JP2006276884A - Eccentric prism optical system - Google Patents

Eccentric prism optical system Download PDF

Info

Publication number
JP2006276884A
JP2006276884A JP2006166923A JP2006166923A JP2006276884A JP 2006276884 A JP2006276884 A JP 2006276884A JP 2006166923 A JP2006166923 A JP 2006166923A JP 2006166923 A JP2006166923 A JP 2006166923A JP 2006276884 A JP2006276884 A JP 2006276884A
Authority
JP
Japan
Prior art keywords
axis
optical system
decentered prism
decentered
principal ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166923A
Other languages
Japanese (ja)
Inventor
Kokichi Kenno
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006166923A priority Critical patent/JP2006276884A/en
Publication of JP2006276884A publication Critical patent/JP2006276884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eccentric prism optical system in which the wide effective face of a first face located near the pupil of an eccentric prism and having a transmitting action and a reflecting action is a rotationally symmetric spherical face or a aspherical face. <P>SOLUTION: The eccentric prism 7 has three faces 3, 4, and 5. Each gap between the adjacent faces 3 to 5 is filled with a transparent medium, the refractive index of which is higher than 1. A positive lens 9 is disposed on the incident side of the first face 3. A light flux emitted from an object is passed through the pupil 1 of an optical system 10 along an optical axis 2, then made incident on the first face 3 of the eccentric prism 7 via the positive lens 9, and enters the prism 7. The light flux is reflected by the second face 4 in the direction of approaching the pupil 1, and then reflected again by the first face 3 in the direction of separating from the pupil 1. The reflected light ray is passed through the third face 5, reaches an image face 6, and forms an image. The first face 3 is a rotationally symmetric face such as a spherical face whereas the second face 4 is a rotationally asymmetric face. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、偏心プリズム光学系に関し、特に、接眼光学系又は撮像光学系に利用できる製作性の良い偏心プリズム光学系に関するものである。   The present invention relates to a decentered prism optical system, and more particularly to a decentered prism optical system with good manufacturability that can be used in an eyepiece optical system or an imaging optical system.

偏心プリズム光学系として従来の周知なものとして、特許文献1と特許文献2のものがある。また、本出願人の特許文献3、特許文献4のものがある。これらのものは、何れも反射作用を有する面に回転非対称な面形状を使用したものである。
特開平7−333551号公報 特開平8−234137号公報 特開平8−320452号公報 特開平8−313829号公報
Conventionally known decentered prism optical systems include those disclosed in Patent Document 1 and Patent Document 2. Further, there are those of Patent Documents 3 and 4 of the present applicant. In these cases, a rotationally asymmetric surface shape is used for a surface having a reflection effect.
JP-A-7-333551 JP-A-8-234137 Japanese Patent Laid-Open No. 8-320452 JP-A-8-313829

しかしながら、これら従来技術では、透過と反射作用を有する瞳側の第1面を回転非対称面で構成すると同時に、反射作用のみを有する瞳から遠い側の第2面も共に回転非対称面であるアナモルフィック面やトーリック面等で構成している。このために、光学系を製作する上で設計値通りの形状が出来ているかどうかの測定を行う場合、回転非対称であるために干渉計等の方法により面の精度を測定することができず、3次元座標測定器で測定する必要がある。しかし、3次元座標測定器は点の座標を1点1点測定するために、測定精度が不足することと、測定に非常に時間がかかる問題点があった。   However, in these prior arts, the first surface on the pupil side having transmission and reflection action is configured as a rotationally asymmetric surface, and at the same time, the second surface on the side far from the pupil having only the reflection action is also an anamorphic surface. It consists of a flick surface and a toric surface. For this reason, when measuring whether or not the shape according to the design value is made in manufacturing the optical system, the surface accuracy cannot be measured by a method such as an interferometer because it is rotationally asymmetric, It is necessary to measure with a three-dimensional coordinate measuring instrument. However, since the three-dimensional coordinate measuring instrument measures the coordinates of the points one by one, there are problems that the measurement accuracy is insufficient and that the measurement takes a very long time.

また、透過作用のみを有する第3面を回転対称に設計することが、上記の従来技術に示されているが、この透過作用のみを有する面は面の有効領域か狭く、光学系全体が正しい形状に作製されているかをこの面だけを基準として推定することは難しい。上記の瞳に近い方の反射と透過作用を有する第1面は、その有効面積が大きいことから、光学系全体に歪みがあるかどうかを推定する場合に基準とすると都合が良い。特に、プラスチックの射出成形(モールド成形)を行う場合は、光学系全体の形状の変化を少なくすることが重要であり、有効面(面の全領域中で光束が透過あるいは反射の少なくとも一方を行う領域)の大きい面を測定し、光学系全体の形状を推定することが、量産を行う場合に有効な手段となる。   In addition, it is shown in the above prior art that the third surface having only the transmission action is designed to be rotationally symmetric, but the surface having only this transmission action has a narrow effective area of the surface, and the entire optical system is correct. It is difficult to estimate whether the shape is produced based on only this surface. The first surface having the reflection and transmission functions closer to the pupil has a large effective area, so that it is convenient to use it as a reference when estimating whether there is distortion in the entire optical system. In particular, when plastic injection molding (molding) is performed, it is important to reduce changes in the shape of the entire optical system, and at least one of the effective surface (the light beam is transmitted or reflected in the entire area of the surface). Measuring a surface with a large area) and estimating the shape of the entire optical system is an effective means for mass production.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、偏心プリズムの瞳に近い側の透過作用と反射作用を有する第1面の有効域の広い面を回転対称な球面又は非球面で構成した偏心プリズム光学系を提供することである。   The present invention has been made in view of such problems of the prior art, and its purpose is to rotate a surface having a wide effective range of the first surface having transmission and reflection on the side close to the pupil of the eccentric prism. An object of the present invention is to provide a decentered prism optical system composed of a symmetric spherical surface or aspherical surface.

上記目的を達成する本発明の偏心プリズム光学系は、少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面の中の少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を配置し、前記反射作用を有する2つの面の中、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面の少なくとも有効面(面の全領域中で光束が透過及び/又は反射をする領域)の形状が有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に正屈折力を有するレンズが配置されていることを特徴とするものである。
The decentered prism optical system of the present invention that achieves the above object includes a decentered prism having a configuration in which at least three surfaces are arranged decentered from each other, and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more. In a decentered prism optical system with
The decentered prism forms at least two of the three surfaces with reflective surfaces so as to perform internal reflection at least twice, and is reflected by the two reflective surfaces. The surface having the two reflecting actions is arranged at a position where the light rays do not intersect inside the decentered prism, and one of the two faces having the reflecting action has a shape of both in-plane and out-of-plane. It is formed of a rotationally asymmetric surface that does not have a rotational symmetry axis, and the shape of at least the effective surface of one of the other surfaces (the region where light flux is transmitted and / or reflected in the entire surface area) rotates within the effective surface. It consists of a rotationally symmetric surface with a symmetry axis,
A lens having positive refracting power is disposed on the incident side or the exit side of the decentered prism.

この場合、偏心プリズムの回転対称面が、前記偏心プリズムを通過する光束を入射若しくは射出させる透過作用と偏心プリズムの内部でその光束を折り曲げる反射作用とを併せ持つ第1面として形成され、偏心プリズムの回転非対称面が第1面と対向配置された第2面として形成され、さらに、偏心プリズムを通過する光束を射出若しくは入射させる透過作用を有する第3面が、第1面と第2面との対向方向に対して略垂直方向の位置に配置され、少なくともその偏心プリズムが第1面と第2面と第3面とを含む構成であり、レンズが第1面の入射側若しくは射出側に配置されているようにすることができる。   In this case, the rotationally symmetric surface of the decentered prism is formed as a first surface having both a transmission function for entering or emitting a light beam passing through the decentered prism and a reflection function for bending the light beam inside the decentered prism. A rotationally asymmetric surface is formed as a second surface opposed to the first surface, and a third surface having a transmission function for emitting or entering a light beam passing through the eccentric prism is formed between the first surface and the second surface. The lens is disposed at a position substantially perpendicular to the facing direction, and at least the decentered prism includes a first surface, a second surface, and a third surface, and the lens is disposed on the incident side or the exit side of the first surface. Can be.

その際、偏心プリズムの第1面が有効面内にてその透過作用と反射作用とが少なくとも一部の領域で重なり合うように形成されていると共に、少なくとも第1面の有効面内の透過作用と反射作用との重なり合う領域での反射作用が全反射作用によるように構成することができる。   At this time, the first surface of the decentered prism is formed so that the transmission and reflection of the first prism overlap at least in a part of the effective surface, and at least the transmission of the first surface within the effective surface. It can be configured such that the reflection effect in the region overlapping with the reflection effect is due to the total reflection effect.

以下に、本発明において、上記のような構成をとる理由と作用について説明する。   Hereinafter, the reason and action of the above configuration in the present invention will be described.

まず、最初に、本発明の偏心プリズム光学系の原理を説明する。その説明に際し、内容をより理解しやすいものとするために、本発明の光学系の主要部である偏心プリズムを最も単純な3面構成プリズムとした場合の光路図を図1に例示し、これを用いて説明する。図1の場合は、偏心プリズム7の光路上に配置された面は、3つの面3、4、5からなっている。この偏心プリズム7は、不図示の物体から発した光線束がまず偏心プリズム7の瞳1を通過し、透過作用と反射作用を有する偏心プリズム7の第1面3に入射する。そして、その入射光線は、瞳1から遠い側の反射作用のみを有する反射面である第2面4で瞳1に近づく方向に反射され、瞳1の近い方に配置されている透過作用と反射作用を有する第1面3で今度は瞳1から遠ざかる方向に再び反射される。そして、その反射光線は、第1面3と第2面4の対向方向(図のZ軸方向)に対して略垂直方向(図のY軸方向)の位置に配置され透過作用のみを有する第3面5を透過して像面6に到達し、結像する。なお、符号2は光軸である。   First, the principle of the decentered prism optical system of the present invention will be described. In order to make the description easier to understand, the optical path diagram in the case where the decentered prism, which is the main part of the optical system of the present invention, is the simplest three-plane prism is illustrated in FIG. Will be described. In the case of FIG. 1, the surface arranged on the optical path of the eccentric prism 7 is composed of three surfaces 3, 4, and 5. In the decentering prism 7, a light beam emitted from an object (not shown) first passes through the pupil 1 of the decentering prism 7 and enters the first surface 3 of the decentering prism 7 having a transmission action and a reflection action. Then, the incident light beam is reflected in a direction approaching the pupil 1 by the second surface 4 which is a reflection surface having only a reflection effect on the side far from the pupil 1, and the transmission effect and reflection arranged closer to the pupil 1. The first surface 3 having the action is reflected again in the direction away from the pupil 1 this time. The reflected light beam is disposed at a position substantially perpendicular to the opposing direction of the first surface 3 and the second surface 4 (Z-axis direction in the figure) (Y-axis direction in the figure) and has only a transmission action. The light passes through the three surfaces 5 and reaches the image surface 6 to form an image. Reference numeral 2 denotes an optical axis.

このように、本発明における偏心プリズム7の面番号は、原則として瞳1から像面6に到る順番で追跡を行っている。   Thus, the surface numbers of the decentered prism 7 in the present invention are tracked in the order from the pupil 1 to the image surface 6 in principle.

ただし、上記図1は例示であり、本発明における偏心プリズム7は、図2に示すように光学面が4面あるものや、反射回数が2回より多いものであってもよい。図2(a)は、第1面3、第2面4、第3面5に加えて第4面8の面が4つある偏心プリズム7であり、反射作用を有する第4面8は回転対称球面や回転対称非球面でもよいが、望ましくはアナモルフィック面や対称面を1つのみ有する回転非対称非球面で構成する。また、図2(b)は、第1面3と第3面5とが同一面で兼用されている例である。   However, FIG. 1 is an exemplification, and the decentered prism 7 in the present invention may have four optical surfaces as shown in FIG. 2 or may have more than two reflections. FIG. 2A shows an eccentric prism 7 having four surfaces of the fourth surface 8 in addition to the first surface 3, the second surface 4, and the third surface 5, and the fourth surface 8 having a reflecting action is rotated. Although it may be a symmetric spherical surface or a rotationally symmetric aspherical surface, it is preferably composed of a rotationally asymmetric aspherical surface having only one anamorphic surface or symmetric surface. FIG. 2B shows an example in which the first surface 3 and the third surface 5 are used on the same surface.

さて、このような偏心プリズムを構成する少なくとも3つの面の中、瞳側に配置された透過作用と反射作用を有する第1面を回転対称な面で構成し、瞳から遠い反射作用のみを有する第2面を回転非対称な面で構成することが好ましい。   Now, among the at least three surfaces constituting such an eccentric prism, the first surface having the transmitting action and the reflecting action arranged on the pupil side is constituted by a rotationally symmetric face and has only the reflecting action far from the pupil. The second surface is preferably constituted by a rotationally asymmetric surface.

これは、物体中心を射出して瞳中心を通過し、像面中心に到達する光線を軸上主光線とするとき、透過と反射作用を有する第1面の軸上主光線が反射する点は、反射作用のみを有する第2面で軸上主光線が反射する点より屈折力(パワー)が弱いためである。このため、基本的に第1面で偏心により発生する偏心収差が少なく、この面を回転対称面で構成しても偏心収差を他の面で補正することが可能なためである。   This is because when the light beam that exits the object center, passes through the pupil center, and reaches the image plane center is the axial chief ray, the axial chief ray of the first surface that has transmission and reflection functions is reflected. This is because the refractive power (power) is weaker than the point at which the axial principal ray is reflected by the second surface having only the reflecting action. Therefore, basically, there is little decentration aberration caused by decentration on the first surface, and even if this surface is constituted by a rotationally symmetric surface, the decentration aberration can be corrected by another surface.

さらに、本発明においては、図1に破線で示したように、偏心プリズム7を上記構成とすると共に、偏心プリズム7の物体側に屈折レンズ系9を付加することにより、広画角の光学系を構成することができる。屈折レンズ系9を物体と瞳1の間に配置する場合は、負の屈折力を持つ光学系を配置し、物体からの主光線を偏心プリズム7に入射する光線高を低くすることにより、偏心プリズム7を小型にできると同時に、広画角な光学系を構成することが可能となる。   Further, in the present invention, as shown by the broken line in FIG. 1, the decentering prism 7 has the above-described configuration, and the refractive lens system 9 is added to the object side of the decentering prism 7 so that an optical system with a wide angle of view is obtained. Can be configured. When the refractive lens system 9 is disposed between the object and the pupil 1, an optical system having a negative refractive power is disposed, and the principal ray from the object is reduced in the height of light incident on the eccentric prism 7, thereby decentering. The prism 7 can be reduced in size, and at the same time, an optical system with a wide angle of view can be configured.

また、瞳1と偏心プリズム7の間に正の屈折力を有する屈折レンズ系9を配置することにより(図1に図示の場合)瞳1を通過した主光線を収束して偏心プリズム7に入射することにより、偏心プリズム7を小型にできると同時に、広画角な光学系を構成することが可能となる。   Further, by arranging a refractive lens system 9 having a positive refractive power between the pupil 1 and the decentered prism 7 (in the case shown in FIG. 1), the principal ray that has passed through the pupil 1 is converged and incident on the decentered prism 7. By doing so, it is possible to make the decentered prism 7 small and to construct an optical system with a wide angle of view.

さらに、本発明において、偏心プリズム7の物体側に屈折レンズ系9を配置すると、屈折レンズ系9にカバーガラスの作用を兼用させることができ、カバーガラスを別に設ける必要がなくなる。これは上記のような偏心プリズム7を用いる光学系において重要なことである。偏心プリズム7は偏心した回転非対称面と回転対称面にて構成されているので、通常、ポリオレフィン系樹脂(例えば、(株)日本ゼオン製“ZEONEX”)等の低吸湿性の比較的柔らかいプラスチックから作製されるため、特に入射側の面の前にカバーガラスを設ける必要がある。また、偏心プリズム7の入射側の面である第1面3は全反射面とすることが多いため、その面にコーティングを設けることができないので、その面の前にカバーガラスを設ける必要がある。しかし、屈折レンズ系9を付加した本発明の偏心プリズム光学系においては、屈折レンズ系9にカバーガラスの作用を兼用させてカバーガラスを省くことができるため、光学系を軽くすることができる。   Further, in the present invention, when the refractive lens system 9 is disposed on the object side of the decentered prism 7, the refractive lens system 9 can also function as a cover glass, and there is no need to provide a separate cover glass. This is important in an optical system using the decentered prism 7 as described above. Since the decentering prism 7 is composed of an eccentric rotationally asymmetric surface and a rotationally symmetric surface, it is usually made of a relatively soft plastic with low hygroscopicity such as polyolefin resin (for example, “ZEONEX” manufactured by Nippon Zeon Co., Ltd.). In order to be manufactured, it is necessary to provide a cover glass especially in front of the incident side surface. Further, since the first surface 3 which is the incident side surface of the decentering prism 7 is often a total reflection surface, a coating cannot be provided on the surface, so a cover glass must be provided in front of the surface. . However, in the decentered prism optical system of the present invention to which the refractive lens system 9 is added, the cover glass can be omitted by making the refractive lens system 9 also function as the cover glass, so that the optical system can be lightened.

以下の説明において用いる座標系について説明する。   A coordinate system used in the following description will be described.

図1に示すように、偏心プリズム光学系10の瞳1の中心を通り、像面6(接眼光学系として用いる場合は、画像表示素子)中心に到達する軸上主光線が瞳1を射出し偏心プリズム光学系10の第1面(屈折レンズ系9の第1面)に交差するまでの直線(光軸2と一致。接眼光学系として用いる場合は、観察者視軸となる。)によって定義される軸をZ軸とし、このZ軸と直交しかつ偏心プリズム光学系10を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸とする。また、瞳1の中心をこの座標系の原点とする。そして、軸上主光線がが物点から像面に到る方向をZ軸の正方向、像面6が位置する方向をY軸の正方向、Y軸とZ軸と右手系を構成するX軸の方向をX軸の正方向とする。   As shown in FIG. 1, an axial principal ray that passes through the center of the pupil 1 of the decentered prism optical system 10 and reaches the center of the image plane 6 (or an image display element when used as an eyepiece optical system) exits the pupil 1. Defined by a straight line (matching the optical axis 2 when used as an eyepiece optical system, the observer's visual axis) until it intersects the first surface of the decentered prism optical system 10 (the first surface of the refractive lens system 9). The Z axis is defined as the Z axis, the axis in the decentered plane of each surface constituting the decentered prism optical system 10 is defined as the Y axis, and the axis is orthogonal to the Z axis and orthogonal to the Y axis. Is the X axis. The center of pupil 1 is the origin of this coordinate system. The direction in which the axial principal ray reaches the image plane from the object point is the positive direction of the Z-axis, the direction in which the image plane 6 is positioned is the positive direction of the Y-axis, and the X-axis that constitutes the right-hand system with the Y-axis and Z-axis The direction of the axis is the positive direction of the X axis.

さて、一般に、偏心プリズムは研磨により製作することは難しく、研削により1面ずつ形成するか、プラスチックの射出成形又はガラスモールド成形により、作製することになる。このとき、偏心プリズムの面が所定の形状に作成されているかどうかを確認する必要がある。偏心プリズムの各面が3次元の回転非対称な面からなる場合、このような3次元の回転非対称な面形状の測定には一般的に3次元座標測定器が使用されるが、測定時間がかかり現実的ではない。   In general, it is difficult to manufacture the decentered prism by polishing, and the eccentric prism is formed one by one by grinding, or by plastic injection molding or glass molding. At this time, it is necessary to confirm whether or not the surface of the decentered prism is formed in a predetermined shape. When each surface of the eccentric prism is composed of a three-dimensional rotationally asymmetric surface, a three-dimensional coordinate measuring instrument is generally used for measuring such a three-dimensional rotationally asymmetric surface shape. Not realistic.

本発明では、偏心プリズムを構成する少なくとも3つの面の中、少なくとも1つの面を回転対称面で構成することが重要である。回転対称な面で構成すると、特開平8−21712号に示されているような回転対称非球面の干渉測定器により簡単に短時間で面形状を測定することが可能である。   In the present invention, it is important that at least one of the at least three surfaces constituting the decentered prism is a rotationally symmetric surface. When configured with a rotationally symmetric surface, it is possible to easily measure the surface shape in a short time with a rotationally symmetric aspherical interferometer as shown in JP-A-8-21712.

さらに好ましくは、最も有効面積が広く、比較的収差の劣化が大きい瞳に近い側の透過作用と内部反射作用を有する面を回転対称面として構成することにより、面形状の出来上がり具合を簡単に短時間で評価することが可能な偏心プリズムを構成することに成功したものである。   More preferably, a surface having a transmission effect and an internal reflection effect on the side close to the pupil that has the largest effective area and relatively large aberration deterioration is configured as a rotationally symmetric surface, so that the surface shape can be easily shortened. It has succeeded in constructing an eccentric prism that can be evaluated in time.

以下、本発明の偏心プリズム光学系を結像光学系として説明する。なお、当然、物点と像点を逆に配置して(図1の像面6に画像表示素子を配置し、瞳1に観察者の瞳孔を位置させて)、接眼光学系として利用できることはいうまでもない。もちろん、瞳1側に画像表示素子を配置し、像面6側からこの画像表示素子の像を観察する構成にもできる。   Hereinafter, the decentered prism optical system of the present invention will be described as an imaging optical system. Of course, the object point and the image point can be used as an eyepiece optical system by arranging the object point and the image point in reverse (with the image display element on the image plane 6 in FIG. 1 and the pupil of the observer positioned on the pupil 1). Needless to say. Of course, an image display element can be arranged on the pupil 1 side, and an image of the image display element can be observed from the image plane 6 side.

上述の定義に従ってX軸、Y軸、Z軸が決まったとき、瞳位置中心を射出し、像面に入射する主光線の中、X方向画角ゼロ、X方向最大画角、Y正方向最大画角、Y方向画角ゼロ、Y負方向最大画角のX方向、Y方向の組み合わせにより、次の表−1のように、6つの主光線(1) 〜(6) が定まる。
表−1
┌────────┬───────┬───────┐
│ │X方向画角ゼロ│X方向最大画角│
├────────┼───────┼───────┤
│Y正方向最大画角│ (1) │ (4) │
├────────┼───────┼───────┤
│Y方向画角ゼロ │ (2) │ (5) │
├────────┼───────┼───────┤
│Y負方向最大画角│ (3) │ (6) │
└────────┴───────┴───────┘ 。
When the X-axis, Y-axis, and Z-axis are determined according to the above definition, the X-ray field angle is zero, the X-direction maximum field angle, and the Y positive direction maximum are among the principal rays that exit from the pupil position center and enter the image plane. The six principal rays (1) to (6) are determined as shown in the following Table-1 by the combination of the angle of view, the Y-direction angle of view zero, and the Y-direction maximum angle of view in the X-direction and Y-direction.
Table-1
┌────────┬───────┬───────┐
│ │Zero angle of view│Maximum field of view in X direction│
├────────┼───────┼───────┤
│Maximum angle of view in Y positive direction│ (1) │ (4) │
├────────┼───────┼───────┤
│Zero angle of view │ (2) │ (5) │
├────────┼───────┼───────┤
│Maximum angle of view in Y direction│ (3) │ (6) │
└────────┴┴───────┴───────┘.

すなわち、上記の表−1中に記載したように、画面中心の軸上主光線を(2) とし、X方向画角ゼロ、Y正方向最大画角を通る主光線を(1) 、X方向画角ゼロ、Y負方向最大画角を通る主光線を(3) 、X方向最大画角、Y正方向最大画角を通る主光線を(4) 、X方向最大画角、Y方向画角ゼロを通る主光線を(5) 、X方向最大画角、Y負方向最大画角を通る主光線を(6) とする。これらの主光線(1) 〜(6) が各面と交差する領域を有効領域と定義し、その有効領域で各面の形状を定義する式(Z軸を面の軸として表した式、あるいは、その面を偏心がないとして、Z=f(X,Y)の形式で表した式)の面の偏心方向に当たるY軸と平行な方向の前記各主光線(1) 〜(6) が面に当たる位置でのその面の法線を含む面内の曲率をCy1〜Cy6とする。また、Y軸と直交するX軸方向の面の法線を含む面内の曲率をCx1〜Cx6とする。   That is, as described in Table 1 above, the axial principal ray at the center of the screen is (2), the principal ray passing through the zero field angle in the X direction and the maximum field angle in the Y positive direction is (1), Principal ray passing through zero field angle, Y negative maximum direction angle (3), X ray maximum field angle, principal ray passing through Y positive direction maximum field angle (4), X direction maximum field angle, Y direction field angle The principal ray passing through zero is (5), and the principal ray passing through the maximum field angle in the X direction and the maximum field angle in the Y negative direction is (6). An area where these principal rays (1) to (6) intersect with each surface is defined as an effective area, and an expression for defining the shape of each surface in the effective area (an expression expressing the Z axis as the surface axis, or The principal rays (1) to (6) in the direction parallel to the Y axis corresponding to the eccentric direction of the surface of the surface of Z = f (X, Y) assuming that the surface is not decentered are surfaces The in-plane curvature including the normal of the surface at the position corresponding to is Cy1 to Cy6. Further, in-plane curvatures including the normal line of the surface in the X-axis direction orthogonal to the Y-axis are Cx1 to Cx6.

まず、本発明の光学系全体に対する反射作用のみを有する第2面(以下、第1面、第2面等は、特に言及しない限り偏心プリズムの第1面、第2面等を意味する。)の焦点距離に関する条件式を示す。本発明の反射作用のみを有する第2面は偏心しており、その面の形状が面内及び面外共に回転対称軸を有しない回転非対称面形状であることが特徴であるので、近軸計算から焦点距離を導くことは意味がないので、焦点距離を次のように定義する。   First, a second surface having only a reflection effect on the entire optical system of the present invention (hereinafter, the first surface, the second surface, etc. mean the first surface, the second surface, etc. of the decentered prism unless otherwise specified). The conditional expression regarding the focal length is shown. Since the second surface having only the reflecting action of the present invention is eccentric, the shape of the surface is a rotationally asymmetric surface shape that does not have a rotationally symmetric axis both in and out of the surface. Since it is meaningless to derive the focal length, the focal length is defined as follows.

物点中心から光学系の入射瞳中心を通る軸上主光線と平行に瞳中心からX軸方向に微小量H(mm)の点を通り、その軸上主光線と平行に光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を上記Hで割った値を光学系全体のX方向の焦点距離Fx(mm)と定義する。また、瞳中心からY方向にH(mm)の点を通り、その軸上主光線と平行に光学系に入射する光線を光線追跡したときの射出光線NA(軸上主光線となす角のsinの値)を上記Hで割った値を光学系全体のY方向の焦点距離Fy(mm)と定義する。   A small amount H (mm) passes from the center of the object in parallel to the axial principal ray passing through the entrance pupil center of the optical system in the X-axis direction from the pupil center, and enters the optical system in parallel to the axial principal ray. A value obtained by dividing the NA of the emitted light (the value of the sin of the angle formed with the axial principal ray) when the light is traced by H is defined as the focal length Fx (mm) in the X direction of the entire optical system. In addition, an outgoing ray NA (sin of the angle formed with the axial principal ray) is obtained when a ray that passes through a point H (mm) in the Y direction from the center of the pupil and enters the optical system in parallel with the axial principal ray is traced. Is defined as the focal length Fy (mm) in the Y direction of the entire optical system.

Fx、Fyを用いて、Fx/FyをFAとすると
0.7<FA<1.3 ・・・(A−1)
なる条件式を満足することが重要となってくる。
When Fx / Fy is set to FA using Fx and Fy, 0.7 <FA <1.3 (A-1)
It is important to satisfy the following conditional expression.

本条件は像の縦横比に関する条件であり、その下限の0.7を越えると、X方向の像が小さくなり、正方形を結像した場合に縦長の画像になり、上限の1.3を越えると、横長の像になってしまう。FAの値は当然1が最も好ましいが、像歪みを補正するためには、面の高次係数との関係で、1からずらした上記条件式の範囲でバランス良く補正することが重要になる。   This condition is related to the aspect ratio of the image. When the lower limit of 0.7 is exceeded, the image in the X direction becomes small, and when a square is formed, the image becomes a vertically long image, exceeding the upper limit of 1.3. And it becomes a horizontally long image. Naturally, the value of FA is most preferably 1. However, in order to correct image distortion, it is important to correct in a well-balanced manner within the range of the conditional expression shifted from 1 in relation to the higher order coefficient of the surface.

さらに好ましくは、
1.0<FA<1.1 ・・・(A−2)
なる条件を満足することが重要である。
More preferably,
1.0 <FA <1.1 (A-2)
It is important to satisfy the following conditions.

次に、物点中心を出て瞳中心を通る軸上主光線が反射作用のみを有する第2面に当たる位置での面のX方向、Y方向の屈折力(パワー)Pxn、Pynと、光学系全体のX方向、Y方向の焦点距離Fx、Fyの逆数である屈折力(パワー)Px、Pyとの関係は、Pxn/PxをPxB、Pyn/PyをPyCとするとき、
0.8<|PxB|<1.3 ・・・(B−1)
0.8<|PyC|<1.3 ・・・(C−1)
なる条件のどちらかを満足することが好ましい。
Next, refractive power (power) Pxn, Pyn in the X direction and Y direction of the surface at a position where the axial principal ray that passes through the center of the object and passes through the center of the pupil hits the second surface having only a reflection action, and the optical system The relationship between the refractive power (power) Px and Py, which is the reciprocal of the focal lengths Fx and Fy in the entire X direction and Y direction, is as follows: Pxn / Px is PxB, and Pyn / Py is PyC.
0.8 <| PxB | <1.3 (B-1)
0.8 <| PyC | <1.3 (C-1)
It is preferable to satisfy either of the following conditions.

これらの条件の下限の0.8を越えると、X方向、Y方向共に反射作用のみを有する第2面の反射面が有するパワーが光学系全体のパワーに比べて小さくなりすぎ、他の面にパワーを負担させることになり、収差補正上好ましくない。   If the lower limit of 0.8 of these conditions is exceeded, the power of the second reflecting surface that has only a reflecting action in both the X and Y directions will be too small compared to the power of the entire optical system, Power is borne, which is not preferable in terms of aberration correction.

また、上限の1.3を越えると、その第2面の反射面のパワーが強くなりすぎ、この第2面で発生する像歪みと像面湾曲収差をバランス良く補正することが不可能になる。   If the upper limit of 1.3 is exceeded, the power of the reflecting surface of the second surface becomes too strong, and it becomes impossible to correct image distortion and curvature of field aberration generated on the second surface in a balanced manner. .

さらに好ましくは、上記条件式(B−1)と(C−1)を両方満足することが好ましい。   More preferably, both the conditional expressions (B-1) and (C-1) are satisfied.

さらに好ましくは、
0.8<|PxB|<1.2 ・・・(B−2)
0.8<|PyC|<1.1 ・・・(C−2)
なる条件のどちらかを満足することが好ましい。
More preferably,
0.8 <| PxB | <1.2 (B-2)
0.8 <| PyC | <1.1 (C-2)
It is preferable to satisfy either of the following conditions.

次に、反射作用のみを有する第2面に当たる位置での面曲率についての条件を説明する。この条件は第2面で発生する非点収差を少なくするために必要となる条件であり、軸上主光線が当たる位置での第2面の法線を含むX方向の曲率Cx2とY方向の曲率Cy2の比Cx2/Cy2をCxyDとするとき、
0.8<CxyD<1.2 ・・・(D−1)
なる条件を満足することが重要となる。
Next, the conditions regarding the surface curvature at the position corresponding to the second surface having only a reflecting action will be described. This condition is necessary to reduce the astigmatism generated on the second surface, and the curvature Cx2 in the X direction including the normal line of the second surface at the position where the axial principal ray strikes and the X direction curvature Cx2 When the ratio Cx2 / Cy2 of the curvature Cy2 is CxyD,
0.8 <CxyD <1.2 (D-1)
It is important to satisfy the following conditions.

反射作用のみを有する第2面は偏心して配置された面であり、この面を回転対称な面で構成すると、像歪みを初め、非点収差、コマ収差等が大きく発生するため、収差を良好に補正することは不可能である。そのため、この反射作用のみを有する第2面を回転非対称面で構成することが重要になってくるが、回転対称な面で構成すると、この面で発生する非点収差の発生が大きくなり、他の面で補正することが不可能になる。そこで、これらを補正するためには、対称面を1面しか持たない面で反射作用のみを有する第2面を構成し、なおかつ、上記条件式(D−1)を満足することにより、初めて各収差が良好に補正され、しかも、軸上においても非点収差のない結像を得ることあるいは観察像を観察することが可能となる。下限の0.8と上限の1.2については、非点収差が大きく発生しないための限界である。   The second surface having only the reflecting action is an eccentric surface, and if this surface is composed of a rotationally symmetric surface, image distortion, astigmatism, coma, etc. are greatly generated, so the aberration is excellent. It is impossible to correct it. For this reason, it is important to configure the second surface having only the reflecting action as a rotationally asymmetric surface. However, if the second surface is configured as a rotationally symmetric surface, the generation of astigmatism generated on this surface increases. It becomes impossible to correct in terms of Therefore, in order to correct these, a second surface having only a reflecting surface is formed by a surface having only one plane of symmetry, and each conditional expression (D-1) is satisfied for the first time. Aberration is corrected well, and it is possible to obtain an image without astigmatism on the axis or to observe an observation image. The lower limit of 0.8 and the upper limit of 1.2 are limits for preventing astigmatism from occurring greatly.

さらに好ましくは、
0.95<CxyD<1.05 ・・・(D−2)
なる条件を満足することが重要である。
More preferably,
0.95 <CxyD <1.05 (D-2)
It is important to satisfy the following conditions.

次に、第2面のY方向の曲率の有効領域の上と下の差、Cy1−Cy3をPyで割ったものをCyEとするとき、
−0.05<CyE<0.5 ・・・(E−1)
なる条件を満足することが重要である。この条件は、像面の上と下の上下方向の像歪みを良好に補正するために必要となる条件で、下限の−0.05を越えると、画面下の倍率が小さくなってしまい、上限の0.5を越えると、画面上のY(上下)方向の倍率が画面の他の部分に比べて小さくなってしまい、像が歪んでしまう。特に、本発明のように反射作用と透過作用を有する第1面を回転対称面で構成し、偏心プリズムの製作性を向上させた偏心プリズム光学系においては、この像歪みを他の面で補正するには、最も像に近い透過作用のみを有する第3面で補正しないと、基本的上記像歪みを補正することができない。しかし、その透過作用のみを有する第3面は、像面湾曲を主に補正するために、反射作用のみを有する第2面が本条件を満足しないと、光学系全体として像面湾曲と像歪みを同時に補正することができなくなってしまう。
Next, when the difference between the upper and lower effective areas of the curvature in the Y direction of the second surface, Cy1−Cy3 divided by Py is CyE,
-0.05 <CyE <0.5 (E-1)
It is important to satisfy the following conditions. This condition is necessary to satisfactorily correct the image distortion in the vertical direction above and below the image plane. If the lower limit of −0.05 is exceeded, the magnification at the bottom of the screen becomes smaller, and the upper limit of 0 is set. If it exceeds .5, the magnification in the Y (vertical) direction on the screen will be smaller than the other parts of the screen, and the image will be distorted. In particular, in the decentered prism optical system in which the first surface having reflection and transmission functions is configured as a rotationally symmetric surface as in the present invention and the manufacturability of the decentering prism is improved, this image distortion is corrected by other surfaces. Therefore, the basic image distortion cannot be corrected unless correction is performed on the third surface having only the transmission effect closest to the image. However, since the third surface having only its transmitting action mainly corrects the curvature of field, if the second surface having only the reflecting action does not satisfy this condition, the field curvature and image distortion of the entire optical system will be reduced. Cannot be corrected at the same time.

さらに好ましくは、
0<CyE<0.3 ・・・(E−2)
なる条件を満足することが収差補正上好ましい。
More preferably,
0 <CyE <0.3 (E-2)
It is preferable for aberration correction to satisfy the following condition.

さらに好ましくは、
0<CyE<0.15 ・・・(E−3)
なる条件を満足することが収差補正上好ましい。
More preferably,
0 <CyE <0.15 (E-3)
It is preferable for aberration correction to satisfy the following condition.

次に、第2面のX方向の曲率の有効領域の上と下の差Cx1−Cx3をPxで割ったものをCxFとするとき、
−0.01<CxF<0.1 ・・・(F−1)
なる条件を満足することが重要である。この条件も、像面の上と下の左右方向の像歪みを良好に補正するために必要となる条件で、下限の−0.01を越えると、画面下の倍率が小さくなってしまい、上限0.1を越えると、画面上のX(左右)方向の倍率が画面の他の部分に比べて小さくなってしまい、台形に像が歪んでしまう。
Next, when CxF is obtained by dividing the difference Cx1-Cx3 above and below the effective area of the curvature in the X direction of the second surface by Px,
-0.01 <CxF <0.1 (F-1)
It is important to satisfy the following conditions. This condition is also a condition necessary for satisfactorily correcting the image distortion in the left and right directions above and below the image plane. If the lower limit of −0.01 is exceeded, the magnification at the bottom of the screen becomes smaller, and the upper limit of 0. If it exceeds 1, the magnification in the X (left and right) direction on the screen becomes smaller than the other parts of the screen, and the image is distorted into a trapezoid.

さらに好ましくは、
−0.01<CxF<0.05 ・・・(F−2)
なる条件を満足することが収差補正上好ましい。
More preferably,
-0.01 <CxF <0.05 (F-2)
It is preferable for aberration correction to satisfy the following condition.

さらに好ましくは、
−0.001<CxF<0.03 ・・・(F−3)
なる条件を満足することが収差補正上好ましい。
More preferably,
-0.001 <CxF <0.03 (F-3)
It is preferable for aberration correction to satisfy the following condition.

次に、画面中央に直線を表示した場合に、上下に弓なりに湾曲して観察される像歪みについて説明する。以下の条件式は、例えば水平線を写したときに弓なり湾曲してしまう、弓なりな回転非対称な像歪みに関するものである。   Next, image distortion observed by bending up and down like a bow when a straight line is displayed at the center of the screen will be described. The following conditional expression relates to a bow-like rotationally asymmetric image distortion that curves, for example, when a horizontal line is copied.

図18(a)の斜視図、同図(b)のY−Z面への投影図に示すように、X方向の最大画角の主光線が回転非対称面Aと交差する点におけるその回転非対称面の法線n’と、軸上主光線がその回転非対称面Aと交差する点における回転非対称面の法線nとがY−Z面内でのなす角をDYとするとき、
−0.1<|DY|<5 (°) ・・・(G−1)
なる条件を満足することが重要である。上記条件式の下限の−0.1を越えると、弓なりな像歪みを補正することができなくなる。また、上限の5を越えると、弓なりな像歪みが補正過剰となり、どちらの場合も像が弓なりに歪んでしまう。 さらに、好ましくは、
−0.05<|DY|<1 (°) ・・・(G−2)
なる条件を満足することが好ましい。
As shown in the perspective view of FIG. 18A and the projection onto the YZ plane of FIG. 18B, the rotational asymmetry at the point where the principal ray having the maximum field angle in the X direction intersects the rotationally asymmetric surface A. When the angle between the normal n ′ of the surface and the normal n of the rotationally asymmetric surface at the point where the axial principal ray intersects the rotationally asymmetric surface A is defined as DY,
−0.1 <| DY | <5 (°) (G-1)
It is important to satisfy the following conditions. If the lower limit of −0.1 of the above conditional expression is exceeded, bow-shaped image distortion cannot be corrected. When the upper limit of 5 is exceeded, bow-like image distortion becomes overcorrected, and in either case, the image is distorted like a bow. Furthermore, preferably,
−0.05 <| DY | <1 (°) (G-2)
It is preferable to satisfy the following conditions.

さらに、好ましくは、
0<|DY|<0.5 (°) ・・・(G−3)
なる条件を満足することが好ましい。
Furthermore, preferably,
0 <| DY | <0.5 (°) (G-3)
It is preferable to satisfy the following conditions.

次に、瞳と偏心プリズムの間に配置される正の屈折力を持ったレンズ系の焦点距離について説明する。以下の条件式は、この正の屈折力を持ったレンズ系により入射する広画角の光線を収束させ、偏心プリズムを小型に構成するために必要である。この瞳と偏心プリズムの間に配置されるレンズ系の焦点距離をF、偏心プリズムとこの正の屈折力を持ったレンズ系との光学系全体のY方向の焦点距離をFyとするとき、
1.1<F/Fy<10000 ・・・(H−1)
なる条件を満足することが重要である。上記条件式の下限の1.1を越えると、レンズ系が負担する屈折力が偏心プリズムが負担する屈折力に比べて大きくなりすぎ、屈折光学系である瞳と偏心プリズムの間に配置されたレンズ系で発生する収差、特に像面湾曲、コマ収差、色収差の発生が大きくなりすぎ、収差性能として良い結果を得られない。また、上限の10000を越えると、屈折レンズ系の焦点距離が長くなりすぎ、屈折レンズ系が持つ光線の収束作用が弱くなり、偏心プリズムが大きくなったり、画角を大きく取ることができなくなってしまう。
Next, the focal length of a lens system having a positive refractive power disposed between the pupil and the eccentric prism will be described. The following conditional expression is necessary for converging a wide-angle light beam incident by the lens system having a positive refractive power and to make the decentered prism compact. When the focal length of the lens system disposed between the pupil and the decentered prism is F, and the focal length in the Y direction of the entire optical system of the decentered prism and the lens system having positive refractive power is Fy,
1.1 <F / Fy <10000 (H-1)
It is important to satisfy the following conditions. When the lower limit of 1.1 of the above conditional expression is exceeded, the refractive power borne by the lens system becomes too large compared to the refractive power borne by the decentered prism, and is disposed between the pupil which is a refractive optical system and the decentered prism. Aberrations generated in the lens system, particularly field curvature, coma aberration, and chromatic aberration, are so large that a good result as aberration performance cannot be obtained. If the upper limit of 10,000 is exceeded, the focal length of the refractive lens system becomes too long, the light beam converging action of the refractive lens system becomes weak, the decentered prism becomes large, and the angle of view cannot be increased. End up.

さらに、好ましくは、
1.5<F/Fy<10000 ・・・(H−2)
なる条件を満足することが好ましい。
Furthermore, preferably,
1.5 <F / Fy <10000 (H-2)
It is preferable to satisfy the following conditions.

さらに、好ましくは、
2<F/Fy<10000 ・・・(H−3)
なる条件を満足することが好ましい。
Furthermore, preferably,
2 <F / Fy <10000 (H-3)
It is preferable to satisfy the following conditions.

また、さらに好ましくは、
2<F/Fy<3 ・・・(H−4)
の場合は、屈折レンズ系で発生する倍率の色収差が大きくなるために、倍率の色収差の補正手段と併用することが好ましい。
More preferably,
2 <F / Fy <3 (H-4)
In this case, since the chromatic aberration of magnification generated in the refractive lens system becomes large, it is preferable to use it together with the correcting means for chromatic aberration of magnification.

さて、以上の条件(A−1)から(G−3)については、偏心プリズムの反射作用と透過作用を有する第1面を回転対称面で構成し、反射作用のみを有する第2面をその面内及び面外共に回転対称軸を有せずしかも対称面を1つのみ有する面対称自由曲面で構成することが好ましい。さらに、面対称自由曲面だけでなく、その面内及び面外共に回転対称軸を有しないアナモルフィック面で構成した場合にも、すなわち、その面内及び面外共に回転対称軸を有しない回転非対称面形状にした何れの場合にも適用できる。   With regard to the above conditions (A-1) to (G-3), the first surface having the reflecting action and the transmitting action of the eccentric prism is constituted by a rotationally symmetric surface, and the second face having only the reflecting action is defined as the second surface. It is preferable that both the in-plane and out-of-plane surfaces are configured by plane-symmetric free-form surfaces having no rotational symmetry axis and having only one symmetry plane. Furthermore, not only in a plane-symmetry free-form surface, but also in an anamorphic surface that does not have a rotationally symmetric axis both in and out of the plane, that is, rotation that does not have a rotationally symmetric axis both in and out of the plane. The present invention can be applied to any asymmetric surface shape.

ところで、偏心プリズムは、ガラスで作製してもよいが、頭部又は顔面に装着する画像表示装置として用いる場合には、軽量化の観点からプラスチックで作製する方が望ましい。   By the way, the eccentric prism may be made of glass, but when used as an image display device mounted on the head or face, it is desirable to make it from plastic from the viewpoint of weight reduction.

また、この偏心プリズムは内部反射面がパワーを持った曲面(非平面)で形成されているため、回転非対称な収差が発生する。本発明の偏心プリズム光学系は、偏心プリズムの反射作用を持った面形状を工夫するすることによってこの収差を良好に補正している。しかし、湿度の変化の影響を受け、媒質の屈折率が変化してしまうと、収差性能が劣化してしまうことになる。   In addition, since this decentered prism is formed with a curved surface (non-planar surface) having a power on the internal reflection surface, rotationally asymmetric aberration occurs. The decentered prism optical system of the present invention corrects this aberration satisfactorily by devising the surface shape having the reflecting action of the decentered prism. However, if the refractive index of the medium changes due to the influence of changes in humidity, the aberration performance deteriorates.

そこで、偏心プリズムの材質としては、湿度の変化の影響を受け難い吸水線膨張率の小さい材質(ポリオレフィン系樹脂:例えば(株)日本ゼオン製“ZEONEX”等)を用いることが望ましい。そして、具体的には、材質の吸水率αが、
0<α<0.1 (%) ・・・(I−1)
を満たすことが望ましい。この条件式の上下限を越えると、収差性能の劣化を招き望ましくない。
Therefore, it is desirable to use a material having a small coefficient of water-absorption linear expansion (polyolefin resin: for example, “ZEONEX” manufactured by Nippon Zeon Co., Ltd.) as a material for the eccentric prism. Specifically, the water absorption rate α of the material is
0 <α <0.1 (%) (I-1)
It is desirable to satisfy. If the upper and lower limits of this conditional expression are exceeded, the aberration performance is deteriorated, which is not desirable.

また、このような吸水線膨張率の小さい材質は、その特性としてガラス等に比べて柔らかく傷が付きやすい。そのため、例えば頭部又は顔面に装着する画像表示装置として用いる場合、観察者眼球側である偏心プリズム第1面が外界と接する面となるときには、その面にカバーコーティングを施す必要が生じる。しかし、この第1面は、本発明の偏心プリズム光学系の特性上全反射面として用いることが光量低下の防止の上で望ましいが、この第1面にコーティングを施すと、この全反射作用が崩れてしまうこととなる。そこで、この第1面と観察者眼球との間にカバーガラスを配置するようにすることが望ましい。本発明においては、正レンズがこのニーズをも満足するものであり、この正レンズが画角を拡大させる作用の他、上記のカバーガラスの作用をも兼用しており、部品点数を減らし、軽量化にも役立っている。   Further, such a material having a small coefficient of water absorption linear expansion is soft and easily damaged as compared with glass or the like. For this reason, for example, when used as an image display device mounted on the head or face, when the first surface of the decentered prism on the viewer's eyeball side is in contact with the outside world, it is necessary to cover the surface. However, it is desirable to use this first surface as a total reflection surface due to the characteristics of the decentered prism optical system of the present invention in order to prevent a decrease in the amount of light. However, when this first surface is coated, this total reflection action is achieved. It will collapse. Therefore, it is desirable to arrange a cover glass between the first surface and the observer's eyeball. In the present invention, the positive lens satisfies this need. In addition to the function of expanding the angle of view, the positive lens also functions as the cover glass described above, reducing the number of parts and reducing the weight. It has also helped.

以上の説明から明らかなように、本発明によると、広い画角においても明瞭で、歪みの少ない像を得られる偏心プリズムを含む撮像光学系又は接眼光系学において、その偏心プリズムの1つの有効領域の広い面を回転対称面により構成することにより、製作時の評価が簡単に行える偏心プリズム光学系を提供することができる。   As is clear from the above description, according to the present invention, in the imaging optical system or the ocular optical system including the decentered prism capable of obtaining a clear image with a small distortion even at a wide angle of view, one effective of the decentered prism is effective. By constructing a surface having a wide area by a rotationally symmetric surface, it is possible to provide a decentered prism optical system that can be easily evaluated during manufacture.

以下に、本発明の偏心プリズム光学系の実施例1〜6について説明する。後述する各実施例の構成パラメータにおいては、図1に示すように、偏心光学系10の瞳1の中心を光学系の原点として、光軸2を物体中心から瞳1の中心(原点)を通る光線で定義し、瞳1から光軸2に進む方向をZ軸方向、このZ軸に直交し瞳1中心を通り、光線が光学系10によって折り曲げられる面内の方向をY軸方向、Y軸、Z軸に直交し、瞳1中心を通る方向をX軸方向とし、瞳1から光学系10に向かう方向をZ軸の正方向、光軸2から像面6の側をY軸の正方向、そしてこれらY軸、Z軸と右手系を構成する方向をX軸の正方向とする。なお、光線追跡は光学系10の瞳1側の物体側から光学系10に入射する方向としている。   Examples 1 to 6 of the decentered prism optical system according to the present invention will be described below. In the configuration parameters of each embodiment described later, as shown in FIG. 1, the center of the pupil 1 of the decentered optical system 10 is the origin of the optical system, and the optical axis 2 passes from the object center to the center (origin) of the pupil 1. The direction in which the light beam is defined from the pupil 1 to the optical axis 2 is defined as the Z-axis direction, the direction perpendicular to the Z-axis and passing through the center of the pupil 1 and the light beam is bent by the optical system 10 is defined as the Y-axis direction. The direction perpendicular to the Z-axis and passing through the center of the pupil 1 is the X-axis direction, the direction from the pupil 1 toward the optical system 10 is the positive direction of the Z-axis, and the optical axis 2 to the image plane 6 side is the positive direction of the Y-axis. The direction constituting the Y-axis, Z-axis and the right-handed system is the positive direction of the X-axis. The ray tracing is performed in a direction in which the light enters the optical system 10 from the object side on the pupil 1 side of the optical system 10.

そして、偏心が与えられている面については、その面の面頂位置の光学系10の原点である瞳1の中心からのX軸方向、Y軸方向、Z軸方向の偏心量(それぞれx、y、z)と、その面の中心軸(自由曲面については、以下の(a)式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα、β、γ)とが与えられている。なお、その場合、αとβの正はそれぞれの軸の正方向に対しての反時計回りを、γの正はZ軸の正方向に対しての時計回りを意味する。その他、球面の曲率半径、面間隔、媒質の屈折率、アッベ数が慣用法に従って与えられている。   For the surface to which the eccentricity is given, the amount of eccentricity in the X-axis direction, the Y-axis direction, and the Z-axis direction from the center of the pupil 1 that is the origin of the optical system 10 at the surface top position of the surface (x, y, z) and the tilt angle (α, β, γ, respectively) about the X axis, Y axis, and Z axis of the center axis of the surface (for the free-form surface, the Z axis in the following equation (a)) ) And are given. In this case, positive α and β means counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. In addition, the radius of curvature of the spherical surface, the surface interval, the refractive index of the medium, and the Abbe number are given in accordance with conventional methods.

なお、回転非対称面の面の形状は以下の式により定義する。その定義式のZ軸が回転非対称面の軸となる。   The shape of the rotationally asymmetric surface is defined by the following equation. The Z axis of the defining formula is the axis of the rotationally asymmetric surface.

Z=Σn Σm nmn n-m
ただし、Σn はΣのnが0〜k、Σm はΣのmが0〜nを表す。
Z = Σ n Σ m C nm X n Y nm
However, Σ n represents n of Σ from 0 to k, and Σ m represents m of Σ from 0 to n.

また、面対称自由曲面(対称面を1つのみ有する回転非対称面)を、この回転非対称面を表す式により定義する場合は、その対称面により生ずる対称性をX方向に求める場合は、Xの奇数次項を0に(例えばX奇数次項の係数を0にする)、その対称面により生ずる対称性をY方向に求める場合は、Yの奇数次項を0に(例えばY奇数次項の係数を0にする)すればよい。   When a plane-symmetric free-form surface (a rotationally asymmetric surface having only one symmetric surface) is defined by an expression representing this rotationally asymmetric surface, the symmetry of X is obtained when the symmetry generated by the symmetric surface is obtained in the X direction. When the odd-order term is set to 0 (for example, the coefficient of the X-odd-order term is set to 0) and the symmetry caused by the symmetry plane is obtained in the Y direction, the odd-order term of Y is set to 0 (for example, the coefficient of the Y-odd-order term is set to 0). Do it).

ここで、例としてk=7(7次項)で、X方向に対称な面対称自由曲面を上記定義式を展開した形で表すと、以下の式となる。   Here, as an example, when a plane-symmetric free-form surface symmetric in the X direction with k = 7 (seventh-order term) is expressed in a form in which the above definition is expanded, the following expression is obtained.

Z=C2
+C3 Y+C4
+C5 2 +C6 YX+C7 2
+C8 3 +C9 2 X+C10YX2 +C113
+C124 +C133 X+C142 2 +C15YX3 +C164
+C175 +C184 X+C193 2 +C202 3 +C21YX4
+C225
+C236 +C245 X+C254 2 +C263 3 +C272 4
+C28YX5 +C296
+C307 +C316 X+C325 2 +C334 3 +C343 4
+C352 5 +C36YX6 +C377
・・・(a)
そして、X奇数次項の係数C4 ,C6 ,C9 ・・・を0とする(後記の実施例)。なお、後記する構成のパラメータ中において、記載のない非球面に関する係数は0である。
Z = C 2
+ C 3 Y + C 4 X
+ C 5 Y 2 + C 6 YX + C 7 X 2
+ C 8 Y 3 + C 9 Y 2 X + C 10 YX 2 + C 11 X 3
+ C 12 Y 4 + C 13 Y 3 X + C 14 Y 2 X 2 + C 15 YX 3 + C 16 X 4
+ C 17 Y 5 + C 18 Y 4 X + C 19 Y 3 X 2 + C 20 Y 2 X 3 + C 21 YX 4
+ C 22 X 5
+ C 23 Y 6 + C 24 Y 5 X + C 25 Y 4 X 2 + C 26 Y 3 X 3 + C 27 Y 2 X 4
+ C 28 YX 5 + C 29 X 6
+ C 30 Y 7 + C 31 Y 6 X + C 32 Y 5 X 2 + C 33 Y 4 X 3 + C 34 Y 3 X 4
+ C 35 Y 2 X 5 + C 36 YX 6 + C 37 X 7
... (a)
The coefficients C 4 , C 6 , C 9 ... Of the X odd-order terms are set to 0 (examples described later). It should be noted that in the parameters of the configuration described later, a coefficient relating to an aspheric surface not described is 0.

また、面対称自由曲面の他の定義式として、Zernike多項式がある。この面の形状は以下の式(b)により定義する。その定義式のZ軸がZernike多項式の軸となる。   Another defining formula for a plane-symmetric free-form surface is a Zernike polynomial. The shape of this surface is defined by the following formula (b). The Z axis of the defining formula becomes the axis of the Zernike polynomial.

X=R×cos(A)
Y=R×sin(A)
Z=D2
+D3 Rcos(A)+D4 Rsin(A)
+D5 2 cos(2A)+D6 (R2 −1)+D7 2 sin(2A)
+D8 3 cos(3A) +D9 (3R3 −2R)cos(A)
+D10(3R3 −2R)sin(A)+D113 sin(3A)
+D124cos(4A)+D13(4R4 −3R2 )cos(2A)
+D14(6R4 −6R2 +1)+D15(4R4 −3R2 )sin(2A)
+D164 sin(4A) +D175 cos(5A)
+D18(5R5 −4R3 )cos(3A)
+D19(10R5 −12R3 +3R)cos(A)
+D20(10R5 −12R3 +3R)sin(A)
+D21(5R5 −4R3 )sin(3A) +D225 sin(5A)
+D236cos(6A)+D24(6R6 −5R4 )cos(4A)
+D25(15R6 −20R4 +6R2 )cos(2A)
+D26(20R6 −30R4 +12R2 −1)
+D27(15R6 −20R4 +6R2 )sin(2A)
+D28(6R6 −5R4 )sin(4A) +D296sin(6A)・・・・・
・・・(b)
なお、上記においてX方向に対称な面として表した。ただし、Dm (mは2以上の整数)は係数である。
X = R × cos (A)
Y = R × sin (A)
Z = D 2
+ D 3 Rcos (A) + D 4 Rsin (A)
+ D 5 R 2 cos (2A) + D 6 (R 2 −1) + D 7 R 2 sin (2A)
+ D 8 R 3 cos (3A) + D 9 (3R 3 −2R) cos (A)
+ D 10 (3R 3 -2R) sin (A) + D 11 R 3 sin (3A)
+ D 12 R 4 cos (4A ) + D 13 (4R 4 -3R 2) cos (2A)
+ D 14 (6R 4 -6R 2 +1) + D 15 (4R 4 -3R 2 ) sin (2A)
+ D 16 R 4 sin (4A) + D 17 R 5 cos (5A)
+ D 18 (5R 5 -4R 3 ) cos (3A)
+ D 19 (10R 5 -12R 3 + 3R) cos (A)
+ D 20 (10R 5 -12R 3 + 3R) sin (A)
+ D 21 (5R 5 -4R 3 ) sin (3A) + D 22 R 5 sin (5A)
+ D 23 R 6 cos (6A ) + D 24 (6R 6 -5R 4) cos (4A)
+ D 25 (15R 6 -20R 4 + 6R 2 ) cos (2A)
+ D 26 (20R 6 -30R 4 + 12R 2 -1)
+ D 27 (15R 6 -20R 4 + 6R 2 ) sin (2A)
+ D 28 (6R 6 -5R 4 ) sin (4A) + D 29 R 6 sin (6A)
... (b)
In addition, in the above, it represented as a plane symmetrical to the X direction. However, Dm (m is an integer greater than or equal to 2) is a coefficient.

本発明において使用可能なその他の面の表現例として、上記定義式(Z=Σn Σm nmn n-m )を、(a)式と同様、X方向に対称な面で、k=7とした面を表す場合、以下の(c)式のように展開することもできる。 As an expression example of other surfaces usable in the present invention, the above definition formula (Z = Σ n Σ m C nm X n Y nm ) is a plane symmetrical to the X direction as in the formula (a), and k = In the case of representing the surface 7, it can be expanded as shown in the following equation (c).

Z=C2
+C3 Y+C4 |X|
+C5 2 +C6 Y|X|+C7 2
+C8 3 +C9 2 |X|+C10YX2 +C11|X3
+C124 +C133 |X|+C142 2 +C15Y|X3 |+C164
+C175 +C184 |X|+C193 2 +C202 |X3
+C21YX4 +C22|X5
+C236 +C245 |X|+C254 2 +C263 |X3
+C272 4 +C28Y|X5 |+C296
+C307 +C316 |X|+C325 2 +C334 |X3
+C343 4 +C352 |X5 |+C36YX6 +C37|X7
・・・(c)
さらに、本発明において使用可能なアナモルフィック面の形状は以下の式により定義する。面形状の原点を通り、光学面に垂直な直線がアナモルフィック面の軸となる。
Z = C 2
+ C 3 Y + C 4 | X |
+ C 5 Y 2 + C 6 Y | X | + C 7 X 2
+ C 8 Y 3 + C 9 Y 2 | X | + C 10 YX 2 + C 11 | X 3 |
+ C 12 Y 4 + C 13 Y 3 | X | + C 14 Y 2 X 2 + C 15 Y | X 3 | + C 16 X 4
+ C 17 Y 5 + C 18 Y 4 | X | + C 19 Y 3 X 2 + C 20 Y 2 | X 3 |
+ C 21 YX 4 + C 22 | X 5 |
+ C 23 Y 6 + C 24 Y 5 | X | + C 25 Y 4 X 2 + C 26 Y 3 | X 3 |
+ C 27 Y 2 X 4 + C 28 Y | X 5 | + C 29 X 6
+ C 30 Y 7 + C 31 Y 6 | X | + C 32 Y 5 X 2 + C 33 Y 4 | X 3 |
+ C 34 Y 3 X 4 + C 35 Y 2 | X 5 | + C 36 YX 6 + C 37 | X 7 |
... (c)
Furthermore, the shape of the anamorphic surface that can be used in the present invention is defined by the following equation. A straight line passing through the origin of the surface shape and perpendicular to the optical surface is the axis of the anamorphic surface.

Z=(Cx・X2 +Cy・Y2 )/[1+{1−(1+Kx)Cx2 ・X2
−(1+Ky)Cy2 ・Y2 1/2
+ΣRn{(1−Pn)X2 +(1+Pn)Y2 (n+1)
ここで、例としてn=4(4次項)を考えると、展開したとき、以下の式(d)で表すことができる。
Z = (Cx · X 2 + Cy · Y 2 ) / [1+ {1- (1 + Kx) Cx 2 · X 2
− (1 + Ky) Cy 2 · Y 2 } 1/2 ]
+ ΣRn {(1-Pn) X 2 + (1 + Pn) Y 2 } (n + 1)
Here, when n = 4 (fourth order term) is considered as an example, it can be expressed by the following equation (d) when expanded.

Z=(Cx・X2 +Cy・Y2 )/[1+{1−(1+Kx)Cx2 ・X2
−(1+Ky)Cy2 ・Y2 1/2
+R1{(1−P1)X2 +(1+P1)Y2 2
+R2{(1−P2)X2 +(1+P2)Y2 3
+R3{(1−P3)X2 +(1+P3)Y2 4
+R4{(1−P4)X2 +(1+P4)Y2 5
・・・(d)
ただし、Zは面形状の原点に対する接平面からのずれ量、CxはX軸方向曲率、CyはY軸方向曲率、KxはX軸方向円錐係数、KyはY軸方向円錐係数、Rnは非球面項回転対称成分、Pnは非球面項回転非対称成分である。なお、X軸方向曲率半径Rx、Y軸方向曲率半径Ryと曲率Cx、Cyとの間には、
Rx=1/Cx,Ry=1/Cy
の関係にある。
Z = (Cx · X 2 + Cy · Y 2 ) / [1+ {1- (1 + Kx) Cx 2 · X 2
− (1 + Ky) Cy 2 · Y 2 } 1/2 ]
+ R1 {(1-P1) X 2 + (1 + P1) Y 2 } 2
+ R2 {(1-P2) X 2 + (1 + P2) Y 2 } 3
+ R3 {(1-P3) X 2 + (1 + P3) Y 2 } 4
+ R4 {(1-P4) X 2 + (1 + P4) Y 2 } 5
... (d)
Where Z is the amount of deviation from the tangential plane with respect to the origin of the surface shape, Cx is the X-axis direction curvature, Cy is the Y-axis direction curvature, Kx is the X-axis direction cone coefficient, Ky is the Y-axis direction cone coefficient, and Rn is an aspheric surface The term rotationally symmetric component, Pn, is an aspheric term rotationally asymmetric component. In addition, between the X-axis direction radius of curvature Rx, the Y-axis direction radius of curvature Ry and the curvatures Cx, Cy,
Rx = 1 / Cx, Ry = 1 / Cy
Are in a relationship.

また、回転対称非球面の形状は以下の式により定義する。その定義式のZ軸が回転対称非球面の軸となる。   The shape of the rotationally symmetric aspheric surface is defined by the following equation. The Z axis of the defining formula is the axis of a rotationally symmetric aspherical surface.

Z=(Y2 /R)/[1+{1−P(Y2 /R2 )}1/2
+A4 4 +A6 6 +A8 8 +A1010・・・
・・・(e)
ただし、YはZに垂直な方向であり、Rは近軸曲率半径、Pは円錐係数、A4 、A6 、A8 、A10は非球面係数である。
Z = (Y 2 / R) / [1+ {1-P (Y 2 / R 2 )} 1/2 ]
+ A 4 Y 4 + A 6 Y 6 + A 8 Y 8 + A 10 Y 10.
... (e)
However, Y is a direction perpendicular to Z, R is a paraxial radius of curvature, P is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are aspherical coefficients.

なお、後記する構成パラメータにおいて、データの記載されていない非球面に関する項は0である。屈折率についてはd線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。   In the configuration parameters described later, the term relating to the aspheric surface for which no data is described is zero. The refractive index is shown for the d-line (wavelength 587.56 nm). The unit of length is mm.

次に、図3〜図8にそれぞれ実施例1〜6の偏心プリズム光学系10の光軸2を含むY−Z断面図を示す。何れの実施例の偏心プリズム7も、図1の場合と同様に、3つの面3、4、5からなっており、その3つの面3〜5の間が屈折率が1より大きい透明媒質で埋められていて、不図示の物体から発した光線束が光軸2に沿って光学系10の瞳1をまず通過し、正単レンズ9’を介して、透過作用と反射作用を有する第1面3に入射して偏心プリズム7に入り、その入射光線は瞳1から遠い側の反射作用のみを有する反射面である第2面4で瞳1に近づく方向に反射され、今度は第1面3で瞳1から遠ざかる方向に再び反射され、その反射光線は、透過作用のみを有する第3面5を透過して像面6に到達し、結像する。そして、全ての実施例において、正単レンズ9’は偏心した平凸レンズであり、偏心プリズム7は、実施例1〜2、4〜6においては、第1面3は瞳1側に凹面を向けて偏心した球面でなり、実施例3においては、第1面3は瞳1側に凹面を向けて偏心した前記の(e)式で定義される回転対称非球面でなり、また、実施例1〜5においては、第2面4、第3面5は前記の(a)式で定義される自由曲面からなり、実施例6においては、第2面4は前記の(a)式で定義される自由曲面からなり、第3面は球面からなる。   Next, FIGS. 3 to 8 show YZ sectional views including the optical axis 2 of the decentered prism optical system 10 of Examples 1 to 6, respectively. Similarly to the case of FIG. 1, the decentering prism 7 of any of the embodiments includes three surfaces 3, 4, and 5, and a space between the three surfaces 3 to 5 is a transparent medium having a refractive index greater than 1. A bundle of light rays emitted from an object (not shown) first passes through the pupil 1 of the optical system 10 along the optical axis 2 and has a transmission function and a reflection function through the positive single lens 9 ′. The light enters the surface 3 and enters the decentered prism 7, and the incident light beam is reflected in a direction approaching the pupil 1 by the second surface 4, which is a reflective surface only having a reflection action far from the pupil 1, and this time, the first surface. 3 is reflected again in the direction away from the pupil 1, and the reflected light passes through the third surface 5 having only a transmission action and reaches the image surface 6 to form an image. In all of the embodiments, the positive single lens 9 ′ is a decentered plano-convex lens, and the decentering prism 7 has the decentered prism 7 facing the pupil 1 side in the first to second and fourth to sixth embodiments. In the third embodiment, the first surface 3 is a rotationally symmetric aspherical surface defined by the above-described equation (e) that is decentered with the concave surface facing the pupil 1 side. -5, the second surface 4 and the third surface 5 are free-form surfaces defined by the equation (a), and in Example 6, the second surface 4 is defined by the equation (a). The third surface is a spherical surface.

また、実施例1は、水平画角38°、垂直画角29.0°、像の大きさ14.4×10.7mm、瞳径4mmである。   In Example 1, the horizontal field angle is 38 °, the vertical field angle is 29.0 °, the image size is 14.4 × 10.7 mm, and the pupil diameter is 4 mm.

実施例2〜4は、水平画角40°、垂直画角30.5°、像の大きさ14.4×10.7mm、瞳径4mmである。   In Examples 2 to 4, the horizontal field angle is 40 °, the vertical field angle is 30.5 °, the image size is 14.4 × 10.7 mm, and the pupil diameter is 4 mm.

実施例5〜6は、水平画角48°、垂直画角36.9°、像の大きさ21.1×15.8mm、瞳径4mmである。   In Examples 5 to 6, the horizontal field angle is 48 °, the vertical field angle is 36.9 °, the image size is 21.1 × 15.8 mm, and the pupil diameter is 4 mm.

なお、実施例1〜6の偏心プリズム7は全て屈折率(nd )1.5254の(株)日本ゼオン製“ZEONEX”を用いている。この“ZEONEX”の吸水率αは0.01%である。 All the decentering prisms 7 of Examples 1 to 6 use “ZEONEX” manufactured by Nippon Zeon Co., Ltd. having a refractive index (n d ) of 1.5254. The water absorption α of this “ZEONEX” is 0.01%.

以下に、上記実施例1〜6の構成パラメータを示す。
実施例1
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -35.963 偏心(2)
4 -196.457 偏心(3) 1.5254 56.2
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -196.457 偏心(3) 1.5254 56.2
7 自由曲面[2] 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -7.2660×10-37 -7.4223×10-38 3.3356×10-5
10 1.2235×10-512 -3.9327×10-714 -1.2063×10-6
16 -7.1374×10-717 1.3838×10-719 -2.1827×10-8
21 2.9995×10-823 9.7004×10-10 25 -1.7016×10-9
27 2.5056×10-929 2.1061×10-10 30 -4.1940×10-10
32 -2.1214×10-10 34 8.2993×10-10 36 -3.3050×10-10
自由曲面[2]
5 -1.2614×10-27 -6.8925×10-4
偏心(1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 25.174
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 6.745 z 24.085
α 17.36 β 0.00 γ 0.00
偏心(4)
x 0.000 y 0.840 z 34.028
α -12.70 β 0.00 γ 0.00
偏心(5)
x 0.000 y 16.738 z 28.656
α 75.93 β 0.00 γ 0.00
偏心(6)
x 0.000 y 20.545 z 30.873
α 60.19 β 0.00 γ 0.00 。
The configuration parameters of Examples 1 to 6 are shown below.
Example 1
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -35.963 Eccentricity (2)
4 -196.457 Eccentricity (3) 1.5254 56.2
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -196.457 Eccentricity (3) 1.5254 56.2
7 Free-form surface [2] Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -7.2660 × 10 -3 C 7 -7.4223 × 10 -3 C 8 3.3356 × 10 -5
C 10 1.2235 × 10 -5 C 12 -3.9327 × 10 -7 C 14 -1.2063 × 10 -6
C 16 -7.1374 × 10 -7 C 17 1.3838 × 10 -7 C 19 -2.1827 × 10 -8
C 21 2.9995 × 10 -8 C 23 9.7004 × 10 -10 C 25 -1.7016 × 10 -9
C 27 2.5056 × 10 -9 C 29 2.1061 × 10 -10 C 30 -4.1940 × 10 -10
C 32 -2.1214 × 10 -10 C 34 8.2993 × 10 -10 C 36 -3.3050 × 10 -10
Free curved surface [2]
C 5 -1.2614 × 10 -2 C 7 -6.8925 × 10 -4
Eccentricity (1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 25.174
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 6.745 z 24.085
α 17.36 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 0.840 z 34.028
α -12.70 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 16.738 z 28.656
α 75.93 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 20.545 z 30.873
α 60.19 β 0.00 γ 0.00.


実施例2
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -27.659 偏心(2)
4 -149.496 偏心(3) 1.5254 56.2
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -149.496 偏心(3) 1.5254 56.2
7 自由曲面[2] 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -7.9104×10-37 -7.9974×10-38 3.9130×10-5
10 3.6289×10-612 -1.0272×10-614 -1.8685×10-6
16 -7.4081×10-717 8.8993×10-819 -3.7196×10-8
21 9.0376×10-823 5.8432×10-10 25 -3.6056×10-9
27 3.7493×10-929 -2.0178×10-11 30 -9.0053×10-11
32 -3.1608×10-10 34 1.0947×10-936 -7.0993×10-10
自由曲面[2]
5 -1.2946×10-27 8.9577×10-3
偏心(1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 25.544
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 6.523 z 24.321
α 16.51 β 0.00 γ 0.00
偏心(4)
x 0.000 y 0.714 z 33.213
α -14.19 β 0.00 γ 0.00
偏心(5)
x 0.000 y 15.307 z 28.201
α 71.70 β 0.00 γ 0.00
偏心(6)
x 0.000 y 18.987 z 30.056
α 62.17 β 0.00 γ 0.00 。

Example 2
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -27.659 Eccentricity (2)
4 -149.496 Eccentricity (3) 1.5254 56.2
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -149.496 Eccentricity (3) 1.5254 56.2
7 Free-form surface [2] Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -7.9104 × 10 -3 C 7 -7.9974 × 10 -3 C 8 3.9130 × 10 -5
C 10 3.6289 × 10 -6 C 12 -1.0272 × 10 -6 C 14 -1.8685 × 10 -6
C 16 -7.4081 × 10 -7 C 17 8.8993 × 10 -8 C 19 -3.7196 × 10 -8
C 21 9.0376 × 10 -8 C 23 5.8432 × 10 -10 C 25 -3.6056 × 10 -9
C 27 3.7493 × 10 -9 C 29 -2.0178 × 10 -11 C 30 -9.0053 × 10 -11
C 32 -3.1608 × 10 -10 C 34 1.0947 × 10 -9 C 36 -7.0993 × 10 -10
Free curved surface [2]
C 5 -1.2946 × 10 -2 C 7 8.9577 × 10 -3
Eccentricity (1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 25.544
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 6.523 z 24.321
α 16.51 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 0.714 z 33.213
α -14.19 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 15.307 z 28.201
α 71.70 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 18.987 z 30.056
α 62.17 β 0.00 γ 0.00.


実施例3
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -23.410 偏心(2)
4 -143.048 偏心(3) 1.5254 56.2
P 1
4 -0.678231 ×10-5
6 -0.718263 ×10-8
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -143.048 偏心(3) 1.5254 56.2
P 1
4 -0.678231 ×10-5
6 -0.718263 ×10-8
7 自由曲面[2] 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -7.6312×10-37 -7.7867×10-38 6.8800×10-5
10 4.9872×10-512 -3.5180×10-614 -6.5043×10-6
16 -2.2855×10-617 2.8747×10-719 2.2971×10-7
21 1.4477×10-723 -1.3241×10-925 -1.3282×10-8
27 2.8300×10-929 2.0011×10-10 30 1.8023×10-10
32 -4.8811×10-10 34 1.3959×10-936 -5.2773×10-10
自由曲面[2]
5 -3.0658×10-27 2.3240×10-3
偏心(1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 25.977
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 7.704 z 25.746
α 7.07 β 0.00 γ 0.00
偏心(4)
x 0.000 y 0.278 z 34.466
α -19.70 β 0.00 γ 0.00
偏心(5)
x 0.000 y 15.617 z 31.379
α 58.30 β 0.00 γ 0.00
偏心(6)
x 0.000 y 17.934 z 33.152
α 53.38 β 0.00 γ 0.00 。

Example 3
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -23.410 Eccentricity (2)
4 -143.048 Eccentricity (3) 1.5254 56.2
P 1
A 4 -0.678231 × 10 -5
A 6 -0.718263 × 10 -8
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -143.048 Eccentricity (3) 1.5254 56.2
P 1
A 4 -0.678231 × 10 -5
A 6 -0.718263 × 10 -8
7 Free-form surface [2] Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -7.6312 × 10 -3 C 7 -7.7867 × 10 -3 C 8 6.8800 × 10 -5
C 10 4.9872 × 10 -5 C 12 -3.5180 × 10 -6 C 14 -6.5043 × 10 -6
C 16 -2.2855 × 10 -6 C 17 2.8747 × 10 -7 C 19 2.2971 × 10 -7
C 21 1.4477 × 10 -7 C 23 -1.3241 × 10 -9 C 25 -1.3282 × 10 -8
C 27 2.8300 × 10 -9 C 29 2.0011 × 10 -10 C 30 1.8023 × 10 -10
C 32 -4.8811 × 10 -10 C 34 1.3959 × 10 -9 C 36 -5.2773 × 10 -10
Free curved surface [2]
C 5 -3.0658 × 10 -2 C 7 2.3240 × 10 -3
Eccentricity (1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 25.977
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 7.704 z 25.746
α 7.07 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 0.278 z 34.466
α -19.70 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 15.617 z 31.379
α 58.30 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 17.934 z 33.152
α 53.38 β 0.00 γ 0.00.


実施例4
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -41.999 偏心(2)
4 -138.539 偏心(3) 1.5254 56.2
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -138.539 偏心(3) 1.5254 56.2
7 自由曲面[2] 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -9.0433×10-37 -9.2347×10-38 5.1854×10-5
10 3.3087×10-612 7.2992×10-614 1.6139×10-5
16 9.6910×10-617 -7.1365×10-819 1.0603×10-7
21 1.7643×10-723 -8.0046×10-925 -3.8685×10-8
27 -3.5814×10-829 -1.6736×10-830 1.0570×10-9
32 -7.5238×10-10 34 5.2872×10-10 36 -7.2607×10-10
自由曲面[2]
5 -1.6343×10-27 3.7710×10-3
偏心(1)
x 0.000 y 0.000 z 24.518
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 27.440
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 6.782 z 26.229
α 15.69 β 0.00 γ 0.00
偏心(4)
x 0.000 y 0.699 z 35.260
α -14.78 β 0.00 γ 0.00
偏心(5)
x 0.000 y 15.855 z 30.393
α 71.61 β 0.00 γ 0.00
偏心(6)
x 0.000 y 19.082 z 32.107
α 63.24 β 0.00 γ 0.00 。

Example 4
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -41.999 Eccentricity (2)
4 -138.539 Eccentricity (3) 1.5254 56.2
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -138.539 Eccentricity (3) 1.5254 56.2
7 Free-form surface [2] Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -9.0433 × 10 -3 C 7 -9.2347 × 10 -3 C 8 5.1854 × 10 -5
C 10 3.3087 × 10 -6 C 12 7.2992 × 10 -6 C 14 1.6139 × 10 -5
C 16 9.6910 × 10 -6 C 17 -7.1365 × 10 -8 C 19 1.0603 × 10 -7
C 21 1.7643 × 10 -7 C 23 -8.0046 × 10 -9 C 25 -3.8685 × 10 -8
C 27 -3.5814 × 10 -8 C 29 -1.6736 × 10 -8 C 30 1.0570 × 10 -9
C 32 -7.5238 × 10 -10 C 34 5.2872 × 10 -10 C 36 -7.2607 × 10 -10
Free curved surface [2]
C 5 -1.6343 × 10 -2 C 7 3.7710 × 10 -3
Eccentricity (1)
x 0.000 y 0.000 z 24.518
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 27.440
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 6.782 z 26.229
α 15.69 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 0.699 z 35.260
α -14.78 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 15.855 z 30.393
α 71.61 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 19.082 z 32.107
α 63.24 β 0.00 γ 0.00.


実施例5
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -37.874 偏心(2)
4 -373.356 偏心(3) 1.5254 56.2
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -373.356 偏心(3) 1.5254 56.2
7 自由曲面[2] 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -5.3785×10-37 -5.4185×10-38 1.5217×10-5
10 1.8262×10-512 4.0012×10-714 7.4712×10-7
16 1.0251×10-717 9.4919×10-819 7.8271×10-8
21 4.6068×10-823 -1.6579×10-10 25 5.1498×10-10
27 -3.8477×10-929 -3.6899×10-10 30 -1.9081×10-10
32 5.8686×10-11 34 -2.3984×10-10 36 -9.6057×10-11
自由曲面[2]
5 -1.8133×10-27 -2.5601×10-310 -2.9938×10-3
14 2.2287×10-419 -5.8022×10-621 2.5677×10-6
偏心(1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 25.777
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 7.743 z 24.367
α 20.08 β 0.00 γ 0.00
偏心(4)
x 0.000 y 1.861 z 37.783
α -9.45 β 0.00 γ 0.00
偏心(5)
x 0.000 y 18.771 z 36.281
α 59.55 β 0.00 γ 0.00
偏心(6)
x 0.000 y 24.346 z 31.737
α 57.60 β 0.00 γ 0.00 。

Example 5
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -37.874 Eccentricity (2)
4 -373.356 Eccentricity (3) 1.5254 56.2
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -373.356 Eccentricity (3) 1.5254 56.2
7 Free-form surface [2] Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -5.3785 × 10 -3 C 7 -5.4 185 × 10 -3 C 8 1.5217 × 10 -5
C 10 1.8262 × 10 -5 C 12 4.0012 × 10 -7 C 14 7.4712 × 10 -7
C 16 1.0251 × 10 -7 C 17 9.4919 × 10 -8 C 19 7.8271 × 10 -8
C 21 4.6068 × 10 -8 C 23 -1.6579 × 10 -10 C 25 5.1498 × 10 -10
C 27 -3.8477 × 10 -9 C 29 -3.6899 × 10 -10 C 30 -1.9081 × 10 -10
C 32 5.8686 × 10 -11 C 34 -2.3984 × 10 -10 C 36 -9.6057 × 10 -11
Free curved surface [2]
C 5 -1.8133 × 10 -2 C 7 -2.5601 × 10 -3 C 10 -2.9938 × 10 -3
C 14 2.2287 × 10 -4 C 19 -5.8022 × 10 -6 C 21 2.5677 × 10 -6
Eccentricity (1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 25.777
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 7.743 z 24.367
α 20.08 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 1.861 z 37.783
α -9.45 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 18.771 z 36.281
α 59.55 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 24.346 z 31.737
α 57.60 β 0.00 γ 0.00.


実施例6
面番号 曲率半径 間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞
2 ∞ 偏心(1) 1.4922 57.5
3 -39.148 偏心(2)
4 -339.060 偏心(3) 1.5254 56.2
5 自由曲面[1] 偏心(4) 1.5254 56.2
6 -339.060 偏心(3) 1.5254 56.2
7 -128.561 偏心(5)
像 面 ∞ 偏心(6)
自由曲面[1]
5 -5.7696×10-37 -5.7406×10-38 -3.5694×10-6
10 4.7342×10-612 4.5764×10-714 -6.5090×10-7
16 -9.7442×10-817 1.4161×10-719 -1.9916×10-8
21 4.6421×10-823 -3.4757×10-925 3.9046×10-10
27 8.9761×10-10 29 -6.0018×10-10 30 -3.5136×10-10
32 -5.3507×10-11 34 2.8835×10-10 36 -2.0588×10-10
偏心(1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
偏心(2)
x 0.000 y 0.000 z 25.694
α 8.00 β 0.00 γ 0.00
偏心(3)
x 0.000 y 5.987 z 25.006
α 21.21 β 0.00 γ 0.00
偏心(4)
x 0.000 y 2.685 z 37.406
α -8.92 β 0.00 γ 0.00
偏心(5)
x 0.000 y 18.085 z 41.200
α 74.27 β 0.00 γ 0.00
偏心(6)
x 0.000 y 24.298 z 30.742
α 66.38 β 0.00 γ 0.00 。

Example 6
Surface number Curvature radius Interval Eccentric Refractive index Abbe number Object surface ∞ ∞
1 ∞
2 ∞ Eccentricity (1) 1.4922 57.5
3 -39.148 Eccentricity (2)
4 -339.060 Eccentricity (3) 1.5254 56.2
5 Free-form surface [1] Eccentricity (4) 1.5254 56.2
6 -339.060 Eccentricity (3) 1.5254 56.2
7 -128.561 Eccentricity (5)
Image plane ∞ Eccentricity (6)
Free curved surface [1]
C 5 -5.7696 × 10 -3 C 7 -5.7406 × 10 -3 C 8 -3.5694 × 10 -6
C 10 4.7342 × 10 -6 C 12 4.5764 × 10 -7 C 14 -6.5090 × 10 -7
C 16 -9.7442 × 10 -8 C 17 1.4161 × 10 -7 C 19 -1.9916 × 10 -8
C 21 4.6421 × 10 -8 C 23 -3.4757 × 10 -9 C 25 3.9046 × 10 -10
C 27 8.9761 × 10 -10 C 29 -6.0018 × 10 -10 C 30 -3.5136 × 10 -10
C 32 -5.3507 × 10 -11 C 34 2.8835 × 10 -10 C 36 -2.0588 × 10 -10
Eccentricity (1)
x 0.000 y 0.000 z 23.000
α 8.00 β 0.00 γ 0.00
Eccentricity (2)
x 0.000 y 0.000 z 25.694
α 8.00 β 0.00 γ 0.00
Eccentricity (3)
x 0.000 y 5.987 z 25.006
α 21.21 β 0.00 γ 0.00
Eccentricity (4)
x 0.000 y 2.685 z 37.406
α -8.92 β 0.00 γ 0.00
Eccentricity (5)
x 0.000 y 18.085 z 41.200
α 74.27 β 0.00 γ 0.00
Eccentricity (6)
x 0.000 y 24.298 z 30.742
α 66.38 β 0.00 γ 0.00.

以上の実施例1の像歪みを表す収差図を図9に示す。この収差図中、縦軸はX方向の像高、横軸はY方向の像高を表す。また、実施例1の横収差図を図10に示す。この横収差図において、括弧内に示された数字は(水平(X方向)画角、垂直(Y方向)画角)を表し、その画角における横収差を示す。   FIG. 9 is an aberration diagram showing the image distortion in Example 1 described above. In this aberration diagram, the vertical axis represents the image height in the X direction, and the horizontal axis represents the image height in the Y direction. Further, a lateral aberration diagram of Example 1 is shown in FIG. In this lateral aberration diagram, the numbers shown in parentheses indicate (horizontal (X direction) field angle, vertical (Y direction) field angle), and indicate lateral aberration at that field angle.

以下に、本発明の実施例1〜6における前記条件式(A−1)〜(H−1)に関するパラメータの値を示す。   The parameter values relating to the conditional expressions (A-1) to (H-1) in Examples 1 to 6 of the present invention are shown below.

実施例1 実施例2 実施例3 実施例4 実施例5 実施例6
(A−1)1.03591 1.03451 1.04142 1.01647 1.02169 1.02889
(B−1)0.96941 0.99303 0.93780 1.09170 0.81502 0.87536
(C−1)0.91610 0.94946 0.88252 1.05176 0.79386 0.85141
(D−1)1.02151 1.011 1.02038 1.02116 1.00486 0.99926
(E−1)0.09459 0.10135 0.25116 0.10847 0.09464 0.07108
(F−1)0.00650 -0.00009 0.04298 -0.00424 0.02633 0.00185
(G−1)0.00114 0.00056 0.00578 0.00149 0.00234 0.00138
(H−1)3.32809 2.79477 2.45676 4.37771 3.12714 3.20561
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
(A-1) 1.03591 1.03451 1.04142 1.01647 1.02169 1.02889
(B-1) 0.96941 0.99303 0.93780 1.09170 0.81502 0.87536
(C-1) 0.91610 0.94946 0.88252 1.05176 0.79386 0.85141
(D-1) 1.02151 1.011 1.02038 1.02116 1.00486 0.99926
(E-1) 0.09459 0.10135 0.25116 0.10847 0.09464 0.07108
(F-1) 0.00650 -0.00009 0.04298 -0.00424 0.02633 0.00185
(G-1) 0.00114 0.00056 0.00578 0.00149 0.00234 0.00138
(H-1) 3.32809 2.79477 2.45676 4.37771 3.12714 3.20561
.

以上のような本発明の偏心プリズム光学系は、画像表示装置に利用することができる。その一例として、図11に頭部装着型の画像表示装置を観察者頭部に装着した状態を、図12にその断面図を示す。この構成は、本発明の偏心プリズム光学系を図12に示すように接眼光学系100として用いており、接眼光学系100と画像表示素子101からなる組みを左右一対用意し、それらを眼輻距離だけ離して支持することにより、両眼で観察できる据え付け型又は頭部装着型画像表示装置のようなポータブル型の画像表示装置102として構成されている。   The decentered prism optical system of the present invention as described above can be used for an image display device. As an example, FIG. 11 shows a state in which a head-mounted image display device is mounted on the observer's head, and FIG. 12 shows a cross-sectional view thereof. In this configuration, the decentered prism optical system of the present invention is used as an eyepiece optical system 100 as shown in FIG. 12, and a pair of the eyepiece optical system 100 and the image display element 101 is prepared on the left and right sides, and these are set as the eye radial distance. It is configured as a portable image display device 102 such as a stationary or head-mounted image display device that can be observed with both eyes by being supported only apart.

すなわち、表示装置本体102には、上記のような接眼光学系100が左右一対備えられ、それらに対応して像面に液晶表示素子からなる画像表示素子101が配置されている。そして、表示装置本体102には、図11に示すように、左右に連続して図示のような側頭フレーム103が設けられ、表示装置本体102を観察者の眼前に保持できるようになっている。   That is, the display device main body 102 is provided with a pair of left and right eyepiece optical systems 100 as described above, and an image display element 101 made up of a liquid crystal display element is arranged on the image plane correspondingly. As shown in FIG. 11, the display device main body 102 is provided with a temporal frame 103 as shown in the drawing so as to be continuous from side to side so that the display device main body 102 can be held in front of the observer's eyes. .

また、側頭フレーム103にはスピーカ104が付設されており、画像観察と共に立体音響を聞くことができるようになっている。このようにスピーカ104を有する表示装置本体102には、映像音声伝達コード105を介してポータブルビデオカセット等の再生装置106が接続されているので、観察者はこの再生装置106を図示のようにベルト箇所等の任意の位置に保持して、映像音響を楽しむことができるようになっている。図11の符号107は再生装置106のスイッチ、ボリューム等の調節部である。なお、表示装置本体102の内部に映像処理、音声処理回路等の電子部品を内蔵させてある。   In addition, a speaker 104 is attached to the temporal frame 103 so that stereophonic sound can be heard along with image observation. In this way, the display device main body 102 having the speaker 104 is connected with a playback device 106 such as a portable video cassette via the audio / video transmission cord 105, so that the observer can attach the playback device 106 to the belt as shown in the figure. It can be held at an arbitrary position such as a place to enjoy video and audio. Reference numeral 107 in FIG. 11 denotes an adjustment unit such as a switch or a volume of the playback device 106. Note that electronic components such as video processing and audio processing circuits are built in the display device main body 102.

なお、コード105は先端をジャックにして、既存のビデオデッキ等に取り付け可能としてもよい。さらに、TV電波受信用チューナーに接続してTV鑑賞用としてもよいし、コンピュータに接続してコンピュータグラフィックスの映像や、コンピュータからのメッセージ映像等を受信するようにしてもよい。また、邪魔なコードを排斥するために、アンテナを接続して外部からの信号を電波によって受信するようにしてもよい。   The cord 105 may be attached to an existing video deck or the like with a jack at the tip. Further, it may be connected to a TV radio wave receiving tuner for TV viewing, or may be connected to a computer to receive computer graphics video, message video from the computer, or the like. In addition, in order to eliminate disturbing cords, an antenna may be connected and an external signal may be received by radio waves.

さらに、本発明の偏心プリズム光学系は、接眼光学系を左右何れか一方の眼前に配置した片眼用の頭部装着型画像表示装置に用いてもよい。   Furthermore, the decentered prism optical system of the present invention may be used for a one-eye head-mounted image display device in which the eyepiece optical system is disposed in front of either the left or right eye.

また、本発明の偏心プリズム光学系は、撮影光学装置や観察光学装置にも利用できる。その例として、図13に示したような撮影光学系とファインダー光学系とを有するカメラへの利用があげられる。まず、図14に光路図を示すように、瞳位置(絞り又は仮想絞り位置)152を挟んで前群151と後群153からなる対物レンズ150の後群153として本発明の偏心プリズム光学系を配置する。こうすることにより、従来の撮影光学系では光軸Lbに対して垂直にしか配置できなかったフィルム154を光軸Lbに対して斜めに配置でき、配置の自由度が増し、コンパクト化が図れる。なお、フィルム154の代わりにCCD等の電子受光素子を配置すれば、電子カメラにも利用できる。次に、図15に光路図を示すように、ファインダー光学系の対物レンズ群200により形成される像を正立させる手段として偏心プリズム光学系201とダハ面202を有するダハプリズム203とを配置し、正立した像を接眼レンズ204により観察者眼球205に導く構成とする。この構成により、従前のポロプリズムよりも高さ方向が低くでき、コンパクト化が図れる。なお、図中、Leはファインダー光学系の光軸である。   The decentered prism optical system of the present invention can also be used for a photographing optical device and an observation optical device. As an example, it can be applied to a camera having a photographing optical system and a viewfinder optical system as shown in FIG. First, as shown in the optical path diagram of FIG. 14, the decentered prism optical system of the present invention is used as the rear group 153 of the objective lens 150 including the front group 151 and the rear group 153 with the pupil position (stop or virtual stop position) 152 interposed therebetween. Deploy. By doing so, the film 154 that can only be arranged perpendicularly to the optical axis Lb in the conventional photographing optical system can be arranged obliquely with respect to the optical axis Lb, so that the degree of freedom of arrangement increases and the size can be reduced. If an electronic light receiving element such as a CCD is arranged instead of the film 154, it can also be used for an electronic camera. Next, as shown in FIG. 15, an eccentric prism optical system 201 and a roof prism 203 having a roof surface 202 are arranged as means for erecting an image formed by the objective lens group 200 of the viewfinder optical system, The upright image is guided to the observer's eyeball 205 by the eyepiece lens 204. With this configuration, the height direction can be made lower than that of a conventional Porro prism, and the size can be reduced. In the figure, Le is the optical axis of the finder optical system.

さらに、リレーレンズを用いて接眼レンズに像を伝達する硬性型内視鏡の対物レンズや、光ファイバー束を用いて像を接眼レンズに伝達する軟性型内視鏡の対物レンズ、CCDによって像を受光する電子内視鏡の対物レンズにも利用できる。その一例を図16、図17に示す。図16は、硬性型内視鏡(いわゆる硬性鏡)を用いた内視鏡装置の全体の構成図である。図16に示す内視鏡装置30は対物レンズ及び照明光学系を内装する挿入部22を有する内視鏡20とカメラ24とモニター25と光源装置27とを有している。上記内視鏡20は、その挿入部22の先端部21には、図17に示すように、本発明の偏心プリズム光学系31(ただし、偏心プリズムの入射側には負レンズを配置してある。)を用いた対物レンズ32とその視野方向を照射するライトガイド33とが組み込まれている。上記挿入部22には、対物レンズ32に続き、像や瞳の伝達光学系であるリレーレンズ系が設けられている。内視鏡20の基部23には、図示しない接眼光学系が配置され、その接続光学系の後には、撮像手段としてのカメラ24を取り付けることが可能である。ここで、内視鏡20の基部23及びカメラ24は一体式又は脱着式で構成されている。カメラ24で撮像された被写体は、最終的にモニター25で内視鏡画像として観察者に観察可能に表示される。上記光源装置27からの照明光は、ライトガイドケーブル26を通し、上記基部23、挿入部22及び先端部21を経て視野方向を照明する。   In addition, the objective lens of a rigid endoscope that transmits an image to an eyepiece lens using a relay lens, the objective lens of a flexible endoscope that transmits an image to an eyepiece lens using a bundle of optical fibers, and the CCD receive the image. It can also be used as an objective lens for electronic endoscopes. An example is shown in FIGS. FIG. 16 is an overall configuration diagram of an endoscope apparatus using a rigid endoscope (so-called rigid endoscope). An endoscope apparatus 30 shown in FIG. 16 includes an endoscope 20 having an insertion portion 22 that houses an objective lens and an illumination optical system, a camera 24, a monitor 25, and a light source device 27. As shown in FIG. 17, the endoscope 20 has a decentered prism optical system 31 according to the present invention (however, a negative lens is disposed on the incident side of the decentered prism, as shown in FIG. 17). )) And a light guide 33 for illuminating the viewing direction thereof are incorporated. The insertion unit 22 is provided with a relay lens system, which is an image and pupil transmission optical system, following the objective lens 32. An eyepiece optical system (not shown) is arranged on the base 23 of the endoscope 20, and a camera 24 as an imaging unit can be attached after the connection optical system. Here, the base 23 and the camera 24 of the endoscope 20 are configured as an integral type or a detachable type. The subject imaged by the camera 24 is finally displayed as an endoscopic image on the monitor 25 so that it can be observed by an observer. The illumination light from the light source device 27 passes through the light guide cable 26 and illuminates the visual field direction through the base portion 23, the insertion portion 22, and the distal end portion 21.

以上の本発明の偏心プリズム光学系は、例えば次のように構成することができる。   The decentered prism optical system of the present invention described above can be configured as follows, for example.

〔1〕 少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面の中の少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を配置し、前記反射作用を有する2つの面の中、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面の少なくとも有効面(面の全領域中で光束が透過及び/又は反射をする領域)の形状が有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に正屈折力を有するレンズが配置されていることを特徴とする偏心プリズム光学系。
[1] In a decentered prism optical system including a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism forms at least two of the three surfaces with reflective surfaces so as to perform internal reflection at least twice, and is reflected by the two reflective surfaces. The surface having the two reflecting actions is arranged at a position where the light rays do not intersect inside the decentered prism, and one of the two faces having the reflecting action has a shape of both in-plane and out-of-plane. It is formed of a rotationally asymmetric surface that does not have a rotational symmetry axis, and the shape of at least the effective surface of one of the other surfaces (the region where light flux is transmitted and / or reflected in the entire surface area) rotates within the effective surface. It consists of a rotationally symmetric surface with a symmetry axis,
A decentered prism optical system, wherein a lens having positive refracting power is disposed on the incident side or the exit side of the decentered prism.

〔2〕 上記〔1〕記載の偏心プリズム光学系において、前記偏心プリズムの前記回転対称面が、前記偏心プリズムを通過する光束を入射若しくは射出させる透過作用と前記偏心プリズムの内部で前記光束を折り曲げる反射作用とを併せ持つ第1面として形成され、前記偏心プリズムの前記回転非対称面が前記第1面と対向配置された第2面として形成され、さらに、前記偏心プリズムを通過する光束を射出若しくは入射させる透過作用を有する第3面が、前記第1面と前記第2面との対向方向に対して略垂直方向の位置に配置され、少なくとも前記偏心プリズムが前記第1面と前記第2面と前記第3面とを含む構成であり、
前記レンズが前記第1面の入射側若しくは射出側に配置されていることを特徴とする請求項1記載の偏心プリズム光学系。
[2] In the decentered prism optical system according to [1], the rotationally symmetric surface of the decentered prism bends the light beam inside the decentered prism and a transmission action that causes the light beam that passes through the decentered prism to enter or exit. The rotationally asymmetric surface of the decentered prism is formed as a second surface that is disposed opposite to the first surface, and a light beam that passes through the decentered prism is emitted or incident. A third surface having a transmitting action is disposed at a position substantially perpendicular to a facing direction of the first surface and the second surface, and at least the eccentric prism includes the first surface and the second surface. A configuration including the third surface,
The decentered prism optical system according to claim 1, wherein the lens is disposed on an incident side or an exit side of the first surface.

〔3〕 上記〔2〕記載の偏心プリズム光学系において、前記偏心プリズムの前記第1面が有効面内にてその透過作用と反射作用とが少なくとも一部の領域で重なり合うように形成されていると共に、少なくとも前記第1面の有効面内の透過作用と反射作用との重なり合う領域での反射作用が全反射作用によるように構成されていることを特徴とする偏心プリズム光学系。     [3] In the decentered prism optical system according to the above [2], the first surface of the decentered prism is formed so that its transmission and reflection functions overlap at least in a part of the effective plane. In addition, the decentered prism optical system is configured so that at least the reflection action in the region where the transmission action and the reflection action in the effective surface of the first surface overlap is based on the total reflection action.

〔4〕 上記〔2〕又は〔3〕記載の偏心プリズム光学系において、前記偏心プリズムの前記第1面の回転対称面は回転対称な非球面で形成されていることを特徴とする偏心プリズム光学系。     [4] The decentered prism optical system according to [2] or [3], wherein the rotationally symmetric surface of the first surface of the decentered prism is formed of a rotationally symmetric aspherical surface. system.

〔5〕 上記〔2〕から〔4〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズムの前記第2面がアナモルフィック面にて形成されていることを特徴とする偏心プリズム光学系。     [5] The decentered prism optical system according to any one of [2] to [4], wherein the second surface of the decentered prism is an anamorphic surface. Optical system.

〔6〕 上記〔5〕記載の偏心プリズム光学系において、前記アナモルフィック面の有する2つの対称面の中、少なくとも1つの対称面内に前記第1面の回転対称面の回転対称軸が位置するように、前記第1面と前記第2面とが配置されていることを特徴とする偏心プリズム光学系。     [6] In the decentered prism optical system according to [5] above, the rotational symmetry axis of the rotational symmetry surface of the first surface is located within at least one symmetry surface among the two symmetry surfaces of the anamorphic surface. Thus, the decentered prism optical system, wherein the first surface and the second surface are arranged.

〔7〕 上記〔2〕から〔4〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズムの前記第2面が対称面を1つのみ有する回転非対称面にて形成されていることを特徴とする偏心プリズム光学系。     [7] In the decentered prism optical system according to any one of [2] to [4], the second surface of the decentered prism is formed of a rotationally asymmetric surface having only one symmetric surface. A decentered prism optical system.

〔8〕 上記〔7〕記載の偏心プリズム光学系において、前記の対称面を1つのみ有する回転非対称面の対称面内に前記第1面の回転対称面の回転対称軸が位置するように、前記第1面と前記第2面とが配置されていることを特徴とする偏心プリズム光学系。     [8] In the decentered prism optical system according to [7], the rotationally symmetric axis of the rotationally symmetric surface of the first surface is positioned within the symmetric surface of the rotationally asymmetric surface having only one symmetric surface. A decentered prism optical system, wherein the first surface and the second surface are disposed.

〔9〕 上記〔2〕から〔8〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズムの前記第3面から光束が入射し、その入射した光束が前記光学系内部を通過して前記第1面で反射され、その第1面で反射された光束が前記第2面で反射され、その第2面で反射された光束が前記第1面から射出するように、前記第1面と前記第2面と前記第3面とが配置されていることを特徴とする偏心プリズム光学系。     [9] In the decentered prism optical system according to any one of [2] to [8], a light beam is incident from the third surface of the decentered prism, and the incident light beam passes through the inside of the optical system. The first light beam is reflected by the first surface, the light beam reflected by the first surface is reflected by the second surface, and the light beam reflected by the second surface is emitted from the first surface. A decentered prism optical system comprising: a surface, the second surface, and the third surface.

〔10〕 上記〔9〕記載の偏心プリズム光学系において、前記偏心プリズムの前記第3面は画像を表示する手段からの光束が入射する位置に配置されると共に、前記第1面は前記第1面から射出された光束が前記の正屈折力を有するレンズを介して観察者眼球に導かれるような位置に配置され、前記光束の形成する画像を観察できるようにした画像観察装置用に用いられることを特徴とする偏心プリズム光学系。     [10] In the decentered prism optical system according to [9] above, the third surface of the decentered prism is disposed at a position where a light beam from means for displaying an image is incident, and the first surface is the first surface. The light beam emitted from the surface is arranged at a position where it is guided to the observer's eyeball through the lens having the positive refractive power, and is used for an image observation apparatus that allows an image formed by the light beam to be observed. A decentered prism optical system.

〔11〕 上記〔2〕から〔8〕の何れか1項記載の偏心プリズム光学系において、前記の正屈折力を有するレンズを介して、前記第1面から光束が前記偏心プリズムへ入射し、その入射した光束が前記第2面で反射され、その第2面で反射された光束が前記第1面で反射され、その第1面で反射された光束が前記光学系内部を通過して前記第3面から射出するように、前記第1面と前記第2面と前記第3面とが配置されていることを特徴とする偏心プリズム光学系。     [11] In the decentered prism optical system according to any one of [2] to [8] above, a light beam is incident on the decentered prism from the first surface via the lens having the positive refractive power, The incident light beam is reflected by the second surface, the light beam reflected by the second surface is reflected by the first surface, and the light beam reflected by the first surface passes through the optical system and passes through the optical system. The decentered prism optical system, wherein the first surface, the second surface, and the third surface are arranged so as to emit from a third surface.

〔12〕 上記〔11〕記載の偏心プリズム光学系において、前記第1面は前記の正屈折力を有するレンズを介して物体からの光束が入射する位置に配置されると共に、前記第3面は前記第3面から射出された光束が観察者眼球に導かれるような位置に配置され、前記光束の形成する画像を観察できるようにした画像観察装置用に用いられることを特徴とする偏心プリズム光学系。     [12] In the decentered prism optical system according to [11], the first surface is disposed at a position where a light beam from an object enters through the lens having the positive refractive power, and the third surface is A decentered prism optical system, which is disposed in a position where a light beam emitted from the third surface is guided to an observer's eyeball and is used for an image observation apparatus capable of observing an image formed by the light beam. system.

〔13〕 上記〔11〕記載の偏心プリズム光学系において、前記第1面は前記の正屈折力を有するレンズを介して物体からの光束が入射する位置に配置されると共に、前記第3面は前記第3面から射出された光束が物体像を受光する手段に導かれるような位置に配置され、前記光束の形成する物体像を撮影できるようにした撮影光学装置用に用いられることを特徴とする偏心プリズム光学系。     [13] In the decentered prism optical system according to [11], the first surface is disposed at a position where a light beam from an object enters through the lens having the positive refractive power, and the third surface is It is disposed at a position where a light beam emitted from the third surface is guided to a means for receiving an object image, and is used for a photographing optical apparatus that can photograph an object image formed by the light beam. Decentered prism optical system.

〔14〕 上記〔2〕から〔8〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [14] The decentered prism optical system according to any one of [2] to [8], wherein an axial principal ray that passes through the center of the pupil of the decentered prism optical system and reaches the center of the image plane exits the pupil. An axis defined by a straight line extending to the first surface of the lens having positive refracting power is defined as a Z axis, and is in the decentered plane of each surface that is orthogonal to the Z axis and constitutes the decentered prism optical system. A decentered prism optical system satisfying the following condition when an axis is defined as a Y-axis, and an axis perpendicular to the Z-axis and perpendicular to the Y-axis is defined as an X-axis:

0.7<FA<1.3 ・・・(A−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、Fx/FyをFAとする。
0.7 <FA <1.3 (A-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length is defined as Fy, and Fx / Fy is FA.

〔15〕 上記〔2〕から〔8〕、〔14〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [15] The decentered prism optical system according to any one of [2] to [8] and [14], wherein the axial principal ray passes through the center of the pupil of the decentered prism optical system and reaches the center of the image plane. A surface defined by a straight line extending from the pupil to the first surface of the lens having positive refractive power is defined as a Z axis, and each surface that is orthogonal to the Z axis and constitutes the decentered prism optical system The decentered prism optical system satisfies the following condition when an axis in the decentered plane is defined as the Y axis, and an axis perpendicular to the Z axis and perpendicular to the Y axis is defined as the X axis.

0.8<|PxB|<1.3 ・・・(B−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記軸上主光線が前記第2面に当たる位置での面のX方向、Y方向の屈折力(パワー)をそれぞれPxn、Pynとし、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、Pxn/PxをPxBとする。
0.8 <| PxB | <1.3 (B-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. It is defined as a focal length Fy, and the refractive power (power) in the X direction and Y direction of the surface at the position where the axial principal ray hits the second surface is Pxn and Pyn, respectively, and the focal lengths Fx and Y in the X direction The reciprocals of the focal length Fy in the direction are Px and Py, respectively, and Pxn / Px is PxB. .

〔16〕 上記〔2〕から〔8〕、〔14〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [16] The decentered prism optical system according to any one of [2] to [8] and [14] above, wherein the axial principal ray reaches the center of the image plane through the center of the pupil of the decentered prism optical system. A surface defined by a straight line extending from the pupil to the first surface of the lens having positive refractive power is defined as a Z axis, and each surface that is orthogonal to the Z axis and constitutes the decentered prism optical system The decentered prism optical system satisfies the following condition when an axis in the decentered plane is defined as the Y axis, and an axis perpendicular to the Z axis and perpendicular to the Y axis is defined as the X axis.

0.8<|PyC|<1.3 ・・・(C−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記軸上主光線が前記第2面に当たる位置での面のX方向、Y方向の屈折力(パワー)をそれぞれPxn、Pynとし、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、Pyn/PyをPyCとする。
0.8 <| PyC | <1.3 (C-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. It is defined as a focal length Fy, and the refractive power (power) in the X direction and Y direction of the surface at the position where the axial principal ray hits the second surface is Pxn and Pyn, respectively, and the focal lengths Fx and Y in the X direction The reciprocals of the focal length Fy in the direction are Px and Py, respectively, and Pyn / Py is PyC. .

〔17〕 上記〔2〕から〔8〕、〔14〕から〔16〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [17] In the decentered prism optical system according to any one of [2] to [8] and [14] to [16], the decentered prism optical system passes through the center of the pupil and reaches the center of the image plane. An axis defined by a straight line from the axial principal ray exiting the pupil and intersecting the first surface of the lens having the positive refractive power is defined as a Z axis, and the decentered prism optical system is orthogonal to the Z axis. An eccentric prism characterized by satisfying the following conditions when an axis within the eccentric surface of each surface constituting the surface is defined as a Y-axis, and an axis perpendicular to the Z-axis and orthogonal to the Y-axis is defined as an X-axis Optical system.

0.8<CxyD<1.2 ・・・(D−1)
ただし、前記軸上主光線が前記第2面に当たる位置でのその面の法線を含むX方向の曲率Cx2、Y方向の曲率Cy2との比Cx2/Cy2をCxyDとする。
0.8 <CxyD <1.2 (D-1)
However, the ratio Cx2 / Cy2 between the curvature Cx2 in the X direction and the curvature Cy2 in the Y direction including the normal of the surface at the position where the axial principal ray hits the second surface is CxyD.

〔18〕 上記〔2〕から〔8〕、〔14〕から〔17〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [18] In the decentered prism optical system according to any one of [2] to [8] and [14] to [17], the decentered prism optical system passes through the center of the pupil and reaches the center of the image plane. An axis defined by a straight line from the axial principal ray exiting the pupil and intersecting the first surface of the lens having the positive refractive power is defined as a Z axis, and the decentered prism optical system is orthogonal to the Z axis. An eccentric prism characterized by satisfying the following conditions when an axis within the eccentric surface of each surface constituting the surface is defined as a Y-axis, and an axis perpendicular to the Z-axis and orthogonal to the Y-axis is defined as an X-axis Optical system.

−0.05<CyE<0.5 ・・・(E−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、X方向画角ゼロでY正方向最大画角を通る主光線が前記第2面と当たる有効領域のY方向の曲率Cy1と、X方向画角ゼロでY負方向最大画角を通る主光線が前記第2面と当たる有効領域のY方向の曲率Cy3との差Cy1−Cy3を前記Pyで割ったものをCyEとする。
-0.05 <CyE <0.5 (E-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length Fy is defined, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively. The Y-direction curvature Cy1 of the effective area that hits the surface and the Y-direction maximum field angle with zero X-direction field angle What principal ray is divided by the difference Cy1-Cy3 the curvature Cy3 in the Y direction of the effective region corresponding to the second surface by said Py and CYE.

〔19〕 上記〔2〕から〔8〕、〔14〕から〔18〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [19] In the decentered prism optical system according to any one of [2] to [8] and [14] to [18], the decentered prism optical system passes through the center of the pupil and reaches the center of the image plane. An axis defined by a straight line from the axial principal ray exiting the pupil and intersecting the first surface of the lens having the positive refractive power is defined as a Z axis, and the decentered prism optical system is orthogonal to the Z axis. An eccentric prism characterized by satisfying the following conditions when an axis within the eccentric surface of each surface constituting the surface is defined as a Y-axis, and an axis perpendicular to the Z-axis and orthogonal to the Y-axis is defined as an X-axis Optical system.

−0.01<CxF<0.1 ・・・(F−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、X方向画角ゼロでY正方向最大画角を通る主光線が前記第2面と当たる有効領域のX方向の曲率Cx1と、X方向画角ゼロでY負方向最大画角を通る主光線が前記第2面と当たる有効領域のX方向の曲率Cx3との差Cx1−Cx3を前記Pxで割ったものをCxFとする。
-0.01 <CxF <0.1 (F-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length Fy is defined, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively. The X-direction curvature Cx1 of the effective area that hits the surface and the Y-direction maximum field angle with zero X-direction field angle What principal ray is divided by the difference Cx1-Cx3 the X-direction curvature Cx3 effective region corresponding to the second surface in the Px and CxF.

〔20〕 上記〔2〕から〔8〕、〔14〕から〔19〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [20] In the decentered prism optical system according to any one of [2] to [8] and [14] to [19], the decentered prism optical system passes through the center of the pupil and reaches the center of the image plane. An axis defined by a straight line from the axial principal ray exiting the pupil and intersecting the first surface of the lens having the positive refractive power is defined as a Z axis, and the decentered prism optical system is orthogonal to the Z axis. An eccentric prism characterized by satisfying the following conditions when an axis within the eccentric surface of each surface constituting the surface is defined as a Y-axis, and an axis perpendicular to the Z-axis and orthogonal to the Y-axis is defined as an X-axis Optical system.

−0.1<|DY|<5 (°) ・・・(G−1)
ただし、X方向最大画角の主光線が前記第2面と交差する点におけるその面の法線と、前記軸上主光線が前記第2面と交差する点におけるその面の法線とがY−Z面内でのなす角をDYとする。
−0.1 <| DY | <5 (°) (G-1)
However, the normal of the surface at the point where the principal ray having the maximum angle of view in the X direction intersects the second surface and the normal of the surface at the point where the axial principal ray intersects the second surface are Y Let DY be the angle formed in the -Z plane.

〔21〕 上記〔2〕から〔8〕、〔14〕から〔20〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。     [21] In the decentered prism optical system described in any one of [2] to [8] and [14] to [20], the decentered prism optical system passes through the center of the pupil and reaches the center of the image plane. An axis defined by a straight line from the axial principal ray exiting the pupil and intersecting the first surface of the lens having the positive refractive power is defined as a Z axis, and the decentered prism optical system is orthogonal to the Z axis. An eccentric prism characterized by satisfying the following conditions when an axis within the eccentric surface of each surface constituting the surface is defined as a Y-axis, and an axis perpendicular to the Z-axis and orthogonal to the Y-axis is defined as an X-axis Optical system.

1.1<F/Fy<10000 ・・・(H−1)
ただし、前記の正屈折力を有するレンズの焦点距離をF、前記軸上主光線と平行に瞳中心からY軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyとする。
1.1 <F / Fy <10000 (H-1)
However, the focal length of the lens having positive refracting power is F, passing through a point of a minute amount H in the Y-axis direction from the center of the pupil in parallel with the axial principal ray, and parallel to the axial principal ray. A value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the ray is divided by H is the focal length Fy in the Y direction of the entire optical system.

〔22〕 上記〔1〕から〔21〕の何れか1項記載の偏心プリズム光学系において、前記偏心プリズムの前記透明媒質が吸水線膨張率の小さい材質からなることを特徴とする偏心プリズム光学系。     [22] The decentered prism optical system according to any one of [1] to [21], wherein the transparent medium of the decentered prism is made of a material having a low water absorption coefficient. .

〔23〕 上記〔22〕記載の偏心プリズム光学系において、前記透明媒質の吸水率αが、
0<α<0.1 (%) ・・・(I−1)
を満たすことを特徴とする偏心プリズム光学系。
[23] In the decentered prism optical system according to [22], the water absorption α of the transparent medium is
0 <α <0.1 (%) (I-1)
An eccentric prism optical system characterized by satisfying

〔24〕 上記〔22〕又は〔23〕記載の偏心プリズム光学系において、前記透明媒質がポリオレフィン系樹脂からなることを特徴とする偏心プリズム光学系。     [24] The decentered prism optical system according to [22] or [23], wherein the transparent medium is made of a polyolefin resin.

〔25〕 上記〔22〕から〔24〕の何れか1項記載の偏心プリズム光学系において、前記の正屈折力を有するレンズは、前記偏心プリズムが傷付くのを防止する作用と画角を拡大する作用とを併せ持つように形成されていることを特徴とする偏心プリズム光学系。     [25] The decentered prism optical system according to any one of [22] to [24], wherein the lens having positive refractive power enlarges the action and the angle of view for preventing the decentered prism from being damaged. A decentered prism optical system characterized in that it is formed so as to have a function of

本発明の偏心プリズム光学系の主要部である偏心プリズムを最も単純な3面構成プリズムとした場合の光路図である。FIG. 5 is an optical path diagram in the case where the decentered prism, which is the main part of the decentered prism optical system of the present invention, is the simplest three-surface configuration prism. 本発明の光学系に利用可能な偏心プリズムの別の構成を例示するための光路図である。FIG. 6 is an optical path diagram for illustrating another configuration of a decentered prism that can be used in the optical system of the present invention. 本発明の実施例1の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 1 of this invention. 本発明の実施例2の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 2 of this invention. 本発明の実施例3の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 3 of this invention. 本発明の実施例4の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 4 of this invention. 本発明の実施例5の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 5 of this invention. 本発明の実施例6の偏心プリズム光学系の断面図である。It is sectional drawing of the decentered prism optical system of Example 6 of this invention. 実施例1の像歪みを表す収差図である。3 is an aberration diagram illustrating image distortion in Example 1. FIG. 実施例1の横収差図である。FIG. 3 is a lateral aberration diagram of Example 1. 本発明の偏心プリズム光学系を用いた頭部装着型画像表示装置を観察者頭部に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the observer's head with the head-mounted image display apparatus using the eccentric prism optical system of this invention. 図11の頭部近傍の断面図である。It is sectional drawing of the head vicinity of FIG. 本発明の偏心プリズム光学系を用いたカメラの構成を示す斜視図である。It is a perspective view which shows the structure of the camera using the decentered prism optical system of this invention. 本発明の偏心プリズム光学系を用いた撮影光学系の光路図である。It is an optical path diagram of a photographing optical system using the decentered prism optical system of the present invention. 本発明の偏心プリズム光学系を用いたファインダー光学系の光路図である。It is an optical path diagram of a finder optical system using the decentered prism optical system of the present invention. 内視鏡装置の全体の構成図である。1 is an overall configuration diagram of an endoscope apparatus. FIG. 本発明の偏心プリズム光学系を用いた硬性型内視鏡の先端部の断面図である。It is sectional drawing of the front-end | tip part of the rigid type | mold endoscope using the eccentric prism optical system of this invention. 本発明において用いるパラメータDYを説明するための図である。It is a figure for demonstrating the parameter DY used in this invention.

符号の説明Explanation of symbols

1…瞳
2…光軸
3…偏心プリズムの第1面
4…偏心プリズムの第2面
5…偏心プリズムの第3面
6…像面
7…偏心プリズム
8…偏心プリズムの第4面
9…屈折レンズ系
9’…正単レンズ
10…偏心プリズム光学系
20…内視鏡
21…先端部
22…挿入部
23…基部
24…カメラ
25…モニター
26…ライトガイドケーブル
27…光源装置
30…内視鏡装置
31…偏心プリズム光学系
32…対物レンズ
33…ライトガイド
100…接眼光学系
101…画像表示素子
102…画像表示装置(表示装置本体)
103…側頭フレーム
104…スピーカ
105…映像音声伝達コード
106…再生装置
107…調節部
150…対物レンズ
151…前群
152…瞳位置
153…後群
154…フィルム
200…対物レンズ群
201…偏心プリズム光学系
202…ダハ面
203…ダハプリズム
204…接眼レンズ
205…観察者眼球
La…ファインダー光学系のの光軸
Lb…撮影光学系の光軸
DESCRIPTION OF SYMBOLS 1 ... Pupil 2 ... Optical axis 3 ... Decentered prism 1st surface 4 ... Decentered prism 2nd surface 5 ... Decentered prism 3rd surface 6 ... Image surface 7 ... Decentered prism 8 ... Decentered prism 4th surface 9 ... Refraction Lens system 9 '... Positive single lens 10 ... Eccentric prism optical system 20 ... Endoscope 21 ... End part 22 ... Insertion part 23 ... Base part 24 ... Camera 25 ... Monitor 26 ... Light guide cable 27 ... Light source device 30 ... Endoscope Device 31 ... Decentered prism optical system 32 ... Objective lens 33 ... Light guide 100 ... Eyepiece optical system 101 ... Image display element 102 ... Image display device (display device body)
DESCRIPTION OF SYMBOLS 103 ... Temporal frame 104 ... Speaker 105 ... Audiovisual transmission code 106 ... Playback apparatus 107 ... Adjustment part 150 ... Objective lens 151 ... Front group 152 ... Pupil position 153 ... Rear group 154 ... Film 200 ... Objective lens group 201 ... Eccentric prism Optical system 202 ... roof surface 203 ... roof prism 204 ... eyepiece 205 ... observer eye La ... optical axis Lb of viewfinder optical system ... optical axis of photographing optical system

Claims (10)

少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次の条件を満足することを特徴とする偏心プリズム光学系。
0.7<FA<1.3 ・・・(A−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、Fx/FyをFAとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following conditions when defined as:
0.7 <FA <1.3 (A-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length is defined as Fy, and Fx / Fy is FA.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次の条件を満足することを特徴とする偏心プリズム光学系。
0.8<|PxB|<1.3 ・・・(B−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記軸上主光線が前記第2面に当たる位置での面のX方向、Y方向の屈折力(パワー)をそれぞれPxn、Pynとし、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、Pxn/PxをPxBとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following conditions when defined as:
0.8 <| PxB | <1.3 (B-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. It is defined as a focal length Fy, and the refractive power (power) in the X direction and Y direction of the surface at the position where the axial principal ray hits the second surface is Pxn and Pyn, respectively, and the focal lengths Fx and Y in the X direction The reciprocals of the focal length Fy in the direction are Px and Py, respectively, and Pxn / Px is PxB. .
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次の条件を満足することを特徴とする偏心プリズム光学系。
0.8<|PyC|<1.3 ・・・(C−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記軸上主光線が前記第2面に当たる位置での面のX方向、Y方向の屈折力(パワー)をそれぞれPxn、Pynとし、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、Pyn/PyをPyCとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following conditions when defined as:
0.8 <| PyC | <1.3 (C-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. It is defined as a focal length Fy, and the refractive power (power) in the X direction and Y direction of the surface at the position where the axial principal ray hits the second surface is Pxn and Pyn, respectively, and the focal lengths Fx and Y in the X direction The reciprocals of the focal length Fy in the direction are Px and Py, respectively, and Pyn / Py is PyC. .
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。
0.8<CxyD<1.2 ・・・(D−1)
ただし、前記軸上主光線が前記第2面に当たる位置でのその面の法線を含むX方向の曲率Cx2、Y方向の曲率Cy2との比Cx2/Cy2をCxyDとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following condition when defined as:
0.8 <CxyD <1.2 (D-1)
However, the ratio Cx2 / Cy2 between the curvature Cx2 in the X direction and the curvature Cy2 in the Y direction including the normal of the surface at the position where the axial principal ray hits the second surface is CxyD.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。
−0.05<CyE<0.5 ・・・(E−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、X方向画角ゼロでY正方向最大画角を通る主光線が前記第2面と当たる有効領域のY方向の曲率Cy1と、X方向画角ゼロでY負方向最大画角を通る主光線が前記第2面と当たる有効領域のY方向の曲率Cy3との差Cy1−Cy3を前記Pyで割ったものをCyEとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following condition when defined as:
-0.05 <CyE <0.5 (E-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length Fy is defined, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively. The Y-direction curvature Cy1 of the effective area that hits the surface and the Y-direction maximum field angle with zero X-direction field angle What principal ray is divided by the difference Cy1-Cy3 the curvature Cy3 in the Y direction of the effective region corresponding to the second surface by said Py and CYE.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。
−0.01<CxF<0.1 ・・・(F−1)
ただし、前記軸上主光線と平行に瞳中心からX軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のX方向の焦点距離Fxとし、また、瞳中心からY方向にHの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyと定義し、前記X方向の焦点距離Fx、Y方向の焦点距離Fyの逆数をそれぞれPx、Pyとし、X方向画角ゼロでY正方向最大画角を通る主光線が前記第2面と当たる有効領域のX方向の曲率Cx1と、X方向画角ゼロでY負方向最大画角を通る主光線が前記第2面と当たる有効領域のX方向の曲率Cx3との差Cx1−Cx3を前記Pxで割ったものをCxFとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following condition when defined as:
-0.01 <CxF <0.1 (F-1)
However, the NA of the emitted light when a ray traced in parallel with the axial principal ray passes through a small amount H in the X-axis direction from the center of the pupil and enters the optical system in parallel with the axial principal ray. A value obtained by dividing (the value of the sin of the angle formed with the axial principal ray) by the above H is the focal length Fx in the X direction of the entire optical system, and passes through the point H in the Y direction from the center of the pupil. The value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) of the outgoing ray when tracing the ray incident on the optical system in parallel with the principal ray by the H in the Y direction of the entire optical system. The focal length Fy is defined, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively. The X-direction curvature Cx1 of the effective area that hits the surface and the Y-direction maximum field angle with zero X-direction field angle What principal ray is divided by the difference Cx1-Cx3 the X-direction curvature Cx3 effective region corresponding to the second surface in the Px and CxF.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。
−0.1<|DY|<5 (°) ・・・(G−1)
ただし、X方向最大画角の主光線が前記第2面と交差する点におけるその面の法線と、前記軸上主光線が前記第2面と交差する点におけるその面の法線とがY−Z面内でのなす角をDYとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following condition when defined as:
−0.1 <| DY | <5 (°) (G-1)
However, the normal of the surface at the point where the principal ray having the maximum angle of view in the X direction intersects the second surface and the normal of the surface at the point where the axial principal ray intersects the second surface are Y Let DY be the angle formed in the -Z plane.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に到達する軸上主光線が瞳を射出し前記の正屈折力を有するレンズの第1面に交差するまでの直線によって定義される軸をZ軸とし、このZ軸と直交しかつ前記偏心プリズム光学系を構成する各面の偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と直交する軸をX軸と定義するとき、次に条件を満足することを特徴とする偏心プリズム光学系。
1.1<F/Fy<10000 ・・・(H−1)
ただし、前記の正屈折力を有するレンズの焦点距離をF、前記軸上主光線と平行に瞳中心からY軸方向に微小量Hの点を通り、その軸上主光線と平行に前記光学系に入射する光線を光線追跡したときの射出光線のNA(軸上主光線となす角のsinの値)を前記Hで割った値を光学系全体のY方向の焦点距離Fyとする。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
An axis defined by a straight line extending from the center of the pupil of the decentered prism optical system and reaching the center of the image plane until the axial principal ray exits the pupil and intersects the first surface of the lens having the positive refractive power. Is defined as the Z axis, and the axis within the decentered surface of each surface constituting the decentered prism optical system is defined as the Y axis, and the axis perpendicular to the Z axis and orthogonal to the Y axis is defined as the X axis. A decentered prism optical system that satisfies the following condition when defined as:
1.1 <F / Fy <10000 (H-1)
However, the focal length of the lens having positive refracting power is F, passing through a point of a minute amount H in the Y-axis direction from the center of the pupil in parallel with the axial principal ray, and parallel to the axial principal ray. A value obtained by dividing the NA (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the ray is divided by H is the focal length Fy in the Y direction of the entire optical system.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系において、
前記偏心プリズムの前記透明媒質が、吸水線膨張率の小さい材質からなることを特徴とする偏心プリズム光学系。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
In a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism,
The decentered prism optical system, wherein the transparent medium of the decentered prism is made of a material having a small coefficient of water absorption linear expansion.
少なくとも3つの面が互いに偏心して配置され、その3つの面の間が屈折率が1.3以上の透明媒質で埋められた構成の偏心プリズムを備えた偏心プリズム光学系において、
前記偏心プリズムは、少なくとも2回の内部反射を行うように、前記3つの面のうちの少なくとも2つの面を反射作用を有する面で形成すると共に、前記の2つの反射作用を有する面によって反射された光線が前記偏心プリズム内部で交差しないような位置に前記の2つの反射作用を有する面を備え、
前記反射作用を有する2つの面のうち、1つの面の形状は面内及び面外共に回転対称軸を有さない回転非対称面にて形成され、他の1つの面は所定の有効面を少なくとも備え、
前記他の1つの面の全領域中で光束が透過及び/又は反射をする領域を有効面としたとき、前記所定の有効面は、該有効面内に回転対称軸を有する回転対称面にて構成されており、
前記偏心プリズムの入射側あるいは射出側に、正屈折力を有するレンズが配置されている偏心プリズム光学系を有する光学装置。
In a decentered prism optical system comprising a decentered prism having a configuration in which at least three surfaces are arranged eccentrically with each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The decentered prism is formed of at least two of the three surfaces with a reflecting surface so as to perform at least two internal reflections and is reflected by the two reflecting surfaces. A surface having the two reflecting actions at a position where the light beam does not intersect inside the decentered prism,
Of the two surfaces having the reflective action, the shape of one surface is formed by a rotationally asymmetric surface that does not have a rotationally symmetric axis both in and out of the surface, and the other surface has at least a predetermined effective surface. Prepared,
When an effective surface is a region where light flux is transmitted and / or reflected in the entire region of the other one surface, the predetermined effective surface is a rotationally symmetric surface having a rotational symmetry axis in the effective surface. Configured,
An optical apparatus having a decentered prism optical system in which a lens having positive refractive power is disposed on the incident side or the exit side of the decentered prism.
JP2006166923A 2006-06-16 2006-06-16 Eccentric prism optical system Pending JP2006276884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166923A JP2006276884A (en) 2006-06-16 2006-06-16 Eccentric prism optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166923A JP2006276884A (en) 2006-06-16 2006-06-16 Eccentric prism optical system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9064466A Division JPH10260357A (en) 1997-03-18 1997-03-18 Eccentric prism optical system

Publications (1)

Publication Number Publication Date
JP2006276884A true JP2006276884A (en) 2006-10-12

Family

ID=37211641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166923A Pending JP2006276884A (en) 2006-06-16 2006-06-16 Eccentric prism optical system

Country Status (1)

Country Link
JP (1) JP2006276884A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134169A1 (en) * 2010-04-30 2011-11-03 Beijing Institute Of Technology Wide angle and high resolution tiled head-mounted display device
CN102692709A (en) * 2012-06-15 2012-09-26 中航华东光电有限公司 Spherical-prism-based optical system of head display
US9239453B2 (en) 2009-04-20 2016-01-19 Beijing Institute Of Technology Optical see-through free-form head-mounted display
US9310591B2 (en) 2008-01-22 2016-04-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US9720232B2 (en) 2012-01-24 2017-08-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US9874760B2 (en) 2012-10-18 2018-01-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US10176961B2 (en) 2015-02-09 2019-01-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US10469833B2 (en) 2014-03-05 2019-11-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display with variable focus and/or object recognition
US10739578B2 (en) 2016-08-12 2020-08-11 The Arizona Board Of Regents On Behalf Of The University Of Arizona High-resolution freeform eyepiece design with a large exit pupil
US11079596B2 (en) 2009-09-14 2021-08-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
JP2021526668A (en) * 2018-06-07 2021-10-07 マイクロオーエルイーディーMicrooled Protective masks, including optical display systems, especially diving masks
US11546575B2 (en) 2018-03-22 2023-01-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods of rendering light field images for integral-imaging-based light field display

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592650B2 (en) 2008-01-22 2023-02-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US10495859B2 (en) 2008-01-22 2019-12-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US9310591B2 (en) 2008-01-22 2016-04-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US11150449B2 (en) 2008-01-22 2021-10-19 Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US9239453B2 (en) 2009-04-20 2016-01-19 Beijing Institute Of Technology Optical see-through free-form head-mounted display
US11300790B2 (en) 2009-04-20 2022-04-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
US10416452B2 (en) 2009-04-20 2019-09-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
US11079596B2 (en) 2009-09-14 2021-08-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
US11803059B2 (en) 2009-09-14 2023-10-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
US9244277B2 (en) 2010-04-30 2016-01-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
US10281723B2 (en) 2010-04-30 2019-05-07 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
US11609430B2 (en) 2010-04-30 2023-03-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
WO2011134169A1 (en) * 2010-04-30 2011-11-03 Beijing Institute Of Technology Wide angle and high resolution tiled head-mounted display device
US10809533B2 (en) 2010-04-30 2020-10-20 Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
US9720232B2 (en) 2012-01-24 2017-08-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10598939B2 (en) 2012-01-24 2020-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US11181746B2 (en) 2012-01-24 2021-11-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10606080B2 (en) 2012-01-24 2020-03-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US20180113316A1 (en) 2012-01-24 2018-04-26 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10969592B2 (en) 2012-01-24 2021-04-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
CN102692709A (en) * 2012-06-15 2012-09-26 中航华东光电有限公司 Spherical-prism-based optical system of head display
US10598946B2 (en) 2012-10-18 2020-03-24 The Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US11347036B2 (en) 2012-10-18 2022-05-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US9874760B2 (en) 2012-10-18 2018-01-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US10394036B2 (en) 2012-10-18 2019-08-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US11350079B2 (en) 2014-03-05 2022-05-31 Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display
US10469833B2 (en) 2014-03-05 2019-11-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display with variable focus and/or object recognition
US10805598B2 (en) 2014-03-05 2020-10-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D lightfield augmented reality display
US11205556B2 (en) 2015-02-09 2021-12-21 Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US10593507B2 (en) 2015-02-09 2020-03-17 Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US10176961B2 (en) 2015-02-09 2019-01-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US10739578B2 (en) 2016-08-12 2020-08-11 The Arizona Board Of Regents On Behalf Of The University Of Arizona High-resolution freeform eyepiece design with a large exit pupil
US11546575B2 (en) 2018-03-22 2023-01-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods of rendering light field images for integral-imaging-based light field display
JP7334190B2 (en) 2018-06-07 2023-08-28 マイクロオーエルイーディー Protective masks containing optical display systems, especially diving masks
JP2021526668A (en) * 2018-06-07 2021-10-07 マイクロオーエルイーディーMicrooled Protective masks, including optical display systems, especially diving masks

Similar Documents

Publication Publication Date Title
JP2006276884A (en) Eccentric prism optical system
US6310736B1 (en) Image-forming optical system and viewing optical system
US6201646B1 (en) Image-forming optical system and viewing optical system
EP0857992B1 (en) Decentered prism optical system
JP2010164944A (en) Projection optical system and visual display apparatus using the same
JPH1090603A (en) Endscopic optical system
JPH10161018A (en) Optical system
JP2001075023A (en) Finder optical system
JP2005202060A (en) Observation optical system
JP5653816B2 (en) Image display apparatus having decentered optical system
JP5108966B2 (en) Image display device
JP2012242794A (en) Twin lens image display device
JP2000131614A (en) Image forming optical system and observation optical system
JP2008310342A (en) Prism optical device and image observation device
JP2002228970A (en) Optical system and picture display device using the same
JP2000105338A (en) Optical system
JP4847055B2 (en) Image display device and imaging device
JP2000241706A (en) Prism optical system
JPH10260357A (en) Eccentric prism optical system
JPH10282421A (en) Eccentric prism optical system
US6104539A (en) Decentered prism optical system
JPWO2016181460A1 (en) Prism optical system, image display device using prism optical system, and imaging device using prism optical system
JPH10239631A (en) Head mounted image display device
JP2002090692A (en) Image display device
JP2001066545A (en) Observation optical system and picture display device using the system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081008