 132c every time the transmission duration A elapses, and the amplified high frequency AC signal (FIG. 11) is output to the induction coil 131 until the transmission suspension period B elapses.

ここで、電気自動車130の発振回路132のキャパシタ132aには、図11に示すように、送電コイル51及び受電コイル32間の距離が近付くにつれて多量の直流電力が蓄積されるので、誘導コイル131は、送電コイル51及び受電コイル32間の距離が近付くにつれて大きな磁界を、送出休止期間Bの間、発生させる。   Here, as shown in FIG. 11, a large amount of DC power is accumulated in the capacitor 132a of the oscillation circuit 132 of the electric vehicle 130 as the distance between the power transmission coil 51 and the power reception coil 32 approaches. As the distance between the power transmission coil 51 and the power reception coil 32 approaches, a large magnetic field is generated during the transmission suspension period B.

したがって、充電装置150の移動制御回路153は、磁気センサ152によって検出された磁界の大きさに基づいて送電コイル51及び受電コイル32間の距離が最も近くなったか否かを判断する。   Therefore, the movement control circuit 153 of the charging device 150 determines whether or not the distance between the power transmission coil 51 and the power reception coil 32 is closest based on the magnitude of the magnetic field detected by the magnetic sensor 152.

そして、電気自動車130の電圧検出回路132cは、自身が検出した電圧が予め定めた値を超えると、バッテリ31及び整流回路33が接続されるようにスイッチ制御回路134にスイッチ133を切り替えさせ、バッテリ31への充電を開始させる。   The voltage detection circuit 132c of the electric vehicle 130 causes the switch control circuit 134 to switch the switch 133 so that the battery 31 and the rectifier circuit 33 are connected when the voltage detected by the electric vehicle 130 exceeds a predetermined value. 31 starts charging.

以上に説明したように、本実施の形態に係る送受電装置は、駐車場20に駐車している複数台の電気自動車130に対して1台の充電装置150で充電することができる。   As described above, the power transmission / reception device according to the present embodiment can charge a plurality of electric vehicles 130 parked in the parking lot 20 with one charging device 150.

また、本実施の形態に係る送受電装置は、電気自動車130から発生させられた磁界の強度の変化に基づいて送電コイル51及び受電コイル32間の距離の変化を充電装置150が検出することができ、送電コイル51及び受電コイル32間の距離の変化に基づいて充電装置150が移動するので、自動的に従来より適切な状態で充電装置150から電気自動車130に電磁エネルギを伝達することができる。したがって、本実施の形態に係る送受電装置は、駐車している電気自動車130の位置や向きに関わらず、充電が必要な電気自動車130を充電装置150によって次々と充電することができる。   Further, in the power transmission / reception device according to the present embodiment, charging device 150 may detect a change in the distance between power transmission coil 51 and power reception coil 32 based on a change in the strength of the magnetic field generated from electric vehicle 130. The charging device 150 moves based on a change in the distance between the power transmission coil 51 and the power receiving coil 32, so that electromagnetic energy can be automatically transmitted from the charging device 150 to the electric vehicle 130 in a more appropriate state than before. . Therefore, the power transmission / reception device according to the present embodiment can sequentially charge the electric vehicle 130 that needs to be charged by the charging device 150 regardless of the position and orientation of the parked electric vehicle 130.

なお、本実施の形態に係る送受電装置は、充電装置150の充電回路52の出力電圧を常に一定にすることによって充電装置150の構成を簡略化しても良いが、電気自動車130の車体下に充電装置150が入った直後から充電が開始されるまで、電気自動車130の受電コイル32に充電装置150の送電コイル51が近づくに従って、充電装置150の充電回路52の出力電圧を弱くして充電装置150の送電コイル51が出力する電磁エネルギを減少させるようになっていれば、不要な電磁エネルギが送電コイル51から送出されることを更に抑止することができ、不要な電力の消費を更に抑止することができる。   In the power transmission / reception device according to the present embodiment, the configuration of charging device 150 may be simplified by always keeping the output voltage of charging circuit 52 of charging device 150 constant. From immediately after the charging device 150 enters until the charging is started, as the power transmission coil 51 of the charging device 150 approaches the power receiving coil 32 of the electric vehicle 130, the output voltage of the charging circuit 52 of the charging device 150 is weakened to decrease the charging device. If the electromagnetic energy output from the 150 power transmission coils 51 is reduced, unnecessary electromagnetic energy can be further prevented from being transmitted from the power transmission coil 51, and consumption of unnecessary power can be further suppressed. be able to.

また、増幅器132eは、発振器132dが発生させた一定電圧の高周波交流信号を電圧検出回路132cが検出した電圧に正比例させて増幅するようになっているが、発振器132dが発生させた一定電圧の高周波交流信号を電圧検出回路132cが検出した電圧に反比例させて増幅するようになっていても良い。   The amplifier 132e amplifies the constant voltage high-frequency AC signal generated by the oscillator 132d in direct proportion to the voltage detected by the voltage detection circuit 132c, but the constant voltage high-frequency signal generated by the oscillator 132d. The AC signal may be amplified in inverse proportion to the voltage detected by the voltage detection circuit 132c.

(第3の実施の形態)
まず、本発明の第3の実施の形態に係る送受電装置の構成について説明する。
(Third embodiment)
First, the structure of the power transmission / reception apparatus according to the third embodiment of the present invention will be described.

なお、本実施の形態に係る送受電装置の構成のうち、第2の実施の形態に係る送受電装置の構成と同様な構成については、第2の実施の形態に係る送受電装置の構成と同一の符号を付して詳細な説明を省略する。   In addition, about the structure similar to the structure of the power transmission / reception apparatus which concerns on 2nd Embodiment among the structure of the power transmission / reception apparatus which concerns on this Embodiment, with the structure of the power transmission / reception apparatus which concerns on 2nd Embodiment The same reference numerals are assigned and detailed description is omitted.

本実施の形態に係る送受電装置の構成は、図12に示すように、受電側装置としての電気自動車230と、送電側装置としての充電装置250とを電気自動車130(図9参照。)及び充電装置150(図9参照。)に代えて第2の実施の形態に係る送受電装置が備えた構成と同様である。   As shown in FIG. 12, the configuration of the power transmission / reception device according to the present embodiment includes an electric vehicle 230 (see FIG. 9) and an electric vehicle 230 as a power reception side device and a charging device 250 as a power transmission side device. Instead of the charging device 150 (see FIG. 9), the configuration is the same as that of the power transmission / reception device according to the second embodiment.

電気自動車230の構成は、誘導コイル131によって発生させられる磁界を断続させる磁界断続手段としての制御回路231を発振回路132(図9参照。)に代えて電気自動車130が備えた構成と同様である。   The configuration of the electric vehicle 230 is the same as the configuration in which the electric vehicle 130 includes a control circuit 231 serving as a magnetic field interrupting unit that interrupts the magnetic field generated by the induction coil 131 in place of the oscillation circuit 132 (see FIG. 9). .

充電装置250の構成は、移動制御回路251を移動制御回路153(図9参照。)に代えて充電装置150が備えた構成と同様である。   The configuration of the charging device 250 is the same as the configuration provided in the charging device 150 in place of the movement control circuit 251 instead of the movement control circuit 153 (see FIG. 9).

ここで、制御回路231は、図13に示すように、キャパシタ232a、タイマ232b、電圧検出回路232c、発振器232d、増幅器232eを有し発振回路132(図10参照。)と同様な発振回路232と、電気自動車230の状態情報を記憶するステータス記憶回路233と、ステータス記憶回路233から電気自動車230の状態情報を読み出すCPU(Central Processing Unit)234と、発振回路232の出力をCPU234の制御に応じて断続するスイッチ回路235とを備えている。   As shown in FIG. 13, the control circuit 231 includes a capacitor 232a, a timer 232b, a voltage detection circuit 232c, an oscillator 232d, and an amplifier 232e, and an oscillation circuit 232 similar to the oscillation circuit 132 (see FIG. 10). The status storage circuit 233 that stores the status information of the electric vehicle 230, the CPU (Central Processing Unit) 234 that reads the status information of the electric vehicle 230 from the status storage circuit 233, and the output of the oscillation circuit 232 according to the control of the CPU 234 And an intermittent switch circuit 235.

また、移動制御回路251の構成は、磁気センサ152によって検出された磁界の断続に基づいて電気自動車230の状態情報を取得するようになっていることと、電気自動車230から取得した電気自動車230の状態情報に基づいて移動部57の動作を制御するようになっていることを除き、移動制御回路153の構成と同様である。したがって、移動制御回路251は、距離検出手段、移動制御手段及び情報取得手段を構成している。   The movement control circuit 251 is configured to acquire state information of the electric vehicle 230 based on the intermittent magnetic field detected by the magnetic sensor 152 and the electric vehicle 230 acquired from the electric vehicle 230. The configuration of the movement control circuit 153 is the same as that of the movement control circuit 153 except that the operation of the movement unit 57 is controlled based on the state information. Therefore, the movement control circuit 251 constitutes a distance detection unit, a movement control unit, and an information acquisition unit.

次に、本実施の形態に係る送受電装置の動作について説明する。   Next, the operation of the power transmission / reception device according to the present embodiment will be described.

なお、本実施の形態に係る送受電装置の動作は、以下に述べる動作を除いて第2の実施の形態に係る送受電装置の動作と同様である。したがって、本実施の形態に係る送受電装置の動作のうち、以下に述べる動作以外の動作については、説明を省略する。   The operation of the power transmission / reception device according to the present embodiment is the same as the operation of the power transmission / reception device according to the second embodiment except for the operation described below. Therefore, among the operations of the power transmission / reception device according to the present embodiment, descriptions of operations other than those described below are omitted.

CPU234は、タイマ132bが出力する信号を契機に、ステータス記憶回路233から電気自動車230の状態情報を読み出し、読み出した状態情報を図14に示すようにスイッチ回路235に出力する。   In response to the signal output from the timer 132b, the CPU 234 reads the status information of the electric vehicle 230 from the status storage circuit 233, and outputs the read status information to the switch circuit 235 as shown in FIG.

そして、スイッチ回路235は、CPU234から出力された電気自動車230の状態情報に応じて、発振回路232の増幅器232eの出力を図14に示すように断続させながら誘導コイル131に出力する。   Then, the switch circuit 235 outputs the output of the amplifier 232e of the oscillation circuit 232 to the induction coil 131 while being interrupted as shown in FIG. 14 according to the state information of the electric vehicle 230 output from the CPU 234.

したがって、充電装置250の移動制御回路251は、磁気センサ152によって検出された磁界の大きさに基づいて送電コイル51及び受電コイル32間の距離が最も近くなったか否かを判断することができるとともに、磁気センサ152によって検出された磁界の断続に基づいて電気自動車230の状態情報を取得することができる。   Therefore, the movement control circuit 251 of the charging device 250 can determine whether or not the distance between the power transmission coil 51 and the power reception coil 32 is closest based on the magnitude of the magnetic field detected by the magnetic sensor 152. The state information of the electric vehicle 230 can be acquired based on the intermittent magnetic field detected by the magnetic sensor 152.

そして、移動制御回路58は、電気自動車230から取得した電気自動車230の状態情報が例えば充電不要という情報である場合、直ちに次の列の駐車区画20aに移動することができる。   And the movement control circuit 58 can move to the parking area 20a of the next row immediately when the state information of the electric vehicle 230 acquired from the electric vehicle 230 is information that charging is unnecessary, for example.

以上に説明したように、本実施の形態に係る送受電装置は、電気自動車230からの情報に基づいて充電装置250が移動するので、より適切な状態で充電装置250から電気自動車230に電磁エネルギを伝達することができる。   As described above, in the power transmission / reception device according to the present embodiment, since charging device 250 moves based on information from electric vehicle 230, electromagnetic energy is transferred from charging device 250 to electric vehicle 230 in a more appropriate state. Can be transmitted.

以上のように、本発明に係る送受電装置は、複数の受電側装置に対して1つの送電側装置で充電することができるという効果を有し、ハイブリッド車等の電気自動車と、その充電装置とを備えた送受電装置等として有用である。   As described above, the power transmitting and receiving device according to the present invention has an effect that a plurality of power receiving devices can be charged by one power transmitting device, and an electric vehicle such as a hybrid vehicle and the charging device thereof It is useful as a power transmission / reception device equipped with

(a)充電装置が待機位置にあるときの本発明の第1の実施の形態に係る送受電装置の上面図 (b)充電装置が移動中であるときの図1(a)に示す送受電装置の上面図 (c)充電装置が探索終了したときの図1(a)に示す送受電装置の上面図 (d)充電装置が充電中であるときの図1(a)に示す送受電装置の上面図(A) Top view of the power transmitting / receiving device according to the first embodiment of the present invention when the charging device is in the standby position (b) Power transmission / reception shown in FIG. 1 (a) when the charging device is moving Top view of device (c) Top view of power transmission / reception device shown in FIG. 1 (a) when charging device has finished searching (d) Power transmission / reception device shown in FIG. 1 (a) when charging device is charging Top view of 図1に示す送受電装置の電気自動車及び充電装置のブロック図1 is a block diagram of an electric vehicle and a charging device of the power transmission / reception device shown in FIG. 図2に示す電気自動車及び充電装置の外観斜視図External perspective view of the electric vehicle and the charging device shown in FIG. 図2に示す電気自動車及び充電装置の底面図The bottom view of the electric vehicle and the charging device shown in FIG. (a)図2に示す充電装置の送電コイル及び電気自動車の受電コイルを相対させたときの相互インダクタンスMと、送電コイルに流れる電流との関係を示す図 (b)送電コイルと受電コイルとの間の距離が図5(a)に示す距離から変化した状態での相互インダクタンスMと、送電コイルに流れる電流との関係を示す図(A) The figure which shows the relationship between the mutual inductance M when the power transmission coil of the charging device shown in FIG. 2 and the power reception coil of an electric vehicle are made to oppose, and the electric current which flows into a power transmission coil (b) Between a power transmission coil and a power reception coil The figure which shows the relationship between the mutual inductance M in the state from which the distance between changed from the distance shown to Fig.5 (a), and the electric current which flows into a power transmission coil 図1に示す送受電装置の動作のフローチャートFlowchart of the operation of the power transmission / reception device shown in FIG. 充電装置を待機位置から駐車区画に誘導する方法として図1に示す方法とは異なる方法を説明する図The figure explaining the method different from the method shown in FIG. 1 as a method of guide | inducing a charging device from a standby position to a parking area. 充電装置を待機位置から駐車区画に誘導する方法として図1及び図7に示す方法とは異なる方法を説明する図The figure explaining the method different from the method shown in FIG.1 and FIG.7 as a method of guide | inducing a charging device from a standby position to a parking area. 本発明の第2の実施の形態に係る送受電装置の電気自動車及び充電装置のブロック図The block diagram of the electric vehicle of the power transmission / reception apparatus and charging device which concern on the 2nd Embodiment of this invention 図9に示す電気自動車の発振回路のブロック図Block diagram of the oscillation circuit of the electric vehicle shown in FIG. 図10に示す発振回路の構成要素の出力等のタイミング図Timing chart of output of components of oscillation circuit shown in FIG. 本発明の第3の実施の形態に係る送受電装置の電気自動車及び充電装置のブロック図The block diagram of the electric vehicle and charging device of the power transmission / reception apparatus which concern on the 3rd Embodiment of this invention 図12に示す電気自動車の制御回路のブロック図Block diagram of the control circuit of the electric vehicle shown in FIG. 図13に示す制御回路の構成要素の出力等のタイミング図Timing chart of output of components of control circuit shown in FIG.

符号の説明Explanation of symbols

10 送受電装置
30 電気自動車(受電側装置)
31 バッテリ(動力源)
32 受電コイル
33 整流回路(負荷回路)
50 充電装置(送電側装置)
51 送電コイル
52 充電回路(励磁手段)
54 電流計(電流検出手段)
55 車両センサ(車体下検出手段)
57 移動部(移動手段)
58 移動制御回路(距離検出手段、移動制御手段)
130 電気自動車(受電側装置)
131 誘導コイル(磁界発生手段)
150 充電装置(送電側装置)
151 充電回路(励磁手段)
152 磁気センサ(磁界強度検出手段)
153 移動制御回路(距離検出手段、移動制御手段)
230 電気自動車(受電側装置)
231 制御回路(磁界断続手段)
250 充電装置(送電側装置)
251 移動制御回路(距離検出手段、移動制御手段、情報取得手段)
10 Electric power transmission / reception device 30 Electric vehicle (power reception side device)
31 Battery (Power source)
32 Receiving coil 33 Rectifier circuit (load circuit)
50 Charging device (power transmission side device)
51 Transmission coil 52 Charging circuit (excitation means)
54 Ammeter (Current detection means)
55 Vehicle sensor (underbody detection means)
57 Moving part (moving means)
58 Movement control circuit (distance detection means, movement control means)
130 Electric vehicle (power-receiving device)
131 Induction coil (magnetic field generating means)
150 Charging device (power transmission side device)
151 Charging circuit (excitation means)
152 Magnetic sensor (magnetic field strength detection means)
153 Movement control circuit (distance detection means, movement control means)
230 Electric vehicle (power-receiving device)
231 Control circuit (magnetic field intermittent means)
250 Charging device (power transmission side device)
251 Movement control circuit (distance detection means, movement control means, information acquisition means)

Claims (9)

電磁エネルギを受け取る受電コイルと、前記受電コイルに接続された負荷回路とを有した受電側装置に前記電磁エネルギを送出する送電側装置において、
前記電磁エネルギを送出する送電コイルと、前記送電コイルに流れる励磁電流を検出する電流検出手段と、前記電流検出手段によって検出された前記励磁電流の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有したことを特徴とする送電側装置。
In a power transmission side device for sending the electromagnetic energy to a power reception side device having a power reception coil for receiving electromagnetic energy and a load circuit connected to the power reception coil,
A power transmission coil for transmitting the electromagnetic energy; current detection means for detecting an excitation current flowing in the power transmission coil; and a change between the power transmission coil and the power reception coil based on a change in the excitation current detected by the current detection means. A power transmission side device comprising distance detection means for detecting a change in distance.
電磁エネルギを受け取る受電コイルと、前記受電コイルによって受け取った前記電磁エネルギに応じた強度の磁界を発生させる磁界発生手段とを有した受電側装置に前記電磁エネルギを送出する送電側装置において、
前記電磁エネルギを送出する送電コイルと、前記磁界発生手段によって発生させられた前記磁界の強度を検出する磁界強度検出手段と、前記磁界強度検出手段によって検出された前記磁界の強度の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有したことを特徴とする送電側装置。
In a power transmission side device that transmits the electromagnetic energy to a power reception side device having a power reception coil that receives electromagnetic energy and a magnetic field generation unit that generates a magnetic field having a strength corresponding to the electromagnetic energy received by the power reception coil.
Based on a change in the strength of the magnetic field detected by the power transmission coil for transmitting the electromagnetic energy, magnetic field strength detection means for detecting the strength of the magnetic field generated by the magnetic field generation means, and the magnetic field strength detection means. A power transmission side device comprising distance detection means for detecting a change in the distance between the power transmission coil and the power reception coil.
前記送電側装置自身を移動させる移動手段と、前記距離検出手段の検出結果に基づいて移動を制御する移動制御手段とを有したことを特徴とする請求項1又は請求項2に記載の送電側装置。 3. The power transmission side according to claim 1, further comprising: a moving unit that moves the power transmission side device itself; and a movement control unit that controls movement based on a detection result of the distance detection unit. apparatus. 前記受電側装置は、前記磁界発生手段によって発生させられる前記磁界を所定の情報に応じて断続させる磁界断続手段を有し、
前記磁界強度検出手段によって検出された前記磁界の断続に基づいて前記所定の情報を取得する情報取得手段と、前記送電側装置自身を移動させる移動手段と、前記情報取得手段によって取得された前記所定の情報に基づいて移動を制御する移動制御手段とを有したことを特徴とする請求項2に記載の送電側装置。
The power receiving side device has magnetic field interrupting means for interrupting the magnetic field generated by the magnetic field generating means according to predetermined information,
Information acquisition means for acquiring the predetermined information based on the intermittentness of the magnetic field detected by the magnetic field intensity detection means, moving means for moving the power transmission side device itself, and the predetermined information acquired by the information acquisition means The power transmission side device according to claim 2, further comprising a movement control unit that controls movement based on the information.
前記送電コイルに交流電圧を印加して前記送電コイルを励磁する励磁手段を有し、
前記励磁手段は、前記送電コイルが送出する前記電磁エネルギを前記距離検出手段によって検出された前記距離の減少に応じて減少させる交流電圧を前記送電コイルに印加することを特徴とする請求項1ないし請求項4の何れかに記載の送電側装置。
Excitation means for exciting the power transmission coil by applying an AC voltage to the power transmission coil,
The said excitation means applies the alternating voltage which reduces the said electromagnetic energy which the said power transmission coil sends according to the reduction | decrease of the said distance detected by the said distance detection means to the said power transmission coil. The power transmission side device according to claim 4.
前記受電側装置は、前記受電コイルによって受け取った前記電磁エネルギを電力として蓄えるバッテリを動力源として有した自動車であり、
前記送電側装置自身が前記自動車の車体下に入ったことを検出する車体下検出手段と、前記送電コイルに交流電圧を印加して前記送電コイルを励磁する励磁手段とを有し、
前記励磁手段は、前記送電側装置が前記自動車の車体下に入ったことが前記車体下検出手段によって検出されたときに、前記送電コイルを励磁することを特徴とする請求項1又は請求項2に記載の送電側装置。
The power receiving side device is an automobile having, as a power source, a battery that stores the electromagnetic energy received by the power receiving coil as electric power,
Underbody detection means for detecting that the power transmission side device itself has entered under the body of the automobile, and excitation means for exciting the power transmission coil by applying an AC voltage to the power transmission coil,
3. The excitation means excites the power transmission coil when the underbody detection means detects that the power transmission side device is under the body of the automobile. 4. The power transmission side device described in 1.
前記送電側装置自身が自動車の車体下に入ったことを検出する車両センサと、駐車区画の区切り線を検出する路面センサとを有したことを特徴とする請求項1又は請求項2に記載の送電側装置。 3. The vehicle sensor according to claim 1, further comprising: a vehicle sensor that detects that the power transmission side device itself has entered a vehicle body; and a road surface sensor that detects a partition line of a parking area. Power transmission side device. 電磁エネルギを送出する送電コイルを有した送電側装置と、前記送電コイルによって送出された前記電磁エネルギを受け取る受電コイルを有した受電側装置とを備え、
前記受電側装置は、前記受電コイルに接続された負荷回路を有し、
前記送電側装置は、前記送電コイルに流れる励磁電流を検出する電流検出手段と、前記電流検出手段によって検出された前記励磁電流の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有したことを特徴とする送受電装置。
A power transmission side device having a power transmission coil for transmitting electromagnetic energy, and a power reception side device having a power reception coil for receiving the electromagnetic energy transmitted by the power transmission coil,
The power receiving side device has a load circuit connected to the power receiving coil,
The power transmission side device detects a change in a distance between the power transmission coil and the power reception coil based on a change in the excitation current detected by the current detection unit and an excitation current detected by the current detection unit. A power transmission / reception device comprising a distance detection means for detection.
電磁エネルギを送出する送電コイルを有した送電側装置と、前記送電コイルによって送出された前記電磁エネルギを受け取る受電コイルを有した受電側装置とを備え、
前記受電側装置は、前記受電コイルによって受け取った前記電磁エネルギに応じた強度の磁界を発生させる磁界発生手段を有し、
前記送電側装置は、前記磁界発生手段によって発生させられた前記磁界の強度を検出する磁界強度検出手段と、前記磁界強度検出手段によって検出された前記磁界の強度の変化に基づいて前記送電コイル及び前記受電コイル間の距離の変化を検出する距離検出手段とを有したことを特徴とする送受電装置。
A power transmission side device having a power transmission coil for transmitting electromagnetic energy, and a power reception side device having a power reception coil for receiving the electromagnetic energy transmitted by the power transmission coil,
The power receiving side device has magnetic field generating means for generating a magnetic field having a strength corresponding to the electromagnetic energy received by the power receiving coil,
The power transmission side device includes: a magnetic field strength detection unit that detects a strength of the magnetic field generated by the magnetic field generation unit; a power transmission coil that is based on a change in the strength of the magnetic field detected by the magnetic field strength detection unit; A power transmission / reception device comprising distance detection means for detecting a change in the distance between the power reception coils.
JP2005102943A 2005-03-31 2005-03-31 Transmitter-receiver Pending JP2006288034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102943A JP2006288034A (en) 2005-03-31 2005-03-31 Transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102943A JP2006288034A (en) 2005-03-31 2005-03-31 Transmitter-receiver

Publications (1)

Publication Number Publication Date
JP2006288034A true JP2006288034A (en) 2006-10-19

Family

ID=37409366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102943A Pending JP2006288034A (en) 2005-03-31 2005-03-31 Transmitter-receiver

Country Status (1)

Country Link
JP (1) JP2006288034A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052785A1 (en) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
JP2010234878A (en) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd Power receiving guide device, power receiving guide method and power receiving guide program
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
US7923870B2 (en) 2007-03-20 2011-04-12 Seiko Epson Corporation Noncontact power transmission system and power transmitting device
CN102244399A (en) * 2010-05-14 2011-11-16 三星电子株式会社 Method and apparatus for transmitting power and data
JP2011254593A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Charger
WO2012014484A2 (en) * 2010-07-29 2012-02-02 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
WO2012014485A3 (en) * 2010-07-29 2012-06-07 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
JP2012188116A (en) * 2010-03-16 2012-10-04 Toyota Motor Corp Vehicle
CN102791517A (en) * 2010-03-10 2012-11-21 丰田自动车株式会社 Vehicle parking assist system, vehicle including the same, and vehicle parking assist method
JP2012531176A (en) * 2009-05-25 2012-12-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for detecting a device in a wireless power transfer system
JP2012249405A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device, vehicle and non-contact power supply system
WO2012169729A1 (en) * 2011-06-08 2012-12-13 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver and wireless power transmission method
JP2013502193A (en) * 2009-08-07 2013-01-17 オークランド ユニサービシズ リミテッド Inductive power transfer system
JP2013055803A (en) * 2011-09-05 2013-03-21 Denso Corp Non-contact charger
WO2013039143A1 (en) * 2011-09-16 2013-03-21 株式会社Ihi Moving-vehicle electric power feeding system
JP5263391B2 (en) * 2009-05-14 2013-08-14 トヨタ自動車株式会社 Non-contact power receiving apparatus and vehicle equipped with the same
JP2013198187A (en) * 2012-03-16 2013-09-30 Aisin Seiki Co Ltd Vehicle power feeding device
US8655530B2 (en) 2010-04-21 2014-02-18 Toyota Jidosha Kabushiki Kaisha Parking assist device for vehicle and electrically powered vehicle including the same
CN103633694A (en) * 2008-12-24 2014-03-12 株式会社丰田自动织机 Resonance type non-contact charging device
JP2014079167A (en) * 2007-12-18 2014-05-01 Panasonic Corp Charging holder case
CN103998701A (en) * 2011-12-27 2014-08-20 株式会社Ihi Moving vehicle transfer device, and moving vehicle which supplies power to transfer device
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
US9124106B2 (en) 2007-12-18 2015-09-01 Panasonic Corporation Battery charger cradle
US9536655B2 (en) 2010-12-01 2017-01-03 Toyota Jidosha Kabushiki Kaisha Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system
KR101807268B1 (en) 2017-05-16 2018-01-18 대영채비(주) Wireless charging apparatus for electric vehicles without limitation of movement within the radius
DE102017214644A1 (en) * 2017-08-22 2019-02-28 Zf Friedrichshafen Ag Loading vehicle and method for charging an electric vehicle
US10312750B2 (en) 2009-05-25 2019-06-04 Koninklijke Philips N.V. Method and device for detecting a device in a wireless power transmission system
JP7011763B1 (en) 2021-09-30 2022-01-27 Haloworld株式会社 Power supply system

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923870B2 (en) 2007-03-20 2011-04-12 Seiko Epson Corporation Noncontact power transmission system and power transmitting device
US9312711B2 (en) 2007-12-18 2016-04-12 Panasonic Corporation Battery charger cradle
JP2014079167A (en) * 2007-12-18 2014-05-01 Panasonic Corp Charging holder case
US9124106B2 (en) 2007-12-18 2015-09-01 Panasonic Corporation Battery charger cradle
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
KR101185107B1 (en) 2008-11-07 2012-09-21 도요타 지도샤(주) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10618411B2 (en) 2008-11-07 2020-04-14 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP4849190B2 (en) * 2008-11-07 2012-01-11 トヨタ自動車株式会社 Vehicle power supply system and electric vehicle
EP3620326A1 (en) * 2008-11-07 2020-03-11 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
CN102209647B (en) * 2008-11-07 2013-11-13 丰田自动车株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
EP2347928A4 (en) * 2008-11-07 2014-04-09 Toyota Motor Co Ltd Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
US8798829B2 (en) 2008-11-07 2014-08-05 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
EP2347928A1 (en) * 2008-11-07 2011-07-27 Toyota Jidosha Kabushiki Kaisha Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
WO2010052785A1 (en) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
CN103633694A (en) * 2008-12-24 2014-03-12 株式会社丰田自动织机 Resonance type non-contact charging device
JP2010234878A (en) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd Power receiving guide device, power receiving guide method and power receiving guide program
EP2431212A4 (en) * 2009-05-14 2017-08-16 Toyota Jidosha Kabushiki Kaisha Non-contact power reception device and vehicle equipped with same
JP5263391B2 (en) * 2009-05-14 2013-08-14 トヨタ自動車株式会社 Non-contact power receiving apparatus and vehicle equipped with the same
US10312750B2 (en) 2009-05-25 2019-06-04 Koninklijke Philips N.V. Method and device for detecting a device in a wireless power transmission system
JP2012531176A (en) * 2009-05-25 2012-12-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for detecting a device in a wireless power transfer system
US11050304B2 (en) 2009-05-25 2021-06-29 Koninklijke Philips N.V. Method and device for detecting a device in a wireless power transmission system
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2013502193A (en) * 2009-08-07 2013-01-17 オークランド ユニサービシズ リミテッド Inductive power transfer system
CN102791517A (en) * 2010-03-10 2012-11-21 丰田自动车株式会社 Vehicle parking assist system, vehicle including the same, and vehicle parking assist method
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9073442B2 (en) 2010-03-16 2015-07-07 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
JP2012188116A (en) * 2010-03-16 2012-10-04 Toyota Motor Corp Vehicle
US8655530B2 (en) 2010-04-21 2014-02-18 Toyota Jidosha Kabushiki Kaisha Parking assist device for vehicle and electrically powered vehicle including the same
CN102244399A (en) * 2010-05-14 2011-11-16 三星电子株式会社 Method and apparatus for transmitting power and data
JP2011254593A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Charger
WO2012014484A2 (en) * 2010-07-29 2012-02-02 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
WO2012014484A3 (en) * 2010-07-29 2012-06-07 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
WO2012014485A3 (en) * 2010-07-29 2012-06-07 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
CN103068618A (en) * 2010-07-29 2013-04-24 株式会社丰田自动织机 Resonance type non-contact power supply system
CN103068618B (en) * 2010-07-29 2015-06-17 株式会社丰田自动织机 Resonance type non-contact power supply system
JP2013537788A (en) * 2010-07-29 2013-10-03 株式会社豊田自動織機 Resonant contactless power supply system
US9536655B2 (en) 2010-12-01 2017-01-03 Toyota Jidosha Kabushiki Kaisha Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system
JP2012249405A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device, vehicle and non-contact power supply system
KR101241495B1 (en) 2011-06-08 2013-03-11 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
WO2012169729A1 (en) * 2011-06-08 2012-12-13 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver and wireless power transmission method
US9892846B2 (en) 2011-06-08 2018-02-13 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver and wireless power transmission method
US9180782B2 (en) 2011-06-20 2015-11-10 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
JP2013055803A (en) * 2011-09-05 2013-03-21 Denso Corp Non-contact charger
CN103782489A (en) * 2011-09-16 2014-05-07 株式会社Ihi Moving-vehicle electric power feeding system
US9260029B2 (en) 2011-09-16 2016-02-16 Ihi Corporation Vehicle electric power supply system
US9027723B2 (en) 2011-09-16 2015-05-12 Ihi Corporation Vehicle electric power supply system
JP2013066291A (en) * 2011-09-16 2013-04-11 Ihi Corp Mobile vehicle power feeding system
WO2013039143A1 (en) * 2011-09-16 2013-03-21 株式会社Ihi Moving-vehicle electric power feeding system
US9669844B2 (en) 2011-12-27 2017-06-06 Ihi Corporation Vehicle transfer device, and vehicle which supplies power to transfer device
CN103998701A (en) * 2011-12-27 2014-08-20 株式会社Ihi Moving vehicle transfer device, and moving vehicle which supplies power to transfer device
JP2013198187A (en) * 2012-03-16 2013-09-30 Aisin Seiki Co Ltd Vehicle power feeding device
KR101807268B1 (en) 2017-05-16 2018-01-18 대영채비(주) Wireless charging apparatus for electric vehicles without limitation of movement within the radius
DE102017214644A1 (en) * 2017-08-22 2019-02-28 Zf Friedrichshafen Ag Loading vehicle and method for charging an electric vehicle
JP7011763B1 (en) 2021-09-30 2022-01-27 Haloworld株式会社 Power supply system
JP2023050460A (en) * 2021-09-30 2023-04-11 Haloworld株式会社 power supply system

Similar Documents

Publication Publication Date Title
JP2006288034A (en) Transmitter-receiver
US10618411B2 (en) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP5870957B2 (en) Power receiving device, parking support device, vehicle, and power transmission system
KR101824578B1 (en) Power reception apparatus, power transmission apparatus, power transmission system, and parking assistance system
EP3089323B1 (en) Non-contact power transmission device
US9186995B2 (en) Non-contact power receiving apparatus and vehicle having the same
EP3131175B1 (en) Wireless power supply system and wireless power reception device
WO2012165244A1 (en) Contactless electricity supply device
WO2011142419A1 (en) Resonance-type non-contact power supply system
EP2216870A2 (en) Non-contact power transmission apparatus
CN104488162B (en) Contactless power supply system
KR20170035920A (en) Devices, systems, and method for dynamic electric vehicle charging with position detection
CN105209286A (en) Power receiving device, parking assist system, and power transfer system
WO2013065283A1 (en) Non-contact charging apparatus
JP2015104161A (en) Non-contact power transmission device and non-contact power transmission system
RU2466042C1 (en) Vehicle power supply system, electric vehicle and power supply for vehicle
CN108928247B (en) Contactless electrical power transmission system
WO2015075514A1 (en) Contactless power transfer system, charging station, and vehicle
JP7140041B2 (en) Contactless power supply system
JP2013126308A (en) Power transmission system