JP2006275397A - Cold/hot water control method for air conditioner - Google Patents

Cold/hot water control method for air conditioner Download PDF

Info

Publication number
JP2006275397A
JP2006275397A JP2005094616A JP2005094616A JP2006275397A JP 2006275397 A JP2006275397 A JP 2006275397A JP 2005094616 A JP2005094616 A JP 2005094616A JP 2005094616 A JP2005094616 A JP 2005094616A JP 2006275397 A JP2006275397 A JP 2006275397A
Authority
JP
Japan
Prior art keywords
cold
hot water
hot
heat source
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005094616A
Other languages
Japanese (ja)
Other versions
JP4505363B2 (en
Inventor
Tatsu Murasawa
達 村澤
Hideaki Ito
秀明 伊藤
Toshiaki Ogawa
敏明 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Netsu Kogyo Kaisha Ltd
Original Assignee
Toyo Netsu Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Netsu Kogyo Kaisha Ltd filed Critical Toyo Netsu Kogyo Kaisha Ltd
Priority to JP2005094616A priority Critical patent/JP4505363B2/en
Publication of JP2006275397A publication Critical patent/JP2006275397A/en
Application granted granted Critical
Publication of JP4505363B2 publication Critical patent/JP4505363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold/hot water control method for an air conditioning system using a local cold/hot water pump in each of air conditioners and to be operated with the maximum energy efficiency over the whole of the system in consideration of power consumption over the whole of the air conditioning system. <P>SOLUTION: In the cold/hot water control method for the air conditioning system provided with a plurality of secondary equipment 1 and a plurality of secondary cold/hot water local pumps 16, a cold/hot heat source machine 8, a primary cold/hot water pump 18, and a bypass pipe 17 provided between a cold/hot water supply pipe 3a and a cold/hot water circulation pipe 3b, power consumption of each of the local pumps 16, the cold/hot heat source machine 8 and the primary cold/hot water pump 18 are added to compute system power consumption. Total flow of the secondary equipment 1 side cold/hot water is obtained through the bypass pipe 17 and secondary calorie is computed on the basis of a temperature difference between the cold/hot water supply pipe 3a and the cold/hot water circulation pipe 3b, and system COP is computed by dividing the secondary calorie by the system power consumption, and outlet temperature of the cold/hot heat source machine 8 is set to obtain the maximum system COP. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空調システムの冷温水制御方法に関する。   The present invention relates to a cold / hot water control method for an air conditioning system.

冷温熱源機から冷温水(冷水又は温水)を複数台の空調機に供給して複数の空調エリアを空調する空調システムが従来より用いられている。このような空調システムは、非特許文献1に開示されている。なお、冷温熱源機とは、冷水を生成する冷凍機、冷水及び温水を生成するヒートポンプ式熱源機、温水を生成するボイラなどをいう。   2. Description of the Related Art Conventionally, an air conditioning system that air-conditions a plurality of air-conditioning areas by supplying cold / hot water (cold water or hot water) from a cold / heat source to a plurality of air conditioners has been used. Such an air conditioning system is disclosed in Non-Patent Document 1. In addition, a cold / hot heat source machine means the refrigerator which produces | generates cold water, the heat pump type heat source machine which produces | generates cold water and warm water, the boiler which produces | generates warm water, etc.

図8は従来の空調システムの構成図である。
複数台の空調機1は、それぞれ冷温水コイルを備える。各空調機1の冷温水コイルに冷温水配管3を通して冷温水が供給される。冷温水配管3は、各空調機1に冷温水を送り込む冷温水供給管3aと、各空調機1を通した冷温水を戻す冷温水還り管3bからなる。各空調機1の冷温水配管3の冷温水供給管3aには各空調機ごとに冷温水の流量を調整するための制御弁4が設けられる。
FIG. 8 is a block diagram of a conventional air conditioning system.
Each of the plurality of air conditioners 1 includes a cold / hot water coil. Cold / hot water is supplied to the cold / hot water coil of each air conditioner 1 through the cold / hot water pipe 3. The chilled / hot water pipe 3 includes a chilled / hot water supply pipe 3 a that feeds chilled / warm water to each air conditioner 1, and a chilled / hot water return pipe 3 b that returns the chilled / warm water that has passed through each air conditioner 1. The cold / hot water supply pipe 3a of the cold / hot water pipe 3 of each air conditioner 1 is provided with a control valve 4 for adjusting the flow rate of the cold / hot water for each air conditioner.

各空調機1は例えば建物のフロアごとに設置され、それぞれ空調系統別の給気ダクトが接続される。各空調機1は給気ファンを備え、給気ダクトを通して空調された空気を各空調系統の空調エリアに送り込む。   Each air conditioner 1 is installed, for example, for each floor of a building, and an air supply duct for each air conditioning system is connected thereto. Each air conditioner 1 includes an air supply fan, and sends air conditioned through an air supply duct to an air conditioning area of each air conditioning system.

冷温水は冷温熱源機8で生成される。冷温水は一次冷温水ポンプ9で冷温熱源機8から一次ヘッダ10に送られ、ここから二次冷温水ポンプ11により二次ヘッダ12を介して各空調機1に供給される。   The cold / hot water is generated by the cold / hot heat source unit 8. The cold / hot water is sent from the cold / hot heat source unit 8 to the primary header 10 by the primary cold / warm water pump 9, and is supplied from there to the air conditioners 1 via the secondary header 12 by the secondary cold / hot water pump 11.

図9は、図8の空調システムの圧力線図である。図中(イ)〜(ト)は、図8の同じ文字(イ)〜(ト)の位置の圧力を示す。a,bは各フロアでの空調機と制御弁による圧力損失を示す。   FIG. 9 is a pressure diagram of the air conditioning system of FIG. In the figure, (a) to (g) indicate pressures at the positions of the same letters (a) to (g) in FIG. a and b show the pressure loss by an air conditioner and a control valve in each floor.

従来の空調システムでは、各フロアの空調機に対し共通の二次冷温水ポンプ11で最上階まで冷温水を循環させるため、二次冷温水ポンプ11は最上階までのポンプ揚程を確保し、各フロアでの空調機の圧力損失aとともに制御弁の圧力損失bをカバーするだけの送水圧力を必要とする。この場合各フロアで、その上のフロアまで冷温水を供給するためには制御弁を絞る必要がある。したがって、各フロアでの制御弁の圧力損失がエネルギー的に無駄になって、システムの運転に寄与しない無駄な消費電力を生じることになる。また、ポンプ揚程についてみると、高さ方向の配管抵抗のため、往き側の配管圧力と還り側の配管圧力の差は下層階程広がり、結局制御弁による絞り圧力損失とともに高さ方向配管の圧力損失をカバーできる消費電力の大きい大型の二次冷温水ポンプが必要になる。   In the conventional air conditioning system, since the cold / hot water is circulated to the top floor by the common secondary cold / hot water pump 11 for the air conditioners on each floor, the secondary cold / hot water pump 11 secures the pump head to the top floor, A water supply pressure is needed to cover the pressure loss b of the control valve as well as the pressure loss a of the air conditioner on the floor. In this case, it is necessary to throttle the control valve on each floor in order to supply cold / hot water to the floor above it. Therefore, the pressure loss of the control valve on each floor is wasted in terms of energy, and wasteful power consumption that does not contribute to the operation of the system is generated. As for the pump head, because of the pipe resistance in the height direction, the difference between the pipe pressure on the forward side and the pipe pressure on the return side widens to the lower floors, and eventually the pressure in the height pipe along with the throttle pressure loss due to the control valve. A large secondary cold / hot water pump with high power consumption that can cover the loss is required.

この場合、制御弁に代えて、各空調機ごとにローカルな冷温水ポンプ(以下ローカルポンプという)を設け、各ローカルポンプのインバータ制御により必要な量の冷温水を各空調機ごとに供給して制御弁による無駄な消費電力をなくすことが考えられる。しかしこれだけでは単に個々のローカルポンプが要求されるままに動作するだけで、冷温熱源機も含めたシステムトータルでの最大エネルギー効率を目指しているとはいえない。   In this case, instead of the control valve, a local cold / hot water pump (hereinafter referred to as a local pump) is provided for each air conditioner, and a necessary amount of cold / hot water is supplied to each air conditioner by inverter control of each local pump. It is conceivable to eliminate useless power consumption by the control valve. However, this alone does not aim for the maximum energy efficiency of the total system including the cold / hot heat source machine, because each local pump operates as required.

「省エネルギー」第55巻第3号第105〜112頁 平成15年2月28日財団法人省エネルギーセンター発行“Energy Saving” Vol. 55, No. 3, pages 105-112 Published February 28, 2003 by the Energy Saving Center

本発明は上記従来技術を考慮したものであって、空調機ごとに制御弁を用いた冷温水の流量制御に代えて空調機ごとにローカルポンプを用いるとともに、空調システム全体の消費電力を考慮してシステム全体として最大のエネルギー効率で運転可能な空調システムの冷温水制御方法の提供を目的とする。   The present invention takes the above-mentioned prior art into consideration, and uses a local pump for each air conditioner instead of the flow control of cold / hot water using a control valve for each air conditioner, and considers the power consumption of the entire air conditioning system. The purpose is to provide a cold / hot water control method for an air conditioning system that can be operated with maximum energy efficiency as a whole system.

前記目的を達成するため、請求項1の発明は、複数の二次側設備と、各二次側設備にそれぞれ備わる二次冷温水を供給するためのローカルポンプと、冷温水を生成する冷温熱源機と、該冷温熱源機で生成された冷温水を前記ローカルポンプに供給する一次冷温水ポンプと、前記冷温熱源機の出口側から前記二次側設備へ冷温水を供給する冷温水供給管と、前記二次側設備から戻る冷温水を冷温熱源機の入口側に戻す冷温水還り管と、前記冷温水供給管と前記冷温水還り管との間に設けたバイパス管とを備えた空調システムの冷温水制御方法において、前記ローカルポンプの消費電力と、冷温熱源機の消費電力と、前記一次冷温水ポンプの消費電力とを合計してシステム消費電力を算出し、二次側設備側の冷温水合計流量及び前記冷温水供給管及び冷温水還り管の冷温水温度の温度差から二次側熱量を算出し、前記二次側熱量÷前記システム消費電力からシステムCOPを算出し、該システムCOPが最大となるように前記冷温熱源機の出口温度を設定することを特徴とする空調システムの冷温水制御方法を提供する。   In order to achieve the above object, the invention of claim 1 includes a plurality of secondary equipment, a local pump for supplying secondary cold / hot water provided in each secondary equipment, and a cold / hot heat source for producing cold / hot water. A primary cold / hot water pump for supplying cold / hot water generated by the cold / hot heat source machine to the local pump, and a cold / hot water supply pipe for supplying cold / hot water from the outlet side of the cold / heat source machine to the secondary equipment An air conditioning system comprising: a cold / hot water return pipe for returning cold / hot water returning from the secondary equipment to the inlet side of the cold / hot heat source machine; and a bypass pipe provided between the cold / hot water supply pipe and the cold / hot water return pipe In the cold / hot water control method, the system power consumption is calculated by summing the power consumption of the local pump, the power consumption of the cold / hot heat source unit, and the power consumption of the primary cold / hot water pump, Total water flow and cold / hot water supply pipe The secondary heat quantity is calculated from the temperature difference of the cold / hot water temperature of the cold / hot water return pipe, the system COP is calculated from the secondary heat quantity / the system power consumption, and the cold / heat source so that the system COP is maximized. A cold / hot water control method for an air conditioning system, characterized in that an outlet temperature of a machine is set.

請求項2の発明は、請求項1の発明において、前記一次冷温水ポンプ及びローカルポンプの各々は、回転数を制御するためのインバータを備え、二次側設備側の冷温水合計流量が前記冷温熱源機を通して生成される冷温水流量と等しくなるように前記一次冷温水ポンプの流量をインバータにより制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, each of the primary cold / hot water pump and the local pump includes an inverter for controlling the number of rotations, and the total flow of cold / hot water on the secondary side equipment side is the cold / hot water. The flow rate of the primary cold / hot water pump is controlled by an inverter so as to be equal to the flow rate of the cold / hot water generated through the heat source unit.

請求項3の発明は、請求項1又は2の発明において、所定の周期で冷温熱源機の設定温度を所定の温度差だけ上昇方向又は下降方向に変化させるとともに、前記システムCOPを演算して前回演算したシステムCOPと比較し、増加した場合には、前記所定の温度差だけ設定温度を同じ方向に変化させ、減少した場合には前記所定の温度差だけ設定温度を逆方向に変化させることを特徴とする。
請求項4の発明は、請求項2又は3の発明において、いずれかのローカルポンプのインバータ出力がポンプの最大出力に近くなった場合(例えば95%以上)には、前記冷温熱源機の出口設定温度を、冷水の場合には下げ、温水の場合には上げることを特徴とする。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the set temperature of the cold / hot heat source unit is changed in a rising or falling direction by a predetermined temperature difference at a predetermined cycle, and the system COP is calculated to calculate the previous time. Compared with the calculated system COP, if it increases, the set temperature is changed in the same direction by the predetermined temperature difference, and if it decreases, the set temperature is changed in the reverse direction by the predetermined temperature difference. Features.
According to a fourth aspect of the present invention, in the second or third aspect of the invention, when the inverter output of any of the local pumps is close to the maximum output of the pump (for example, 95% or more), the outlet setting of the cold / hot heat source machine is set. The temperature is lowered in the case of cold water and raised in the case of hot water.

請求項1の発明によれば、複数台の空調機等の二次側設備の各々に対し、それぞれ従来の制御弁に代えてローカルポンプを設けて制御弁の絞りによる無駄な消費電力を削減するとともに、冷温熱源機及び一次冷温水ポンプの消費電力を含むシステム全体の消費電力を算出し、このシステム全体消費電力に対する二次側設備で消費される二次側熱量からシステムCOPを求め、このシステムCOPが最大となるように冷温熱源機の設定温度が制御されるため、システム全体として最大の省エネルギー効果が得られる。   According to the first aspect of the present invention, a local pump is provided for each of the secondary-side equipment such as a plurality of air conditioners in place of the conventional control valve to reduce wasteful power consumption due to the restriction of the control valve. In addition, the power consumption of the entire system including the power consumption of the cold / hot heat source machine and the primary cold / hot water pump is calculated, and the system COP is obtained from the secondary heat quantity consumed by the secondary equipment with respect to the whole system power consumption. Since the set temperature of the cold / hot heat source machine is controlled so that the COP is maximized, the maximum energy saving effect can be obtained as a whole system.

請求項2の発明によれば、一次冷温水ポンプ及びローカルポンプはインバータにより回転数制御され、バルブ絞り等による無駄な圧力損失を生じることなく必要な流量が得られるため、最大効率で省エネルギー効果が得られる。また、二次側設備側の冷温水流量と冷温熱源機を流れる冷温水の流量を等しくすることにより、冷温熱源機から二次側設備へ冷温水を供給する冷温熱源機の入口及び出口の冷温水配管にヘッダを設ける必要がなくなる。これにより、配管構成が簡素化するとともに、ヘッダによる圧力損失がなくなり、さらに省エネルギー効果を高めることができる。   According to the invention of claim 2, the primary chilled hot water pump and the local pump are controlled in rotation speed by the inverter, and a necessary flow rate can be obtained without causing a wasteful pressure loss due to a valve throttle or the like. can get. Also, by making the flow of cold / hot water on the secondary equipment side equal to the flow of cold / hot water flowing through the cold / hot heat source machine, the cold temperature of the inlet and outlet of the cold / hot heat source machine that supplies cold / hot water from the cold / hot heat source machine to the secondary equipment There is no need to provide a header in the water pipe. This simplifies the piping configuration, eliminates pressure loss due to the header, and further enhances the energy saving effect.

請求項3の発明によれば、周囲の温度変化や熱負荷の変動に追従して冷温熱源機の設定温度を調整し、常にリアルタイムでシステム全体を最大効率で運転できる。   According to the invention of claim 3, the set temperature of the cold / hot heat source machine is adjusted following the change in the ambient temperature and the fluctuation of the heat load, and the entire system can always be operated at maximum efficiency in real time.

請求項4の発明によれば、ローカルポンプが最大出力付近(例えば95%以上)で運転するようになって冷温水流量をそれ以上大きくできない場合であって、二次側設備がさらに熱負荷に対処する熱量を必要とする場合に、冷温水の流量を増やすことなく、二次側設備の熱負荷に対処することができる。   According to the invention of claim 4, when the local pump is operated near the maximum output (for example, 95% or more) and the flow rate of the cold / hot water cannot be increased further, the secondary side equipment is further subjected to a heat load. When the amount of heat to be dealt with is required, the heat load of the secondary equipment can be dealt with without increasing the flow rate of cold / hot water.

図1は、本発明に係る空調システムの全体構成図である。本発明に係る空調システムで用いる空調機は、冷温水コイルを備えていれば各種形式のものが使用可能である。例えば、変風量方式、定風量方式あるいはファンコイルシステム等のノンダクト方式にも用いられる。
空調機1が例えば建物の各フロアごとに設置される。各空調機1には、空調エリアごとの系統別の給気ダクトが接続される。
FIG. 1 is an overall configuration diagram of an air conditioning system according to the present invention. As the air conditioner used in the air conditioning system according to the present invention, various types of air conditioners can be used as long as they have a cold / hot water coil. For example, it is also used for a non-duct system such as a variable air volume system, a constant air volume system, or a fan coil system.
The air conditioner 1 is installed on each floor of a building, for example. Each air conditioner 1 is connected to a supply duct for each air conditioning area.

各空調機1は冷温水コイルを備える。各冷温水コイルに冷温水配管3の往き側となる冷温水供給管3aが接続される。各空調機1ごとに接続された冷温水供給管3aにローカルポンプ16が設けられる。このように空調機ごとにローカルに設けられたローカルポンプ16は、それぞれ回転数制御用のインバータ16aを備え、流量がインバータにより制御される。   Each air conditioner 1 includes a cold / hot water coil. A chilled / hot water supply pipe 3a which is a forward side of the chilled / hot water pipe 3 is connected to each chilled / hot water coil. A local pump 16 is provided in the cold / hot water supply pipe 3 a connected to each air conditioner 1. Thus, each local pump 16 provided locally for each air conditioner includes an inverter 16a for controlling the rotational speed, and the flow rate is controlled by the inverter.

冷温水を生成する冷温熱源機8の出口側及び入口側が、往き側の冷温水供給管3aの根元部(最下層部)及び冷温水還り管3bの根元部に接続される。根元部の冷温水供給管3aと冷温水還り管3bは、バイパス管17で連通する。冷温熱源機8で生成された冷温水は、一次冷温水ポンプ18により冷温水供給管3aに送り込まれる。一次冷温水ポンプ18は、インバータ18aを備え、インバータによる回転数制御により流量が制御される。   The outlet side and the inlet side of the cold / hot heat source unit 8 that generates the cold / hot water are connected to the root part (lowermost layer part) of the outgoing cold / hot water supply pipe 3a and the root part of the cold / hot water return pipe 3b. The cold / hot water supply pipe 3 a and the cold / hot water return pipe 3 b at the base part are communicated with each other by a bypass pipe 17. The cold / hot water generated by the cold / hot heat source unit 8 is sent to the cold / hot water supply pipe 3 a by the primary cold / hot water pump 18. The primary cold / hot water pump 18 includes an inverter 18a, and the flow rate is controlled by rotational speed control by the inverter.

図2は、図1の空調システムの圧力線図である。図中(イ)〜(ト)は、図1の同じ文字(イ)〜(ト)の位置の圧力を示す。aは各フロアでの空調機による圧力損失を示す。   FIG. 2 is a pressure diagram of the air conditioning system of FIG. In the figure, (A) to (G) indicate pressures at the positions of the same letters (A) to (G) in FIG. a shows the pressure loss by the air conditioner in each floor.

図から分かるように、本発明の空調システムにおいては、各フロアの空調機ごとにローカルポンプ16(図1)を備え、空調機による個々の圧力損失をそれぞれローカルポンプの送水圧力(揚程)でカバーすることにより、従来個々に設けられていた制御弁を省き、制御弁の絞りによる無駄な圧力損失をなくして効率よく省エネルギーを達成できる。   As can be seen from the figure, the air conditioning system of the present invention includes a local pump 16 (FIG. 1) for each air conditioner on each floor, and each pressure loss due to the air conditioner is covered by the water supply pressure (lift) of the local pump. By doing so, it is possible to omit the control valves that have been provided individually and eliminate unnecessary pressure loss due to the restriction of the control valves, thereby efficiently achieving energy saving.

図3は、本発明に係る空調システムの冷温水制御系の構成図である。
二次側設備である各空調機1にそれぞれローカルポンプ16及びその回転数制御を行うインバータ16aが備わるとともに、電力計21が備わる。冷温水還り管3bの根元部に全ての空調機の合計冷温水量を計測する流量計22が設けられる。冷温水供給管3a及び冷温水還り管3bの根元部にはそれぞれ温度計25,26が設けられる。
FIG. 3 is a configuration diagram of a cold / hot water control system of the air conditioning system according to the present invention.
Each air conditioner 1 which is a secondary side equipment is provided with a local pump 16 and an inverter 16a for controlling the rotation speed thereof, and a wattmeter 21 is provided. A flow meter 22 for measuring the total amount of cold / hot water of all air conditioners is provided at the root of the cold / hot water return pipe 3b. Thermometers 25 and 26 are provided at the bases of the cold / hot water supply pipe 3a and the cold / hot water return pipe 3b, respectively.

バイパス管17より冷温熱源機8側の冷温水配管32に設けられた一次冷温水ポンプ18にはインバータ18aとともに電力計23が備わる。この冷温水配管32に、冷温熱源機8を通して循環する冷温水流量を計測するための流量計24が備わる。冷温熱源機8には、生成する冷温水の温度(出口側温度)を設定する温度設定装置30及び電力計31が備わる。   The primary cold / hot water pump 18 provided in the cold / hot water piping 32 of the cold / hot heat source machine 8 side from the bypass pipe 17 is provided with the wattmeter 23 with the inverter 18a. The cold / hot water pipe 32 is provided with a flow meter 24 for measuring the flow rate of the cold / hot water circulating through the cold / hot heat source unit 8. The cold / hot heat source device 8 includes a temperature setting device 30 and a wattmeter 31 for setting the temperature (outlet side temperature) of the produced cold / hot water.

ローカルポンプ16の電力計21、一次冷温水ポンプ18の電力計23及び冷温熱源機8の電力計31は、システム消費電力演算装置28に接続される。二次側の冷温水配管3の流量計22及び温度計25,26は、二次側熱量演算装置27に接続される。二次側熱量演算回路27及びシステム消費電力演算回路28は、コントローラ29に接続される。コントローラ29は、一次冷温水ポンプ18のインバータ18a及び冷温熱源機8の温度設定装置30に接続される。   The wattmeter 21 of the local pump 16, the wattmeter 23 of the primary cold / hot water pump 18, and the wattmeter 31 of the cold / hot heat source machine 8 are connected to the system power consumption calculation device 28. The flow meter 22 and the thermometers 25, 26 of the secondary side cold / hot water pipe 3 are connected to the secondary side calorific value calculation device 27. The secondary heat amount calculation circuit 27 and the system power consumption calculation circuit 28 are connected to the controller 29. The controller 29 is connected to the inverter 18 a of the primary cold / hot water pump 18 and the temperature setting device 30 of the cold / hot heat source unit 8.

次に上記構成の冷温水制御系による冷温水制御方法について説明する。
二次側熱量演算装置27は、温度計25,26で検出された二次側冷温水供給管3a及び還り管3bの冷温水温度T1及びT2の温度差(T2−T1)[°C]と、流量計22で検出された二次側の冷温水流量F[L/h]とから二次側熱量Q[kW]を演算する。
Q=F・(T2−T1)/860
Next, the cold / hot water control method by the cold / hot water control system of the said structure is demonstrated.
The secondary-side calorific value calculation device 27 calculates the temperature difference (T2−T1) [° C.] between the cold / hot water temperatures T1 and T2 of the secondary cold / hot water supply pipe 3a and the return pipe 3b detected by the thermometers 25 and 26. The secondary-side heat quantity Q [kW] is calculated from the secondary-side cold / hot water flow rate F [L / h] detected by the flow meter 22.
Q = F · (T2-T1) / 860

システム消費電力演算装置28は、空調機ごとに設けられたローカルポンプ16の電力計21の合計電力と、一次冷温水ポンプ18の電力計23の電力と、冷温熱源機8の電力計31の電力を合計してシステム消費電力Q0[kW]を算出する。
コントローラ29は、システム消費電力Q0と二次側熱量Qとから
システムCOP=Q÷Q0
を算出する。コントローラ29は、システムCOPが最大となるように冷温熱源機8の設定温度(出口温度)を変更する。これにより、各ローカルポンプ16により制御弁の無駄な絞り損失を発生することなく冷温水温度に応じて効率よく各フロアの二次側設備の熱負荷を処理できるとともに、システム全体の電力を考慮してシステム全体として最大の省エネルギー効果が得られる。
The system power consumption calculation device 28 includes the total power of the wattmeter 21 of the local pump 16 provided for each air conditioner, the power of the wattmeter 23 of the primary cold / hot water pump 18, and the power of the wattmeter 31 of the cold / heat source device 8. To calculate the system power consumption Q0 [kW].
The controller 29 calculates the system COP = Q ÷ Q0 from the system power consumption Q0 and the secondary heat quantity Q.
Is calculated. The controller 29 changes the set temperature (outlet temperature) of the cold / hot heat source unit 8 so that the system COP is maximized. Thus, each local pump 16 can efficiently handle the heat load of the secondary equipment on each floor according to the cold / hot water temperature without causing unnecessary throttle loss of the control valve, and also considers the power of the entire system. The maximum energy saving effect can be obtained as a whole system.

いずれかのローカルポンプのインバータ出力が例えば95%以上になっている場合は、出口設定温度を下げる(温水の場合は上げる)。すなわち、いずれかのローカルポンプがほぼ最大流量(95%以上)で運転されているときは、その系統の二次側設備(空調機)の熱負荷が大きい場合であって、この熱負荷に対処するためにさらに冷水(冷房時の場合)を必要とする状況である。しかしローカルポンプはこれ以上冷水量を増やせないため、熱源機の冷水設定温度を下げて熱負荷に対処する。暖房時の場合は、その逆であり、温水流量を増やす代わりに熱源機での温水の設定温度を上げて熱負荷に対処する。   When the inverter output of any of the local pumps is, for example, 95% or more, the outlet set temperature is lowered (in the case of hot water, it is raised). That is, when one of the local pumps is operated at a substantially maximum flow rate (95% or more), the heat load of the secondary side equipment (air conditioner) of the system is large, and this heat load is dealt with. It is a situation that further requires cold water (in the case of cooling). However, since the local pump cannot increase the amount of chilled water any more, the chilled water set temperature of the heat source unit is lowered to cope with the heat load. In the case of heating, the reverse is true, instead of increasing the hot water flow rate, the set temperature of the hot water in the heat source machine is raised to deal with the heat load.

さらにコントローラ29は、冷温水還り管3bの流量計22の流量が一次側の冷温水配管32の流量計24の流量と等しくなるように一次冷温水ポンプ18のインバータ18aを制御する。これにより、冷温熱源機8を通して温度制御される冷温水流量が二次側設備を循環する冷温水流量と等しくなって、冷温熱源機8の能力が最大に発揮されエネルギー効率が高まるとともに、冷温熱源機8の入口側及び出口側のヘッダが不要になり、配管構成の簡素化及び圧力損失の低減が図られる。ただし、一次冷温水ポンプ18により熱源機8の最低流量は確保する。この場合、最低流量が還り管3bの流量より大きいときにはバイパス管17を冷温水が流れる。   Furthermore, the controller 29 controls the inverter 18a of the primary cold / hot water pump 18 so that the flow rate of the flow meter 22 of the cold / hot water return pipe 3b becomes equal to the flow rate of the flow meter 24 of the primary cold / hot water pipe 32. As a result, the flow rate of the cold / hot water whose temperature is controlled through the cold / hot heat source unit 8 becomes equal to the flow rate of the cold / hot water circulating through the secondary-side equipment, so that the capacity of the cold / hot heat source unit 8 is maximized and energy efficiency is increased. The headers on the inlet side and the outlet side of the machine 8 are not required, and the piping configuration is simplified and the pressure loss is reduced. However, the minimum flow rate of the heat source unit 8 is secured by the primary cold / hot water pump 18. In this case, when the minimum flow rate is larger than the flow rate of the return pipe 3b, cold / hot water flows through the bypass pipe 17.

図4は、本発明の空調システムにおける冷温熱源機と冷温水ポンプの消費電力を示すグラフである。
図示したように、冷水(温水)温度が高く(低く)なれば冷温熱源機(冷水の場合冷凍機)の消費電力は少なくなる。この場合、冷水(温水)量が多く必要になるため冷温水ポンプの消費電力は逆に大きくなる。このように冷温熱源機と冷温水ポンプの消費電力はトレードオフの関係にあるが、本発明では、システム全体の消費電力を考慮して最大のエネルギー効率で冷温熱源機及び冷温水ポンプを運転することができる。
FIG. 4 is a graph showing power consumption of the cold / hot heat source machine and the cold / hot water pump in the air conditioning system of the present invention.
As shown in the figure, when the cold water (hot water) temperature is higher (lower), the power consumption of the cold / hot heat source device (refrigerator in the case of cold water) is reduced. In this case, since a large amount of cold water (hot water) is required, the power consumption of the cold / hot water pump increases. Thus, although the power consumption of the cold / hot heat source machine and the cold / hot water pump is in a trade-off relationship, in the present invention, the cold / hot heat source machine and the cold / hot water pump are operated with maximum energy efficiency in consideration of the power consumption of the entire system. be able to.

図5は、冷温水ポンプとシステム全体の消費電力を示すグラフである。
前述のように、冷水(温水)温度が高く(低く)なると、冷温熱源機の消費電力はグラフaで示すように低下する。一方、この場合、一次冷温水ポンプ及びローカルポンプの消費電力は冷水(温水)量が多く必要になるため消費電力はグラフb,cで示すように大きくなる。これらの冷温熱源機の消費電力(グラフa)及び一次冷温水ポンプ及びローカルポンプの消費電力(グラフb、c)の合計がグラフdで示す合計消費電力である。図から分かるように、システム全体の消費電力(グラフd)は、温度T0で最小値となる。この最小値の冷温水温度T0となるように冷温熱源機8(図3)の設定温度を制御する。すなわち、冷温熱源機の設定温度をT0とすることによりシステムの合計消費電力が最小になる。
FIG. 5 is a graph showing power consumption of the cold / hot water pump and the entire system.
As described above, when the temperature of the cold water (hot water) becomes higher (lower), the power consumption of the cold / hot heat source machine decreases as shown in the graph a. On the other hand, in this case, since the power consumption of the primary cold / hot water pump and the local pump requires a large amount of cold water (hot water), the power consumption increases as shown by the graphs b and c. The sum of the power consumption of these cold / hot heat source machines (graph a) and the power consumption of the primary cold / hot water pump and the local pump (graphs b and c) is the total power consumption shown in graph d. As can be seen from the figure, the power consumption (graph d) of the entire system becomes a minimum value at the temperature T0. The set temperature of the cold / hot heat source unit 8 (FIG. 3) is controlled so as to be the minimum cold / hot water temperature T0. That is, the total power consumption of the system is minimized by setting the set temperature of the cold / hot heat source machine to T0.

図6は、前記システムCOPに基づいて冷温水設定温度を定める方法を示す説明図である。
コントローラは、一定周期F(例えば10分)で冷温水出口温度を設定するとともに、システムCOPを算出し、そのシステムCOPが前回設定値のシステムCOPより高いか低いかに応じて次回の設定値を決定する。
FIG. 6 is an explanatory diagram showing a method of determining the cold / hot water set temperature based on the system COP.
The controller sets the cold / hot water outlet temperature at a fixed period F (for example, 10 minutes), calculates the system COP, and determines the next set value depending on whether the system COP is higher or lower than the system COP of the previous set value. To do.

図の例でさらに説明すると、時間a0,a1,a2のときのシステムCOPをそれぞれ、COP0,COP1,COP2とし、設定温度をT0,T1,T2とする。時間a0では、設定温度を一定量ΔTだけ上げる(下げる)。一定周期F後の時間a1でのCOP1が前回のCOP0より大きければ、COPが高まる方向であるため、そのまま今回も設定温度をΔTだけ上げる(下げる)(図示した状態)。逆に今回(時間a1)でのCOP1が前回のCOP0より小さければ、COPが低下する方向に進んでいるため、前回とは逆に設定温度をΔTだけ下げる(上げる)。同様に時間a2においてもCOP2を算出し、その前のCOP1と比較して上昇しているか下降しているかに応じて設定温度を変更する。すなわち、
COP1≦COP2かつT1>T0ならばT2=T1+ΔT (1)
COP1≦COP2かつT1<T0ならばT2=T1−ΔT (2)
COP1>COP2かつT1>T0ならばT2=T1−ΔT (3)
COP1>COP2かつT1<T0ならばT2=T1+ΔT (4)
と設定する。温水の場合は各式の+と−が逆になる。
Further explaining with the example in the figure, the system COPs at times a0, a1, and a2 are COP0, COP1, and COP2, respectively, and the set temperatures are T0, T1, and T2. At time a0, the set temperature is raised (decreased) by a certain amount ΔT. If COP1 at time a1 after a certain period F is larger than the previous COP0, the COP increases, so the set temperature is also increased (decreased) by ΔT this time (state shown). On the contrary, if COP1 at this time (time a1) is smaller than COP0 of the previous time, since the COP is decreasing, the set temperature is decreased (increased) by ΔT, contrary to the previous time. Similarly, COP2 is calculated at time a2, and the set temperature is changed depending on whether it is rising or falling compared to the previous COP1. That is,
If COP1 ≦ COP2 and T1> T0, then T2 = T1 + ΔT (1)
If COP1 ≦ COP2 and T1 <T0, then T2 = T1−ΔT (2)
If COP1> COP2 and T1> T0, then T2 = T1-ΔT (3)
If COP1> COP2 and T1 <T0, then T2 = T1 + ΔT (4)
And set. In the case of warm water, + and-in each formula are reversed.

以上のようなCOPに基づいて冷温水出口温度のカスケード制御を行うことにより、A部で示されるように、冷温水温度の上昇下降を繰り返しながら最適な水温に定まる。また、負荷の変動があったときには、B部に示されるように、負荷変動等に追従して最適な設定温度に定まる。   By performing cascade control of the chilled / hot water outlet temperature based on the COP as described above, the optimum water temperature is determined while repeatedly raising and lowering the chilled / warm water temperature, as shown in part A. Further, when there is a load change, as shown in part B, the optimum set temperature is determined following the load change.

図7は、上記図6の時間a1及びa2でのCOPを比較する方法のフローチャートであり、前述の式(1)〜(4)と同じ内容をフローで表したものである。   FIG. 7 is a flowchart of a method for comparing COPs at times a1 and a2 in FIG. 6, and shows the same contents as the above-described equations (1) to (4) in a flow.

本発明は、ヒートポンプ式の冷凍機及び冷凍サイクルのみの冷凍機やボイラを含む冷温熱源機を備えたあらゆる空調システムに利用でき、システム全体の運転効率を最大にして省エネルギーを有効に達成できる。   INDUSTRIAL APPLICABILITY The present invention can be used for any air conditioning system including a heat pump type refrigerator, a refrigerator with only a refrigeration cycle, and a cooling / heating source including a boiler, and can effectively achieve energy saving by maximizing the operation efficiency of the entire system.

本発明に係る空調システムの構成図。The block diagram of the air-conditioning system which concerns on this invention. 図1の空調システムの圧力線図。The pressure line figure of the air conditioning system of FIG. 図1の空調システムの冷温水制御系の構成図。The block diagram of the cold / hot water control system of the air conditioning system of FIG. 本発明の空調システムの冷温熱源機と冷温水ポンプの消費電力の説明図。Explanatory drawing of the power consumption of the cold / hot heat source machine and cold / hot water pump of the air-conditioning system of this invention. 本発明の合計消費電力の説明図。Explanatory drawing of the total power consumption of this invention. 本発明のシステムCOPに基づいて冷温水設定温度を定める方法を示す説明図。Explanatory drawing which shows the method of determining cold / hot water preset temperature based on the system COP of this invention. 図6の時間a1及びa2でのCOPを比較する方法のフローチャート。7 is a flowchart of a method for comparing COPs at times a1 and a2 in FIG. 従来の空調システムの構成図。The block diagram of the conventional air conditioning system. 従来の空調システムの圧力線図。The pressure diagram of the conventional air conditioning system.

符号の説明Explanation of symbols

1:空調機、3:冷温水配管、3a:冷温水供給管、3b:冷温水還り管、4:制御弁、8:冷温熱源機、9:一次冷温水ポンプ、10:一次ヘッダ、11:二次冷温水ポンプ、12:二次ヘッダ、16:ローカルポンプ、16a:インバータ、17:バイパス管、18:一次冷温水ポンプ、18a:インバータ、21:電力計、22:流量計、23:電力計、24:流量計、25:温度計、26:温度計、27:二次側熱量演算装置、28:システム消費電力演算装置、29:コントローラ、30:温度設定装置、31:電力計、32:冷温水配管。
1: air conditioner, 3: cold / hot water pipe, 3a: cold / hot water supply pipe, 3b: cold / hot water return pipe, 4: control valve, 8: cold / hot heat source machine, 9: primary cold / hot water pump, 10: primary header, 11: Secondary cold / hot water pump, 12: secondary header, 16: local pump, 16a: inverter, 17: bypass pipe, 18: primary cold / hot water pump, 18a: inverter, 21: power meter, 22: flow meter, 23: power 24: flow meter, 25: thermometer, 26: thermometer, 27: secondary calorie calculating device, 28: system power consumption calculating device, 29: controller, 30: temperature setting device, 31: watt meter, 32 : Cold / hot water piping.

Claims (4)

複数の二次側設備と、
各二次側設備にそれぞれ備わる二次冷温水を供給するためのローカルポンプと、
冷温水を生成する冷温熱源機と、
該冷温熱源機で生成された冷温水を前記ローカルポンプに供給する一次冷温水ポンプと、
前記冷温熱源機の出口側から前記二次側設備へ冷温水を供給する冷温水供給管と、
前記二次側設備から戻る冷温水を冷温熱源機の入口側に戻す冷温水還り管と、
前記冷温水供給管と前記冷温水還り管との間に設けたバイパス管とを備えた空調システムの冷温水制御方法において、
前記ローカルポンプの消費電力と、冷温熱源機の消費電力と、前記一次冷温水ポンプの消費電力とを合計してシステム消費電力を算出し、
二次側設備側の冷温水合計流量及び前記冷温水供給管及び冷温水還り管の冷温水温度の温度差から二次側熱量を算出し、
前記二次側熱量÷前記システム消費電力からシステムCOPを算出し、
該システムCOPが最大となるように前記冷温熱源機の出口温度を設定することを特徴とする空調システムの冷温水制御方法。
A plurality of secondary equipment,
A local pump for supplying secondary cold / warm water to each secondary facility,
A cold / hot heat source machine for producing cold / hot water,
A primary cold / hot water pump for supplying cold / hot water generated by the cold / hot heat source machine to the local pump;
A cold / hot water supply pipe for supplying cold / hot water from the outlet side of the cold / hot heat source machine to the secondary side equipment;
A cold / hot water return pipe for returning the cold / hot water returning from the secondary side equipment to the inlet side of the cold / hot heat source machine,
In the cold / hot water control method for an air conditioning system comprising a bypass pipe provided between the cold / hot water supply pipe and the cold / hot water return pipe,
Calculate the system power consumption by summing the power consumption of the local pump, the power consumption of the cold / hot heat source machine, and the power consumption of the primary cold / hot water pump,
Calculate the secondary heat quantity from the total cold water flow rate on the secondary equipment side and the temperature difference between the cold and hot water supply pipe and the cold and hot water temperature of the cold and hot water return pipe,
Calculate the system COP from the secondary heat quantity divided by the system power consumption,
A cold / hot water control method for an air conditioning system, wherein an outlet temperature of the cold / hot heat source machine is set so that the system COP is maximized.
前記一次冷温水ポンプ及びローカルポンプの各々は、回転数を制御するためのインバータを備え、二次側設備側の冷温水合計流量が前記冷温熱源機を通して生成される冷温水流量と等しくなるように前記一次冷温水ポンプの流量をインバータにより制御することを特徴とする請求項1に記載の空調システムの冷温水制御方法。   Each of the primary cold / hot water pump and the local pump includes an inverter for controlling the number of revolutions so that the total cold / warm water flow rate on the secondary equipment side is equal to the cold / warm water flow rate generated through the cold / hot heat source machine. The cold / hot water control method for an air conditioning system according to claim 1, wherein the flow rate of the primary cold / hot water pump is controlled by an inverter. 所定の周期で冷温熱源機の設定温度を所定の温度差だけ上昇方向又は下降方向に変化させるとともに、前記システムCOPを演算して前回演算したシステムCOPと比較し、増加した場合には、前記所定の温度差だけ設定温度を同じ方向に変化させ、減少した場合には前記所定の温度差だけ設定温度を逆方向に変化させることを特徴とする請求項1又は2に記載の空調システムの冷温水制御方法。   When the set temperature of the cooling / heating heat source device is changed in the upward or downward direction by a predetermined temperature difference at a predetermined cycle, the system COP is calculated and compared with the previously calculated system COP. The set temperature is changed in the same direction by the difference in temperature, and when the temperature is decreased, the set temperature is changed in the opposite direction by the predetermined temperature difference. Control method. いずれかのローカルポンプのインバータ出力がポンプの最大出力に近くなった場合には、前記冷温熱源機の出口設定温度を、冷水の場合には下げ、温水の場合には上げることを特徴とする請求項2又は3に記載の空調システムの冷温水制御方法。
When the inverter output of any of the local pumps is close to the maximum output of the pump, the outlet set temperature of the cold / hot heat source machine is lowered in the case of cold water and raised in the case of hot water. Item 4. A method for controlling hot and cold water in an air conditioning system according to Item 2 or 3.
JP2005094616A 2005-03-29 2005-03-29 Control method of cold / hot water in air conditioning system Active JP4505363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094616A JP4505363B2 (en) 2005-03-29 2005-03-29 Control method of cold / hot water in air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094616A JP4505363B2 (en) 2005-03-29 2005-03-29 Control method of cold / hot water in air conditioning system

Publications (2)

Publication Number Publication Date
JP2006275397A true JP2006275397A (en) 2006-10-12
JP4505363B2 JP4505363B2 (en) 2010-07-21

Family

ID=37210343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094616A Active JP4505363B2 (en) 2005-03-29 2005-03-29 Control method of cold / hot water in air conditioning system

Country Status (1)

Country Link
JP (1) JP4505363B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045800A (en) * 2006-08-14 2008-02-28 Yamatake Corp Heat source unit operation control method and device
JP2008116152A (en) * 2006-11-07 2008-05-22 Takasago Thermal Eng Co Ltd Air conditioning system and its control method
JP2009063285A (en) * 2007-08-10 2009-03-26 Daikin Ind Ltd Monitoring system for air conditioner
JP2009253601A (en) * 2008-04-04 2009-10-29 Denso Corp In-vehicle handsfree apparatus
WO2010092916A1 (en) 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
WO2010113660A1 (en) * 2009-03-31 2010-10-07 株式会社山武 Supply water temperature controller and control method therefor
JP2012127624A (en) * 2010-12-17 2012-07-05 Nippon Spindle Mfg Co Ltd Radiation temperature control device
WO2012096265A1 (en) * 2011-01-11 2012-07-19 株式会社日立プラントテクノロジー Heat source system, control method therfor, and program therefor
JP2015121336A (en) * 2013-12-20 2015-07-02 三菱電機株式会社 Heat pump hot water supply heating system
US9157650B2 (en) 2010-10-15 2015-10-13 Toshiba Carrier Corporation Heat source apparatus
CN106801975A (en) * 2016-12-28 2017-06-06 杭州裕达自动化科技有限公司 Refrigeration host computer Intelligentized control method in central air-conditioning monitoring system
EP2343485A4 (en) * 2008-10-09 2018-05-16 Daikin Industries, Ltd. Energy saving support device
JP2018162943A (en) * 2017-03-27 2018-10-18 三機工業株式会社 Heat source control system, control method of heat source control system, and arithmetic unit
CN111625938A (en) * 2020-05-11 2020-09-04 新智数字科技有限公司 Method and device for evaluating optimal operation of underground water source heat pump

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674543A (en) * 1979-11-22 1981-06-20 Yazaki Corp Cooling and heating system of room
JPS61147042A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Air conditioning system control system
JPH0791710A (en) * 1993-09-27 1995-04-04 Toshiba Corp Controlling equipment of heat source apparatus water system
JPH1163631A (en) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd Equipment for controlling temperature of supply water
JP2001289485A (en) * 2000-01-31 2001-10-19 Mitsubishi Electric Corp Composite system and its operating method
JP2002089935A (en) * 2000-09-18 2002-03-27 Dai-Dan Co Ltd Primary/secondary pump type heat source variable flow rate system
JP2003162573A (en) * 2001-11-28 2003-06-06 E & E Planning:Kk Energy management method of building and management system thereof
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus
JP2005147528A (en) * 2003-11-17 2005-06-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2005257221A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Cooling water control method of refrigerator
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674543A (en) * 1979-11-22 1981-06-20 Yazaki Corp Cooling and heating system of room
JPS61147042A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Air conditioning system control system
JPH0791710A (en) * 1993-09-27 1995-04-04 Toshiba Corp Controlling equipment of heat source apparatus water system
JPH1163631A (en) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd Equipment for controlling temperature of supply water
JP2001289485A (en) * 2000-01-31 2001-10-19 Mitsubishi Electric Corp Composite system and its operating method
JP2002089935A (en) * 2000-09-18 2002-03-27 Dai-Dan Co Ltd Primary/secondary pump type heat source variable flow rate system
JP2003162573A (en) * 2001-11-28 2003-06-06 E & E Planning:Kk Energy management method of building and management system thereof
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus
JP2005147528A (en) * 2003-11-17 2005-06-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2005257221A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Cooling water control method of refrigerator
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045800A (en) * 2006-08-14 2008-02-28 Yamatake Corp Heat source unit operation control method and device
JP2008116152A (en) * 2006-11-07 2008-05-22 Takasago Thermal Eng Co Ltd Air conditioning system and its control method
JP2009063285A (en) * 2007-08-10 2009-03-26 Daikin Ind Ltd Monitoring system for air conditioner
JP2009253601A (en) * 2008-04-04 2009-10-29 Denso Corp In-vehicle handsfree apparatus
EP2343485A4 (en) * 2008-10-09 2018-05-16 Daikin Industries, Ltd. Energy saving support device
US8939196B2 (en) 2009-02-13 2015-01-27 Toshiba Carrier Corporation Secondary pump type heat source and secondary pump type heat source control method
WO2010092916A1 (en) 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
WO2010113660A1 (en) * 2009-03-31 2010-10-07 株式会社山武 Supply water temperature controller and control method therefor
US9157650B2 (en) 2010-10-15 2015-10-13 Toshiba Carrier Corporation Heat source apparatus
JP2012127624A (en) * 2010-12-17 2012-07-05 Nippon Spindle Mfg Co Ltd Radiation temperature control device
CN103314266A (en) * 2011-01-11 2013-09-18 株式会社日立制作所 Heat source system, control method therfor, and program therefor
JP2012145263A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Heat source system, control method therefor, and program therefor
WO2012096265A1 (en) * 2011-01-11 2012-07-19 株式会社日立プラントテクノロジー Heat source system, control method therfor, and program therefor
JP2015121336A (en) * 2013-12-20 2015-07-02 三菱電機株式会社 Heat pump hot water supply heating system
CN106801975A (en) * 2016-12-28 2017-06-06 杭州裕达自动化科技有限公司 Refrigeration host computer Intelligentized control method in central air-conditioning monitoring system
JP2018162943A (en) * 2017-03-27 2018-10-18 三機工業株式会社 Heat source control system, control method of heat source control system, and arithmetic unit
CN111625938A (en) * 2020-05-11 2020-09-04 新智数字科技有限公司 Method and device for evaluating optimal operation of underground water source heat pump
CN111625938B (en) * 2020-05-11 2023-04-28 新智数字科技有限公司 Optimal operation assessment method and device for underground water source heat pump

Also Published As

Publication number Publication date
JP4505363B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
JP5597767B2 (en) Heating device and method for controlling heating device
US11662113B2 (en) Building cooling systems with energy optimization and model predictive control
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP5615559B2 (en) Cooling system
JP5657110B2 (en) Temperature control system and air conditioning system
TWI407060B (en) Air conditioner controlling apparatus and method
JP2008256258A (en) Air conditioning system control device
JP4166051B2 (en) Air conditioning system
JP6609697B2 (en) Heat source system and control method of heat source system
JP6644559B2 (en) Heat source control system, control method and control device
JP2007127321A (en) Cold water load factor controller for refrigerator
JP5501282B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP4693645B2 (en) Air conditioning system
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP4647469B2 (en) Operation method of air conditioning equipment
KR20160051596A (en) Air-conditioning system
KR101147829B1 (en) Hybrid Control Device and Hybrid Control Method for Heating and Cooling with Measured Data from Heat Meter
JP2017053507A (en) Air conditioning system, controller to be used in air conditioning system, program
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP4477914B2 (en) Air conditioning system
JP2015169367A (en) Air conditioning system and air conditioning system control method
JP5062555B2 (en) Energy saving air conditioning control system
JP2014126234A (en) Heat load processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Ref document number: 4505363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4