JP2006276721A - Manufacturing method of plastic lens - Google Patents

Manufacturing method of plastic lens Download PDF

Info

Publication number
JP2006276721A
JP2006276721A JP2005098821A JP2005098821A JP2006276721A JP 2006276721 A JP2006276721 A JP 2006276721A JP 2005098821 A JP2005098821 A JP 2005098821A JP 2005098821 A JP2005098821 A JP 2005098821A JP 2006276721 A JP2006276721 A JP 2006276721A
Authority
JP
Japan
Prior art keywords
lens
plastic lens
annealing
injection
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098821A
Other languages
Japanese (ja)
Inventor
Nobuki Karita
伸樹 刈田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2005098821A priority Critical patent/JP2006276721A/en
Publication of JP2006276721A publication Critical patent/JP2006276721A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large-sized plastic lens which has high dimensional accuracy and is adequately got rid of inner strain. <P>SOLUTION: The manufacturing method of a plastic lens comprises a process of injection-molding the plastic lens by charging molten synthetic resin material into a cavity of a lens molding die, and by cooling and hardening the synthetic resin material and a process of annealing the injection-molded plastic lens at a temperature lower than the glass transition temperature by 5 to 10°C. Therein, a shape change of the lens produced when performing the annealing with respect to the plastic lens of a desired shape is measured beforehand, the lens molding die is corrected based on the measured value so that the shape change is compensated after the annealing process to obtain the plastic lens of the desired shape, and the plastic lens injection-molded by using the corrected lens molding die is annealed to obtain the plastic lens of the desired shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリンタなどの画像形成装置に用いられる走査光学系用プラスチックレンズの製造方法に関し、特にアニール処理によって内部歪を排除するように改良したプラスチック製のfθレンズの製造方法に関する。   The present invention relates to a method of manufacturing a plastic lens for a scanning optical system used in an image forming apparatus such as a printer, and more particularly to a method of manufacturing a plastic fθ lens improved so as to eliminate internal distortion by annealing.

光レーザ走査方式のデジタル複写機、レーザプリンタ装置、ファクシミリ装置などの光走査ユニットでは、図3に示すように、光源(レーザダイオード)1から出射したレーザ光がコリメータレンズ2及びシリンドリカルレンズ3を経て、回転しているポリゴンミラー4の反射面に照射される。そして該ポリゴンミラー4の回転によって偏向走査されながら、fθレンズ5で集光され、感光体ドラム6にビームスポットが投射される。
そして、上述の光走査ユニットにおいて高画質な画像を形成するため、fθレンズには高度の寸法精度が要求されるとともに、内部歪の排除が要求されている。
In an optical scanning unit such as an optical laser scanning type digital copying machine, a laser printer device, or a facsimile machine, laser light emitted from a light source (laser diode) 1 passes through a collimator lens 2 and a cylindrical lens 3 as shown in FIG. Irradiated to the reflecting surface of the rotating polygon mirror 4. Then, the light is condensed by the fθ lens 5 while being deflected and scanned by the rotation of the polygon mirror 4, and a beam spot is projected onto the photosensitive drum 6.
In order to form a high-quality image in the above-described optical scanning unit, the fθ lens is required to have a high degree of dimensional accuracy and to eliminate internal distortion.

レンズ成形用金型のキャビティに溶融状態の合成樹脂材料を射出充填し、プラスチックレンズとすることによって、fθレンズのような偏肉形状で特殊な形状のプラスチックレンズを低コストで大量に生産することができる。
しかしながら偏肉形状のfθレンズを射出成形した場合、fθレンズはレンズ中央部と端部との断面積が異なるため、射出成形時の冷却速度が異なり、そのためfθレンズを構成している合成樹脂材料に内部歪が発生して複屈折を生じさせ、光学的性能が低下しまう。
従って従来技術によれば、fθレンズを構成する合成樹脂材料を選択したり、レンズ形状を内部歪の発生しにくい形状にしたり、射出成形後にアニール処理したりすることによって、fθレンズの内部歪を排除していた。(例えば特許文献1〜3を参照)
例えば、射出成形したfθレンズをアニール炉に入れ、ガラス転移点よりも15〜20°低い温度で加熱し、アニール処理することによって、fθレンズの「除歪」(ひずみを取る)と屈折率調整を図ることができ、求められる屈折率に調整したfθレンズを取得することができる。
特開平5−188285号公報 特開2002−365576 特開2004−42469
Production of plastic lenses with a special shape, such as fθ lenses, at low cost in large quantities by injection-filling a molten synthetic resin material into the cavity of a lens molding die to form a plastic lens Can do.
However, when an uneven-shaped fθ lens is injection-molded, the fθ lens has different cross-sectional areas at the center and end portions of the lens, and therefore has a different cooling rate at the time of injection molding. Therefore, the synthetic resin material constituting the fθ lens Internal distortion occurs, causing birefringence, and optical performance decreases.
Therefore, according to the prior art, the internal strain of the fθ lens can be reduced by selecting a synthetic resin material constituting the fθ lens, making the lens shape difficult to generate internal strain, or annealing after injection molding. Eliminated. (For example, see Patent Documents 1 to 3)
For example, by placing an injection-molded fθ lens in an annealing furnace, heating it at a temperature 15 to 20 ° lower than the glass transition point, and annealing the fθ lens, “strain removal” (takes strain) and adjusts the refractive index. Fθ lenses adjusted to the required refractive index can be obtained.
JP-A-5-188285 JP2002-365576 JP2004-42469

近年、例えばA3サイズ(日本標準規格)以上の大判コピー用紙に対応したレーザプリンタ装置の需要から、最大肉厚部(レンズ中央部)の厚みが20mm以上である大型のfθレンズを高精度に製造することが望まれている。
しかしながら、射出成形によって取得した偏肉形状のfθレンズでは、レンズサイズが大きいほど内部歪が大きく、従来技術によるアニール処理温度条件(ガラス転移点よりも15〜20°低い温度)でアニール処理しただけでは、fθレンズの中央部分の歪みをとることができなかった。
一方、アニール処理による加熱温度を上げ、ガラス転移点より5〜10℃低い温度でアニール処理すると、レンズサイズの大きなfθレンズの内部歪を十分に排除できるようになるものの、プラスチックレンズであるfθレンズが高温条件下に曝されることによって、レンズ曲率が変形する形状変化はもちろんのこと、非球面のうねりが変形するレンズ面形状の変形が発生し、fθレンズの寸法精度が低下するといった問題点があった。
In recent years, a large fθ lens with a maximum wall thickness (lens center) thickness of 20 mm or more is manufactured with high accuracy due to the demand for laser printers that support large format copy paper of A3 size (Japanese standard) or larger. It is hoped to do.
However, in the fθ lens having an uneven thickness obtained by injection molding, the larger the lens size, the larger the internal distortion, and the annealing process was performed under the conventional annealing temperature condition (temperature lower by 15 to 20 ° than the glass transition point). Then, the distortion of the central portion of the fθ lens could not be taken.
On the other hand, if the annealing temperature is raised and the annealing treatment is performed at a temperature 5 to 10 ° C. lower than the glass transition point, the internal distortion of the fθ lens having a large lens size can be sufficiently eliminated, but the fθ lens which is a plastic lens. When the lens is exposed to high temperature conditions, not only the shape change of the lens curvature but also the deformation of the lens surface shape that deforms the swell of the aspheric surface, and the dimensional accuracy of the fθ lens decreases. was there.

そして従来技術によれば、射出成形によって取得した所望形状のfθレンズの寸法精度を維持するため、形状変化などの不具合を発生させない温度条件下(ガラス転移点より15〜20℃低い温度)でアニール処理していた。
すなわちfθレンズの寸法精度の維持を図るため、内部歪を十分に排除できる最適温度でアニール処理を行うことができず、特に大型のfθレンズでは、内部歪を十分に排除することができなかった。
According to the prior art, in order to maintain the dimensional accuracy of the fθ lens having a desired shape obtained by injection molding, annealing is performed under temperature conditions (15 to 20 ° C. lower than the glass transition point) that do not cause defects such as shape changes. I was processing.
That is, in order to maintain the dimensional accuracy of the fθ lens, the annealing process cannot be performed at an optimum temperature that can sufficiently eliminate internal distortion, and the internal distortion cannot be sufficiently eliminated particularly in a large fθ lens. .

そこで本発明は、偏肉形状のプラスチックレンズを製造するにあたって、レンズ成形用金型のキャビティに溶融した合成樹脂材料を充填し、前記合成樹脂材料を冷却硬化することによってプラスチックレンズを射出成形する工程と、射出成形したプラスチックレンズをガラス転移点よりも5〜10℃低い温度でアニール処理する工程とからプラスチックレンズを製造する方法であって、所望形状のプラスチックレンズを前記アニール処理する工程を行った場合に生じるレンズの形状変化を予め測定しておき、前記測定値に基づいて、前記アニール処理する工程を行った後に前記形状変化が相殺されて前記所望形状のプラスチックレンズとなるようにレンズ成形用金型を補正し、該補正したレンズ成形用金型を用いて射出成形したプラスチックレンズをアニール処理して内部歪を十分に排除し、所望形状のプラスチックレンズを取得するものである。   Accordingly, the present invention provides a process for injection molding a plastic lens by filling a melted synthetic resin material into a cavity of a lens molding die and manufacturing the plastic lens by cooling and curing the synthetic resin material. And annealing the injection-molded plastic lens at a temperature 5 to 10 ° C. lower than the glass transition point, and the step of annealing the plastic lens having a desired shape was performed. The lens shape change that occurs in the case is measured in advance, and based on the measurement value, after performing the annealing process, the shape change is offset and the plastic lens having the desired shape is obtained. Plastic that has been mold-corrected and injection-molded using the corrected lens-molding mold Sufficiently eliminate internal strain by annealing the lens, and acquires a plastic lens having a desired shape.

この発明による走査光学系用プラスチックレンズの製造方法では、射出成形したプラスチックレンズをガラス転移点よりも5〜10℃低い温度である最適温度でアニール処理することによって、レンズサイズの大きなfθレンズの内部歪も十分に除去することができる。
また、最適温度条件下でのアニール処理におけるレンズの形状変化を相殺するようにレンズ成形用金型を補正し、補正したレンズ成形用金型を用いて射出成形したプラスチックレンズを最適温度でアニール処理するため、アニール処理後、所望形状のfθレンズを取得できる。
In the method for manufacturing a plastic lens for a scanning optical system according to the present invention, the injection molded plastic lens is annealed at an optimum temperature that is 5 to 10 ° C. lower than the glass transition point, thereby allowing the inside of the fθ lens having a large lens size to be processed. Distortion can also be sufficiently removed.
In addition, the lens mold is corrected so as to offset the lens shape change in the annealing process under the optimum temperature condition, and the plastic lens injection-molded using the corrected lens mold is annealed at the optimum temperature. Therefore, an fθ lens having a desired shape can be obtained after the annealing process.

本発明の実施例によるプラスチックレンズの製造方法を、図1及び図2を参照して説明する。   A method for manufacturing a plastic lens according to an embodiment of the present invention will be described with reference to FIGS.

本発明によれば、fθレンズなどの偏肉形状で特殊な形状の走査光学系用プラスチックレンズを製造するにあたって、レンズ成形用金型のキャビティに溶融した合成樹脂材料を充填し、前記合成樹脂材料を冷却硬化することによってプラスチックレンズを射出成形する工程と、射出成形したプラスチックレンズをガラス転移点よりも5〜10℃低い温度でアニール処理する工程とからfθレンズを製造し、最適温度でアニール処理することによって、fθレンズの内部歪を十分に排除する。
ガラス転移点よりも5〜10℃低い温度でアニール処理する工程を設けることによって、例えばA3サイズ(日本標準規格)以上の大判コピー用紙に対応した光走査ユニットで使用されるfθレンズであって、最大肉厚部(レンズ中央部)の厚みが20mm以上である大型のfθレンズにおいても、内部歪を十分に排除することができる。
According to the present invention, when manufacturing a plastic lens for a scanning optical system having a special shape such as an fθ lens, a melted synthetic resin material is filled in a cavity of a lens molding die, and the synthetic resin material The fθ lens is manufactured from the process of injection-molding a plastic lens by cooling and curing, and the process of annealing the injection-molded plastic lens at a temperature 5 to 10 ° C. lower than the glass transition point. By doing so, the internal distortion of the fθ lens is sufficiently eliminated.
By providing a step of annealing at a temperature 5 to 10 ° C. lower than the glass transition point, for example, an fθ lens used in an optical scanning unit corresponding to a large format copy paper of A3 size (Japanese standard) or more, Even in a large fθ lens having a maximum thickness portion (lens center portion) of 20 mm or more, internal distortion can be sufficiently eliminated.

また最適温度でアニール処理した後に所望形状のfθレンズを取得するため、先ず、最終製品のレンズ形状(所望形状)が転写されるレンズ成形用金型を用いて射出成形し、最終製品のレンズ形状(所望形状)である高度な寸法精度のfθレンズを取得する。そして射出成形によって最終製品のレンズ形状(所望形状)が転写された高度な寸法精度のfθレンズをガラス転移点よりも5〜10℃低い温度でアニール処理し、内部歪が十分に排除され複屈折率が一番小さくなる最適温度を見つけるとともに、該最適温度でアニール処理したときのレンズの形状変化を測定する。
その後、最適温度でアニール処理した場合のレンズの形状変化を相殺するように、最終製品のレンズ形状(所望形状)が転写される前記レンズ成形用金型を補正し、当該補正したレンズ成形用金型を用いて射出成形したプラスチックレンズを、最適温度(ガラス転移点よりも5〜10℃低い温度)でアニール処理し、所望形状である高度な寸法精度のfθレンズを取得する。
In order to obtain an fθ lens with a desired shape after annealing at an optimum temperature, first, injection molding is performed using a lens molding die to which the lens shape (desired shape) of the final product is transferred, and then the lens shape of the final product is obtained. An fθ lens having a high dimensional accuracy (desired shape) is acquired. The fθ lens with a high degree of dimensional accuracy to which the lens shape (desired shape) of the final product is transferred by injection molding is annealed at a temperature 5 to 10 ° C. lower than the glass transition point, so that internal distortion is sufficiently eliminated and birefringence is eliminated. The optimum temperature at which the rate is the smallest is found, and the change in the shape of the lens when the annealing process is performed at the optimum temperature is measured.
After that, the lens molding die to which the lens shape (desired shape) of the final product is transferred is corrected so as to cancel the lens shape change when annealing is performed at the optimum temperature, and the corrected lens molding die is corrected. A plastic lens injection-molded using a mold is annealed at an optimum temperature (a temperature that is 5 to 10 ° C. lower than the glass transition point) to obtain an fθ lens having a desired shape and high dimensional accuracy.

この発明の実施例によれば、先ず、最終製品のレンズ形状(所望形状)が転写されるレンズ成形用金型を使用し、溶融した非晶性ポリオレフィン材料APEL 5014DP(三井化学株式会社製)を前記レンズ成形用金型のキャビティに射出充填し、冷却硬化させることによって、図1(a)に示すように、最終製品のレンズ形状(所望形状)である高度な寸法精度のfθレンズを射出成形する。   According to the embodiment of the present invention, first, using a lens molding die to which a lens shape (desired shape) of a final product is transferred, a molten amorphous polyolefin material APEL 5014DP (manufactured by Mitsui Chemicals, Inc.) is used. By injection-filling the cavity of the lens molding die and cooling and curing it, as shown in FIG. 1 (a), injection molding of a highly dimensional accuracy fθ lens which is the lens shape (desired shape) of the final product. To do.

その後、射出成形によって取得した高度な寸法精度のfθレンズをガラス転移点よりも5〜10℃低い温度でアニール処理し、内部歪が十分に排除され複屈折率が一番小さくなる最適温度を見つけるとともに、該最適温度でアニール処理した場合のレンズの形状変化を測定する。
なお、fθレンズをガラス転移点よりも5〜10℃低い温度でアニール処理するとfθレンズが形状変化するが、前記形状変化を気にすることなく、内部歪が十分に除去できる最適温度を見つける。
After that, the fθ lens with high dimensional accuracy obtained by injection molding is annealed at a temperature 5 to 10 ° C. lower than the glass transition point to find the optimum temperature at which the internal refractive index is sufficiently eliminated and the birefringence is minimized. At the same time, a change in the shape of the lens when annealed at the optimum temperature is measured.
Note that when the fθ lens is annealed at a temperature 5 to 10 ° C. lower than the glass transition point, the fθ lens changes its shape, but an optimum temperature at which internal distortion can be sufficiently removed without worrying about the shape change is found.

この実施例によれば、使用した非晶性ポリオレフィン材料APEL 5014DP(三井化学株式会社製)のガラス転移点は126℃であり、内部歪が十分に排除され複屈折率が一番小さくなる最適温度は120℃であった。
そして前記最適温度(120℃)でアニール処理すると、図1(b)に示すように、最終製品のレンズ形状(所望形状)に射出成形されたfθレンズの形状が崩れる。
According to this example, the glass transition point of the amorphous polyolefin material APEL 5014DP (manufactured by Mitsui Chemicals, Inc.) used is 126 ° C., the internal temperature is sufficiently eliminated, and the optimum temperature at which the birefringence is minimized. Was 120 ° C.
When the annealing process is performed at the optimum temperature (120 ° C.), as shown in FIG. 1B, the shape of the fθ lens injection-molded into the final lens shape (desired shape) is lost.

続いて、最適温度(120℃)でアニール処理することで発生するレンズの形状変化を測定し、この測定値に基づいて、最終製品のレンズ形状(所望形状)が転写されるレンズ成形用金型を補正する。つまり、最適温度でアニール処理した場合のレンズの形状変化を相殺するように、レンズ成形用金型にフィードバックする。   Subsequently, a lens molding die to which the lens shape change (desired shape) of the final product is transferred based on the measured change in the shape of the lens generated by annealing at the optimum temperature (120 ° C.). Correct. That is, feedback is made to the lens molding die so as to cancel the lens shape change when the annealing process is performed at the optimum temperature.

その後、補正したレンズ成形用金型のキャビティに溶融した非晶性ポリオレフィン材料APEL 5014DP(三井化学株式会社製)を射出充填し、冷却硬化させることによって、図2(a)に示すように、最終製品のレンズ形状(所望形状)のfθレンズとは異なるプラスチックレンズを取得し、このプラスチックレンズを最適温度(120℃)でアニール処理することによって、内部歪を十分に排除するとともに、このアニール処理による形状変化を発生させることで最終製品のレンズ形状(所望形状)に戻り、アニール処理後に所望形状である高度な寸法精度のfθレンズを取得する(図2(b)を参照)。   Thereafter, the melted amorphous polyolefin material APEL 5014DP (manufactured by Mitsui Chemicals Co., Ltd.) is injected and filled into the corrected cavity of the lens molding die and cooled and cured, as shown in FIG. By obtaining a plastic lens that is different from the fθ lens of the product lens shape (desired shape) and annealing the plastic lens at the optimum temperature (120 ° C.), the internal distortion is sufficiently eliminated and the annealing treatment is performed. By generating a shape change, the lens shape (desired shape) of the final product is restored, and a highly dimensional accuracy fθ lens having a desired shape is obtained after annealing (see FIG. 2B).

所望形状のfθレンズを最適温度でアニール処理した状態を説明する図である。It is a figure explaining the state which annealed the ftheta lens of the desired shape at the optimal temperature. 補正したレンズ成形用金型を用いて射出成形したプラスチックレンズを最適温度でアニール処理した状態を説明する図である。It is a figure explaining the state which annealed the plastic lens injection-molded using the correct | amended lens shaping die at optimal temperature. 光走査ユニットの構造を説明する図である。It is a figure explaining the structure of an optical scanning unit.

符号の説明Explanation of symbols

1 光源
2 コリメータレンズ
3 シリンドリカルレンズ
4 ポリゴミラーレンズ
5 fθレンズ
6 感光ドラム
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3 Cylindrical lens 4 Polygo mirror lens 5 f (theta) lens 6 Photosensitive drum

Claims (2)

偏肉形状のプラスチックレンズを製造するにあたって、
レンズ成形用金型のキャビティに溶融した合成樹脂材料を充填し、前記合成樹脂材料を冷却硬化することによってプラスチックレンズを射出成形する工程と、
射出成形したプラスチックレンズをガラス転移点よりも5〜10℃低い温度でアニール処理する工程とからプラスチックレンズを製造する方法であって、
所望形状のプラスチックレンズを前記アニール処理する工程を行った場合に生じるレンズの形状変化を予め測定しておき、前記測定値に基づいて、前記アニール処理する工程を行った後に前記形状変化が相殺されて前記所望形状のプラスチックレンズとなるようにレンズ成形用金型を補正し、該補正したレンズ成形用金型を用いて射出成形したプラスチックレンズをアニール処理し、所望形状のプラスチックレンズを取得することを特徴とするプラスチックレンズの製造方法。
In manufacturing a plastic lens with uneven thickness,
Filling the cavity of the lens mold with a synthetic resin material that has been melted, and cooling and curing the synthetic resin material, and injection molding a plastic lens;
A method for producing a plastic lens from a step of annealing an injection molded plastic lens at a temperature 5 to 10 ° C. lower than the glass transition point,
The shape change of the lens that occurs when the step of annealing the plastic lens having a desired shape is measured in advance, and the shape change is canceled after the step of annealing is performed based on the measured value. The lens mold is corrected so that the plastic lens has the desired shape, and the plastic lens injection-molded using the corrected lens mold is annealed to obtain the desired shape plastic lens. A method for producing a plastic lens.
A3サイズ以上の大判用紙に対応した光走査ユニットで使用されるfθレンズを取得することを特徴とする請求項1に記載のプラスチックレンズの製造方法。 2. The method of manufacturing a plastic lens according to claim 1, wherein an f [theta] lens used in an optical scanning unit corresponding to a large format paper of A3 size or larger is obtained.
JP2005098821A 2005-03-30 2005-03-30 Manufacturing method of plastic lens Pending JP2006276721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098821A JP2006276721A (en) 2005-03-30 2005-03-30 Manufacturing method of plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098821A JP2006276721A (en) 2005-03-30 2005-03-30 Manufacturing method of plastic lens

Publications (1)

Publication Number Publication Date
JP2006276721A true JP2006276721A (en) 2006-10-12

Family

ID=37211520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098821A Pending JP2006276721A (en) 2005-03-30 2005-03-30 Manufacturing method of plastic lens

Country Status (1)

Country Link
JP (1) JP2006276721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105055A1 (en) * 2010-02-24 2011-09-01 三菱瓦斯化学株式会社 Aromatic polycarbonate polarising lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531738A (en) * 1991-12-05 1993-02-09 Hitachi Ltd Plastic lens and preparation thereof
JPH07156234A (en) * 1993-12-13 1995-06-20 Ricoh Co Ltd Manufacture of plastic molded product
JPH1177842A (en) * 1997-09-03 1999-03-23 Ricoh Co Ltd Plastic optic and its manufacture
JP2001047524A (en) * 1999-06-03 2001-02-20 Ricoh Co Ltd Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element
JP2003073135A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method and mold for forming optical element
JP2003094441A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Optical element and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531738A (en) * 1991-12-05 1993-02-09 Hitachi Ltd Plastic lens and preparation thereof
JPH07156234A (en) * 1993-12-13 1995-06-20 Ricoh Co Ltd Manufacture of plastic molded product
JPH1177842A (en) * 1997-09-03 1999-03-23 Ricoh Co Ltd Plastic optic and its manufacture
JP2001047524A (en) * 1999-06-03 2001-02-20 Ricoh Co Ltd Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element
JP2003073135A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method and mold for forming optical element
JP2003094441A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Optical element and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105055A1 (en) * 2010-02-24 2011-09-01 三菱瓦斯化学株式会社 Aromatic polycarbonate polarising lens
US20130010253A1 (en) * 2010-02-24 2013-01-10 Mgc Filsheet Co., Ltd. Polarizing lens made of aromatic polycarbonate
JPWO2011105055A1 (en) * 2010-02-24 2013-06-20 三菱瓦斯化学株式会社 Aromatic polycarbonate polarizing lens
US8936363B2 (en) 2010-02-24 2015-01-20 Mitsubishi Gas Chemical Company, Inc. Polarizing lens made of aromatic polycarbonate
JP5868840B2 (en) * 2010-02-24 2016-02-24 三菱瓦斯化学株式会社 Aromatic polycarbonate polarizing lens
TWI568565B (en) * 2010-02-24 2017-02-01 三菱瓦斯化學股份有限公司 Aromatic polycarbonate polarizing lens

Similar Documents

Publication Publication Date Title
US6810303B2 (en) Injection mold, a production method thereof, a production system thereof, a designing apparatus and a designing computer program thereof, an injection method, a molded component, and an optical system therewith
CN1847917A (en) Optical element and molded die thereof, optical scanning device and image forming device
US20170097450A1 (en) Polygon mirror, image forming apparatus, and method for manufacturing a polygon mirror
CN1222399C (en) Plastic moulding article, moulding method and metal mould for the moulding thereof
CN1699042A (en) Metal mold for plastic shaping
JP2006276721A (en) Manufacturing method of plastic lens
JP5163518B2 (en) Optical scanning apparatus, image forming apparatus, and plastic lens manufacturing method
JP2006133709A (en) Plastic optical element, laser scanning optical device and method of manufacturing plastic optical element
JP2014172237A (en) Injection molding mold, optical component, optical scanner, and image forming apparatus
JP2007331311A (en) Optical element molding method
US8873124B2 (en) Plastic optical element, optical scanner including the plastic optical element, and image forming apparatus including same
CN1496808A (en) Forming method of plastic formed article and mould for injection moulding
JP5589389B2 (en) Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product
JP5751796B2 (en) Optical element manufacturing method and optical element
JP2005326697A (en) Plastic molded article for optical element, molding method therefor, optical scanner, and image forming apparatus mounting optical scanner thereon
JP2006051822A (en) Plastic part and its shaping method
JP3267089B2 (en) Scanning lens system and optical scanning device using the same
JP5158517B2 (en) Optical scanning apparatus and image forming apparatus
JP4265866B2 (en) Plastic optical element manufacturing method, plastic optical element manufacturing apparatus, and plastic optical element
JP2004170607A (en) Mirror element and its manufacturing method
JP2005156879A (en) Plastic scanning lens, manufacturing method, and laser scanning optical apparatus
JP2004223928A (en) Method for manufacturing plastic optical element and plastic optial element/optical scanning device
JP2011081369A (en) Plastic optical element, optical scanning device, and image forming apparatus
JP3869296B2 (en) Plastic optical element and manufacturing method thereof
JP4827406B2 (en) Nest and mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080307

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100618

A131 Notification of reasons for refusal

Effective date: 20100721

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101117