JP2006275433A - Absorption type small cooling and refrigerating device - Google Patents

Absorption type small cooling and refrigerating device Download PDF

Info

Publication number
JP2006275433A
JP2006275433A JP2005096156A JP2005096156A JP2006275433A JP 2006275433 A JP2006275433 A JP 2006275433A JP 2005096156 A JP2005096156 A JP 2005096156A JP 2005096156 A JP2005096156 A JP 2005096156A JP 2006275433 A JP2006275433 A JP 2006275433A
Authority
JP
Japan
Prior art keywords
absorption
refrigerator
liquid
refrigerant
small cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096156A
Other languages
Japanese (ja)
Inventor
Fumio Takemura
文男 竹村
Masahiro Shoji
正弘 庄司
Tetsuo Munakata
鉄雄 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005096156A priority Critical patent/JP2006275433A/en
Publication of JP2006275433A publication Critical patent/JP2006275433A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooler and a refrigerator using a absorption type refrigerator cycle in which an evaporator using an ink jet nozzle system and having a function for controlling the liquid amount, an absorber using the ink jet nozzle system and having a vapor absorption accelerating function with fined liquid drop injection, and a condenser having a micro structure on the surface, are arranged for heat removal of nearly several hundreds watt per square centimeter. <P>SOLUTION: This absorption type small cooling and refrigerating device having the cooler and the refrigerator using the absorption type refrigerator cycle comprises an evaporator 20 in which refrigerant is injected from an injection nozzle for intermittently injecting liquid drops to a cooled member with the drive control of an electrostrictive element such as a piezoelectric element, and the absorber 30 in which absorbed solution is injected from an injection nozzle for intermittently injecting the fined liquid drops to a space where refrigerant vapor exists with the drive control of the electrostrictive element such as the piezoelectric element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸収式冷凍機の基本サイクルを利用した小型冷却及び冷凍装置に関するもので、特に、高性能、高機能半導体などの局所的な熱発生量の大きいデバイスの熱除去及び温度制御に適した小型冷却及び冷凍装置に関する。   The present invention relates to a compact cooling and refrigeration system using the basic cycle of an absorption refrigeration machine, and is particularly suitable for heat removal and temperature control of a device having a large local heat generation amount, such as a high-performance, high-performance semiconductor. The present invention relates to a small cooling and refrigeration apparatus.

局所的な発熱体からの熱除去法にはペルチェ素子を用いる方法があるが、この方法は1平方センチメートルあたり数10Wという高機能半導体の発熱量に十分見合う除熱量を持っていない。このレベルの除熱は物理的には冷凍システムを組み込んだ蒸発熱伝達を用いる必要がある。冷凍機には冷媒を膨張・圧縮して冷凍する機能を持たせる圧縮式冷凍システムと臭化リチウム溶液の濃度差を利用することで冷凍機能を持たせる吸収式冷凍システムがある。圧縮式冷凍機は圧縮機が必要であることから、小型冷凍機としての選択肢となり得ない。   There is a method of using a Peltier element as a method for removing heat from a local heating element. However, this method does not have a heat removal amount that is sufficient for the heat generation amount of a high-performance semiconductor of several tens of watts per square centimeter. This level of heat removal physically requires the use of evaporation heat transfer that incorporates a refrigeration system. Refrigerators include a compression refrigeration system that has a function of freezing by expanding and compressing a refrigerant, and an absorption refrigeration system that has a refrigeration function by utilizing a concentration difference between lithium bromide solutions. Since the compression refrigerator requires a compressor, it cannot be an option as a small refrigerator.

図1は、吸収式冷凍機の基本サイクルを示したものであり、吸収式冷凍機は、蒸発器、吸収器、再生器、凝縮器からなり、冷媒として臭化リチウム水溶液を用いる。蒸発器において冷熱源(例えば冷水)から得た熱で発生した水蒸気を吸収器内で濃臭化リチウム水溶液に吸収させる。薄くなった臭化リチウム水溶液は再生器に戻され、加熱してもとの臭化リチウム水溶液にする。追い出された水蒸気は凝縮器で冷やされて凝縮し、また蒸発器に戻される。このように吸収式冷凍サイクルは圧縮機を必要としないことから、小型化に適している。
しかしながら、従来の吸収式冷凍機は家庭用のエアコンへの応用など、半導体デバイスと比較して一桁以上規模が大きく、また、100W程度の機器はない(例えば特許文献1、2参照。)。
特開2003−75014号公報 特開2004−225984号公報
FIG. 1 shows a basic cycle of an absorption refrigerator, and the absorption refrigerator includes an evaporator, an absorber, a regenerator, and a condenser, and uses an aqueous lithium bromide solution as a refrigerant. In the evaporator, water vapor generated by heat obtained from a cold heat source (for example, cold water) is absorbed in the concentrated lithium bromide aqueous solution in the absorber. The thinned lithium bromide aqueous solution is returned to the regenerator and is converted into the original lithium bromide aqueous solution even when heated. The expelled water vapor is cooled and condensed by the condenser and returned to the evaporator. As described above, the absorption refrigeration cycle does not require a compressor and is suitable for downsizing.
However, conventional absorption refrigerators are one or more orders of magnitude larger than semiconductor devices, such as application to home air conditioners, and there are no devices of about 100 W (see, for example, Patent Documents 1 and 2).
JP 2003-75014 A JP 2004-225984 A

これからの高機能半導体では一平方センチメートル当たり数十ワット程度の局所的な発熱量があると考えられる。このレベルの局所熱を除去するためには従来のヒートパイプや空冷システムでは到底追いつかない。一方、ペルチェ素子等を用いても一桁近く除熱量が小さい。吸収式冷凍機は、唯一このレベルの局所熱を除去できる蒸発熱伝達を備え、さらに冷凍機システムも附随していることから、ヒートパイプと比べて外部への熱廃棄量を圧倒的に多くすることができる。   In the future high-performance semiconductors, it is considered that there is a local heat generation of about several tens of watts per square centimeter. In order to remove this level of local heat, conventional heat pipes and air cooling systems cannot catch up. On the other hand, even if a Peltier element or the like is used, the heat removal amount is small by almost one digit. Absorption refrigerators have evaporative heat transfer that can only remove this level of local heat, and also have a refrigerator system attached, so the amount of heat waste to the outside is overwhelmingly larger than heat pipes. be able to.

本発明は、吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、インクジエットノズル方式(本明細書においては、ピエゾ素子等の電歪素子を用いて液体を加圧してノズルから液滴として間欠的に噴射する方式を「インクジエットノズル方式」という。)を用いた液量制御機能を持つ蒸発器、インクジエットノズル方式を用いた微細化された液滴噴射による蒸気吸収促進機能を持つ吸収器及び凝縮器表面がマイクロ構造体を持つ凝縮器を備えることにより、一平方センチメートル当たり数100ワット近くの除熱を得ることができる吸収式小型冷却及び冷凍装置を提供することを目的とする。   The present invention relates to an ink jet nozzle system (in this specification, a liquid is pressurized using an electrostrictive element such as a piezo element to form droplets from a nozzle in a refrigerator and refrigerator using an absorption refrigerator cycle. An intermittent jetting method is called an “ink jet nozzle method”.) An evaporator with a liquid amount control function using an ink jet nozzle method, and an absorption with a vapor absorption promotion function by atomized droplet jetting using an ink jet nozzle method. It is an object of the present invention to provide an absorption-type small cooling and refrigeration apparatus that can obtain heat removal of several hundred watts per square centimeter by providing a condenser having a microstructure on the surface of the condenser and the condenser.

(1)上記目的を達成するため本発明の吸収式小型冷却及び冷凍装置は、吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより液滴を間欠的に噴射する噴射ノズルから冷媒を被冷却部材に向けて噴射する蒸発器を備えたことを特徴とする。
(2)また、本発明の吸収式小型冷却及び冷凍装置は、上記(1)において、噴射ノズルから噴射する液滴の量を制御することにより被冷却部材の表面に生成される液膜の厚さを所定の値に維持するようにしたことを特徴とする。
(3)また、本発明の吸収式小型冷却及び冷凍装置は、上記(2)において、被冷却部材の表面に生成される液膜の厚さが100マイクロメートル以下であることを特徴する。
(4)また、本発明の吸収式小型冷却及び冷凍装置は、吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより微細化された液滴を間欠的に噴射する噴射ノズルから吸収溶液を冷媒蒸気の存する空間に向けて噴射する吸収器を備えてなることを特徴とする。
(5)また、本発明の吸収式小型冷却及び冷凍装置は、吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより液滴を間欠的に噴射する噴射ノズルから冷媒を被冷却部材に向けて噴射するようにしてなる蒸発器及びピエゾ素子等の電歪素子を駆動制御することにより微細化された液滴を間欠的に噴射する噴射ノズルから吸収溶液を冷媒蒸気の存する空間に向けて噴射する吸収器を備えてなることを特徴とする。
(6)また、本発明の吸収式小型冷却及び冷凍装置は、上記(1)乃至(5)のいずれかにおいて、凝縮面に細かい溝が形成された凝縮器を備えたことを特徴とする。
(1) In order to achieve the above object, the absorption-type small cooling and refrigeration apparatus of the present invention is a liquid by controlling the driving of an electrostrictive element such as a piezo element in a cooler and refrigerator using an absorption refrigeration cycle. An evaporator is provided that injects a refrigerant toward a member to be cooled from an injection nozzle that intermittently injects droplets.
(2) The absorption type small cooling and refrigeration apparatus of the present invention is the liquid film thickness generated on the surface of the member to be cooled by controlling the amount of liquid droplets ejected from the ejection nozzle in the above (1). This is characterized in that the thickness is maintained at a predetermined value.
(3) Moreover, the absorption type small cooling and refrigeration apparatus of the present invention is characterized in that, in the above (2), the thickness of the liquid film generated on the surface of the member to be cooled is 100 micrometers or less.
(4) Further, the absorption type small cooling and refrigeration apparatus of the present invention is a liquid refined by driving and controlling an electrostrictive element such as a piezo element in a cooler and a refrigerator using an absorption type refrigerator cycle. It is characterized by comprising an absorber for injecting the absorbing solution from the injection nozzle for intermittently injecting the droplets toward the space where the refrigerant vapor exists.
(5) Further, the absorption type small cooling and refrigeration apparatus of the present invention intermittently drops liquid droplets by driving and controlling an electrostrictive element such as a piezo element in a cooler and refrigerator using an absorption refrigeration cycle. Nozzle that intermittently ejects micronized droplets by driving and controlling an electrostrictive element such as an evaporator and a piezo element that injects the refrigerant from the injection nozzle that injects the liquid toward the member to be cooled And an absorber for injecting the absorbing solution toward the space where the refrigerant vapor exists.
(6) Moreover, the absorption type small cooling and refrigeration apparatus of the present invention is characterized in that in any one of the above (1) to (5), a condenser having a fine groove formed on the condensation surface is provided.

本発明は、以下のような優れた効果を奏する。
(1)蒸発器、吸収器または凝縮器の小型・効率化を図ることにより、ヒートパイプあるいは従来の吸収式冷凍機に比べて局所熱除去量を数倍大きくすることができるため、吸収式冷却及び冷凍装置の小型化を図ることができる。
(2)被冷却部材の加熱面上に液体の膜を生成しない、あるいはできるだけ薄くすることにより、従来の吸収式冷凍に比べて蒸発速度を数倍高くすることができるため、冷媒の量および蒸発面積を減らすことができ、装置の小型化を図ることができる。
(3)蒸気の吸収面積を多く取ることができ、かつ液滴の噴射速度の増加により単位面積あたりの吸収速度も増加させることができるため、吸収速度を従来よりも大幅に上昇することができ、これにより装置の小型化を図ることができる。
(4)凝縮器の凝縮面に形成される液膜をできるだけ薄くすることにより、凝縮速度が促進され、これにより装置の小型化を図ることができる。
The present invention has the following excellent effects.
(1) By reducing the size and efficiency of the evaporator, absorber or condenser, the amount of local heat removal can be increased several times compared to heat pipes or conventional absorption refrigerators. In addition, the refrigeration apparatus can be reduced in size.
(2) By not forming a liquid film on the heating surface of the member to be cooled or making it as thin as possible, the evaporation rate can be increased several times compared to conventional absorption refrigeration. The area can be reduced and the apparatus can be miniaturized.
(3) Since the absorption area of the vapor can be increased and the absorption speed per unit area can be increased by increasing the jetting speed of the droplets, the absorption speed can be significantly increased as compared with the prior art. As a result, the apparatus can be reduced in size.
(4) By making the liquid film formed on the condensing surface of the condenser as thin as possible, the condensing speed is promoted, thereby making it possible to reduce the size of the apparatus.

本発明に係る吸収式小型冷却及び冷凍装置を実施するための最良の形態を実施例に基づいて図面を参照して以下に説明する。   The best mode for carrying out the absorption type small cooling and refrigeration apparatus according to the present invention will be described below with reference to the accompanying drawings.

図2は、インクジエットノズル方式を用いた液量制御機能を持つ蒸発器を説明するための概念図である。
液体の蒸発速度には限界があり、それを限界熱流束と呼んでいる。この限界熱流束はおおよそ加熱面上で蒸発した蒸気が、その上部にある重たい液体を押し退ける速度に限界があることから生じる。したがって、理論上加熱面上に液体の膜が存在しなければ、その限界熱流束も高い値となる。加熱面上に液体の膜を生成しない、あるいはできるだけ薄く(好ましくは100マイクロメートル以下)するようにするためには、加熱面に供給する液体の量を十分制御する必要がある。噴霧用のノズル等では、噴霧量の制御性が難しいことから、液膜を100マイクロメートル以下に維持することは困難である。一方、インクジェットノズル方式では多数のノズルよりそれぞれが一滴ずつ液を供給することから、加熱面上の温度等の情報を用いて液膜厚さの制御が容易となる。
図2において、1はピエゾ素子を備えた噴射ノズルであり、複数個が並列に設けられ、図示しない電源によりピエゾ素子に電圧が印加されることにより、それぞれの噴射ノズル1から液滴2が図に示すように間欠的に噴射される。この際、各噴射ノズル1からの噴射量は、ピエゾ素子を駆動する電圧を制御することにより、精密に制御することができる。
FIG. 2 is a conceptual diagram for explaining an evaporator having a liquid amount control function using an ink jet nozzle system.
There is a limit to the evaporation rate of the liquid, which is called the critical heat flux. This critical heat flux arises from the limited speed at which vapor evaporated on the heated surface approximately pushes the heavy liquid above it. Therefore, theoretically, if there is no liquid film on the heating surface, the critical heat flux is also high. In order not to form a liquid film on the heating surface or to make it as thin as possible (preferably 100 micrometers or less), it is necessary to sufficiently control the amount of liquid supplied to the heating surface. With a spray nozzle or the like, it is difficult to maintain the liquid film at 100 micrometers or less because it is difficult to control the spray amount. On the other hand, in the ink jet nozzle system, each drop is supplied from a large number of nozzles, so that the liquid film thickness can be easily controlled using information such as the temperature on the heating surface.
In FIG. 2, reference numeral 1 denotes an ejection nozzle provided with a piezo element. A plurality of ejection nozzles are provided in parallel, and when a voltage is applied to the piezo element by a power source (not shown), droplets 2 from the respective ejection nozzles 1 are illustrated. As shown in FIG. At this time, the injection amount from each injection nozzle 1 can be precisely controlled by controlling the voltage for driving the piezo element.

噴射ノズル1から噴射された液滴2は、被冷却対象である加熱された半導体チップ3の加熱面4に向かい、その近傍において蒸発するか、または、加熱面4に付着する。液滴の噴射により生成される液膜5は100マイクロメートル以下に維持されることが望ましく、このため、加熱面4の温度を検知して加熱面の温度に基づいてピエゾ素子の駆動を制御して液膜5の厚さが一定範囲内にあるように制御する。
以下に、液膜5の厚さを制御する具体例を説明する。
今、被冷却体の熱負荷をW、加熱面4に形成される液膜5の上下の温度差をΔT、噴射ノズル1からの液供給量をQ、液膜5の厚さをδとする。
液供給量Q、熱負荷W、液膜厚さδ及び加熱面に形成される液膜5の上下の温度差ΔTの間には次の関係がある。
W=ρhfgQ=AλΔT/δ (1)
ただし、ρは液体の密度、hfgは蒸発潜熱、Aは液膜が形成される面積、λは液体の熱伝導率を表す。
上記(1)式から、例えば、液膜厚さδを10μm〜100μmの範囲内の所定の値に設定し、液膜5の上下の温度差ΔTを計測すれば、液供給量Qが求まる。液供給量Qが求まれば、噴射ノズル1の径、数量に応じて制御パラメータであるピエゾ発信周波数(液滴個数)及びピエゾ振幅(液滴速度)を制御し、必要とされる液供給量Qを噴射ノズル1から加熱面4に液滴を供給することにより、液膜厚さδを所定の値に制御することができる。
The droplets 2 ejected from the ejection nozzle 1 are directed to the heating surface 4 of the heated semiconductor chip 3 to be cooled, and are evaporated in the vicinity or attached to the heating surface 4. The liquid film 5 generated by jetting droplets is desirably maintained at 100 micrometers or less. For this reason, the temperature of the heating surface 4 is detected and the driving of the piezo element is controlled based on the temperature of the heating surface. Thus, the thickness of the liquid film 5 is controlled to be within a certain range.
Below, the specific example which controls the thickness of the liquid film 5 is demonstrated.
Now, let W be the thermal load of the object to be cooled, ΔT be the temperature difference above and below the liquid film 5 formed on the heating surface 4, Q be the amount of liquid supplied from the injection nozzle 1, and δ be the thickness of the liquid film 5. .
The following relationship exists between the liquid supply amount Q, the thermal load W, the liquid film thickness δ, and the temperature difference ΔT between the upper and lower sides of the liquid film 5 formed on the heating surface.
W = ρh fg Q = AλΔT / δ (1)
Where ρ is the density of the liquid, h fg is the latent heat of vaporization, A is the area where the liquid film is formed, and λ is the thermal conductivity of the liquid.
From the above equation (1), for example, if the liquid film thickness δ is set to a predetermined value within a range of 10 μm to 100 μm and the temperature difference ΔT between the upper and lower sides of the liquid film 5 is measured, the liquid supply amount Q can be obtained. Once the liquid supply amount Q is obtained, the piezo transmission frequency (number of droplets) and the piezo amplitude (droplet velocity), which are control parameters, are controlled according to the diameter and quantity of the injection nozzle 1, and the required liquid supply amount is obtained. The liquid film thickness δ can be controlled to a predetermined value by supplying Q to the heating surface 4 from the spray nozzle 1.

図3は、インクジエットノズル方式を用いた微細化された液滴噴射による蒸気吸収促進機能を持つ吸収器を説明するための概念図である。
蒸発器20で発生した蒸気は速やかに濃い臭化リチウム水溶液に凝縮(吸収)させる必要がある。従来の吸収冷凍機で使用されている液膜式吸収器では凝縮(吸収)面積を多く取ることができないことから、小型化に適用できない。一方、インクジェットノズル方式を用いた場合には細かな液滴として濃臭化リチウム水溶液を噴射することから,蒸気の凝縮(吸収)面積を多く取ることができ、かつ液滴の噴射速度の増加により単位面積あたりの吸収速度も増加させることができることから、全体の吸収速度は従来よりも大幅に上昇する。これにより小型化を図ることができる。
FIG. 3 is a conceptual diagram for explaining an absorber having a function of promoting vapor absorption by atomized droplet ejection using an ink jet nozzle method.
The vapor generated in the evaporator 20 needs to be quickly condensed (absorbed) into a concentrated lithium bromide aqueous solution. Since the liquid film type absorber used in the conventional absorption refrigerator cannot take a large condensation (absorption) area, it cannot be applied to downsizing. On the other hand, when the ink jet nozzle method is used, the concentrated lithium bromide aqueous solution is ejected as fine droplets, so that it is possible to increase the vapor condensation (absorption) area and increase the droplet ejection speed. Since the absorption rate per unit area can also be increased, the overall absorption rate is significantly increased as compared with the conventional case. Thereby, size reduction can be achieved.

図3において、蒸発器で発生した蒸気6は、ピエゾ素子を備えた臭化リチウム濃水溶液噴射ノズル7を複数並列に設けた吸収器30に導かれ、そこで噴射ノズル7から噴射される微細な臭化リチウム液滴8に吸収される。蒸気6を吸収した臭化リチウム液滴8は、フィン9により冷却された吸収器30の底面10に接触して液溜まりを形成し、臭化リチウムを45%程度含有する臭化リチウム希水溶液となり、再生器に送られる。噴射ノズル7のピエゾ素子の駆動を制御して液滴の噴射速度を制御することにより、単位面積あたりの吸収速度を制御することができる。   In FIG. 3, the vapor 6 generated in the evaporator is guided to an absorber 30 in which a plurality of lithium bromide concentrated aqueous solution injection nozzles 7 each having a piezoelectric element are provided in parallel, and the fine odor injected from the injection nozzle 7 there. It is absorbed by the lithium bromide droplet 8. The lithium bromide droplets 8 that have absorbed the vapor 6 come into contact with the bottom surface 10 of the absorber 30 cooled by the fins 9 to form a liquid pool, resulting in a lithium bromide dilute solution containing about 45% lithium bromide. , Sent to the regenerator. The absorption speed per unit area can be controlled by controlling the ejection speed of the droplets by controlling the driving of the piezo element of the ejection nozzle 7.

図4は、凝縮器表面がマイクロ構造体を持つ凝縮促進機能を有する凝縮器を説明するための概念図である。
蒸気を吸収して濃度が薄くなった臭化リチウム水溶液を加熱し、再び濃い臭化リチウム水溶液に再生すると同時に蒸気が発生する。この蒸気は凝縮して再び蒸発器に供給される。冷却器全体を小型化するためには、凝縮器も小さくする必要がある。凝縮も蒸発と同様に液膜を生成することから、凝縮速度を促進するためには、できるだけ凝縮した液体を凝縮器内よりすばやく排除して、液膜を薄くする必要がある。液体は表面張力を持つことから、細い流路や濡れ性の異なる表面上を流れたり、大きな液滴を生成したりする性質を持っている。この性質を利用し、凝縮表面上に細い流路等の構造体を施してすばやく水を排除したり、大きな液滴を生成して周囲の流体を一部に集めることで周囲の液膜の厚さを薄くする。
FIG. 4 is a conceptual diagram for explaining a condenser having a condensation promoting function having a microstructure on the condenser surface.
The lithium bromide aqueous solution whose concentration is reduced by absorbing the vapor is heated and regenerated again into a concentrated lithium bromide aqueous solution, and at the same time, vapor is generated. This vapor is condensed and supplied again to the evaporator. In order to reduce the size of the entire cooler, it is necessary to reduce the size of the condenser. Since condensation forms a liquid film in the same way as evaporation, in order to accelerate the condensation rate, it is necessary to remove the condensed liquid as quickly as possible from the inside of the condenser and make the liquid film thinner. Since the liquid has surface tension, it has the property of flowing on thin channels and surfaces with different wettability and generating large droplets. Utilizing this property, the thickness of the surrounding liquid film can be obtained by applying a structure such as a narrow channel on the condensation surface to quickly remove water, or generating large droplets and collecting the surrounding fluid in part. Reduce the thickness.

図4において、凝縮器40の天井に位置し、フィン13により冷却されている凝縮面11には、細かい溝12が形成されている。この溝12が形成されることにより、凝縮面11に凝縮した液体のうち、溝12の間に凝縮した液体には溝12内の液体から表面張力による引っ張り応力を受け、細い流路である溝12を伝わって凝縮面から素早く排除され、凝縮面11に生成される液膜の厚さが薄くなる。
図5は、表面改質を利用した流れ制御による凝縮促進機能を有する凝縮器を説明するための概念図である。
図5において、凝縮面11には、濡れ性の大きな面14と濡れ性の小さな面15を形成する。濡れ性の大な面14に存在する液体は表面張力による引っ張り応力の作用により、濡れ性の小さな面15に存在する液体に引き寄せられ、液体の排除機能が上昇されるものである。
In FIG. 4, fine grooves 12 are formed in the condensation surface 11 that is located on the ceiling of the condenser 40 and is cooled by the fins 13. By forming the groove 12, the liquid condensed between the grooves 12 among the liquid condensed on the condensing surface 11 is subjected to tensile stress due to surface tension from the liquid in the groove 12, and the groove is a thin channel. 12 is quickly removed from the condensing surface through 12, and the thickness of the liquid film generated on the condensing surface 11 is reduced.
FIG. 5 is a conceptual diagram for explaining a condenser having a condensation promoting function by flow control using surface modification.
In FIG. 5, a condensing surface 11 is formed with a surface 14 with high wettability and a surface 15 with low wettability. The liquid existing on the surface 14 with high wettability is attracted to the liquid existing on the surface 15 with low wettability by the action of the tensile stress due to surface tension, and the function of removing liquid is increased.

図6は、本発明の実施の形態にかかる上記した蒸発器20、吸収器30、凝縮器40を備えた吸収式小型冷却及び冷凍装置の全体構成を説明するための正面図である。
本例では、冷媒として水(HO)、吸収溶液として臭化リチウム(LiBr)を用いている。
蒸発器20において、ピエゾ素子を備えたノズル1から噴射された液滴2は、被冷却対象である加熱された半導体チップ3の加熱面4に向かい、そこで蒸発する。蒸発した冷媒蒸気は、蒸発器20の両側に配置された吸収器30、30において、ピエゾ素子を備えた噴射ノズル7から噴射される微細な臭化リチウム液滴8に吸収される。蒸気6を吸収した臭化リチウム液滴8は、フィン9により冷却された吸収器30の底面10に接触して液溜まりを形成し、臭化リチウムを45%程度含有する臭化リチウム希水溶液となり、溶液ポンプ16によって加圧されて再生器50、50に送られる。その際、希水溶液は再生器50からの濃水溶液と熱交換し、再生器50に入る。
FIG. 6 is a front view for explaining the entire configuration of the absorption-type small cooling and refrigeration apparatus including the evaporator 20, the absorber 30, and the condenser 40 according to the embodiment of the present invention.
In this example, water (H 2 O) is used as the refrigerant, and lithium bromide (LiBr) is used as the absorbing solution.
In the evaporator 20, the droplet 2 ejected from the nozzle 1 having a piezo element is directed to the heating surface 4 of the heated semiconductor chip 3 to be cooled and is evaporated there. The evaporated refrigerant vapor is absorbed by the fine lithium bromide droplets 8 ejected from the ejection nozzle 7 having a piezo element in the absorbers 30, 30 arranged on both sides of the evaporator 20. The lithium bromide droplets 8 that have absorbed the vapor 6 come into contact with the bottom surface 10 of the absorber 30 cooled by the fins 9 to form a liquid pool and become a lithium bromide dilute solution containing about 45% lithium bromide. Then, it is pressurized by the solution pump 16 and sent to the regenerators 50 and 50. At that time, the dilute aqueous solution exchanges heat with the concentrated aqueous solution from the regenerator 50 and enters the regenerator 50.

希水溶液は再生器50で外部からの燃焼熱によって加熱され、沸騰し、吸収した冷媒を再生器50内で分離し、その濃度を高める。一方、濃水溶液は吸収器50からの低温溶液に熱を与え、再び吸収器50の噴射ノズル7から噴射され、蒸発器20からの冷媒蒸気を吸収する。
他方、再生器50で溶液から分離した冷媒蒸気は凝縮器40に入り、フィン13により冷却されている凝縮面11に触れて凝縮する。凝縮面11の凝縮液は、溝12内の液体から表面張力による引っ張り応力を受け、細い流路である溝12を伝わって凝縮面から素早く排除され、凝縮面に生成される液膜の厚さは薄くなる。
この液化した冷媒は圧力を下げて蒸発器20のノズル1から噴射される。
The dilute aqueous solution is heated by the combustion heat from the outside in the regenerator 50, boils, and the absorbed refrigerant is separated in the regenerator 50 to increase its concentration. On the other hand, the concentrated aqueous solution gives heat to the low-temperature solution from the absorber 50 and is again injected from the injection nozzle 7 of the absorber 50 to absorb the refrigerant vapor from the evaporator 20.
On the other hand, the refrigerant vapor separated from the solution by the regenerator 50 enters the condenser 40 and is condensed by touching the condensation surface 11 cooled by the fins 13. The condensate on the condensing surface 11 receives a tensile stress due to surface tension from the liquid in the groove 12, travels along the groove 12, which is a narrow flow path, and is quickly removed from the condensing surface, and the thickness of the liquid film generated on the condensing surface Becomes thinner.
The liquefied refrigerant is injected from the nozzle 1 of the evaporator 20 with the pressure lowered.

上記したように本実施の形態における吸収式小型冷却及び冷凍装置の蒸発器は、インクジェットノズル方式により多数のノズルよりそれぞれ一滴ずつ冷媒を供給することから、加熱面上の温度等の情報を用いて各ノズル1からの噴射量をピエゾ素子を駆動する電圧を制御することにより精密に制御することができるため、液膜厚さの制御が容易となり、効率化、小型化が可能となる。
また、吸収器も蒸発器と同様にインクジェットノズル方式により細かな液滴として吸収溶液を噴射することから,冷媒蒸気の吸収面積を多く取ることができ、かつ液滴の噴射速度の増加により単位面積あたりの吸収速度も増加させることができることから、全体の吸収速度は従来よりも大幅に上昇する。これにより小型化を図ることができる。
さらに、凝縮器表面がマイクロ構造体を持つ凝縮促進機能を有する凝縮器の採用により、凝縮面に生成される液膜の厚さを薄くでき、凝縮作用の効率化を図ることができる。
As described above, the evaporator of the absorption type small cooling and refrigeration apparatus in the present embodiment supplies the refrigerant one drop at a time from a large number of nozzles by the inkjet nozzle method, and therefore uses information such as the temperature on the heating surface. Since the injection amount from each nozzle 1 can be precisely controlled by controlling the voltage for driving the piezo element, the liquid film thickness can be easily controlled, and the efficiency and the size can be reduced.
In addition, since the absorber also injects the absorbing solution as fine droplets by the inkjet nozzle method, similar to the evaporator, a large absorption area of the refrigerant vapor can be taken, and the unit area can be increased by increasing the droplet ejection speed. Since the permeation absorption rate can also be increased, the overall absorption rate is significantly increased as compared with the conventional case. Thereby, size reduction can be achieved.
Furthermore, by adopting a condenser having a condensation promoting function having a microstructure on the condenser surface, the thickness of the liquid film generated on the condensation surface can be reduced, and the efficiency of the condensation action can be improved.

吸収式冷凍機の基本サイクルを示したものである。The basic cycle of an absorption refrigerator is shown. 本発明の実施の形態に係るインクジエットノズル方式を用いた液量制御機能を持つ蒸発器を説明するための概念図である。It is a conceptual diagram for demonstrating the evaporator with a liquid quantity control function using the ink jet nozzle system which concerns on embodiment of this invention. 本発明の実施の形態に係るインクジエットノズル方式を用いた微細化された液滴噴射による蒸気吸収促進機能を持つ吸収器を説明するための概念図である。It is a conceptual diagram for demonstrating the absorber with the vapor | steam absorption acceleration | stimulation function by the atomized droplet ejection using the ink jet nozzle system which concerns on embodiment of this invention. 本発明の実施の形態に係る凝縮器表面がマイクロ構造体を持つ凝縮促進機能を有する凝縮器を説明するための概念図である。It is a conceptual diagram for demonstrating the condenser which has the condensation promotion function in which the condenser surface which concerns on embodiment of this invention has a microstructure. 本発明の実施の形態に係る表面改質を利用した流れ制御による凝縮促進機能を有する凝縮器を説明するための概念図である。It is a conceptual diagram for demonstrating the condenser which has the condensation acceleration | stimulation function by the flow control using the surface modification which concerns on embodiment of this invention. 本発明の実施の形態にかかる上記した蒸発器、吸収器、凝縮器を備えた吸収式小型冷却及び冷凍装置の全体構成を説明するための正面図である。It is a front view for demonstrating the whole structure of the absorption type small cooling and refrigeration apparatus provided with the above-mentioned evaporator, absorber, and condenser concerning embodiment of this invention.

符号の説明Explanation of symbols

1 噴射ノズル
2 冷媒液滴
3 半導体チップ
4 加熱面
5 液膜
6 蒸気
7 ノズル
8 臭化リチウム液滴
9 フィン
10 吸収器の底面
11 凝縮面
12 溝
13 フィン
14 濡れ性の大な面
15 濡れ性の小さな面
16 溶液ポンプ
20 蒸発器
30 吸収器
40 凝縮器
50 再生器
DESCRIPTION OF SYMBOLS 1 Injection nozzle 2 Refrigerant droplet 3 Semiconductor chip 4 Heating surface 5 Liquid film 6 Vapor 7 Nozzle 8 Lithium bromide droplet
9 Fin 10 Bottom surface of absorber 11 Condensation surface 12 Groove 13 Fin 14 Surface with high wettability 15 Surface with low wettability 16 Solution pump 20 Evaporator 30 Absorber 40 Condenser 50 Regenerator

Claims (6)

吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより液滴を間欠的に噴射する噴射ノズルから冷媒を被冷却部材に向けて噴射する蒸発器を備えたことを特徴とする吸収式小型冷却及び冷凍装置。   In a refrigerator and refrigerator using an absorption refrigeration cycle, evaporation in which refrigerant is injected toward a member to be cooled from an injection nozzle that intermittently injects droplets by driving and controlling an electrostrictive element such as a piezo element. Absorption-type small cooling and refrigeration apparatus characterized by comprising a vessel. 噴射ノズルから噴射する液滴の量を制御することにより被冷却部材の表面に生成される液膜の厚さを所定の値に維持するようにしたことを特徴とする請求項1記載の吸収式小型冷却及び冷凍装置。   2. The absorption type according to claim 1, wherein the thickness of the liquid film generated on the surface of the member to be cooled is maintained at a predetermined value by controlling the amount of liquid droplets ejected from the ejection nozzle. Small cooling and refrigeration equipment. 被冷却部材の表面に生成される液膜の厚さが100マイクロメートル以下であることを特徴する請求項2記載の吸収式小型冷却及び冷凍装置。   The absorption type small cooling and refrigerating apparatus according to claim 2, wherein the thickness of the liquid film formed on the surface of the member to be cooled is 100 micrometers or less. 吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより微細化された液滴を間欠的に噴射する噴射ノズルから吸収溶液を冷媒蒸気の存する空間に向けて噴射する吸収器を備えてなることを特徴とする吸収式小型冷却及び冷凍装置。   In a refrigerator and refrigerator using an absorption refrigeration cycle, the absorption solution is present in the refrigerant solution from an injection nozzle that intermittently injects fine droplets by driving and controlling an electrostrictive element such as a piezo element. An absorption-type compact cooling and refrigeration apparatus comprising an absorber that injects into a space. 吸収式冷凍機サイクルを用いた冷却器及び冷凍機において、ピエゾ素子等の電歪素子を駆動制御することにより液滴を間欠的に噴射する噴射ノズルから冷媒を被冷却部材に向けて噴射する蒸発器及びピエゾ素子等の電歪素子を駆動制御することにより微細化された液滴を間欠的に噴射する噴射ノズルから吸収溶液を冷媒蒸気の存する空間に向けて噴射する吸収器を備えてなることを特徴とする吸収式小型冷却及び冷凍装置。   In a refrigerator and refrigerator using an absorption refrigeration cycle, evaporation in which refrigerant is injected toward a member to be cooled from an injection nozzle that intermittently injects droplets by driving and controlling an electrostrictive element such as a piezo element. And an absorber that injects the absorbing solution toward the space where the refrigerant vapor exists from an injection nozzle that intermittently injects fine droplets by driving and controlling electrostrictive elements such as a vacuum vessel and a piezo element. Absorption type small cooling and refrigeration equipment characterized by the above. 凝縮面に細かい溝が形成された凝縮器を備えたことを特徴とする請求項1乃至請求項5のいずれか1項に記載の吸収式小型冷却及び冷凍装置。   The absorption type small cooling and refrigeration apparatus according to any one of claims 1 to 5, further comprising a condenser having fine grooves formed on a condensation surface.
JP2005096156A 2005-03-29 2005-03-29 Absorption type small cooling and refrigerating device Pending JP2006275433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096156A JP2006275433A (en) 2005-03-29 2005-03-29 Absorption type small cooling and refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096156A JP2006275433A (en) 2005-03-29 2005-03-29 Absorption type small cooling and refrigerating device

Publications (1)

Publication Number Publication Date
JP2006275433A true JP2006275433A (en) 2006-10-12

Family

ID=37210376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096156A Pending JP2006275433A (en) 2005-03-29 2005-03-29 Absorption type small cooling and refrigerating device

Country Status (1)

Country Link
JP (1) JP2006275433A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137466B2 (en) 2009-08-24 2012-03-20 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8486737B2 (en) 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8536057B2 (en) 2009-06-25 2013-09-17 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light emitting device by using the same
US8707889B2 (en) 2011-05-25 2014-04-29 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8709161B2 (en) 2009-08-05 2014-04-29 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8802200B2 (en) 2009-06-09 2014-08-12 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US8846547B2 (en) 2010-09-16 2014-09-30 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the thin film deposition apparatus, and organic light-emitting display device manufactured by using the method
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8907326B2 (en) 2009-06-24 2014-12-09 Samsung Display Co., Ltd. Organic light-emitting display device and thin film deposition apparatus for manufacturing the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US8921831B2 (en) 2009-08-24 2014-12-30 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8945979B2 (en) 2012-11-09 2015-02-03 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US8945974B2 (en) 2012-09-20 2015-02-03 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display device using an organic layer deposition apparatus
US8951349B2 (en) 2009-11-20 2015-02-10 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8956697B2 (en) 2012-07-10 2015-02-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus and organic light-emitting display apparatus manufactured by using the method
US8962360B2 (en) 2013-06-17 2015-02-24 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US8993360B2 (en) 2013-03-29 2015-03-31 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
US9012258B2 (en) 2012-09-24 2015-04-21 Samsung Display Co., Ltd. Method of manufacturing an organic light-emitting display apparatus using at least two deposition units
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9040330B2 (en) 2013-04-18 2015-05-26 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
US9051636B2 (en) 2011-12-16 2015-06-09 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9136476B2 (en) 2013-03-20 2015-09-15 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, and organic light-emitting display apparatus manufactured by the method
US9150952B2 (en) 2011-07-19 2015-10-06 Samsung Display Co., Ltd. Deposition source and deposition apparatus including the same
US9174250B2 (en) 2009-06-09 2015-11-03 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
US9206501B2 (en) 2011-08-02 2015-12-08 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus by using an organic layer deposition apparatus having stacked deposition sources
US9234270B2 (en) 2011-05-11 2016-01-12 Samsung Display Co., Ltd. Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9257649B2 (en) 2012-07-10 2016-02-09 Samsung Display Co., Ltd. Method of manufacturing organic layer on a substrate while fixed to electrostatic chuck and charging carrier using contactless power supply module
US9260778B2 (en) 2012-06-22 2016-02-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9306191B2 (en) 2012-10-22 2016-04-05 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9466647B2 (en) 2012-07-16 2016-10-11 Samsung Display Co., Ltd. Flat panel display device and method of manufacturing the same
US9496317B2 (en) 2013-12-23 2016-11-15 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9534288B2 (en) 2013-04-18 2017-01-03 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US9593408B2 (en) 2009-08-10 2017-03-14 Samsung Display Co., Ltd. Thin film deposition apparatus including deposition blade
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710086A (en) * 1980-05-26 1982-01-19 Uni Shidonii Za Heat exchanger
JPH09243279A (en) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd Laminated heat exchanger for absorption type heat pump
JPH11201580A (en) * 1998-01-13 1999-07-30 Hitachi Ltd Absorption refrigerating machine
JP2000346583A (en) * 1999-05-31 2000-12-15 Haruo Uehara Condenser
JP2004167852A (en) * 2002-11-20 2004-06-17 Fuji Xerox Co Ltd Ink-jet printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710086A (en) * 1980-05-26 1982-01-19 Uni Shidonii Za Heat exchanger
JPH09243279A (en) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd Laminated heat exchanger for absorption type heat pump
JPH11201580A (en) * 1998-01-13 1999-07-30 Hitachi Ltd Absorption refrigerating machine
JP2000346583A (en) * 1999-05-31 2000-12-15 Haruo Uehara Condenser
JP2004167852A (en) * 2002-11-20 2004-06-17 Fuji Xerox Co Ltd Ink-jet printer

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689746B2 (en) 2009-05-22 2020-06-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9873937B2 (en) 2009-05-22 2018-01-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US11920233B2 (en) 2009-05-22 2024-03-05 Samsung Display Co., Ltd. Thin film deposition apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US11624107B2 (en) 2009-05-22 2023-04-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8802200B2 (en) 2009-06-09 2014-08-12 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
US9174250B2 (en) 2009-06-09 2015-11-03 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
US8907326B2 (en) 2009-06-24 2014-12-09 Samsung Display Co., Ltd. Organic light-emitting display device and thin film deposition apparatus for manufacturing the same
US8536057B2 (en) 2009-06-25 2013-09-17 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light emitting device by using the same
US8709161B2 (en) 2009-08-05 2014-04-29 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9593408B2 (en) 2009-08-10 2017-03-14 Samsung Display Co., Ltd. Thin film deposition apparatus including deposition blade
US8137466B2 (en) 2009-08-24 2012-03-20 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8193011B2 (en) 2009-08-24 2012-06-05 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8921831B2 (en) 2009-08-24 2014-12-30 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8486737B2 (en) 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US9224591B2 (en) 2009-10-19 2015-12-29 Samsung Display Co., Ltd. Method of depositing a thin film
US9660191B2 (en) 2009-11-20 2017-05-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8951349B2 (en) 2009-11-20 2015-02-10 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
US10287671B2 (en) 2010-01-11 2019-05-14 Samsung Display Co., Ltd. Thin film deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9453282B2 (en) 2010-03-11 2016-09-27 Samsung Display Co., Ltd. Thin film deposition apparatus
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9136310B2 (en) 2010-04-28 2015-09-15 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8846547B2 (en) 2010-09-16 2014-09-30 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the thin film deposition apparatus, and organic light-emitting display device manufactured by using the method
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US9234270B2 (en) 2011-05-11 2016-01-12 Samsung Display Co., Ltd. Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US9076982B2 (en) 2011-05-25 2015-07-07 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8707889B2 (en) 2011-05-25 2014-04-29 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US9777364B2 (en) 2011-07-04 2017-10-03 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9150952B2 (en) 2011-07-19 2015-10-06 Samsung Display Co., Ltd. Deposition source and deposition apparatus including the same
US9206501B2 (en) 2011-08-02 2015-12-08 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus by using an organic layer deposition apparatus having stacked deposition sources
US9051636B2 (en) 2011-12-16 2015-06-09 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9260778B2 (en) 2012-06-22 2016-02-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9257649B2 (en) 2012-07-10 2016-02-09 Samsung Display Co., Ltd. Method of manufacturing organic layer on a substrate while fixed to electrostatic chuck and charging carrier using contactless power supply module
US8956697B2 (en) 2012-07-10 2015-02-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus and organic light-emitting display apparatus manufactured by using the method
US10431779B2 (en) 2012-07-10 2019-10-01 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9466647B2 (en) 2012-07-16 2016-10-11 Samsung Display Co., Ltd. Flat panel display device and method of manufacturing the same
US8945974B2 (en) 2012-09-20 2015-02-03 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display device using an organic layer deposition apparatus
US9012258B2 (en) 2012-09-24 2015-04-21 Samsung Display Co., Ltd. Method of manufacturing an organic light-emitting display apparatus using at least two deposition units
US9306191B2 (en) 2012-10-22 2016-04-05 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US8945979B2 (en) 2012-11-09 2015-02-03 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US9136476B2 (en) 2013-03-20 2015-09-15 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, and organic light-emitting display apparatus manufactured by the method
US8993360B2 (en) 2013-03-29 2015-03-31 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
US9534288B2 (en) 2013-04-18 2017-01-03 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US9040330B2 (en) 2013-04-18 2015-05-26 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
US8962360B2 (en) 2013-06-17 2015-02-24 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
US9496317B2 (en) 2013-12-23 2016-11-15 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus

Similar Documents

Publication Publication Date Title
JP2006275433A (en) Absorption type small cooling and refrigerating device
US6571569B1 (en) Method and apparatus for high heat flux heat transfer
US7654100B2 (en) Method and apparatus for high heat flux heat transfer
US8763408B2 (en) Hybrid thermoelectric-ejector cooling system
US6993926B2 (en) Method and apparatus for high heat flux heat transfer
US7882889B2 (en) Loop type heat dissipating apparatus with sprayer
CN111511164B (en) Spray cooling phase-change heat sink integrated evaporative cooling device
US20090020266A1 (en) System and Method of Boiling Heat Transfer Using Self-Induced Coolant Transport and Impingements
US20110259039A1 (en) Thermally Driven Heat Pump for Heating and Cooling
TW200540380A (en) An atomized liquid jet refrigeration system and an associated method
US7437875B2 (en) Thermally driven cooling systems
CA2757813A1 (en) Temperature regulation system with active jetting type refrigerant supply and regulation
JP2020056532A (en) Shell and tube type heat exchanger
Heffington et al. Vibration-induced droplet atomization heat transfer cell for high-heat flux applications
US20070163756A1 (en) Closed-loop latent heat cooling method and capillary force or non-nozzle module thereof
US20080295533A1 (en) Heat Exchange and Heat Transfer Device, in Particular for a Motor Vehicle
KR102572792B1 (en) Rapid cooling heat exchaning method using cavitation generators and felt-thermal thermocouples
CN101247712A (en) Micro-liquid drop refrigerating mechanism
TWI314208B (en) Micro droplet cooling apparatus
JP4222063B2 (en) Absorption refrigerator
JP2018124049A (en) Absorption refrigerating machine
WO2003063241A2 (en) Method and apparatus for high heat flux heat transfer
US20120096880A1 (en) Temperature regulation system with active jetting type refrigerant supply and regulation
JP6887128B2 (en) Cooling system
Heffington et al. Orientation-independent atomization heat transfer cell for thermal management of microelectronics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929