JP2006285667A - Fast interpolation of absorption coefficient in radiative transfer calculation - Google Patents

Fast interpolation of absorption coefficient in radiative transfer calculation Download PDF

Info

Publication number
JP2006285667A
JP2006285667A JP2005105048A JP2005105048A JP2006285667A JP 2006285667 A JP2006285667 A JP 2006285667A JP 2005105048 A JP2005105048 A JP 2005105048A JP 2005105048 A JP2005105048 A JP 2005105048A JP 2006285667 A JP2006285667 A JP 2006285667A
Authority
JP
Japan
Prior art keywords
dimensional
space
matrix
calculation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105048A
Other languages
Japanese (ja)
Inventor
Masanori Kaji
正典 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu FIP Corp
Original Assignee
Fujitsu FIP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu FIP Corp filed Critical Fujitsu FIP Corp
Priority to JP2005105048A priority Critical patent/JP2006285667A/en
Publication of JP2006285667A publication Critical patent/JP2006285667A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fast interpolation of an absorption coefficient in radiative transfer calculation. <P>SOLUTION: The function value interpolation method for interpolating values of a function mapping points in a three-dimensional space to points in a one-dimensional space by means of a computer has the steps of rearranging lattice point data in a two-dimensional lattice space as a part of the three-dimensional space in a one-dimensional column direction by a predetermined method, and generating a two-dimensional matrix for calculation having point sequence data on the other dimension in the three-dimensional space as the other dimension of the two-dimensional matrix for calculation. By the singular value decomposition of the two-dimensional matrix for calculation, 10% of larger singular values of a diagonal matrix of singular values approximate the lattice point data in the two-dimensional lattice space to calculate interpolation coefficients. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は関数の補間方法に関し特に3次元空間から1次元空間へ写像して補間を行う補間方法および装置に関する。   The present invention relates to a function interpolation method, and more particularly to an interpolation method and apparatus for performing interpolation by mapping from a three-dimensional space to a one-dimensional space.

関数の補間方法は、例えば線形補間、スプライン補間、その他多数の補間方法が知られている。補間は離散化した数値等を表わす関数値の間の点を計算する方法であり、補間する対象のデータ量が多くなると計算量もそれに比例して多くなる。特に大量のデータの補間を行う計算では計算量が膨大となり実用的な時間内で計算を行うことは困難な状態である。このような計算の例としては大気の放射伝達計算がある。   As a function interpolation method, for example, linear interpolation, spline interpolation, and many other interpolation methods are known. Interpolation is a method of calculating points between function values representing discretized numerical values, and the amount of calculation increases in proportion to the amount of data to be interpolated. In particular, in calculations that perform interpolation of a large amount of data, the amount of calculation becomes enormous, and it is difficult to perform calculations within a practical time. An example of such a calculation is atmospheric radiative transfer calculation.

大気の放射伝達計算は大気を透過した光のスペクトルを観測して大気中の成分濃度を求める計算であり、大気中を伝わる光が受ける吸収、散乱の過程を計算する必要がある。この吸収係数の計算には気温×気圧×波数で定義される3次元のデータを用いる。   The atmospheric radiative transfer calculation is a calculation for observing the spectrum of light transmitted through the atmosphere to determine the concentration of the components in the atmosphere, and it is necessary to calculate the processes of absorption and scattering received by the light transmitted through the atmosphere. The calculation of the absorption coefficient uses three-dimensional data defined by air temperature × atmospheric pressure × wave number.

従来は放射伝達計算に必要な吸収係数を気圧×気温でのスプライン補間係数を数表にし、例えばデータベース等にこの数表を入力して必要に応じて補間するという方法を用いていた。
特開2003−248674号
Conventionally, the absorption coefficient necessary for the radiative transfer calculation is converted into a numerical table of the spline interpolation coefficient at atmospheric pressure × temperature, and for example, this numerical table is input to a database or the like and is interpolated as necessary.
JP 2003-248664 A

しかし、このような方法では計算すべき波長域や補間する点が増大すると計算量が膨大となりワークステーション等を使用しても計算時間が数日かかる。これは放射伝達計算を適用し、例えば測定結果を計算し温室効果ガスを特定する場合も同様であり、実用的な計算時間とはいえない。よってこのような補間計算をできるだけ高速で行う方法が望まれている。   However, in such a method, if the wavelength region to be calculated and the number of points to be interpolated increase, the amount of calculation becomes enormous, and even if a workstation or the like is used, it takes several days to calculate. This is the same when applying a radiative transfer calculation, for example, calculating a measurement result and specifying a greenhouse gas, and it cannot be said that it is a practical calculation time. Therefore, a method for performing such interpolation calculation as fast as possible is desired.

上記の問題に鑑み、本発明は気温×気圧×波数で定義される3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数値補間方法であって、前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える段階と、前記3次空間のもう一つの次元の点列データを計算用2次元行列の別の次元として計算用2次元行列を生成する段階を有し、前記計算用2次元行列の特異値分解を行い、特異値対角行列のうち特異値の降順に先頭から10%前後の特異値と他の二つの行列の列部分或いは行部分の10%前後を用いて前記2次元の格子状空間の格子点データに適用して、近似して補間係数を計算する方法を提供する。これによって計算に必要なデータ量を大幅に少なくすることができ高速補間計算が可能となる。   In view of the above problems, the present invention is a function value interpolation method for interpolating, using a computer, the value of a function that maps from a point in a three-dimensional space defined by temperature × atmospheric pressure × wave number to a point in a one-dimensional space, Rearranging lattice point data of a two-dimensional lattice space, which is a part of the three-dimensional space, in a one-dimensional column direction by a predetermined method, and calculating point sequence data of another dimension of the tertiary space A step of generating a two-dimensional matrix for calculation as another dimension of the two-dimensional matrix, performing singular value decomposition of the two-dimensional matrix for calculation, and 10% from the top in descending order of singular values in the singular value diagonal matrix Providing a method for calculating the interpolation coefficient by applying it to the lattice point data in the two-dimensional lattice space using the singular values before and after and the column part or row part of the other two matrices around 10%. To do. As a result, the amount of data required for the calculation can be greatly reduced, and high-speed interpolation calculation is possible.

さらに前記所定の割合は以下のように求めることができる。
Aを計算用2次元行列、Uを列間が直交する直交行列、Σを特異値行列、該特異値行列Σの成分をσ>σ>σ・・・>σで表し、Vを回転行列として、特異値分解A=U・Σ・Vにおいて、
(1)前記計算用2次元行列Aの列ベクトル

Figure 2006285667
に対して要素の平均値
Figure 2006285667
に最も近い要素ai,j又は該要素の中央値又は該要素の最大値を標準要素とし、
(2)該標準要素を用いて、
Figure 2006285667
を、lを1,2,3,・・と順次求め、求める要求精度(有効桁数)dに対してd<dとなるlが暫定の近似範囲であり、特異値行列の成分において降順に先頭からl個の成分が近似範囲となる。
(3)上記(1)、(2)を計算用2次元行列の全列に対して行い、最大のlを近似範囲とする。 Further, the predetermined ratio can be obtained as follows.
A calculation for a two-dimensional matrix represents a U orthogonal matrices between columns are orthogonal, sigma singular value matrix, the components of said specific value matrix Σ σ 1> σ 2> σ in 3 ···> σ n, V In a singular value decomposition A = U · Σ · V t , where t is a rotation matrix,
(1) Column vector of the calculation two-dimensional matrix A
Figure 2006285667
Mean of elements for
Figure 2006285667
The element a i, j closest to or the median value of the element or the maximum value of the element as a standard element,
(2) Using the standard element,
Figure 2006285667
L is sequentially obtained as 1, 2, 3,..., And l is a provisional approximation range where d < dl with respect to the required accuracy (number of significant digits) d to be obtained, and descending order in the components of the singular value matrix L components from the top are approximate ranges.
(3) The above (1) and (2) are performed on all the columns of the calculation two-dimensional matrix, and the maximum l is set as the approximation range.

また前記2次元の格子状空間は斜交格子であり、該格子状空間を2以上の領域に分割し、各領域に対して計算を行う方法を提供する。さらには上記の方法を行うことができるコンピュータプログラム、さらに該プログラムを有する計算装置を提供する。   The two-dimensional lattice space is an oblique lattice, and a method is provided in which the lattice space is divided into two or more regions and calculation is performed for each region. Furthermore, a computer program capable of performing the above-described method and a computing device having the program are provided.

以下に本発明を図を用いて説明する。まず、吸収係数のデータは図1(a)に示されているように気圧×気温のデータを波数毎に並べた3次元空間のデータ1である。ある波数について気温×気圧データを取り出したものが図1(b)である。該図1(b)から解るように斜交格子を用いており、3つの区間に分けられている。本実施例では3つの区間に分けているがこれに限定されるものではなく当業者であれば必要に応じて適切な区間に分けることができる。   The present invention will be described below with reference to the drawings. First, the data of the absorption coefficient is data 1 in a three-dimensional space in which data of atmospheric pressure × temperature is arranged for each wave number as shown in FIG. FIG. 1B shows the temperature × barometric pressure data extracted for a certain wave number. As can be seen from FIG. 1B, an oblique grid is used, which is divided into three sections. In the present embodiment, it is divided into three sections, but the present invention is not limited to this, and those skilled in the art can divide into appropriate sections as necessary.

次に区間毎に気温×気圧の2次元データを1次元空間に写像する。図2に示したように1つの斜交区間を取り出し、該区間の格子点の第1の縦方向データ列3を行列の列方向に並べる。同様にして隣の第2の縦方向データ列4を取り出し列方向に続けて並べる。つまり縦のデータ列を1つの単位として順次取り出して列方向に並べる。これを繰り返し、第3の縦方向データ列5、第4の縦方向データ列6、・・・というように順次縦方向のデータ列を並べていく。   Next, two-dimensional data of temperature × atmospheric pressure is mapped to a one-dimensional space for each section. As shown in FIG. 2, one oblique section is extracted, and the first vertical data string 3 of the lattice points in the section is arranged in the column direction of the matrix. Similarly, the adjacent second vertical data row 4 is continuously arranged in the row direction. That is, the vertical data string is sequentially extracted as one unit and arranged in the column direction. This process is repeated, and the vertical data strings are sequentially arranged as a third vertical data string 5, a fourth vertical data string 6, and so on.

このようにすると1つの斜交区間の格子点の2次元データは行列の列方向の1次元データとして写像することができる。これを波数方向に並べられた全てのデータに対しても行うことによって2次元の数表が作成される。このようにして1つの斜交空間に対してデータの並べ替えを行うと吸収係数数表7が生成される。この吸収係数数表7は列方向の要素の数は斜交区間の格子点数であり、行方向の要素の数は波数軸方向のデータ数である行列となることは当業者には明らかである。つまり吸収係数数表7は吸収係数行列と言い換えることができる。   In this way, the two-dimensional data of the lattice points in one oblique section can be mapped as one-dimensional data in the column direction of the matrix. A two-dimensional number table is created by performing this for all data arranged in the wave number direction. When data is rearranged in one oblique space in this way, the absorption coefficient number table 7 is generated. It is obvious to those skilled in the art that the number of elements in the column direction is a matrix in which the number of elements in the row direction is the number of grid points in the oblique section and the number of elements in the row direction is the number of data in the wavenumber axis direction. . That is, the absorption coefficient number table 7 can be restated as an absorption coefficient matrix.

次にこの吸収係数数表7に対して特異値分解を行う。当業者には既知であるが特異値分解は以下のような式で表される。

Figure 2006285667
但し、Aは吸収係数行列、Uは列間は直交する直交行列、Σは特異値行列(σ1>σ2>・・>σn)、Vは回転行列である。
ここで特異値対角行列Σに注目すると、Σの対角要素を特異値の降順に並べて見ると図3のようなグラフになる。グラフから明らかなように特異値は急激に減少している。該グラフによると第2の領域9では特異値の値はほぼ一定となっており、さらに第1の領域8の値と比較すると1桁以上小さい値となっている。
従来のPT(気圧:P,気温:T)テーブルを用いた計算(例えば特開2003−248674号公報参照)では、波数点断面((気圧×気温)格子点)の格子点値の4次スプライン補間係数を例えばデータベース等に記憶しておき、任意の気圧×気温点に対し全波数点について補間係数を計算していた。
補間のベースになる気圧×気温格子点の断面が、上記特異値分解結果の直交行列Vの列方向に対応する。Vの列を元の2次元気圧×気温格子に戻し、2次元スプライン補間係数を計算しておき、任意の気圧×気温に対応する列ベクトルV(P,T)を補間すれば、格子点値を高速で計算出来ることになる。 Next, singular value decomposition is performed on the absorption coefficient number table 7. Although known to those skilled in the art, the singular value decomposition is expressed by the following equation.
Figure 2006285667
However, A is an absorption coefficient matrix, U is an orthogonal matrix in which columns are orthogonal, Σ is a singular value matrix (σ 1 > σ 2 >...> Σ n ), and V t is a rotation matrix.
If attention is paid to the singular value diagonal matrix Σ, the diagonal elements of Σ are arranged in descending order of singular values, and the graph is as shown in FIG. As is apparent from the graph, the singular value decreases rapidly. According to the graph, the value of the singular value is almost constant in the second region 9 and is smaller by one digit or more than the value of the first region 8.
In a calculation using a conventional PT (atmospheric pressure: P, temperature: T) table (see, for example, Japanese Patent Application Laid-Open No. 2003-248664), a quadratic spline of lattice point values of a wavenumber point cross section ((atmosphere × temperature) lattice point). The interpolation coefficient is stored in, for example, a database, and the interpolation coefficient is calculated for all wave numbers for an arbitrary atmospheric pressure × temperature point.
Cross-section of pressure × temperature lattice point as the base of the interpolation corresponds to the column direction of the orthogonal matrix V t of the singular value decomposition results. If the column of V t is returned to the original two-dimensional atmospheric pressure × temperature grid, a two-dimensional spline interpolation coefficient is calculated, and a column vector V (P, T) corresponding to an arbitrary atmospheric pressure × temperature is interpolated, the grid point The value can be calculated at high speed.

本願発明者は第1の領域8のデータのみを用いて計算を行うと吸収係数数表7のデータを十分な精度で近似できることを見いだした。つまり第1の領域8のデータのみを計算することで吸収係数数表7を十分な精度で計算できることから、大幅に計算量を削減することができ、高速で補間計算を行うことができる。また、吸収係数の計算をテーブルルックアップ方式で行う場合にはデータベースに記憶させるデータ量も削減することができる。ここで、該第1の領域8のデータはデータ全体の約10%程度である。第1の領域8に相当するデータは数式で見ると以下の式中の点線で囲まれた範囲に相当する。

Figure 2006285667
The inventor of the present application has found that the data of the absorption coefficient number table 7 can be approximated with sufficient accuracy when the calculation is performed using only the data of the first region 8. That is, since the absorption coefficient number table 7 can be calculated with sufficient accuracy by calculating only the data in the first region 8, the amount of calculation can be greatly reduced, and interpolation calculation can be performed at high speed. In addition, when the absorption coefficient is calculated by a table lookup method, the amount of data stored in the database can be reduced. Here, the data in the first area 8 is about 10% of the entire data. The data corresponding to the first region 8 corresponds to a range surrounded by a dotted line in the following expression when viewed in terms of an expression.
Figure 2006285667

ここで上記のように10%のデータで吸収係数を十分な精度で近似できることをデータを用いて説明する。図4の上のグラフは吸収係数であり、これを上記の方法により特異値の降順に先頭から5%のデータで近似したときに、もとのデータとの差を示したグラフである。グラフから明らかなように10−7のオーダーで誤差が生じていることがわかる。 Here, it will be described using data that the absorption coefficient can be approximated with sufficient accuracy with 10% data as described above. The upper graph in FIG. 4 is an absorption coefficient, and is a graph showing the difference from the original data when this is approximated by 5% data from the top in descending order of singular values by the above method. As is apparent from the graph, an error occurs on the order of 10 −7 .

次に図5は10%のデータで同様な計算を行ったときのグラフである。図5の下のグラフを見ると、誤差がほぼ0となっていることがわかる。つまり上記のように特異値の降順に先頭から10%のデータを用いて吸収係数の計算を行うと十分小さな誤差で近似できることがわかる。   Next, FIG. 5 is a graph when the same calculation is performed with 10% data. As can be seen from the lower graph of FIG. 5, the error is almost zero. In other words, it can be seen that if the absorption coefficient is calculated using 10% of data from the top in descending order of the singular value as described above, it can be approximated with a sufficiently small error.

このように一部のデータで十分な精度で計算できることから、事前計算により吸収係数をデータベースに記憶させる時には記憶するデータ量を削減することができる。あるいは領域9を含めて全てのデータを計算しデータベースに記憶させ、運用時に先頭から10%のデータを取り出して使用することもできる。
吸収係数行列の行数が大きいと特異値分解における分解過程のハウスホルダー変換で計算時間を要する。また、格子点値のオーダは波数域で大きく変化し、大きな波数域を分解対象にするよりも、分割した方がよりよい近似精度が得られる。よって吸収係数行列の行方向をさらに分割したものを特異値分解の処理単位とすることができる。
Thus, since it can calculate with sufficient precision with a part of data, when storing an absorption coefficient in a database by prior calculation, the amount of data to be stored can be reduced. Alternatively, all the data including the area 9 can be calculated and stored in the database, and 10% of the data can be extracted and used from the beginning during operation.
When the number of rows of the absorption coefficient matrix is large, calculation time is required for the householder transformation of the decomposition process in the singular value decomposition. Further, the order of the lattice point value greatly changes in the wave number region, and better approximation accuracy can be obtained by dividing the large wave number region than the decomposition target. Therefore, a unit obtained by further dividing the row direction of the absorption coefficient matrix can be used as a processing unit for singular value decomposition.

本実施例では特異値の降順に先頭から10%のデータを用いたが、これは10%に限定されるものではない。例えば図3に示したグラフから所定の割合を求めてもよい。また以下の方法によって求めることが好ましい。
所定の割合は以下のように求められる。
Aを計算用2次元行列つまり吸収係数行列とし、Uを列間が直交する直交行列、Σを特異値行列、該特異値行列Σの成分をσ>σ>σ・・・>σで表し、Vを回転行列として、特異値分解A=U・Σ・Vにおいて、
(1)前記計算用2次元行列Aの列ベクトル

Figure 2006285667
に対して要素の平均値
Figure 2006285667
に最も近い要素ai,j又は該要素の中央値又は該要素の最大値を標準要素とし、
(2)該標準要素を用いて、
Figure 2006285667
を、lを1,2,3,・・と順次求め、求める要求精度(有効桁数)dに対してd<dとなるlが暫定的な近似範囲であり、特異値行列の成分において降順に先頭からl個の成分が近似範囲となる。
(3)上記(1)、(2)を計算用2次元行列の全列に対して行い、最大のlを近似範囲とする。
例えば吸収線のピークが顕著な場合には最大値を選ぶようにすることで精度を高めることができる。 In this embodiment, 10% data from the top is used in descending order of singular values, but this is not limited to 10%. For example, a predetermined ratio may be obtained from the graph shown in FIG. Moreover, it is preferable to obtain | require by the following methods.
The predetermined ratio is obtained as follows.
A is a calculation two-dimensional matrix, that is, an absorption coefficient matrix, U is an orthogonal matrix in which columns are orthogonal, Σ is a singular value matrix, and components of the singular value matrix Σ are σ 1 > σ 2 > σ 3. In the singular value decomposition A = U · Σ · V t , where V t is a rotation matrix,
(1) Column vector of the calculation two-dimensional matrix A
Figure 2006285667
Mean of elements for
Figure 2006285667
The element a i, j closest to or the median value of the element or the maximum value of the element as a standard element,
(2) Using the standard element,
Figure 2006285667
And the l 1, 2, 3, sequentially determined and · ·, l which is a d <d l respect required accuracy (number of significant digits) d required by a preliminary approximation range, the components of the singular value matrix L components from the top in descending order are approximate ranges.
(3) The above (1) and (2) are performed on all columns of the calculation two-dimensional matrix, and the maximum l is set as the approximation range.
For example, when the peak of the absorption line is remarkable, the accuracy can be increased by selecting the maximum value.

本発明では以上のように吸収係数行列7を特異値分解したときに、特異値行列を降順に並べたときに数値が急激に小さくなり、特にグラフ(図3参照)の平坦な部分、つまり第2の領域9の数値は第1の領域8の数値に比較して1桁以上小さいために、第1の領域8のデータのみで吸収係数行列7を近似できることを特徴としてる。本実施例では第1の領域8のデータはデータ全体の10%前後であるため、この部分で吸収係数行列7を近似できることは計算を高速化する際に極めて有利となる。
また、吸収係数の計算において上記U・ΣのUをあらかじめ計算しデータベースに記憶させておく事前計算においても、上記数式8の点線で囲まれた部分のUを記憶するだけでよいため、記憶容量を小さくすることができる。これによってデータ量は従来の1/5になり、計算量もそれに応じて減少する。
In the present invention, when the singular value decomposition is performed on the absorption coefficient matrix 7 as described above, the numerical value is drastically reduced when the singular value matrix is arranged in descending order. In particular, the flat portion of the graph (see FIG. 3), that is, Since the numerical value of the area 9 of 2 is smaller by one digit or more than the numerical value of the first area 8, the absorption coefficient matrix 7 can be approximated by only the data of the first area 8. In the present embodiment, the data in the first region 8 is around 10% of the entire data, so that the absorption coefficient matrix 7 can be approximated in this portion is extremely advantageous in speeding up the calculation.
In addition, in the calculation of the absorption coefficient, the U / Σ of U is calculated in advance and stored in the database, so it is only necessary to store the portion U surrounded by the dotted line in Equation 8 above. Can be reduced. As a result, the data amount is reduced to 1/5 of the conventional amount, and the calculation amount is reduced accordingly.

図1(a)は気圧×気温×波数の3次元データを示しており、(b)はある気圧×気温データを取り出したものである。FIG. 1A shows three-dimensional data of atmospheric pressure × temperature × wave number, and FIG. 1B shows a certain atmospheric pressure × temperature data. 斜交区間の2次元データを1次元データに並べ替える処理の図である。It is a figure of the process which rearranges the two-dimensional data of an oblique section into one-dimensional data. 特異値行列の成分を降順に並べたときのグラフである。It is a graph when the components of a singular value matrix are arranged in descending order. 吸収係数のデータを特異値の降順に先頭から5%のデータで近似したときのデータと誤差を示したグラフである。It is the graph which showed the data and error when approximating the data of an absorption coefficient by the data of 5% from the head in descending order of a singular value. 吸収係数のデータを特異値の降順に先頭から10%のデータで近似したときのデータと誤差を示したグラフである。It is the graph which showed the data and error when approximating the data of an absorption coefficient by the data of 10% from the head in the descending order of a singular value.

符号の説明Explanation of symbols

1 3次元空間のデータ
3 第1の縦方向データ列
4 第2の縦方向データ列
5 第3の縦方向データ列
6 第4の縦方向データ列
7 吸収係数数表
8 第1の領域
9 第2の領域
DESCRIPTION OF SYMBOLS 1 3D space data 3 1st vertical direction data sequence 4 2nd vertical direction data sequence 5 3rd vertical direction data sequence 6 4th vertical direction data sequence 7 Absorption coefficient number table 8 1st area | region 9 1st 2 areas

Claims (12)

3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数値補間方法であって、
前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える段階と、前記3次空間のもう一つの次元の点列データを計算用2次元行列の別の次元として計算用2次元行列を生成する段階を有し、
前記計算用2次元行列の特異値分解を行い、特異値対角行列のうち降順に先頭から所定の割合の特異値を用いて前記2次元の格子状空間の格子点データを用いて、近似して補間係数を計算する方法。
A function value interpolation method for interpolating a function value mapping from a point in a three-dimensional space to a point in a one-dimensional space using a computer,
Rearranging grid point data in a two-dimensional grid space, which is a part of the three-dimensional space, in the direction of a one-dimensional column by a predetermined method, and calculating point sequence data in another dimension of the tertiary space Generating a computational two-dimensional matrix as another dimension of the two-dimensional matrix;
Perform a singular value decomposition of the two-dimensional matrix for calculation, and approximate it using lattice point data in the two-dimensional lattice space by using a predetermined ratio of singular values from the top of the singular value diagonal matrix in descending order. To calculate the interpolation factor.
前記2次元の格子状空間は斜交格子である請求項1に記載の方法。   The method of claim 1, wherein the two-dimensional lattice space is an oblique lattice. 前記2次元の格子状空間を2以上の領域に分割し、各領域に対して計算を行う請求項1又は2に記載の方法。   The method according to claim 1, wherein the two-dimensional lattice space is divided into two or more regions, and calculation is performed for each region. 前記2次元の格子状空間は気温と気圧の軸によって張られる請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the two-dimensional lattice space is stretched by an axis of temperature and pressure. 前記2次元の格子状空間は、さらに波数を軸とする3次元空間に位置している請求項4に記載の方法。   The method according to claim 4, wherein the two-dimensional lattice space is located in a three-dimensional space having a wave number as an axis. 前記所定の割合は以下のように求められる請求項1から5のいずれか1項に記載の方法。
Aを計算用2次元行列、Uを列間が直交する直交行列、Σを特異値行列、該特異値行列Σの成分をσ>σ>σ・・・>σで表し、Vを回転行列として、特異値分解A=U・Σ・Vにおいて、
(1)前記計算用2次元行列Aの列ベクトル
Figure 2006285667
に対して要素の平均値
Figure 2006285667
に最も近い要素ai,j又は該要素の中央値又は該要素の最大値を標準要素とし、
(2)該標準要素を用いて、
Figure 2006285667
を、lを1,2,3,・・と降順に順次求め、求める要求精度dに対してd<dとなるlを暫定の近似範囲とする。
(3)上記(1)、(2)を計算用2次元行列の全列に対して行い、最大のlを近似範囲とする。
The method according to claim 1, wherein the predetermined ratio is obtained as follows.
A calculation for a two-dimensional matrix represents a U orthogonal matrices between columns are orthogonal, sigma singular value matrix, the components of said specific value matrix Σ σ 1> σ 2> σ in 3 ···> σ n, V In a singular value decomposition A = U · Σ · V t , where t is a rotation matrix,
(1) Column vector of the calculation two-dimensional matrix A
Figure 2006285667
Mean of elements for
Figure 2006285667
The element a i, j closest to or the median value of the element or the maximum value of the element as a standard element,
(2) Using the standard element,
Figure 2006285667
Are sequentially obtained in descending order as 1, 2, 3,..., And l that satisfies d <d 1 with respect to the required accuracy d to be obtained is defined as a provisional approximation range.
(3) The above (1) and (2) are performed on all columns of the calculation two-dimensional matrix, and the maximum l is set as the approximation range.
3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数値補間プログラムであって、
前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える段階と、前記3次空間のもう一つの次元の点列データを計算用2次元行列の別の次元として計算用2次元行列を生成する段階を有し、
前記計算用2次元行列の特異値分解を行い、特異値対角行列のうち降順に先頭から所定の割合の特異値を用いて前記2次元の格子状空間の格子点データを用いて、近似して補間係数を計算するプログラム。
A function value interpolation program for interpolating using a computer the value of a function that maps from a point in 3D space to a point in 1D space,
Rearranging grid point data in a two-dimensional grid space, which is a part of the three-dimensional space, in the direction of a one-dimensional column by a predetermined method, and calculating point sequence data in another dimension of the tertiary space Generating a computational two-dimensional matrix as another dimension of the two-dimensional matrix;
Perform a singular value decomposition of the two-dimensional matrix for calculation, and approximate it using lattice point data in the two-dimensional lattice space by using a predetermined ratio of singular values from the top of the singular value diagonal matrix in descending order. Program that calculates interpolation coefficients.
前記請求項6の方法を用いて所定の割合を求める請求項7に記載のプログラム。   The program according to claim 7, wherein a predetermined ratio is obtained using the method of claim 6. 3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数値補間装置であって、
前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える手段と、前記3次空間のもう一つの次元の点列データを計算用2次元行列の別の次元として計算用2次元行列を生成する手段を有し、
前記計算用2次元行列の特異値分解を行い、特異値対角行列のうち降順に先頭から所定の割合の特異値を用いて前記2次元の格子状空間の格子点データを用いて、近似して補間係数を計算する装置。
A function value interpolation device for interpolating a value of a function for mapping from a point in a three-dimensional space to a point in a one-dimensional space using a computer,
A means for rearranging lattice point data in a two-dimensional lattice space, which is a part of the three-dimensional space, in a one-dimensional column direction by a predetermined method, and for calculating point sequence data in another dimension of the tertiary space Means for generating a computational two-dimensional matrix as another dimension of the two-dimensional matrix;
Perform a singular value decomposition of the two-dimensional matrix for calculation, and approximate it using lattice point data in the two-dimensional lattice space by using a predetermined ratio of singular values from the top of the singular value diagonal matrix in descending order. A device that calculates interpolation coefficients.
3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数値補間装置であって、
前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える手段と、前記3次空間のもう一つの次元の点列データ計算用2次元行列の別の次元として計算用2次元行列を生成する手段を有し、
前記計算用2次元行列をA、特異値対角行列をΣとして、A=U・Σ・Vにより特異値分解を計算する装置において、U・Σの計算値を降順に先頭から所定の割合をPTテーブルに保存する装置。
A function value interpolation device for interpolating a value of a function for mapping from a point in a three-dimensional space to a point in a one-dimensional space using a computer,
Means for rearranging lattice point data of a two-dimensional lattice space, which is a part of the three-dimensional space, in the direction of a one-dimensional column by a predetermined method; and 2 for calculating point sequence data of another dimension of the tertiary space Means for generating a two-dimensional matrix for calculation as another dimension of the dimensional matrix;
The calculation 2D matrix A, as the singular value diagonal matrix sigma, A = an apparatus for calculating the singular value decomposition by U · Σ · V t, the proportion from the beginning of the predetermined calculation values in descending order of U · sigma That stores the data in the PT table.
3次元空間の点から1次元空間の点へ写像する関数の値をコンピュータを用いて補間する関数補間装置であって、
前記3次元空間の一部である2次元の格子状空間の格子点データを所定の方法で1次元列方向に並べ変える手段と、前記3次空間のもう一つの次元の点列データ計算用2次元行列の別の次元として計算用2次元行列を生成する手段を有し、
前記計算用2次元行列をA、特異値対角行列をΣとして、A=U・Σ・Vにより特異値分解を計算する装置において、U・Σの計算値をPTテーブルに保存し、該装置運用時に該PTテーブルのデータのうち降順に先頭から所定の割合のデータを使用して関数補間を行う装置。
A function interpolation device for interpolating a value of a function for mapping from a point in a three-dimensional space to a point in a one-dimensional space using a computer,
Means for rearranging lattice point data of a two-dimensional lattice space, which is a part of the three-dimensional space, in the direction of a one-dimensional column by a predetermined method; and 2 for calculating point sequence data of another dimension of the tertiary space Means for generating a two-dimensional matrix for calculation as another dimension of the dimensional matrix;
The calculations for two-dimensional matrix A, as the singular value diagonal matrix sigma, the apparatus for calculating the singular value decomposition by A = U · Σ · V t , to save the calculated value of U · sigma in PT table, the A device that performs function interpolation using a predetermined ratio of data from the top of the PT table data in descending order during operation of the device.
前記特異値対角行列の特異値のうち、降順に先頭から採用する割合を指定して、或いは指定した精度以内で補間係数を計算することを特徴とする請求項1ないし6に記載の方法。   The method according to any one of claims 1 to 6, wherein an interpolation coefficient is calculated within a specified accuracy by designating a ratio of the singular values of the singular value diagonal matrix to be adopted from the top in descending order.
JP2005105048A 2005-03-31 2005-03-31 Fast interpolation of absorption coefficient in radiative transfer calculation Pending JP2006285667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105048A JP2006285667A (en) 2005-03-31 2005-03-31 Fast interpolation of absorption coefficient in radiative transfer calculation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105048A JP2006285667A (en) 2005-03-31 2005-03-31 Fast interpolation of absorption coefficient in radiative transfer calculation

Publications (1)

Publication Number Publication Date
JP2006285667A true JP2006285667A (en) 2006-10-19

Family

ID=37407525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105048A Pending JP2006285667A (en) 2005-03-31 2005-03-31 Fast interpolation of absorption coefficient in radiative transfer calculation

Country Status (1)

Country Link
JP (1) JP2006285667A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115750A (en) * 1998-09-30 2000-04-21 Hitachi Ltd Mobile object monitor
JP2000293204A (en) * 1999-02-05 2000-10-20 Denso Corp Controlled variable calculation device, air conditioning controller and recording medium
JP2001155169A (en) * 1999-11-24 2001-06-08 Nec Corp Method and system for dividing, classifying and summarizing video image
JP2003248674A (en) * 2002-02-25 2003-09-05 Fujitsu Fip Corp Function value interpolation method, device, and program, and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115750A (en) * 1998-09-30 2000-04-21 Hitachi Ltd Mobile object monitor
JP2000293204A (en) * 1999-02-05 2000-10-20 Denso Corp Controlled variable calculation device, air conditioning controller and recording medium
JP2001155169A (en) * 1999-11-24 2001-06-08 Nec Corp Method and system for dividing, classifying and summarizing video image
JP2003248674A (en) * 2002-02-25 2003-09-05 Fujitsu Fip Corp Function value interpolation method, device, and program, and recording medium

Similar Documents

Publication Publication Date Title
US9037798B2 (en) System and method of operating a computing device to perform memoization including transforming input/output parameters to reduce redundancies and efficiently cache data
Wehrens et al. Self-and super-organizing maps in R: the Kohonen package
JP5563193B2 (en) Device for evaluating mathematical functions
EP1406214A1 (en) Information processor
CN107103629A (en) The method and apparatus of vertex parameter data is compressed in 3D computer graphics systems
US20200104708A1 (en) Training apparatus, inference apparatus and computer readable storage medium
JP6996440B2 (en) Dice temperature calculation method and dice temperature calculation system
JP2019091439A5 (en) Image data interpolation method
JP2006332785A (en) Image complement apparatus and image complement method, and program
EP0822516B1 (en) Shape data compression method and apparatus
CN106683041A (en) Quantum image shearing method based on NEQR expression
US20170140072A1 (en) Method and system for determining a configuration of a model having a collection of entities and satisfying a set of constraints
JP2006285667A (en) Fast interpolation of absorption coefficient in radiative transfer calculation
US20170337663A1 (en) Method and system for interpolating data
Kuntz et al. Karlsruhe optimized and precise radiative transfer algorithm: III. ADDLIN and TRANSF algorithms for modeling spectral transmittance and radiance
JP4703907B2 (en) Object surface grid generation method
JP5888782B2 (en) Processing system for simultaneous linear equations
KR101989118B1 (en) Direction of complex design
US7151862B2 (en) Image processing apparatus and method, storage medium, and program
JP2008505533A (en) N-dimensional face interpolation
CN111369441B (en) Word processing method, medium, device and apparatus
JPH01217562A (en) System for generating computing grid
CN113033034B (en) Mixed order vector finite element electromagnetic field calculation method and system
JP2005514675A (en) Method and apparatus for generating Mth order shapes in N-dimensional space
KR101339627B1 (en) Method and apparatus for content-based image retrieval based on linear-time distance function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110