JP2006267085A - Instrument and method for measuring eccentricity of aspherical lens - Google Patents

Instrument and method for measuring eccentricity of aspherical lens Download PDF

Info

Publication number
JP2006267085A
JP2006267085A JP2006010416A JP2006010416A JP2006267085A JP 2006267085 A JP2006267085 A JP 2006267085A JP 2006010416 A JP2006010416 A JP 2006010416A JP 2006010416 A JP2006010416 A JP 2006010416A JP 2006267085 A JP2006267085 A JP 2006267085A
Authority
JP
Japan
Prior art keywords
test
amount
lens
test surface
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006010416A
Other languages
Japanese (ja)
Inventor
Yutaka Izumida
豊 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006010416A priority Critical patent/JP2006267085A/en
Publication of JP2006267085A publication Critical patent/JP2006267085A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and a method for measuring easily and precisely an aspherical eccentric amount and direction of an aspherical lens. <P>SOLUTION: The examined lens is rotated, the eccentric amount and direction of the paraxial curvature center are measured from a locus of wobbling around a rotation axis of a spot image formed by a reflected light from an examined face of a light beam converged in the paraxial curvature center, an interval between a lighting optical system and the examined lens is moved to emit the converged beam onto the examined face all the time, a face wobbling amount of the examined face is detected based on a moving amount therein and a detection result of a rotation angle of the examined lens, a detection result of the face wobbling amount is compared with a design data to find a relative shift amount and tilt amount with respect to the rotation axis of a non-examined lens with the difference getting minimum between the both, a face top position of the examined lens with respect o the rotation axis is calculated from the shift amount and the tilt amount, and an inclination amount and a direction of an aspherical axis with respect to an optical axis of the examined lens are calculated based on the face top position, and the eccentric amount and direction of the paraxial curvature center. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非球面レンズの非球面軸の傾きを測定する為の非球面レンズの偏心測定装置及び偏心測定方法に関するものである。   The present invention relates to an aspheric lens eccentricity measuring apparatus and an eccentricity measuring method for measuring the inclination of an aspherical axis of an aspheric lens.

非球面レンズが持つ非球面偏心量を測定することは、例えば、製品検査において、製品の良否を判定する際に必要になり、更に、試作された非球面レンズの型押し向きを調整する際にも必要になるものである。ここでは、両面に非球面をもったレンズの非球面偏心量について、図9(a)を用いて説明する。図9(a)において、実線で示す被検レンズとしての非球面レンズ100の非球面101a,101bは、仮想線で示す近軸球面102a,102bを基準として設計された面である。近軸球面102a,102bの曲率中心oa,obを結ぶ線Axが非球面レンズ100の光軸となる。また、非球面101aの頂点(面頂)tbと近軸球面102aの曲率中心obとを結ぶ非球面軸Axa、及び非球面101bの頂点(面頂)tbと近軸球面102bの曲率中心oaとを結ぶ非球面軸Axbの2つの非球面軸が存在する。非球面レンズが設計どおりに製作されていれば、光軸Ax、非球面軸Axa及び非球面軸Axbの3つの軸は完全に一致するが、実際にはそのようなレンズを製作することは困難である。   Measuring the amount of aspherical eccentricity of an aspherical lens is necessary, for example, when judging the quality of a product in product inspection, and when adjusting the stamping direction of a prototyped aspherical lens. Is also necessary. Here, the aspheric eccentricity of a lens having aspheric surfaces on both sides will be described with reference to FIG. In FIG. 9A, aspherical surfaces 101a and 101b of the aspherical lens 100 as the test lens indicated by solid lines are surfaces designed with reference to the paraxial spherical surfaces 102a and 102b indicated by phantom lines. A line Ax connecting the centers of curvature oa and ob of the paraxial spherical surfaces 102 a and 102 b is the optical axis of the aspherical lens 100. Further, the aspherical surface axis Axa connecting the apex (surface apex) tb of the aspherical surface 101a and the center of curvature ob of the paraxial spherical surface 102a, and the apex (surface apex) tb of the aspherical surface 101b and the center of curvature oa of the paraxial spherical surface 102b, There are two aspherical axes, the aspherical axis Axb connecting the two. If the aspherical lens is manufactured as designed, the three axes of the optical axis Ax, the aspherical axis Axa, and the aspherical axis Axb are completely coincident with each other, but it is actually difficult to manufacture such a lens. It is.

光軸Ax、非球面軸Axa及び非球面軸Axbの3つの軸がずれた状態では、非球面101a,101bは理想状態から傾いており、光軸Axと非球面軸Axa及び非球面軸Axbは、それぞれ光軸に対し、角度εa及びεbを成して交差している。この時の角度εa(チルト)が非球面101aの非球面偏心量であり、角度εb(チルト)が非球面101bの非球面偏心量である。そして、図9(b),(c)に示すように光軸を基準として、原点から非球面面頂(非球面の頂点)への方向が非球面偏心の方向である(即ち、非球面101aの非球面偏心の方向はθεa、非球面101bの非球面偏心の方向はθεbとなる)。ここで、角度εa及びεbは、非球面偏心量をチルトとして定義した場合であるが、該非球面偏心量をシフトとして定義することも可能である。この場合には、非球面面頂taから光軸Axに垂線を下ろした時の該垂線の長さδa及び、非球面面頂tbから光軸Axに垂線を下ろした時の該垂線の長さδbが、それぞれシフトで定義した非球面偏心量となる。このような非球面レンズを製作した場合、出来上がったレンズの評価をする為に、まず、非球面偏心量と方向とを測定し、その後、製品の評価及び、型修正などを行なう必要がある。   When the three axes of the optical axis Ax, the aspherical axis Axa, and the aspherical axis Axb are shifted, the aspherical surfaces 101a and 101b are inclined from the ideal state, and the optical axis Ax, the aspherical axis Axa, and the aspherical axis Axb are , Respectively intersecting the optical axis at angles εa and εb. The angle εa (tilt) at this time is the aspheric eccentricity of the aspherical surface 101a, and the angle εb (tilt) is the aspherical eccentricity of the aspherical surface 101b. As shown in FIGS. 9B and 9C, the direction from the origin to the top of the aspheric surface (the top of the aspheric surface) is the direction of the aspheric surface decentering with respect to the optical axis (that is, the aspheric surface 101a). The direction of the aspheric eccentricity is θεa, and the direction of the aspherical eccentricity of the aspherical surface 101b is θεb). Here, the angles εa and εb are when the aspheric eccentricity is defined as tilt, but it is also possible to define the aspheric eccentricity as shift. In this case, the length δa of the perpendicular when the perpendicular is dropped from the aspheric surface top ta to the optical axis Ax, and the length of the perpendicular when the perpendicular is dropped from the aspheric surface top tb to the optical axis Ax. δb is an aspheric eccentricity defined by shift. When such an aspherical lens is manufactured, in order to evaluate the completed lens, it is necessary to first measure the aspherical eccentricity and direction, and then perform product evaluation and mold correction.

図10に従来の非球面レンズの偏心を測定する為の偏心測定装置の概略構成を示す。
図10に示すように、従来の偏心測定装置200としては、被検レンズ100を保持するレンズ受け部300と、該レンズ受け部300を回転自在に軸支する回転レンズ支持部材400と、図示しない光源と、照射光学系及び撮像素子などの光学部品とを有する。また、被検レンズ100の近軸曲率中心の偏心量と方向を検出する近軸偏心測定部500、及び図示しないレーザ光源干渉光学系を有し、更に、近軸偏心測定部500の光軸から外れた位置に、該近軸偏心測定部500とは別体に配置され、被検レンズ100の被検面の形状を干渉縞の変化の様子から検出する被検面形状測定部600を有する。そして、非球面レンズの偏心測定時には、被検レンズ100を回転させて、被検面形状測定部600で測定して得たデータと、被検レンズ100の被検面の設計式とを対比させ、両者の差が最も小さくなる相対的なシフト量及びチルト量を求め、該シフト量及びチルト量から回転軸900に対する被検レンズ100の面頂の位置を測定し、該面頂の位置と近軸偏心測定部500で測定された被検レンズの近軸曲率中心の偏心量及び方向とから、被検レンズ100の光軸に対する被球面軸の傾き量及び方向を算出する非球面レンズの偏心測定装置が提案されている(例えば、特許文献1参照。)。
FIG. 10 shows a schematic configuration of an eccentricity measuring apparatus for measuring the eccentricity of a conventional aspheric lens.
As shown in FIG. 10, a conventional eccentricity measuring apparatus 200 includes a lens receiving portion 300 that holds the lens 100 to be tested, a rotating lens support member 400 that rotatably supports the lens receiving portion 300, and an unillustrated portion. It has a light source and optical components such as an irradiation optical system and an image sensor. Further, the lens 100 includes a paraxial decentering measurement unit 500 that detects the decentering amount and direction of the paraxial curvature center of the lens 100 to be tested, and a laser light source interference optical system (not shown). A test surface shape measurement unit 600 is provided at a position away from the paraxial eccentricity measurement unit 500 and detects the shape of the test surface of the test lens 100 from the state of change in interference fringes. At the time of measuring the eccentricity of the aspherical lens, the test lens 100 is rotated and the data obtained by the measurement by the test surface shape measuring unit 600 is compared with the design formula of the test surface of the test lens 100. Then, the relative shift amount and tilt amount that minimize the difference between the two are obtained, and the position of the surface top of the test lens 100 with respect to the rotating shaft 900 is measured from the shift amount and tilt amount, and the position close to the position of the surface top The decentering measurement of the aspherical lens for calculating the tilt amount and direction of the spherical axis with respect to the optical axis of the test lens 100 from the decentering amount and direction of the paraxial curvature center of the test lens measured by the shaft decentering measurement unit 500 An apparatus has been proposed (see, for example, Patent Document 1).

特開2003−156405号公報JP 2003-156405 A

しかしながら、かかる従来の非球面レンズの偏心測定装置では、近軸偏心測定部及び被検面形状測定部の各光学的アライメントの調整や、測定基準点の調整などをそれぞれ個別に行う必要があり、測定工数が増加するとともに、測定精度向上に限界があった。   However, in such a conventional aspherical lens decentration measuring device, it is necessary to individually adjust the optical alignment of the paraxial decentering measurement unit and the test surface shape measurement unit, and the measurement reference point, respectively. As the number of measurement steps increased, there was a limit to improving measurement accuracy.

本発明は、上記した従来技術の課題を解決し、容易、且つ高精度に非球面レンズの非球面偏心量及びその方向を測定することができる偏心測定装置及び偏心測定方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, and to provide an eccentricity measuring apparatus and an eccentricity measuring method capable of measuring the amount and direction of an aspherical surface of an aspherical lens easily and with high accuracy. And

上記目的を達成する為に、本発明の非球面レンズの偏心測定装置にあっては、非球面レンズの偏心測定装置であって、被検レンズを保持するレンズ保持部材と、前記保持部材を回転させる回転手段と、照明光源と、前記照明光源からの光を被検レンズの被検面に照射する照明光学系と、被検レンズの被検面からの反射光を結像させる結像光学系と、前記結像光学系により結像された像を検出する像検出手段と、前記レンズ保持部材に対する前記照明光学系の光軸方向における相対的な位置を移動可能とする光軸方向移動手段と、被検レンズの被検面の近軸曲率中心に集光された光束を前記像検出手段により検出し、検出された前記光束の前記回転手段の回転軸回りでの振れ回りの軌跡から該回転軸に対する前記近軸曲率中心の偏心量及び偏心方向を算出する偏心状態算出部と、前記照明光学系からの光束が被検レンズの被検面上に集光するように、前記光軸方向移動手段によって前記照明光学系と前記レンズ保持部材との間隔を随時変更させると共に、前記照明光学系及び前記レンズ保持部材の相対的な移動量及び前記回転手段の回転角を検出し、検出結果に基づいて被検面の回転軸方向での面振れ量を検出する面振れ量検出部と、前記面振れ量検出部により検出された被検面の面振れ量と、前記偏心状態算出部により算出された近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する非球面軸の傾き量と方向とを算出する非球面偏心量算出手段とを具備したことを特徴とする。   In order to achieve the above object, the aspherical lens decentration measuring apparatus of the present invention is an aspherical lens decentration measuring apparatus, which comprises a lens holding member that holds a lens to be examined, and a rotation of the holding member. Rotating means, an illumination light source, an illumination optical system that irradiates the test surface of the test lens with light from the illumination light source, and an imaging optical system that forms an image of reflected light from the test surface of the test lens And an image detecting means for detecting an image formed by the imaging optical system, and an optical axis direction moving means capable of moving a relative position in the optical axis direction of the illumination optical system with respect to the lens holding member. The light beam collected at the center of the paraxial curvature of the test surface of the test lens is detected by the image detecting means, and the rotation of the detected light flux from the trajectory around the rotation axis of the rotating means is detected. Eccentricity and eccentricity of the paraxial center of curvature with respect to the axis An eccentric state calculation unit for calculating a direction, and the illumination optical system and the lens holding member by the optical axis direction moving unit so that a light beam from the illumination optical system is collected on a test surface of the test lens. And the relative movement amount of the illumination optical system and the lens holding member and the rotation angle of the rotating means are detected, and the surface runout in the direction of the rotation axis of the surface to be detected is detected based on the detection result. A surface shake amount detection unit for detecting the amount, a surface shake amount of the test surface detected by the surface shake amount detection unit, an eccentric amount and an eccentric direction of the paraxial curvature center calculated by the eccentric state calculation unit, And aspheric decentering amount calculating means for calculating the inclination amount and direction of the aspheric axis with respect to the optical axis of the lens to be examined.

また、上記目的を達成する為に、本発明の非球面レンズの偏心測定方法にあっては、照明光学系からの照明光を被検レンズの被検面上に照射し、該被検面からの反射光を検出して、被検レンズの光軸に対する非球面軸の傾き量と方向とを測定する非球面レンズの偏心測定方法であって、前記照明光学系からの光束を、被検面の近軸曲率中心に集光するように、被検レンズの被検面上に照射すると共に、被検レンズを回転させて、該被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する近軸曲率中心の偏心量及び偏心方向を測定する近軸曲率中心の偏心状態測定工程と、被検レンズを回転させながら、前記照明光学系からの光束が被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて被検面の回転軸方向での面振れ量を検出する面振れ量検出工程と、前記面振れ量検出工程により検出された被検面の面振れ量と該被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する被検面の面頂位置と、前記偏心状態測定工程により測定された前記近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する非球面軸の傾き量と方向とを算出する非球面偏心量算出工程とを具備したことを特徴とする。   In order to achieve the above object, in the method for measuring the decentration of an aspheric lens according to the present invention, the illumination light from the illumination optical system is irradiated on the test surface of the test lens, and the test surface is A decentering method of an aspherical lens that detects the reflected light of the aspherical lens and measures the tilt amount and direction of the aspherical axis with respect to the optical axis of the lens to be examined. The rotation axis of the spot image formed by the reflected light from the test surface is irradiated while irradiating the test surface of the test lens so as to focus on the paraxial curvature center of A step of measuring the decentering state of the paraxial curvature center for measuring the decentering amount and decentering direction of the paraxial curvature center with respect to the rotation axis from the locus of the detected spot image, While rotating, the light beam from the illumination optical system is focused on the surface to be examined. The distance between the illumination optical system and the test lens is changed at any time, the relative movement amount of the illumination optical system and the test lens and the rotation angle of the test lens are detected, and the test object is detected based on the detection result. A surface runout amount detecting step for detecting a surface runout amount in the rotation axis direction of the test surface, and a surface runout amount of the test surface detected by the surface runout amount detecting step are compared with the design data of the test surface. Determining the relative shift amount and tilt amount with respect to the rotation axis that minimizes the difference between the two, the top position of the surface to be measured with respect to the rotation axis calculated from the shift amount and tilt amount, and the eccentric state An aspheric eccentricity calculating step for calculating an inclination amount and direction of the aspherical axis with respect to the optical axis of the lens to be measured from the eccentric amount and the eccentric direction of the paraxial curvature center measured by the measuring step. It is characterized by.

以上説明したように、本発明の偏心測定装置及び偏心測定方法によれば、容易且つ高精度に非球面レンズの非球面偏心量及びその方向を測定することができる。   As described above, according to the eccentricity measuring apparatus and the eccentricity measuring method of the present invention, it is possible to easily and accurately measure the aspherical eccentric amount and the direction of the aspherical lens.

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.

<偏心測定装置>
図1及び図2は、本実施の形態に係る偏心測定装置1の概略構成説明図である。また、図7及び図8は本実施の形態に係る偏心測定装置1の変形例を示す概略構成説明図である。尚、同一の構成については、同一の符号を付して説明を省略する。
本実施の形態に係る偏心測定装置1は、被検レンズ10を保持するレンズ保持部材20と、前記レンズ保持部材20のレンズ保持面21とは反対側の面が連結され、該レンズ保持部材20を回転させる回転手段30と、レンズ保持部材20上に載置されたレンズ10の被検面10bから所定の間隔をもって配置されるオートコリメーション方式測定部50と、偏心測定装置における各部の制御及び所定の演算を行う制御・演算装置70とを備え、更に適宜選択されるその他の構成を備えている。
<Eccentricity measuring device>
FIG.1 and FIG.2 is schematic explanatory drawing of the eccentricity measuring apparatus 1 which concerns on this Embodiment. 7 and 8 are schematic configuration explanatory views showing a modification of the eccentricity measuring apparatus 1 according to the present embodiment. In addition, about the same structure, the same code | symbol is attached | subjected and description is abbreviate | omitted.
In the decentration measuring apparatus 1 according to the present embodiment, a lens holding member 20 that holds a test lens 10 and a surface opposite to the lens holding surface 21 of the lens holding member 20 are connected, and the lens holding member 20 is connected. A rotating means 30 for rotating the lens, an autocollimation measuring unit 50 arranged at a predetermined interval from the test surface 10b of the lens 10 placed on the lens holding member 20, control of each part in the eccentricity measuring device and predetermined And a control / arithmetic unit 70 that performs the above-described calculation, and other configurations appropriately selected.

レンズ保持部材20は、図1の断面で示すように、円筒形状であり、図中上端側の内周縁が被検レンズ10に接触して該被検レンズ10の位置決めがされる。またレンズ保持部材20の下端側にはフランジ部が形成されている。そして、レンズ保持部材20の下端側フランジ部によって、レンズ保持部材20と回転手段30とが同軸的に連結される。回転手段30は、駆動源としての図示しないモータを備えている。更に、回転手段30の図示しないモータの駆動軸には、ロータリーエンコーダ40が接続されており、該ロータリーエンコーダ40により、回転手段30の回転角を検出することが可能となる。   As shown in the cross section of FIG. 1, the lens holding member 20 has a cylindrical shape, and the inner peripheral edge on the upper end side in the drawing contacts the test lens 10 so that the test lens 10 is positioned. A flange portion is formed on the lower end side of the lens holding member 20. The lens holding member 20 and the rotating means 30 are coaxially connected by the lower end side flange portion of the lens holding member 20. The rotating means 30 includes a motor (not shown) as a drive source. Further, a rotary encoder 40 is connected to a drive shaft of a motor (not shown) of the rotating means 30, and the rotational angle of the rotating means 30 can be detected by the rotary encoder 40.

オートコリメーション方式測定部50は、照明光源51と、照明光源51からの光を集光性の光束として被検レンズ10の被検面に照射する照明光学系52a,52bと、被検レンズ10の被検面からの反射光を結像させる結像光学系53a,53bと、結像光学系53a,53bにより結像された像を検出する像検出手段54と、少なくとも照明光学系52a,52bとレンズ保持部材20との間隔を光軸方向に相対的に変更可能として、照明光学系52a,52bで集光された光束の光軸L方向での被検レンズ10への照射位置を変更可能する光軸方向移動手段55と、照明光学系52a,52b、及びレンズ保持部材20を光軸L方向と直交する方向に相対的に移動可能として、該照明光学系52a,52bで集光された光束の光軸Lと直交する方向での被検レンズ10の被検面上への照射位置を変更可能する水平方向移動手段56と、照明光学系52a,52bの光路中に設けられ照明光源51から発する光を被検レンズ10に向けて透過するとともに、被検レンズの被検面からの反射光を像検出手段54に向けて反射するハーフミラー57とを備えている。   The autocollimation method measuring unit 50 includes an illumination light source 51, illumination optical systems 52 a and 52 b that irradiate the test surface of the test lens 10 with the light from the illumination light source 51 as a condensing light beam, and the test lens 10. Imaging optical systems 53a and 53b that image reflected light from the test surface, image detection means 54 that detects images formed by the imaging optical systems 53a and 53b, and at least illumination optical systems 52a and 52b The distance from the lens holding member 20 can be changed relatively in the optical axis direction, and the irradiation position of the light beam condensed by the illumination optical systems 52a and 52b on the test lens 10 in the optical axis L direction can be changed. The light beam condensed by the illumination optical systems 52a and 52b so that the optical axis direction moving means 55, the illumination optical systems 52a and 52b, and the lens holding member 20 can be moved relative to each other in the direction orthogonal to the optical axis L direction. Optical axis L The horizontal direction moving means 56 capable of changing the irradiation position on the test surface of the test lens 10 in the orthogonal direction, and the light emitted from the illumination light source 51 provided in the optical path of the illumination optical systems 52a and 52b are tested. A half mirror 57 that transmits toward the lens 10 and reflects reflected light from the test surface of the test lens toward the image detection unit 54 is provided.

オートコリメーション方式測定部50は、筐体50A内に収納され、該筐体50A全体が支柱57に取り付けられていることが好ましい。また、本実施の形態に示すオートコリメーション方式測定部50は、照明光学系の一部を構成する正レンズ52bと結像光学系の一部を構成する正レンズ53bを共用するものである。   The autocollimation measuring unit 50 is preferably housed in the housing 50 </ b> A, and the entire housing 50 </ b> A is preferably attached to the column 57. Further, the autocollimation measuring unit 50 shown in the present embodiment shares the positive lens 52b that forms part of the illumination optical system and the positive lens 53b that forms part of the imaging optical system.

照明光源51としては、特に制限はないが、例えば、レーザダイオードや半導体レーザなどが好適に挙げられる。   Although there is no restriction | limiting in particular as the illumination light source 51, For example, a laser diode, a semiconductor laser, etc. are mentioned suitably.

照明光学系としては、照明光源51からの光を被検面上又は、被検レンズ10の被検面の近軸曲率中心に集光できる構成であれば、特に制限はなく、図1に示す、所定の間隔をもって対向配置された2つの正レンズ52a,52bを備えた構成の他に、複数のレンズ群を備えたものでもよい。結像光学系としては、ハーフミラー57を介して90°配置された2つの正レンズ53a,53bを備えた構成の他に、複数のレンズ群を備えたものでもよい。また、結像光学系を構成するレンズ53aの結像位置に配置された像検出手段54としては、CCDなどの通常の撮像素子を用いることができる。   The illumination optical system is not particularly limited as long as it can condense light from the illumination light source 51 on the test surface or the center of the paraxial curvature of the test surface of the test lens 10, and is shown in FIG. In addition to the configuration including the two positive lenses 52a and 52b arranged to face each other at a predetermined interval, a lens including a plurality of lens groups may be used. The imaging optical system may include a plurality of lens groups in addition to the configuration including the two positive lenses 53 a and 53 b disposed 90 ° via the half mirror 57. Further, as the image detecting means 54 disposed at the image forming position of the lens 53a constituting the image forming optical system, a normal image pickup device such as a CCD can be used.

光軸方向移動手段55(55A,55B)としては、照明光学系52a,52bで集光された光束の光軸L方向での被検レンズ10への照射位置を変更可能な構成であれば、特に制限はないが、例えば、図1に示すように、光軸方向移動手段55Aが、照明光学系52a,52b中の被検レンズ10側の正レンズ52bの位置を光軸L方向に移動可能とすることにより、該光束の光軸L方向での被検レンズ10への照射位置を変更可能とする構成が好適に挙げられる。   As the optical axis direction moving means 55 (55A, 55B), as long as the irradiation position of the light beam condensed by the illumination optical systems 52a, 52b on the lens 10 in the optical axis L direction can be changed, Although there is no particular limitation, for example, as shown in FIG. 1, the optical axis direction moving means 55A can move the position of the positive lens 52b on the test lens 10 side in the illumination optical systems 52a and 52b in the optical axis L direction. Thus, a configuration that can change the irradiation position of the light beam on the test lens 10 in the direction of the optical axis L is preferable.

また、光軸方向移動手段55の変形例としては、図7に示すように、照明光学系を構成する各レンズ52a,52bは固定として、光軸方向移動手段55Bによって、オートコリメーション方式測定部50の筐体50Aが支柱57に対して、光軸Lの方向と平行に移動可能とする構成が好適に挙げられる。ここで、正レンズ52b又は筐体50Aの移動機構としては、公知のスライドガイド等を用いることができる。また、光軸方向移動手段55としては、モータ等を利用して、その移動制御を遠隔操作で行うようにすることができる。更に、筐体50Aに対して、レンズ保持手段20側を移動させるように構成してもよい。   As a modification of the optical axis direction moving means 55, as shown in FIG. 7, the lenses 52a and 52b constituting the illumination optical system are fixed, and the optical axis direction moving means 55B uses the autocollimation method measuring unit 50. A configuration in which the casing 50 </ b> A is movable with respect to the column 57 in parallel with the direction of the optical axis L is preferable. Here, a known slide guide or the like can be used as the moving mechanism of the positive lens 52b or the housing 50A. Further, the optical axis direction moving means 55 can be controlled remotely by using a motor or the like. Further, the lens holding means 20 side may be moved with respect to the housing 50A.

この場合、照明光学系を構成する各レンズ52a,52bの間隔変動に伴う測定誤差の影響を防止することができ、測定精度を向上させることが可能となる。   In this case, it is possible to prevent the influence of the measurement error due to the variation in the distance between the lenses 52a and 52b constituting the illumination optical system, and it is possible to improve the measurement accuracy.

水平方向移動手段56としては、照明光学系52a,52bで集光された光束の光軸Lと直交する方向での被検レンズ10の被検面上への照射位置を変更可能な構成であれば、特に制限はないが、例えば、図1に示すように、筐体50Aが支柱57に対して、光軸Lと直交する方向に移動可能とする構成が好適に挙げられる。また、水平方向移動手段56としては、モータ等を利用して、その移動制御を遠隔操作で行うようにすることができる。更に、筐体50Aに対して、レンズ保持手段20側を移動させるように構成してもよい。光軸方向移動手段55及び水平方向移動手段56により、照明光学系52a,52bからの光束は、被検レンズ10の所定の位置に集光するように、被検レンズ10の被検面上における所定の位置に照射される。ここで、被検レンズ10の被検面の回転軸Mに対する近軸曲率中心の偏心量及び偏心方向を算出する場合には、照明光学系52a,52bからの光束は、被検面の近軸曲率中心に集光するように被検レンズ10の被検面上における所定の位置に照射される。また、被検レンズ10の被検面の回転軸M方向での面振れ量を検出する場合には、照明光学系52a,52bからの光束は、被検面上の所定の位置に集光するように照射される。   The horizontal moving means 56 may be configured to change the irradiation position on the test surface of the test lens 10 in the direction orthogonal to the optical axis L of the light beam collected by the illumination optical systems 52a and 52b. For example, as shown in FIG. 1, for example, a configuration in which the housing 50 </ b> A is movable in a direction orthogonal to the optical axis L is preferable. Moreover, as the horizontal direction moving means 56, the movement control can be performed by remote operation using a motor or the like. Further, the lens holding means 20 side may be moved with respect to the housing 50A. By the optical axis direction moving means 55 and the horizontal direction moving means 56, the light beams from the illumination optical systems 52 a and 52 b are focused on the test surface of the test lens 10 so as to be condensed at a predetermined position of the test lens 10. A predetermined position is irradiated. Here, when calculating the amount of decentration and the direction of decentering of the paraxial curvature center with respect to the rotation axis M of the test surface of the test lens 10, the light beams from the illumination optical systems 52a and 52b are paraxial on the test surface. The light is irradiated to a predetermined position on the test surface of the test lens 10 so as to be condensed at the center of curvature. In addition, when detecting the surface shake amount in the direction of the rotation axis M of the test surface of the test lens 10, the light beams from the illumination optical systems 52a and 52b are condensed at a predetermined position on the test surface. Irradiated as follows.

像検出手段54は、被検レンズ10の被検面上に照射された光束の該被検面からの反射光をスポット像として検出する。   The image detection means 54 detects the reflected light from the test surface of the light beam irradiated on the test surface of the test lens 10 as a spot image.

制御・演算装置70としては、図示しない偏心状態算出部、面振れ量検出部及び非球面偏心量算出手段を備えている。   The control / arithmetic unit 70 includes an eccentric state calculation unit, a surface shake amount detection unit, and an aspherical eccentricity calculation unit (not shown).

偏心状態算出部は、照明光からの光束が被検面の近軸曲率中心1ob(1oa)に集光するように照明光学系52a,52bが配置された状態において、像検出手段54により検出されたスポット像の回転手段30の回転軸M回りでの振れ回りの軌跡から、回転手段30の回転軸Mに対する近軸曲率中心1ob(1oa)の偏心量及び偏心方向を算出する。   The eccentric state calculation unit is detected by the image detection means 54 in a state where the illumination optical systems 52a and 52b are arranged so that the light beam from the illumination light is collected at the paraxial curvature center 1ob (1oa) of the surface to be measured. The amount of eccentricity and the direction of eccentricity of the paraxial center of curvature 1ob (1oa) with respect to the rotation axis M of the rotation means 30 are calculated from the locus of the spot image rotating about the rotation axis M of the rotation means 30.

面振れ量検出部は、被検レンズ10の被検面上に、照明光学系52a,52bからの光束が、常に照射されるように、光軸方向移動手段55A又は55Bによって、照明光学系とレンズ保持部材20との間隔を適宜変更させて、照明光学系及びレンズ保持部材20の相対的な移動量及び回転手段30の回転角を検出し、該検出結果に基づいて被検面の回転軸方向での面振れ量を検出する。尚、回転手段30の回転角は、ロータリーエンコーダ40により検知され該検知信号は出力信号を制御・演算装置70に入力される。   The surface shake amount detector is connected to the illumination optical system by the optical axis direction moving means 55A or 55B so that the light beam from the illumination optical systems 52a and 52b is always irradiated onto the test surface of the test lens 10. The relative distance between the illumination optical system and the lens holding member 20 and the rotation angle of the rotating means 30 are detected by appropriately changing the distance between the lens holding member 20 and the rotation axis of the test surface based on the detection result. Detects the amount of surface runout in the direction. The rotation angle of the rotating means 30 is detected by the rotary encoder 40, and the detection signal is input to the control / arithmetic unit 70 as an output signal.

非球面偏心量算出手段は、面振れ量検出部により検出された被検面の面振れ量と、該被検面の設計データとを対比させ、両者の差が最も小さくなる回転手段30の回転軸Mに対する相対的なシフト量及びチルト量を求めるとともに、該シフト量及びチルト量から回転軸Mに対する被検面の面頂位置を算出し、更に、算出された該面頂位置と、前記偏心状態算出部により算出された前記近軸曲率中心の偏心量及び偏心方向とから、被検レンズ10の光軸に対する非球面軸の傾き量と方向とを算出する。   The aspherical surface eccentricity calculating means compares the surface runout amount of the test surface detected by the surface shake amount detecting unit with the design data of the test surface, and the rotation of the rotating means 30 that minimizes the difference between the two. The relative shift amount and tilt amount with respect to the axis M are obtained, the surface top position of the test surface with respect to the rotation axis M is calculated from the shift amount and tilt amount, and the calculated surface top position and the eccentricity are calculated. From the decentering amount and decentering direction of the paraxial curvature center calculated by the state calculating unit, the tilt amount and direction of the aspherical axis with respect to the optical axis of the lens 10 to be tested are calculated.

本実施の形態に係る偏心測定装置1のその他の構成としては、モニタ80が好適に挙げられる。モニタ80は、例えば、像検出手段54により検出されたスポット像が表示可能とされており、スポット像の回転手段30の回転軸M回りでの振れ回りを表示して、後述する被検レンズの心出し調整工程や、被検レンズ10の被検面の近軸曲率中心1obにスポット像を移動させる場合などに利用される。   As another configuration of the eccentricity measuring apparatus 1 according to the present embodiment, a monitor 80 is preferably exemplified. The monitor 80 can display, for example, a spot image detected by the image detection means 54, displays the swing of the spot image around the rotation axis M of the rotation means 30, and the later-described lens of the test lens. This is used for a centering adjustment process or when a spot image is moved to the paraxial curvature center 1ob of the test surface of the test lens 10.

尚、以上の説明では、被検レンズ10は、レンズ両面が凸状の非球面形状から成る被検レンズについて説明したが、レンズの一方側面が球面で、他方側面が非球面のレンズに対しても適応可能であり、更に、レンズの両面又は片面が凹状の非球面または球面の被検レンズであっても同様に適応可能である。   In the above description, the test lens 10 has been described as a test lens having a convex aspherical shape on both sides of the lens. However, the lens 10 has a spherical surface on one side and an aspherical surface on the other side. In addition, the present invention can also be applied to a lens having a concave aspherical surface or a spherical surface on both sides or one side of the lens.

<偏心測定方法>
次に、本発明の実施の形態に係る偏心測定方法について説明する。尚、以下に説明する非球面レンズの偏心測定方法は、レンズ両面が凸状の非球面形状から成る被検レンズについて説明するが、上述のとおり、他の形状の非球面レンズについても同様の測定方法を適応することが可能である。
本発明の実施の形態に係る非球面レンズの偏心測定方法は、近軸曲率中心の偏心状態測定工程と、面振れ量検出工程と、非球面偏心量算出工程とを備え、更に必要に応じて、略心出し調整工程、心出し調整工程等のその他の工程を備える。
<Eccentricity measuring method>
Next, the eccentricity measuring method according to the embodiment of the present invention will be described. The method for measuring the decentration of the aspherical lens described below will be described for a test lens having a convex aspherical shape on both surfaces of the lens. However, as described above, the same measurement is also performed for aspherical lenses having other shapes. It is possible to adapt the method.
An aspheric lens decentration measuring method according to an embodiment of the present invention includes a decentered state measuring step of a paraxial curvature center, a surface shake amount detecting step, and an aspheric decentering amount calculating step, and further if necessary. Other steps such as a substantially centering adjustment step and a centering adjustment step are provided.

<<略心出し調整工程>>
略心出し調整工程は、図1に示す偏心測定装置1において、被検レンズ10をレンズ保持部材20に支持させた後、該被検レンズ10を回転手段30によって回転させながら調心を行う工程である。被検レンズ10をレンズ保持部材20上に載せただけでは、回転手段30の回転軸Mに対して傾いていたり、ずれたりするので、オートコリメーション方式測定部50の観察範囲内に、前記照明光学系で集光された光束が存在しないことが多い。そこで、略心出し調整工程により、被検レンズの被検面における近軸曲率中心に照明光学系で集光された光束を位置させて概略心出しを行う。まず、略心出し調整工程は、被検レンズ10をレンズ保持部材20上で回転させながら、オートコリメーション方式測定部50の測定光軸、即ち、照明光学系52a,52bの光軸Lと、回転手段30の回転軸Mとが略一致するように、該照明光学系を水平方向移動手段56により移動させる。その後、光軸方向移動手段55A,55Bにより、照明光学系で集光された光束を、予め設計値より求まっている被検レンズの被検面における近軸曲率中心の位置(図1では1obの位置)である観察範囲内に集光するように照明光学系を移動させる。この工程により略心出し調整が完了する。
<< About the centering adjustment process >>
In the approximate centering adjustment step, in the eccentricity measuring apparatus 1 shown in FIG. 1, after the test lens 10 is supported by the lens holding member 20, the test lens 10 is centered while being rotated by the rotating means 30. It is. If the test lens 10 is simply placed on the lens holding member 20, it is tilted or displaced with respect to the rotation axis M of the rotating means 30, so that the illumination optics is within the observation range of the autocollimation type measuring unit 50. In many cases, there is no light beam collected by the system. Therefore, in the approximate centering adjustment step, the light beam collected by the illumination optical system is positioned at the center of the paraxial curvature on the test surface of the test lens, and then the approximate centering is performed. First, in the substantially centering adjustment process, while rotating the lens 10 to be measured on the lens holding member 20, the rotation is performed with the measurement optical axis of the autocollimation measuring unit 50, that is, the optical axis L of the illumination optical systems 52a and 52b. The illumination optical system is moved by the horizontal movement means 56 so that the rotation axis M of the means 30 substantially coincides. Thereafter, the light beam condensed by the illumination optical system by the optical axis direction moving means 55A and 55B is obtained by the position of the paraxial curvature center on the test surface of the test lens obtained in advance from the design value (1 ob in FIG. 1). The illumination optical system is moved so as to collect light within an observation range that is position. This process completes the substantially centering adjustment.

<<心出し調整工程>>
心出し調整工程は、略心出し調整工程の次に、被検レンズ10をレンズ保持部材20上で回転させながら、被検面10bにおける近軸曲率中心1obの回転手段10における回転軸Mに対する偏心量を検出し、この偏心量が概略0となるように被検レンズ10の位置調整(偏心調整)を行う工程である。ここでの偏心調整では厳密に近軸曲率中心1obを回転軸Mに一致させる必要はないが、別途、被検面10aの近軸曲率中心の偏心量を測定するときに近軸領域で計算を行うので、被検面10aの反対面である被検面10bの偏心量が小さい方が検出精度が高くなる。レンズ保持部材を回転する回転手段10には、ロータリーエンコーダ40が接続されており、ロータリーエンコーダ40が測定した回転角度値により、被検レンズ10の回転方向の基準を設定し、近軸曲率中心の偏心方向を測定する。
<< Centering adjustment process >>
In the centering adjustment step, following the substantially centering adjustment step, the test lens 10 is rotated on the lens holding member 20, and the paraxial curvature center 1ob on the test surface 10b is decentered with respect to the rotation axis M in the rotating means 10. This is a step of detecting the amount and adjusting the position of the lens 10 (eccentricity adjustment) so that the amount of eccentricity becomes approximately zero. In the eccentricity adjustment here, it is not necessary to strictly match the paraxial center of curvature 1ob with the rotation axis M. However, when the eccentricity of the paraxial center of curvature of the test surface 10a is separately measured, calculation is performed in the paraxial region. Therefore, the detection accuracy is higher when the amount of eccentricity of the test surface 10b, which is the opposite surface of the test surface 10a, is smaller. A rotary encoder 40 is connected to the rotating means 10 for rotating the lens holding member. A reference for the rotation direction of the lens 10 to be measured is set based on the rotation angle value measured by the rotary encoder 40, and the center of paraxial curvature is set. Measure the direction of eccentricity.

<<近軸曲率中心の偏心状態測定工程>>
近軸曲率中心の偏心状態測定工程は、被検レンズ10を回転させながら、被検レンズの被検面の近軸曲率中心に集光された光束を検出し、検出された該光束の回転軸M回りでの振れ回りの軌跡及び被検レンズ10の回転角から被検レンズ10の被検面における回転軸Mに対する近軸曲率中心の偏心量及び偏心方向を測定する工程である。近軸曲率中心の偏心状態測定工程としては、照明光学系と直接対面する被検レンズの第1被検面の非球面軸付近の面の接線に対して垂直に照明光学系からの照明光を照射して近軸曲率中心の偏心状態を測定する工程、及び照明光学系からの照明光を第1被検面を透過させた状態で、第2被検面の非球面軸付近の面の接線に対して垂直に照射して近軸曲率中心の偏心状態を測定する工程を含むものである。
<< Eccentricity measurement process centered on paraxial curvature >>
In the eccentric state measuring step of the paraxial curvature center, the light beam collected at the paraxial curvature center of the test surface of the test lens is detected while rotating the test lens 10, and the rotation axis of the detected light beam is detected. This is a step of measuring the eccentric amount and the eccentric direction of the paraxial curvature center with respect to the rotation axis M on the test surface of the test lens 10 from the trajectory of the swing around M and the rotation angle of the test lens 10. In the step of measuring the eccentric state of the paraxial curvature center, the illumination light from the illumination optical system is perpendicular to the tangent of the surface near the aspherical axis of the first test surface of the test lens that directly faces the illumination optical system. Irradiation to measure the eccentric state of the paraxial curvature center, and tangent to the surface of the second test surface near the aspherical axis in a state where the illumination light from the illumination optical system is transmitted through the first test surface The method includes the step of measuring the eccentric state of the paraxial curvature center by irradiating perpendicularly to the center.

<<面振れ量検出工程>>
被検面の面振れ量検出工程は、被検レンズ10を回転させながら、被検レンズの被検面上に所定の光束が常に照射されるように、照明光学系52a,52bと被検レンズ10との間隔を適宜変更させて、照明光学系52a,52b及び被検レンズ10の相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて被検面の回転軸方向での面振れ量を検出する工程である。被検面の面振れ量検出工程としては、照明光学系からの光束を該照明光学系と直接対面する被検レンズの第1被検面上に照射して第1被検面の回転軸方向での面振れ量を検出する工程、及び照明光学系からの光束を第1被検面を透過させた状態で、第2被検面上に照射して第2被検面の回転軸方向での面振れ量を検出する工程を含むものである。
<< Surface shake amount detection process >>
The surface shake amount detection step of the test surface includes the illumination optical systems 52a and 52b and the test lens so that a predetermined light beam is always irradiated onto the test surface of the test lens while rotating the test lens 10. The relative distance between the illumination optical systems 52a and 52b and the test lens 10 and the rotation angle of the test lens are detected by appropriately changing the interval with the test lens 10, and the rotation axis of the test surface is detected based on the detection result. This is a step of detecting the amount of surface deflection in the direction. In the surface shake amount detection step of the test surface, the light beam from the illumination optical system is irradiated onto the first test surface of the test lens that directly faces the illumination optical system, and the rotation axis direction of the first test surface In the state of detecting the amount of surface vibration at the surface, and in a state where the light beam from the illumination optical system is transmitted through the first test surface, the second test surface is irradiated in the direction of the rotation axis of the second test surface. This includes a step of detecting the amount of surface deflection.

<<非球面偏心量算出工程>>
非球面偏心量算出工程は、前記被検面の面振れ量検出工程により検出された被検面の面振れ量と該被検面の設計データとを対比させ、両者の差が最も小さくなる前記非検レンズ10の回転軸Mに対する相対的なシフト量及びチルト量を求めるとともに、該シフト量及びチルト量から回転軸Mに対する被検面の面頂位置を算出し、次いで、算出された被検面の面頂位置と、前記被検面の近軸曲率中心の偏心状態測定工程により測定された被検面の近軸曲率中心の偏心量及び偏心方向から、被検レンズ10の光軸に対する被検面の非球面軸の傾き量と方向とを算出する工程である。
<< Aspherical eccentricity calculation process >>
The aspherical eccentricity calculation step compares the surface runout amount of the test surface detected by the surface runout amount detection step of the test surface with the design data of the test surface, and the difference between the two is minimized. The relative shift amount and tilt amount with respect to the rotation axis M of the non-test lens 10 are obtained, the surface top position of the test surface with respect to the rotation axis M is calculated from the shift amount and tilt amount, and then the calculated test target From the surface top position of the surface and the amount of eccentricity and the direction of eccentricity of the paraxial curvature center of the test surface measured by the eccentric state measuring step of the paraxial curvature center of the test surface, This is a step of calculating the inclination amount and direction of the aspherical axis of the inspection surface.

[第1の実施の形態に係る偏心測定方法]
以下、本発明の第1の実施の形態に係る偏心測定方法を図1〜図4を用いて説明する。
第1の実施の形態に係る偏心測定方法は、前述した略心出し調整工程及び心出し調整工程を行った後に、以下に説明するそれぞれの工程を備える。
[Eccentricity measuring method according to first embodiment]
The eccentricity measuring method according to the first embodiment of the present invention will be described below with reference to FIGS.
The eccentricity measuring method according to the first embodiment includes the steps described below after performing the above-described substantially centering adjustment step and centering adjustment step.

即ち、本発明の第1の実施の形態に係る偏心測定方法は、照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第1被検面上に照射すると共に、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第1の近軸曲率中心の偏心状態測定工程と、前記照明光学系からの光束を、第2被検面の近軸曲率中心に集光するように、被検レンズの第1被検面を透過させて第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第2の近軸曲率中心の偏心状態測定工程と、被検レンズを回転させながら、前記照明光学系からの光束が第1被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第1被検面の回転軸方向での面振れ量を検出する第1の面振れ量検出工程と、被検レンズを回転させながら、前記照明光学系からの光束を第1被検面を透過させて第2被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第2被検面の回転軸方向での面振れ量を検出する第2の面振れ量検出工程と、前記第1の面振れ量検出工程により検出された前記第1被検面の面振れ量と該第1被検面の設計データとを対比させて、両者の差が最も小さくなる被検レンズの回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第1被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び前記第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第1の非球面軸の傾き量と方向とを算出する第1の非球面偏心量算出工程と、前記第2の面振れ量検出工程により検出された前記第2被検面の面振れ量と該第2被検面の設計データとを対比させて、両者の差が最も小さくなる前記非検レンズの回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第2被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第2の非球面軸の傾き量と方向とを算出する第2の非球面偏心量算出工程とを具備する。   In other words, the decentration measuring method according to the first embodiment of the present invention is configured so that the light beam from the illumination optical system is focused on the paraxial curvature center of the first test surface. Irradiate on the surface to be detected, rotate the lens to be detected, detect the trajectory around the rotation axis of the spot image formed by the reflected light from the first surface to be detected, and detect the detected spot A first paraxial curvature center decentration state measuring step of measuring an eccentric amount and an eccentric direction of the first paraxial curvature center of the first test surface with respect to the rotation axis from the locus of the image, and a light beam from the illumination optical system; (2) The first test surface of the test lens is transmitted through the first test surface so as to be focused on the paraxial curvature center of the test surface, and the second test surface is irradiated. 2 The trajectory around the rotation axis of the spot image formed by the reflected light from the surface to be detected is detected and detected. The second paraxial curvature center eccentricity measuring step for measuring the eccentric amount and the eccentric direction of the paraxial curvature center of the second test surface relative to the rotation axis from the trajectory of the spot image, while rotating the test lens, The distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is condensed on the first test surface, and the relative relationship between the illumination optical system and the test lens is changed. A first surface shake amount detection step of detecting a movement amount and a rotation angle of the test lens, and detecting a surface shake amount in the rotation axis direction of the first test surface based on the detection result; While rotating, the interval between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system passes through the first test surface and is condensed on the second test surface. The relative movement of the illumination optical system and the test lens and the rotation of the test lens Detected by a second surface shake amount detecting step for detecting a corner and detecting a surface shake amount in the direction of the rotation axis of the second test surface based on the detection result, and the first surface shake amount detecting step. Further, by comparing the surface deflection amount of the first test surface with the design data of the first test surface, the relative shift amount and tilt amount with respect to the rotation axis of the test lens that minimizes the difference between the two are obtained. The first position measured by the step of measuring the eccentricity of the top surface position of the first test surface relative to the rotation axis calculated from the shift amount and the tilt amount and the first and second paraxial curvature centers. A first aspheric surface eccentricity calculating step for calculating an inclination amount and direction of the first aspherical axis with respect to the optical axis of the lens to be tested from the eccentric amount and the eccentric direction of the first and second paraxial curvature centers. And surface runout of the second test surface detected by the second surface runout amount detection step The amount of shift is compared with the design data of the second test surface to determine the relative shift amount and tilt amount with respect to the rotation axis of the non-detection lens that minimizes the difference between the two, and the shift amount and tilt amount. The first and second paraxial curvature centers measured by the step of measuring the eccentricity of the surface top position of the second test surface relative to the rotation axis calculated from the first and second paraxial curvature centers A second aspherical eccentricity calculating step for calculating an inclination amount and direction of the second aspherical axis with respect to the optical axis of the lens to be detected from the eccentricity and the eccentric direction.

第1の実施の形態に係る偏心測定方法における近軸曲率中心の偏心状態測定工程は、被検面10bの近軸曲率中心の偏心状態を測定する第1の近軸曲率中心の偏心状態測定工程と、被検面10aの偏心状態を測定する第2の近軸曲率中心の偏心状態測定工程とを有する。   The eccentric state measuring step of the paraxial curvature center in the eccentricity measuring method according to the first embodiment is a first paraxial curvature center eccentric state measuring step of measuring the eccentric state of the paraxial curvature center of the test surface 10b. And an eccentric state measuring step of the second paraxial curvature center for measuring the eccentric state of the test surface 10a.

<<被検面10bの近軸曲率中心の偏心状態測定工程>>
被検面10bの近軸曲率中心の偏心状態測定工程は、被検レンズ10を回転させながら、被検レンズの第1被検面である被検面10bの近軸曲率中心1obに集光された集光光束を検出し、検出された該光束の回転軸M回りでの振れ回りの軌跡及び被検レンズ10の回転角から被検レンズ10の被検面10bにおける回転軸Mに対する近軸曲率中心1obの偏心量及び偏心方向を測定する工程である。
<< Eccentric state measurement process of paraxial curvature center of test surface 10b >>
In the step of measuring the eccentric state of the paraxial curvature center of the test surface 10b, the test lens 10 is focused on the paraxial curvature center 1ob of the test surface 10b, which is the first test surface of the test lens, while rotating the test lens 10. The collected light flux is detected, and the paraxial curvature with respect to the rotation axis M of the test surface 10b of the test lens 10 is determined from the locus of the swing around the rotation axis M of the detected light flux and the rotation angle of the test lens 10. This is a step of measuring the eccentric amount and the eccentric direction of the center 1ob.

本工程は、図3に示すように、まず、照明光源51から照明光学系52a,52bによって集光された光束を被検面10bの非球面軸付近の接線に垂直な方向から入射させる。光束は、近軸曲率中心1obに集光するように照明光学系52a,52bが調整される。そして、被検面10bに入射した光束は、該被検面10b上で反射して同じ光路を戻り、結像光学系53a,53bにより像検出手段54上に光束によるスポット像を結像する。ここで、被検面10bが、回転軸Mに対して偏心(シフト及びチルト)の無い理想的な状態である場合には、回転手段10を回転させて被検レンズを回転させても、像検出手段54上のスポット像は振れ回ることはない。一方、被検面10bが、回転軸Mに対して偏心している状態では、被検レンズ10を回転させると、像検出手段54上のスポット像は、被検面10bの近軸曲率中心1obの偏心状態に応じて振れ回る。そして、像検出手段54が検出するスポット像の振れ回りの軌跡の出力信号と、ロータリーエンコーダ40が検出する被検レンズの回転角に関する出力信号とが制御・演算装置70に入力される。そして、スポット像の振れ回り半径及びスポット像の回転軸からの方向から、被検面10bにおける近軸曲率中心1obの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)を算出する。   In this step, as shown in FIG. 3, first, the light beam collected by the illumination optical systems 52a and 52b from the illumination light source 51 is incident from a direction perpendicular to the tangent line near the aspheric axis of the test surface 10b. The illumination optical systems 52a and 52b are adjusted so that the light beam is focused on the paraxial curvature center 1ob. The light beam incident on the test surface 10b is reflected on the test surface 10b and returns on the same optical path, and a spot image is formed on the image detecting unit 54 by the imaging optical systems 53a and 53b. Here, when the test surface 10b is in an ideal state with no eccentricity (shift and tilt) with respect to the rotation axis M, the image can be obtained even if the test lens is rotated by rotating the rotation means 10. The spot image on the detection means 54 does not shake around. On the other hand, in a state where the test surface 10b is decentered with respect to the rotation axis M, when the test lens 10 is rotated, the spot image on the image detecting means 54 is the center of the paraxial curvature 1ob of the test surface 10b. Swings around according to the eccentric state. Then, an output signal of the locus of the spot image swing detected by the image detection unit 54 and an output signal related to the rotation angle of the lens to be detected detected by the rotary encoder 40 are input to the control / calculation device 70. Then, an eccentric amount (shift amount) and an eccentric direction (shift direction) of the paraxial curvature center 1ob on the test surface 10b with respect to the rotation axis M are calculated from the swing radius of the spot image and the direction from the rotation axis of the spot image. .

<<被検面10aの近軸曲率中心の偏心状態測定工程>>
本工程は、図4に示すように、まず、照明光源51から照明光学系52a,52bによって集光された照明光を被検面10bを透過させた後に、被検面10a上の非球面軸付近の接線に垂直な方向から入射させる。また、照明光学系からの光束は、近軸曲率中心1oaに集光するように照明光学系52a,52bが調整される。被検面10aに入射した光束は、該被検面10aで反射して同じ光路を戻り、結像光学系53a,53bにより像検出手段54上にスポット像を結像する。被検面10aが、透過回転軸Mに対して偏心している状態では、被検レンズ10を回転させると、像検出手段54上のスポット像は、被検面10aの近軸曲率中心1oaの偏心状態に応じて振れ回る。そして、像検出手段54が検出するスポット像の振れ回りの軌跡の出力信号と、ロータリーエンコーダ40が検出する被検レンズの回転角に関する出力信号とが制御・演算装置70に入力される。そして、スポット像の振れ回り半径及びスポット像の回転軸からの方向から、被検面10aにおける近軸曲率中心1oaの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)を算出する。
<< Eccentric state measurement process of paraxial curvature center of test surface 10a >>
In this step, as shown in FIG. 4, first, the illumination light condensed by the illumination optical systems 52a and 52b from the illumination light source 51 is transmitted through the test surface 10b, and then the aspheric axis on the test surface 10a. Incident from a direction perpendicular to a nearby tangent. Further, the illumination optical systems 52a and 52b are adjusted so that the light beam from the illumination optical system is condensed at the paraxial center of curvature 1oa. The light beam incident on the test surface 10a is reflected by the test surface 10a and returns on the same optical path, and a spot image is formed on the image detecting means 54 by the imaging optical systems 53a and 53b. In a state where the test surface 10a is decentered with respect to the transmission rotation axis M, when the test lens 10 is rotated, the spot image on the image detecting means 54 is decentered from the paraxial center of curvature 1oa of the test surface 10a. Swing around according to the condition. Then, an output signal of the locus of the spot image swing detected by the image detection unit 54 and an output signal related to the rotation angle of the lens to be detected detected by the rotary encoder 40 are input to the control / calculation device 70. Then, an eccentric amount (shift amount) and an eccentric direction (shift direction) of the paraxial curvature center 1oa on the test surface 10a with respect to the rotation axis M are calculated from the swing radius of the spot image and the direction from the rotation axis of the spot image. .

第1の実施の形態に係る偏心測定方法における面振れ量検出工程は、被検面10bの面振れ量を測定する第1の面振れ量検出工程と、測定光束を被検面10bを透過させた状態で被検面10a上に照射させて被検面10aの面振れ量を測定する第2の面振れ量検出工程とを有する。   The surface shake amount detecting step in the eccentricity measuring method according to the first embodiment includes the first surface shake amount detecting step for measuring the surface shake amount of the test surface 10b, and transmitting the measurement light beam through the test surface 10b. And a second surface shake amount detecting step of measuring the surface shake amount of the test surface 10a by irradiating the test surface 10a in a state where the test surface 10a is irradiated.

<<被検面10bの面振れ量検出工程>>
被検面10bの面振れ量検出工程は、被検レンズ10を回転させながら、被検レンズの第1被検面である被検レンズ10の被検面10b上に所定の光束が常に照射されるように、照明光学系52a,52bと被検レンズ10との間隔を適宜変更させて、照明光学系52a,52b及び被検レンズ10の相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて被検面10bの回転軸方向での面振れ量を検出する工程である。
<< Surface shake amount detection step of the test surface 10b >>
In the surface shake amount detection step of the test surface 10b, a predetermined light beam is always irradiated onto the test surface 10b of the test lens 10 which is the first test surface of the test lens while rotating the test lens 10. In this manner, the relative distance between the illumination optical systems 52a and 52b and the test lens 10 and the rotation angle of the test lens are detected by appropriately changing the distance between the illumination optical systems 52a and 52b and the test lens 10. In this step, the surface runout amount in the direction of the rotation axis of the surface to be tested 10b is detected based on the detection result.

本工程は、まず、図1に示す照明光学系52a,52bを水平方向移動手段56によって、図3に示す被検面10b上の面振れ量の測定を行う所定の測定位置(図3では、回転軸から半径方向にRb離れた位置)に移動させる。次いで、被検レンズ10を回転させながら、当該測定位置の被検面10b上に、常に、照明光源51の光束が集光するように、光軸方向移動手段55A又は55Bによって、照明光学系52a,52bの被検面10bに対する間隔が調整される。そして、光軸方向移動手段55A又は55Bの移動量をリニアスケール等の公知の直線方向移動量測定手段により測定し、該直線方向移動量測定手段からの出力信号と、ロータリーエンコーダ40が検出する被検レンズの回転角に関する出力信号とが制御・演算装置70に入力される。測定位置(図3では、回転軸から半径方向にRb離れた位置)を被検レンズ10の半径方向に適宜移動させて、制御・演算装置70に入力される光軸方向移動手段55A又は55Bの移動量及び回転角の出力信号から、被検面10bの輪帯状の三次元形状データを算出する。該三次元形状データが被検面10bの面振れ量データとなる。   In this step, first, the illumination optical systems 52a and 52b shown in FIG. 1 are measured by a horizontal moving means 56 at a predetermined measurement position (in FIG. 3, the measurement of the surface shake amount on the test surface 10b shown in FIG. The position is moved to a position Rb away from the rotation axis in the radial direction. Next, the illumination optical system 52a is moved by the optical axis direction moving means 55A or 55B so that the light beam of the illumination light source 51 is always focused on the test surface 10b at the measurement position while rotating the test lens 10. , 52b with respect to the test surface 10b is adjusted. Then, the movement amount of the optical axis direction movement means 55A or 55B is measured by a known linear direction movement amount measurement means such as a linear scale, and the output signal from the linear direction movement amount measurement means and the object detected by the rotary encoder 40 are detected. An output signal related to the rotation angle of the lens is input to the control / arithmetic unit 70. The measurement position (the position Rb away from the rotation axis in the radial direction in FIG. 3) is appropriately moved in the radial direction of the lens 10 to be measured, and the optical axis direction moving means 55A or 55B input to the control / calculation device 70. From the output signal of the movement amount and the rotation angle, the annular three-dimensional shape data of the test surface 10b is calculated. The three-dimensional shape data becomes the surface shake amount data of the test surface 10b.

<<被検面10aの面振れ量検出工程>>
本工程は、まず、照明光学系52a,52bを光軸方向移動手段55A又は55B、及び水平方向移動手段56によって所定の場所に移動させて、照明光源51の光束を被検レンズ10の被検面10bを透過させて、被検面10a上の面振れ量の測定を行う所定の測定位置(図4では、回転軸から半径方向にRa離れた位置)に照射させる。次いで、被検レンズ10を回転させながら、当該測定位置の被検面10a上に、常に、照明光源51の光束が集光するように、光軸方向移動手段55A又は55Bによって、照明光学系52a,52bの被検面10aに対する間隔が調整される。そして、光軸方向移動手段55A又は55Bの移動量をリニアスケール等の公知の直線方向移動量測定手段により測定し、該直線方向移動量測定手段からの出力信号と、ロータリーエンコーダ40が検出する被検レンズの回転角に関する出力信号とが制御・演算装置70に入力される。測定位置(図4では、回転軸から半径方向にRa離れた位置)を被検レンズ10の半径方向に適宜移動させて、制御・演算装置70に入力される光軸方向移動手段55A又は55Bの移動量及び回転角の出力信号から、被検面10aの輪帯状の三次元形状データを算出する算出する。該三次元形状データが被検面10aの面振れ量データとなる。尚、被検面10bを透過させて被検面10aの振れ量を測定する場合には、被検レンズ10の屈折率を考慮し、面振れ量を算出することが好ましい。屈折率の影響については、公知の方法により補正することが可能である。
<< Surface shake amount detection step of the test surface 10a >>
In this step, first, the illumination optical systems 52a and 52b are moved to a predetermined place by the optical axis direction moving means 55A or 55B and the horizontal direction moving means 56, and the luminous flux of the illumination light source 51 is detected by the test lens 10. The light is irradiated to a predetermined measurement position (a position away from the rotation axis in the radial direction in FIG. 4) that transmits the surface 10b and measures the amount of surface deflection on the surface 10a to be measured. Next, the illumination optical system 52a is moved by the optical axis direction moving means 55A or 55B so that the light beam of the illumination light source 51 is always focused on the test surface 10a at the measurement position while rotating the test lens 10. , 52b with respect to the test surface 10a is adjusted. Then, the movement amount of the optical axis direction movement means 55A or 55B is measured by a known linear direction movement amount measurement means such as a linear scale, and the output signal from the linear direction movement amount measurement means and the object detected by the rotary encoder 40 are detected. An output signal related to the rotation angle of the lens is input to the control / arithmetic unit 70. The measurement position (position in the radial direction Ra away from the rotation axis in FIG. 4) is appropriately moved in the radial direction of the lens 10 to be measured, and the optical axis direction moving means 55A or 55B input to the control / calculation device 70. From the output signal of the movement amount and the rotation angle, calculation is performed to calculate the annular three-dimensional shape data of the test surface 10a. The three-dimensional shape data becomes the surface shake amount data of the test surface 10a. When measuring the shake amount of the test surface 10a through the test surface 10b, it is preferable to calculate the surface shake amount in consideration of the refractive index of the test lens 10. The influence of the refractive index can be corrected by a known method.

第1の実施の形態に係る偏心測定方法における非球面偏心量算出工程は、被検面10bの非球面偏心量を測定する第1の非球面偏心量算出工程と、被検面10aの非球面偏心量を測定する第2の非球面偏心量算出工程とを有する。   The aspheric eccentricity calculating step in the eccentricity measuring method according to the first embodiment includes a first aspheric eccentricity calculating step for measuring the aspheric eccentricity of the test surface 10b, and an aspherical surface of the test surface 10a. And a second aspheric surface eccentricity calculating step for measuring the eccentricity.

<<被検面10bの非球面偏心量算出工程>>
被検面10bの非球面偏心量算出工程は、被検面10bの面振れ量検出工程により検出された被検面10bの面振れ量と被検面10bの設計データとを対比させ、両者の差が最も小さくなる前記非検レンズ10の回転軸Mに対する相対的なシフト量及びチルト量を求めるとともに、該シフト量及びチルト量から回転軸Mに対する被検面10bの面頂位置を算出し、次いで、算出された被検面10bの面頂位置と、被検面10aの近軸曲率中心1oaの偏心状態測定工程及び被検面10bの近軸曲率中心1obの偏心状態測定工程により測定された被検面10aの近軸曲率中心の偏心量及び偏心方向、並びに被検面10bの近軸曲率中心の偏心量及び偏心方向とから、被検レンズ10の光軸に対する被検面10bの非球面軸の傾き量と方向とを算出する工程である。
<< Aspherical eccentricity calculating step of test surface 10b >>
The aspheric eccentricity calculating step of the test surface 10b compares the surface runout amount of the test surface 10b detected by the surface shake amount detection step of the test surface 10b with the design data of the test surface 10b, The relative shift amount and tilt amount of the non-test lens 10 with the smallest difference with respect to the rotation axis M are obtained, and the surface top position of the test surface 10b with respect to the rotation axis M is calculated from the shift amount and tilt amount. Next, the surface top position of the test surface 10b was calculated, and the eccentric state measurement step of the paraxial curvature center 1oa of the test surface 10a and the eccentricity measurement step of the paraxial curvature center 1ob of the test surface 10b were measured. The aspherical surface of the test surface 10b with respect to the optical axis of the lens 10 to be tested is determined from the amount of eccentricity and the eccentric direction of the paraxial curvature center of the test surface 10a and the amount of eccentricity and the eccentric direction of the paraxial curvature center of the test surface 10b. The amount and direction of axis tilt It is a step of leaving.

以下、非球面軸の傾き量と方向とを算出する工程を説明する。
まず、被検面10bの近軸曲率中心の偏心状態測定工程により測定された、近軸曲率中心1obの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)と、被検面10aの近軸曲率中心の偏心状態測定工程により測定された、近軸曲率中心1oaの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)とから、光軸1oa―1obの回転軸Mに対する傾きを求める。以下、回転軸M方向をZ軸方向とする直交座標系、X、Y及びZ軸を用いて説明する。
Hereinafter, a process of calculating the inclination amount and direction of the aspheric axis will be described.
First, the amount of eccentricity (shift amount) and the direction of eccentricity (shift direction) of the paraxial curvature center 1ob with respect to the rotation axis M measured by the eccentric state measuring step of the paraxial curvature center of the test surface 10b, and the test surface 10a From the eccentric amount (shift amount) and the eccentric direction (shift direction) of the paraxial curvature center 1oa with respect to the rotational axis M measured by the eccentric state measuring step of the paraxial curvature center of the optical axis 1oa-1ob, the rotational axis M of the optical axis 1oa-1ob Find the slope for. Hereinafter, description will be made using an orthogonal coordinate system having the rotation axis M direction as the Z-axis direction, and X, Y, and Z axes.

図5(a)は、近軸曲率中心1oa及び1obと、非球面面頂1tbとの位置をXYZ座標で表し、図5(b)及び(c)はそれぞれ、XZ平面及びYZで表した図である。   5A shows the positions of the paraxial curvature centers 1oa and 1ob and the aspherical surface top 1tb in XYZ coordinates, and FIGS. 5B and 5C show the XZ plane and YZ, respectively. It is.

近軸曲率中心1oaの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)をそれぞれδa1及びθa1とし、近軸曲率中心1obの回転軸Mに対する偏心量(シフト量)及び偏心方向(シフト方向)をそれぞれδb1及びθb1とすると、近軸曲率中心1oaの位置は、図5(b)及び(c)に示すように、次式で表される。   The eccentric amount (shift amount) and the eccentric direction (shift direction) of the paraxial center of curvature 1oa with respect to the rotational axis M are δa1 and θa1, respectively, and the eccentric amount (shift amount) and the eccentric direction of the paraxial curvature center 1ob with respect to the rotational axis M ( Assuming that (shift direction) is δb1 and θb1, respectively, the position of the paraxial curvature center 1oa is expressed by the following equation as shown in FIGS.

Figure 2006267085
Figure 2006267085

また、近軸曲率中心1obの位置は、図5(b)及び(c)に示すように、次式で表される。   Further, the position of the paraxial curvature center 1ob is expressed by the following equation as shown in FIGS.

Figure 2006267085
Figure 2006267085

次に、被検レンズ両面の近軸曲率中心偏心量を考慮して、Z軸上での1oaから1obまでの高さZoを算出する。この高さZoは次式で表される。   Next, the height Zo from 1 oa to 1 OB on the Z axis is calculated in consideration of the amount of eccentricity of the paraxial curvature center on both surfaces of the test lens. This height Zo is expressed by the following equation.

Figure 2006267085
Figure 2006267085

以上から、XZ平面におけるZ軸に対する光軸1oa―1obの傾きは次式で表される。   From the above, the inclination of the optical axis 1oa-1ob with respect to the Z axis in the XZ plane is expressed by the following equation.

Figure 2006267085
また、YZ平面におけるZ軸に対する光軸1oa―1obの傾きは次式で表される。
Figure 2006267085
Further, the inclination of the optical axis 1oa-1ob with respect to the Z axis in the YZ plane is expressed by the following equation.

Figure 2006267085
Figure 2006267085

<<<非球面1bの非球面軸の位置及び傾き>>>
次に、被検面10bの面振れ量検出工程により検出された被検面10bの面振れ量と被検面10bの設計データとを対比させ、両者の差が最も小さくなる前記非検レンズ10の回転軸Mに対する相対的なシフト量及びチルト量を求める。このシフト量及びチルト量が、Z軸(回転軸)に対する非球面1bの非球面軸の位置及び傾きとなる。以下、具体的に説明する。
<<< Position and Inclination of Aspherical Axis of Aspherical Surface 1b >>>
Next, the surface shake amount of the test surface 10b detected by the surface shake amount detection step of the test surface 10b is compared with the design data of the test surface 10b, and the non-test lens 10 in which the difference between the two is minimized. The relative shift amount and tilt amount with respect to the rotation axis M are obtained. This shift amount and tilt amount are the position and inclination of the aspherical axis of the aspherical surface 1b with respect to the Z axis (rotating axis). This will be specifically described below.

まず、前記(3)式及び(4)式により得られた被検面10bにおける近軸曲率中心1obの位置のX成分及びY成分を、前記面振れ量検出工程により検出された被検面10bの面振れ量データに対して、X方向及びY方向にそれぞれシフトされる。次に、前記面振れ量検出工程により検出された被検面10bの面振れ量データと、設計データとの差が最も小さくなるように、被検面10bの面振れ量データをZ軸方向にシフトさせる。更に、被検面10bの近軸曲率中心1obを中心として、被検面10bの設計データとの差が最も小さくなるように、被検面10bの面振れ量データをチルトさせる。被検面10bの面振れ量データと、設計データとの差が最も小さくなる。図5は、このようにして求められた被検面10bの面振れ量データのチルト量を、XZ平面でのZ軸に対するチルトεbx1とし、YZ平面でのZ軸に対するチルトをεby1として表したものである。   First, the X surface and Y component of the position of the paraxial center of curvature 1ob on the test surface 10b obtained by the equations (3) and (4) are detected surface 10b detected by the surface deflection amount detection step. Are shifted in the X direction and the Y direction, respectively. Next, the surface shake amount data of the test surface 10b is set in the Z-axis direction so that the difference between the surface shake amount data of the test surface 10b detected by the surface shake amount detection step and the design data is minimized. Shift. Further, the surface runout amount data of the test surface 10b is tilted so that the difference from the design data of the test surface 10b is minimized with the paraxial curvature center 1ob of the test surface 10b as the center. The difference between the surface runout amount data of the test surface 10b and the design data is the smallest. FIG. 5 shows the tilt amount of the surface shake amount data of the test surface 10b obtained as described above as the tilt εbx1 with respect to the Z axis on the XZ plane and the tilt with respect to the Z axis on the YZ plane as εby1. It is.

このようにして求められた、チルト量が被検面10bの非球面軸1AxbのZ軸に対する傾きとなる。   The tilt amount obtained in this way is the inclination of the aspherical axis 1Axb of the test surface 10b with respect to the Z axis.

次に、近軸曲率中心1ob(1obx,1oby)の位置と、非球面軸1AxbのZ軸に対する傾き(εbx1,εby1)に基づいて、Z軸に対する被検面10bの面頂1tbの位置を算出する。図5(b)及び図5(c)に示すように、被検面10bの面頂1tb(1tbx,1tby)の位置は次式で表される。   Next, based on the position of the paraxial center of curvature 1ob (1obx, 1oby) and the inclination (εbx1, εby1) of the aspherical axis 1Axb with respect to the Z axis, the position of the surface apex 1tb of the test surface 10b with respect to the Z axis is calculated. To do. As shown in FIGS. 5B and 5C, the position of the top 1tb (1tbx, 1tby) of the test surface 10b is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、上記(8)式及び(9)式で求められた被検面10bの面頂1tb(1tbx,1tby)の位置と、近軸曲率中心の偏心状態測定工程で算出された近軸曲率中心1obの回転軸Mに対するシフト量δb1及びシフト方向θb1及び近軸曲率中心1oaの回転軸Mに対するシフト量δa1及びシフト方向θa1とに基づいて、図5(a)に示す近軸曲率中心1oaと面頂位置1tbとの間のZ軸上投影長さ1Zbを算出する。ここで、1Zbは次式で表される。   Next, the position of the surface top 1tb (1tbx, 1tby) of the test surface 10b obtained by the above equations (8) and (9), and the paraxial curvature calculated in the eccentric state measuring step of the paraxial curvature center. Based on the shift amount δb1 and shift direction θb1 of the center 1ob with respect to the rotation axis M, and the shift amount δa1 and shift direction θa1 of the center axis 1oa with respect to the rotation axis M, the paraxial curvature center 1oa shown in FIG. A projected length 1Zb on the Z axis between the surface top position 1tb is calculated. Here, 1Zb is expressed by the following equation.

Figure 2006267085
Figure 2006267085

以上から、XZ平面におけるZ軸に対する光軸1oa―1obの傾きは次式で表される。   From the above, the inclination of the optical axis 1oa-1ob with respect to the Z axis in the XZ plane is expressed by the following equation.

Figure 2006267085
また、XZ平面におけるZ軸に対する非球面軸1Axbの傾きは次式で表される。
Figure 2006267085
The inclination of the aspherical axis 1Axb with respect to the Z axis in the XZ plane is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、XZ平面でのZ軸に対する非球面軸rbxと光軸1oa―1obの傾きとから非球面軸偏心のX成分εbxを算出する。図5(b)に示すようにX成分εbxは次式で表される。   Next, the X component εbx of the aspherical axis eccentricity is calculated from the aspherical axis rbx with respect to the Z axis on the XZ plane and the inclination of the optical axis 1oa-1ob. As shown in FIG. 5B, the X component εbx is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、図5(b)に示す、面頂位置1tbのX成分1tbxから光軸1oa―1obのX成分1oax―1obxに垂線を下ろした時の線分の距離Lbxを求める。Lbxを求めるには、まず、非球面軸1AxbをXZ平面に投影した投影長さ1rbxを求める。1rbxは次式で表される。   Next, the distance Lbx of the line segment when a perpendicular is drawn from the X component 1tbx at the surface top position 1tb to the X component 1oax-1obx of the optical axis 1oa-1ob shown in FIG. In order to obtain Lbx, first, a projection length 1rbx obtained by projecting the aspherical axis 1Axb onto the XZ plane is obtained. 1 rbx is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(14)式を用いることによりLbxは次式で表される。   By using the equation (14), Lbx is expressed by the following equation.

Figure 2006267085
Figure 2006267085

同様に、YZ平面におけるZ軸に対する光軸1oa―1obの傾きは次式で表される。   Similarly, the inclination of the optical axis 1oa-1ob with respect to the Z axis in the YZ plane is expressed by the following equation.

Figure 2006267085
また、YZ平面におけるZ軸に対する非球面軸1Axbの傾きは次式で表される。
Figure 2006267085
The inclination of the aspherical axis 1Axb with respect to the Z axis in the YZ plane is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、YZ平面でのZ軸に対する非球面軸rbyと光軸1oa―1obの傾きとから非球面軸偏心のY成分εbyを算出する。図5(c)に示すようにY成分εbyは次式で表される。   Next, the Y component εby of the aspherical axis eccentricity is calculated from the aspherical axis rby with respect to the Z axis on the YZ plane and the inclination of the optical axis 1oa-1ob. As shown in FIG. 5C, the Y component εby is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、図5(c)に示す、面頂位置1tbのY成分1tbyから光軸1oa―1obのY成分1oay―1obyに垂線を下ろした時の線分の距離Lbyを求める。Lbyを求めるには、まず、非球面軸1AybをYZ平面に投影した投影長さ1rbyを求める。1rbyは次式で表される。   Next, as shown in FIG. 5C, a distance Lby of a line segment when a perpendicular is drawn from the Y component 1tby at the surface top position 1tb to the Y component 1oa-1by of the optical axis 1oa-1ob is obtained. In order to obtain Lby, first, a projection length 1rby obtained by projecting the aspherical axis 1Ayb onto the YZ plane is obtained. 1rby is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(19)式を用いることによりLbyは次式で表される。   By using the equation (19), Lby is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、光軸1oa―1obから非球面面頂までの距離を前記(15)式及び(20)式で算出されたLbx及びLbyにより求め、光軸1oa―1obに対する非球面軸1Axbの傾き、即ち、非球面偏心量εbを求める。非球面偏心量εbは次式で表される。   Next, the distance from the optical axis 1oa-1ob to the top of the aspheric surface is obtained from Lbx and Lby calculated by the above equations (15) and (20), and the inclination of the aspherical axis 1Axb with respect to the optical axis 1oa-1ob, That is, an aspheric eccentricity εb is obtained. The aspheric eccentricity εb is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(21)式により非球面偏心量をチルトとして求めることができる。更に、非球面偏心量を次式によりシフトδbとして求めることができる。   The aspheric eccentricity can be obtained as a tilt by the equation (21). Furthermore, the aspheric eccentricity can be obtained as a shift δb by the following equation.

Figure 2006267085
Figure 2006267085

次に、光軸1oa―1obに対する非球面軸1Axbの偏心方向θbを算出する。θbは、光軸1oa―1obに対して、非球面面頂1tbがX方向にLbx及びY方向にLbyだけ離れていることから次式により表される。   Next, the eccentric direction θb of the aspherical axis 1Axb with respect to the optical axis 1oa-1ob is calculated. θb is expressed by the following equation because the aspherical surface top 1tb is separated by Lbx in the X direction and Lby in the Y direction with respect to the optical axis 1oa-1ob.

Figure 2006267085
Figure 2006267085

以上の工程により、光軸1oa―1obに対する非球面軸1Axbの傾きεb(非球面偏心量)及び光軸1oa―1obに対する非球面軸1Axbの偏心方向θbを正確に求めることができる。   Through the above steps, the inclination εb (aspheric eccentricity) of the aspherical axis 1Axb with respect to the optical axis 1oa-1ob and the eccentric direction θb of the aspherical axis 1Axb with respect to the optical axis 1oa-1ob can be accurately obtained.

<<<非球面1aの非球面軸の位置及び傾き>>>
次に、被検面10aの面振れ量検出工程により検出された被検面10aの面振れ量と被検面10aの設計データとを対比させ、両者の差が最も小さくなる前記非検レンズ10の回転軸Mに対する相対的なシフト量及びチルト量を求める。このシフト量及びチルト量が、Z軸(回転軸)に対する非球面1aの非球面軸の位置及び傾きとなる。以下、具体的に説明する。
<<< Position and Inclination of Aspherical Axis of Aspherical Surface 1a >>>
Next, the surface shake amount of the test surface 10a detected by the surface shake amount detection step of the test surface 10a is compared with the design data of the test surface 10a, and the non-test lens 10 in which the difference between the two is minimized. The relative shift amount and tilt amount with respect to the rotation axis M are obtained. The shift amount and the tilt amount are the position and inclination of the aspherical axis of the aspherical surface 1a with respect to the Z axis (rotating axis). This will be specifically described below.

まず、前記(1)式及び(2)式により得られた被検面10aにおける近軸曲率中心1oaの位置のX成分及びY成分を、前記面振れ量検出工程により検出された被検面10aの面振れ量データに対して、X方向及びY方向にそれぞれシフトされる。次に、前記面振れ量検出工程により検出された被検面10aの面振れ量データと、設計データとの差が最も小さくなるように、被検面10aの面振れ量データをZ軸方向にシフトさせる。更に、被検面10aの近軸曲率中心1oaを中心として、被検面10aの設計データとの差が最も小さくなるように、被検面10aの面振れ量データをチルトさせる。被検面10aの面振れ量データと、設計データとの差が最も小さくなる。図6は、このようにして求められた被検面10aの面振れ量データのチルト量を、XZ平面でのZ軸に対するチルトεax1とし、YZ平面でのZ軸に対するチルトをεay1として表したものである。   First, the X- and Y-components of the position of the paraxial center of curvature 1oa on the test surface 10a obtained by the equations (1) and (2) are detected surface 10a detected by the surface deflection amount detection step. Are shifted in the X direction and the Y direction, respectively. Next, the surface runout amount data of the test surface 10a is set in the Z-axis direction so that the difference between the surface runout amount data of the test surface 10a detected by the surface runout amount detection step and the design data is minimized. Shift. Further, the surface runout amount data of the test surface 10a is tilted around the paraxial curvature center 1oa of the test surface 10a so that the difference from the design data of the test surface 10a is minimized. The difference between the surface runout amount data of the test surface 10a and the design data is the smallest. FIG. 6 shows the tilt amount of the surface shake amount data of the test surface 10a obtained in this way as the tilt εax1 with respect to the Z axis on the XZ plane and the tilt with respect to the Z axis on the YZ plane as εay1. It is.

このようにして求められた、チルト量が被検面10aの非球面軸1AxaのZ軸に対する傾きとなる。   The amount of tilt obtained in this way is the inclination of the aspherical axis 1Axa of the test surface 10a with respect to the Z axis.

次に、近軸曲率中心1oa(1oax,1oay)の位置と、非球面軸1AxaのZ軸に対する傾き(εax1,εay1)に基づいて、Z軸に対する被検面10aの面頂1taの位置を算出する。図6(b)及び図6(c)に示すように、被検面10aの面頂1ta(1tax,1tay)の位置は次式で表される。   Next, based on the position of the paraxial curvature center 1oa (1oax, 1oay) and the inclination (εax1, εay1) of the aspherical axis 1Axa with respect to the Z axis, the position of the surface apex 1ta of the test surface 10a with respect to the Z axis is calculated. To do. As shown in FIGS. 6B and 6C, the position of the surface top 1ta (1tax, 1tay) of the test surface 10a is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、上記(24)式及び(25)式で求められた被検面10aの面頂1ta(1tax,1tay)の位置と、近軸曲率中心の偏心状態測定工程で算出された近軸曲率中心1obの回転軸Mに対するシフト量δb1及びシフト方向θb1及び近軸曲率中心1oaの回転軸Mに対するシフト量δa1及びシフト方向θa1とに基づいて、図6(a)に示す近軸曲率中心1oaと面頂位置1taとの間のZ軸上投影長さ1Zaを算出する。ここで、1Zaは次式で表される。   Next, the position of the surface top 1ta (1tax, 1tay) of the test surface 10a obtained by the above equations (24) and (25), and the paraxial curvature calculated in the eccentric state measuring step of the paraxial curvature center. Based on the shift amount δb1 and shift direction θb1 of the center 1ob with respect to the rotation axis M, and the shift amount δa1 and shift direction θa1 of the center axis 1oa with respect to the rotation axis M, the paraxial curvature center 1oa shown in FIG. A projected length 1Za on the Z axis between the surface top position 1ta is calculated. Here, 1Za is represented by the following equation.

Figure 2006267085
Figure 2006267085

以上から、XZ平面におけるZ軸に対する非球面軸1Axaの傾きは次式で表される。   From the above, the inclination of the aspherical axis 1Axa with respect to the Z axis in the XZ plane is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、XZ平面でのZ軸に対する非球面軸raxと光軸1oa―1obの傾きとから非球面軸偏心のX成分εaxを算出する。図6(b)に示すようにX成分εaxは次式で表される。   Next, the X component εax of the aspherical axis eccentricity is calculated from the aspherical axis rax with respect to the Z axis in the XZ plane and the inclination of the optical axis 1oa-1ob. As shown in FIG. 6B, the X component εax is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、図6(b)に示す、面頂位置1taのX成分1taxから光軸1oa―1obのX成分1oax―1obxに垂線を下ろした時の線分の距離Laxを求める。Laxを求めるには、まず、非球面軸1AxaをYZ平面に投影した投影長さ1rayを求める。1rayは次式で表される。   Next, as shown in FIG. 6B, a distance Lax of a line segment when a perpendicular is drawn from the X component 1tax at the surface top position 1ta to the X component 1oax-1obx of the optical axis 1oa-1ob is obtained. In order to obtain Lax, first, a projection length 1 ray obtained by projecting the aspheric axis 1Axa onto the YZ plane is obtained. 1 ray is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(29)式を用いることによりLaxは次式で表される。   By using the equation (29), Lax is expressed by the following equation.

Figure 2006267085
Figure 2006267085

また、YZ平面におけるZ軸に対する非球面軸1Axaの傾きは次式で表される。   The inclination of the aspherical axis 1Axa with respect to the Z axis in the YZ plane is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、YZ平面でのZ軸に対する非球面軸rayと光軸1oa―1obの傾きとから非球面軸偏心のY成分εayを算出する。図6(c)に示すようにY成分εayは次式で表される。   Next, the Y component εay of the aspherical axis eccentricity is calculated from the aspherical axis ray with respect to the Z axis on the YZ plane and the inclination of the optical axis 1oa-1ob. As shown in FIG. 6C, the Y component εay is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、図6(c)に示す、面頂位置1taのY成分1tayから光軸1oa―1obのY成分1oay―1obyに垂線を下ろした時の線分の距離Layを求める。Layを求めるには、まず、非球面軸1AyaをYZ平面に投影した投影長さ1rayを求める。1rayは次式で表される。   Next, as shown in FIG. 6C, the distance Ray of the line segment when a perpendicular is drawn from the Y component 1tay at the surface top position 1ta to the Y component 1oay-1ob of the optical axis 1oa-1ob is obtained. In order to obtain Lay, first, a projection length 1 ray obtained by projecting the aspherical axis 1Aya onto the YZ plane is obtained. 1 ray is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(33)式を用いることによりLayは次式で表される。   By using the equation (33), Lay is expressed by the following equation.

Figure 2006267085
Figure 2006267085

次に、光軸1oa―1obから非球面面頂までの距離を前記(15)式及び(20)式で算出されたLax及びLayにより求め、光軸1oa―1obに対する非球面軸1Axaの傾き、即ち、非球面偏心量εaを求める。非球面偏心量εaは次式で表される。   Next, the distance from the optical axis 1oa-1ob to the top of the aspheric surface is obtained by Lax and Ray calculated by the above equations (15) and (20), and the inclination of the aspherical axis 1Axa with respect to the optical axis 1oa-1ob, That is, an aspheric eccentricity εa is obtained. The aspheric eccentricity εa is expressed by the following equation.

Figure 2006267085
Figure 2006267085

(35)式により非球面偏心量をチルトとして求めることができる。更に、非球面偏心量を次式によりシフトδaとして求めることができる。   The aspheric decentering amount can be obtained as a tilt by the equation (35). Furthermore, the aspheric eccentricity can be obtained as the shift δa by the following equation.

Figure 2006267085
Figure 2006267085

次に、光軸1oa―1obに対する非球面軸1Axaの偏心方向θaを算出する。θaは、光軸1oa―1obに対して、非球面面頂1taがX方向にLax及びY方向にLayだけ離れていることから次式により表される。   Next, the eccentric direction θa of the aspherical axis 1Axa with respect to the optical axis 1oa-1ob is calculated. θa is expressed by the following equation because the aspherical surface apex 1ta is separated by Lax in the X direction and by Lay in the Y direction with respect to the optical axis 1oa-1ob.

Figure 2006267085
Figure 2006267085

以上の工程により、光軸1oa―1obに対する非球面軸1Axaの傾きεa(非球面偏心量)及び光軸1oa―1obに対する非球面軸1Axaの偏心方向θaを正確に求めることができる。   Through the above steps, the inclination εa (aspheric eccentricity) of the aspherical axis 1Axa relative to the optical axis 1oa-1ob and the eccentric direction θa of the aspherical axis 1Axa relative to the optical axis 1oa-1ob can be accurately obtained.

上記第1の実施の形態に係る偏心測定方法によれば、被検面の面の振れ量測定を行う際に、オートコリメーション測定部50の照明光学系を構成するレンズ53bを移動させている為に、駆動部を小型化でき、被検レンズを高速回転させても、集光光束の位置を被検面上に高精度に追随させることが可能となる。その結果、測定時間を短縮することができる。   According to the eccentricity measuring method according to the first embodiment, the lens 53b constituting the illumination optical system of the auto-collimation measuring unit 50 is moved when measuring the shake amount of the surface to be measured. In addition, the drive unit can be miniaturized, and the position of the condensed light beam can be accurately followed on the test surface even if the test lens is rotated at high speed. As a result, the measurement time can be shortened.

[第2の実施の形態に係る偏心測定方法]
以下、本発明の第2の実施の形態に係る偏心測定方法を説明する。
[Eccentricity measuring method according to second embodiment]
Hereinafter, the eccentricity measuring method according to the second embodiment of the present invention will be described.

本発明の第2の実施の形態に係る偏心測定方法は、前記照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第1被検面上に照射すると共に、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第1の近軸曲率中心の偏心状態測定工程と、前記照明光学系からの光束を、第2被検面の近軸曲率中心に集光するように、被検レンズの第1被検面を透過させて第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第2の近軸曲率中心の偏心状態測定工程と、被検レンズを回転させながら、前記照明光学系からの光束が第1被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第1被検面の回転軸方向での面振れ量を検出する第1の面振れ量検出工程と、前記第1の近軸曲率中心の偏心状態測定工程、前記第2の近軸曲率中心の偏心状態測定工程、及び前記第1の面振れ量検出工程の後に、被検レンズを反転させる工程と、
前記照明光学系からの光束を、前記被検レンズを反転させる工程により反転された被検レンズの第2被検面の近軸曲率中心に集光するように、被検レンズの第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第3の近軸曲率中心の偏心状態測定工程と、前記照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第2被検面を透過させて第1被検面上に照射するとともに、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第4の近軸曲率中心の偏心状態測定工程と、被検レンズを回転させながら、前記照明光学系からの光束が第2被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第2被検面の回転軸方向での面振れ量を検出する第2の面振れ量検出工程と、前記第1の面振れ量検出工程により検出された前記第1被検面の面振れ量と該第1被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第1被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第1の非球面軸の傾き量と方向とを算出する第1の非球面偏心量算出工程と、前記第2の面振れ量検出工程により検出された前記第2被検面の面振れ量と該第2被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第2被検面の面頂位置と、前記第3及び第4の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第2の非球面軸の傾き量と方向とを算出する第2の非球面偏心量算出工程とを具備する。
In the decentering measurement method according to the second embodiment of the present invention, the first test of the test lens is performed so that the light beam from the illumination optical system is condensed at the paraxial curvature center of the first test surface. Irradiates the surface, rotates the lens to be detected, detects the locus of the swing around the rotation axis of the spot image formed by the reflected light from the first surface to be detected, and detects the detected spot image A first paraxial curvature center decentration state measuring step for measuring an eccentricity amount and an eccentric direction of the first paraxial curvature center of the first test surface with respect to the rotation axis from the trajectory, and a light beam from the illumination optical system as a second The first test surface of the test lens is transmitted through the first test surface so as to be focused on the paraxial curvature center of the test surface and irradiated onto the second test surface, and the test lens is rotated to rotate the second test surface. Detects the trajectory around the rotation axis of the spot image formed by the reflected light from the surface to be detected. A second paraxial curvature center decentration state measuring step for measuring an eccentric amount and an eccentric direction of the paraxial curvature center of the second test surface with respect to the rotation axis from the locus of the spot image, while rotating the test lens, The distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is collected on the first test surface, and the relative movement of the illumination optical system and the test lens is changed. A first surface shake amount detecting step for detecting a surface shake amount in the direction of the rotation axis of the first test surface based on the detection result; A step of measuring the eccentric state at the center of axial curvature, the step of measuring the eccentric state at the center of the second paraxial curvature, and the step of detecting the amount of first surface shake, and a step of inverting the lens to be tested;
The second test of the test lens is such that the light beam from the illumination optical system is focused on the paraxial curvature center of the second test surface of the test lens that has been inverted by the step of inverting the test lens. Irradiates the surface, rotates the lens to be detected, detects the locus of the swing around the rotation axis of the spot image formed by the reflected light from the second surface to be detected, and detects the detected spot image A third paraxial curvature center decentration state measuring step for measuring the decentering amount and decentering direction of the paraxial curvature center of the second test surface with respect to the rotation axis from the trajectory, and a light beam from the illumination optical system as a first The first test surface is transmitted through the second test surface of the test lens so that the light is focused on the paraxial curvature center of the test surface, and the test lens is rotated to rotate the first test surface. The trajectory around the rotation axis of the spot image formed by the reflected light from the test surface is detected. And a fourth paraxial curvature center eccentricity measuring step for measuring a decentering amount and a decentering direction of the paraxial curvature center of the first test surface with respect to the rotation axis from the locus of the detected spot image, and a test lens. While rotating, the distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is condensed on the second test surface, and the illumination optical system and the test lens are also changed. Detecting a relative movement amount and a rotation angle of the test lens, and detecting a surface shake amount in the rotation axis direction of the second test surface based on the detection result; The surface runout amount of the first test surface detected by the first surface runout amount detection step is compared with the design data of the first test surface, and the relative difference with respect to the rotation axis is the smallest difference between the two. A shift amount and a tilt amount, and a shift amount and a tilt amount. The first and second paraxial curvature centers measured by the eccentric state measuring step of the first test surface relative to the rotation axis calculated from the above and the first and second paraxial curvature centers A first aspheric surface decentration amount calculating step for calculating an inclination amount and a direction of the first aspheric surface axis with respect to the optical axis of the lens to be detected, and the second surface shake amount detection By comparing the surface runout amount of the second test surface detected by the process with the design data of the second test surface, the relative shift amount and tilt amount with respect to the rotation axis with the smallest difference between them are obtained. And determining the surface top position of the second test surface relative to the rotation axis calculated from the shift amount and the tilt amount, and the third and fourth paraxial curvature centers measured in the eccentric state measuring step. From the amount of eccentricity and the direction of eccentricity of the first and second paraxial curvature centers, And a second aspheric surface eccentricity calculating step for calculating an inclination amount and direction of the second aspheric axis with respect to the optical axis of the lens.

即ち、第2の実施の形態に係る偏心測定方法は、被検レンズの被検面10bを照明光学系に対向させた状態で、前述した略心出し調整工程及び心出し調整工程を行った後に、被検面10bの近軸曲率中心1obの偏心状態を測定する第1の近軸曲率中心の偏心状態測定工程と、照明光学系からの照明光を被検面10bを透過させて被検面10a上に照射させて被検面10aの近軸曲率中心1oaの偏心状態を測定する第2の近軸曲率中心の偏心状態測定工程と、被検面10bの面振れ量を検出する第1の面振れ量検出工程と、被検レンズを反転させる工程と、被検レンズの被検面10a側を照明光学系に対向させた状態で、同様に、略心出し調整工程及び心出し調整工程を行った後に、被検面10aの近軸曲率中心の偏心状態を測定する第3の近軸曲率中心の偏心状態測定工程と、照明光学系からの照明光を被検面10aを透過させて被検面10b上に照射させて被検面10bの近軸曲率中心の偏心状態を測定する第4の近軸曲率中心の偏心状態測定工程と、被検面10aの面振れ量検出する第2の面振れ量検出工程とを備えるものである。   That is, in the eccentricity measuring method according to the second embodiment, after performing the above-described approximate centering adjustment process and centering adjustment process in a state where the test surface 10b of the test lens faces the illumination optical system. The first paraxial curvature center eccentricity measuring step for measuring the eccentric state of the paraxial curvature center 1ob of the test surface 10b, and the illumination light from the illumination optical system is transmitted through the test surface 10b and the test surface A second paraxial curvature center measuring step for measuring the eccentric state of the paraxial curvature center 1 oa of the test surface 10 a by irradiating on the test surface 10 a, and a first detecting method for detecting the surface deflection amount of the test surface 10 b. Similarly, in the state where the surface shake amount detecting step, the step of inverting the test lens, and the test surface 10a side of the test lens face the illumination optical system, the substantially centering adjustment step and the centering adjustment step are performed. After performing, the 3rd which measures the eccentric state of the paraxial curvature center of the to-be-tested surface 10a Measuring the eccentric state of the paraxial curvature center of the test surface 10b by transmitting the illumination light from the illumination optical system through the test surface 10a and irradiating the test surface 10b with the illumination light from the paraxial curvature center The fourth paraxial curvature center eccentricity measuring step and the second surface shake amount detecting step for detecting the surface shake amount of the test surface 10a are provided.

ここで、図5又は図6に示す、光軸1oa―1obに対する非球面軸の傾き(非球面偏心量)及び光軸1oa―1obに対する非球面軸の偏心方向を求める工程については、第1の実施の形態に係る偏心測定方法と同様であるので説明を省略する。
第2の実施の形態に係る偏心測定方法によれば、面振れ量検出工程において、測定光束を被検面を透過させた状態での測定を行わない為、測定光速が透過する面の形状誤差などの影響を受けることがなく、高精度で被検面の面振れ量を測定することが可能となる。
Here, the step of obtaining the inclination of the aspherical axis with respect to the optical axis 1oa-1ob (aspherical eccentricity) and the eccentric direction of the aspherical axis with respect to the optical axis 1oa-1ob shown in FIG. Since it is the same as the eccentricity measuring method according to the embodiment, the description is omitted.
According to the eccentricity measuring method according to the second embodiment, since the measurement light flux is not measured in the state of being transmitted through the surface to be measured in the surface shake amount detection step, the shape error of the surface through which the measurement light velocity is transmitted. It is possible to measure the amount of runout of the surface to be measured with high accuracy without being affected by the above.

図1は、本発明の偏心測定装置の概略構成説明図である。FIG. 1 is a schematic configuration explanatory diagram of an eccentricity measuring apparatus according to the present invention. 図2は、本発明の偏心測定装置の概略構成説明図である。FIG. 2 is a schematic configuration explanatory diagram of the eccentricity measuring apparatus of the present invention. 図3は、第1被検面の測定状態を示す図である。FIG. 3 is a diagram illustrating a measurement state of the first test surface. 図4は、第2被検面の測定状態を示す図である。FIG. 4 is a diagram illustrating a measurement state of the second test surface. 図5(a)、(b)及び(c)は、第1被検面の非球面偏心値を求める際の考え方を示す図である。FIGS. 5A, 5B, and 5C are views showing the concept for obtaining the aspheric eccentricity value of the first test surface. 図6(a)、(b)及び(c)は、第2被検面の非球面偏心値を求める際の考え方を示す図である。FIGS. 6A, 6B, and 6C are views showing the concept for obtaining the aspheric eccentricity value of the second test surface. 図7は、本発明の変形例に係る偏心測定装置の概略構成説明図である。FIG. 7 is a schematic configuration explanatory diagram of an eccentricity measuring apparatus according to a modification of the present invention. 図8は、本発明の変形例に係る偏心測定装置の概略構成説明図である。FIG. 8 is a schematic configuration explanatory diagram of an eccentricity measuring apparatus according to a modification of the present invention. 図9は、非球面レンズの非球面軸と光軸のずれを示す図である。FIG. 9 is a diagram showing the deviation between the aspheric axis of the aspheric lens and the optical axis. 図10は、従来の非球面レンズの偏心測定装置を示す概略構成図である。FIG. 10 is a schematic configuration diagram showing a conventional aspheric lens decentration measuring apparatus.

符号の説明Explanation of symbols

10 …被検レンズ
20 …レンズ保持部材
30 …回転手段
51 …照明光源
52a,52b …照明光学系
53a,53b …結像光学系
54 …像検出手段
55 …光軸方向移動手段
56 …水平方向移動手段
70 …制御・演算装置(偏心状態検出部、面振れ量検出部、非球面偏心量算出手段)


DESCRIPTION OF SYMBOLS 10 ... Test lens 20 ... Lens holding member 30 ... Rotating means 51 ... Illumination light source 52a, 52b ... Illumination optical system 53a, 53b ... Imaging optical system 54 ... Image detection means 55 ... Optical axis direction moving means 56 ... Horizontal direction movement Means 70 ... Control / arithmetic unit (eccentric state detecting unit, surface deflection amount detecting unit, aspherical eccentricity calculating unit)


Claims (4)

非球面レンズの偏心測定装置であって、
被検レンズを保持するレンズ保持部材と、
前記保持部材を回転させる回転手段と、
照明光源と、
前記照明光源からの光を被検レンズの被検面に照射する照明光学系と、
被検レンズの被検面からの反射光を結像させる結像光学系と、
前記結像光学系により結像された像を検出する像検出手段と、
前記レンズ保持部材に対する前記照明光学系の光軸方向における相対的な位置を移動可能とする光軸方向移動手段と、
被検レンズの被検面の近軸曲率中心に集光された前記照明光学系からの光束を前記像検出手段により検出し、検出された前記光束の前記回転手段の回転軸回りでの振れ回りの軌跡から該回転軸に対する前記近軸曲率中心の偏心量及び偏心方向を算出する偏心状態算出部と、
前記照明光学系からの光束が被検レンズの被検面上に集光するように、前記光軸方向移動手段によって前記照明光学系と前記レンズ保持部材との間隔を随時変更させると共に、前記照明光学系及び前記レンズ保持部材の相対的な移動量及び前記回転手段の回転角を検出し、検出結果に基づいて被検面の回転軸方向での面振れ量を検出する面振れ量検出部と、
前記面振れ量検出部により検出された被検面の面振れ量と、前記偏心状態算出部により算出された近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する非球面軸の傾き量と方向とを算出する非球面偏心量算出手段とを具備したことを特徴とする非球面レンズの偏心測定装置。
An aspheric lens eccentricity measuring device,
A lens holding member for holding the test lens;
Rotating means for rotating the holding member;
An illumination light source;
An illumination optical system for irradiating the test surface of the test lens with light from the illumination light source;
An imaging optical system that forms an image of reflected light from the test surface of the test lens;
Image detecting means for detecting an image formed by the imaging optical system;
An optical axis direction moving means capable of moving a relative position in the optical axis direction of the illumination optical system with respect to the lens holding member;
A light flux from the illumination optical system collected at the center of the paraxial curvature of the test surface of the test lens is detected by the image detecting means, and the detected light flux swings around the rotation axis of the rotating means. An eccentric state calculation unit that calculates an eccentric amount and an eccentric direction of the paraxial curvature center with respect to the rotation axis from the locus of
The distance between the illumination optical system and the lens holding member is changed at any time by the optical axis direction moving means so that the light beam from the illumination optical system is condensed on the test surface of the test lens, and the illumination A surface shake amount detection unit that detects a relative movement amount of the optical system and the lens holding member and a rotation angle of the rotation unit, and detects a surface shake amount in the direction of the rotation axis of the test surface based on the detection result; ,
The aspherical surface with respect to the optical axis of the lens to be tested is calculated based on the surface shake amount of the test surface detected by the surface shake amount detection unit and the eccentric amount and the eccentric direction of the paraxial curvature center calculated by the eccentric state calculation unit. An aspherical lens eccentricity measuring device comprising an aspherical eccentricity calculating means for calculating an axis inclination amount and direction.
照明光学系からの照明光を被検レンズの被検面上に照射し、該被検面からの反射光を検出して、被検レンズの光軸に対する非球面軸の傾き量と方向とを測定する非球面レンズの偏心測定方法であって、
前記照明光学系からの光束を、被検面の近軸曲率中心に集光するように、被検レンズの被検面上に照射すると共に、被検レンズを回転させて、該被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する近軸曲率中心の偏心量及び偏心方向を測定する近軸曲率中心の偏心状態測定工程と、
被検レンズを回転させながら、前記照明光学系からの光束が被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて被検面の回転軸方向での面振れ量を検出する面振れ量検出工程と、
前記面振れ量検出工程により検出された被検面の面振れ量と該被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する被検面の面頂位置と、前記偏心状態測定工程により測定された前記近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する非球面軸の傾き量と方向とを算出する非球面偏心量算出工程とを具備したことを特徴とする非球面レンズの偏心測定方法。
The illumination light from the illumination optical system is irradiated onto the test surface of the test lens, the reflected light from the test surface is detected, and the inclination amount and direction of the aspherical axis with respect to the optical axis of the test lens are determined. A method for measuring the eccentricity of an aspheric lens to be measured,
The light beam from the illumination optical system is irradiated onto the test surface of the test lens so as to be focused on the paraxial curvature center of the test surface, and the test lens is rotated to The paraxial curvature is detected by detecting the trajectory around the rotation axis of the spot image formed by the reflected light, and measuring the eccentric amount and the eccentric direction of the paraxial curvature center with respect to the rotation axis from the detected spot image trajectory A process for measuring the eccentricity of the center,
While rotating the test lens, the distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is collected on the test surface, and the illumination optical system and the test lens are also changed. A surface shake amount detection step of detecting a relative movement amount of the test lens and a rotation angle of the test lens, and detecting a surface shake amount in the rotation axis direction of the test surface based on the detection result;
The surface runout amount of the test surface detected by the surface runout amount detection step is compared with the design data of the test surface, and the relative shift amount and tilt amount with respect to the rotation axis with the smallest difference between them are obtained. And determining the surface top position of the test surface relative to the rotation axis calculated from the shift amount and the tilt amount, and the eccentric amount and the eccentric direction of the paraxial curvature center measured by the eccentric state measuring step. An aspherical lens eccentricity measuring method, comprising: an aspherical eccentricity calculating step for calculating an inclination amount and direction of an aspherical axis with respect to the optical axis of the test lens.
照明光学系からの照明光を被検レンズの被検面上に照射し、該被検面からの反射光を検出して、被検レンズの光軸に対する非球面軸の傾き量と方向とを測定する非球面レンズの偏心測定方法であって、
照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第1被検面上に照射すると共に、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第1の近軸曲率中心の偏心状態測定工程と、
前記照明光学系からの光束を、第2被検面の近軸曲率中心に集光するように、被検レンズの第1被検面を透過させて第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第2の近軸曲率中心の偏心状態測定工程と、
被検レンズを回転させながら、前記照明光学系からの光束が第1被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第1被検面の回転軸方向での面振れ量を検出する第1の面振れ量検出工程と、
被検レンズを回転させながら、前記照明光学系からの光束を第1被検面を透過させて第2被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第2被検面の回転軸方向での面振れ量を検出する第2の面振れ量検出工程と、
前記第1の面振れ量検出工程により検出された前記第1被検面の面振れ量と該第1被検面の設計データとを対比させて、両者の差が最も小さくなる非検レンズの回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第1被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び前記第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第1の非球面軸の傾き量と方向とを算出する第1の非球面偏心量算出工程と、
前記第2の面振れ量検出工程により検出された前記第2被検面の面振れ量と該第2被検面の設計データとを対比させて、両者の差が最も小さくなる前記非検レンズの回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第2被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第2の非球面軸の傾き量と方向とを算出する第2の非球面偏心量算出工程とを具備したことを特徴とする非球面レンズの偏心測定方法。
The illumination light from the illumination optical system is irradiated onto the test surface of the test lens, the reflected light from the test surface is detected, and the inclination amount and direction of the aspherical axis with respect to the optical axis of the test lens are determined. A method for measuring the eccentricity of an aspheric lens to be measured,
The light beam from the illumination optical system is irradiated onto the first test surface of the test lens so as to be focused on the center of the paraxial curvature of the first test surface, and the test lens is rotated to rotate the first test surface. A trajectory around the rotation axis of the spot image formed by reflected light from one test surface is detected, and the center of the paraxial curvature of the first test surface with respect to the rotation axis is detected from the detected spot image trajectory. An eccentric state measuring step of a first paraxial curvature center for measuring an eccentric amount and an eccentric direction;
While irradiating the light beam from the illumination optical system on the second test surface through the first test surface of the test lens so that the light beam from the illumination optical system is focused on the paraxial curvature center of the second test surface, By rotating the lens to be detected, a trajectory around the rotation axis of the spot image formed by the reflected light from the second surface to be detected is detected, and from the detected spot image trajectory, the second with respect to the rotation axis is detected. A second paraxial curvature center eccentricity measuring step for measuring an eccentric amount and an eccentric direction of the paraxial curvature center of the test surface;
While rotating the test lens, the distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is condensed on the first test surface, and the illumination optical system And a relative movement amount of the test lens and a rotation angle of the test lens, and a first surface shake amount for detecting a surface shake amount in the rotation axis direction of the first test surface based on the detection result. A detection process;
While rotating the test lens, the distance between the illumination optical system and the test lens is set so that the light beam from the illumination optical system passes through the first test surface and is condensed on the second test surface. While changing as needed, the relative movement amount of the illumination optical system and the test lens and the rotation angle of the test lens are detected, and the surface shake amount in the direction of the rotation axis of the second test surface based on the detection result A second surface shake amount detecting step for detecting
By comparing the surface run-out amount of the first test surface detected by the first surface run-out amount detection step with the design data of the first test surface, the non-test lens of which the difference between the two is minimized The relative shift amount and tilt amount with respect to the rotation axis are obtained, the top position of the first test surface with respect to the rotation axis calculated from the shift amount and tilt amount, and the first and second paraxial curvatures. From the decentering amount and decentering direction of the first and second paraxial curvature centers measured in the center decentering state measurement step, the tilt amount and direction of the first aspherical axis with respect to the optical axis of the lens to be measured A first aspheric surface eccentricity calculating step for calculating
The non-detecting lens in which the surface shake amount of the second test surface detected in the second surface shake amount detection step is compared with the design data of the second test surface, and the difference between the two is minimized. And calculating the relative shift amount and tilt amount with respect to the rotation axis, the top position of the second test surface relative to the rotation axis calculated from the shift amount and tilt amount, and the first and second paraxial axes From the amount of decentering and the direction of decentering of the first and second paraxial curvature centers measured in the step of measuring the center of curvature, the amount and direction of inclination of the second aspherical axis with respect to the optical axis of the lens to be examined. And a second aspheric decentration amount calculating step for calculating a decentering amount of the aspheric lens.
照明光学系からの照明光を被検レンズの被検面上に照射し、該被検面からの反射光を検出して、被検レンズの光軸に対する非球面軸の傾き量と方向とを測定する非球面レンズの偏心測定方法であって、
前記照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第1被検面上に照射すると共に、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第1の近軸曲率中心の偏心状態測定工程と、
前記照明光学系からの光束を、第2被検面の近軸曲率中心に集光するように、被検レンズの第1被検面を透過させて第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第2の近軸曲率中心の偏心状態測定工程と、
被検レンズを回転させながら、前記照明光学系からの光束が第1被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第1被検面の回転軸方向での面振れ量を検出する第1の面振れ量検出工程と、
前記第1の近軸曲率中心の偏心状態測定工程、前記第2の近軸曲率中心の偏心状態測定工程、及び前記第1の面振れ量検出工程の後に、被検レンズを反転させる工程と、
前記照明光学系からの光束を、前記被検レンズを反転させる工程により反転された被検レンズの第2被検面の近軸曲率中心に集光するように、被検レンズの第2被検面上に照射すると共に、被検レンズを回転させて、該第2被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第2被検面の近軸曲率中心の偏心量及び偏心方向を測定する第3の近軸曲率中心の偏心状態測定工程と、
前記照明光学系からの光束を、第1被検面の近軸曲率中心に集光するように、被検レンズの第2被検面を透過させて第1被検面上に照射するとともに、被検レンズを回転させて、該第1被検面からの反射光により形成されるスポット像の回転軸回りでの振れ回りの軌跡を検出し、検出されたスポット像の軌跡から回転軸に対する第1被検面の近軸曲率中心の偏心量及び偏心方向を測定する第4の近軸曲率中心の偏心状態測定工程と、
被検レンズを回転させながら、前記照明光学系からの光束が第2被検面上に集光するように、前記照明光学系と被検レンズとの間隔を随時変更させると共に、前記照明光学系及び被検レンズの相対的な移動量及び被検レンズの回転角を検出し、該検出結果に基づいて第2被検面の回転軸方向での面振れ量を検出する第2の面振れ量検出工程と、
前記第1の面振れ量検出工程により検出された前記第1被検面の面振れ量と該第1被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第1被検面の面頂位置と、前記第1及び第2の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第1の非球面軸の傾き量と方向とを算出する第1の非球面偏心量算出工程と、
前記第2の面振れ量検出工程により検出された前記第2被検面の面振れ量と該第2被検面の設計データとを対比させ、両者の差が最も小さくなる前記回転軸に対する相対的なシフト量及びチルト量を求めると共に、該シフト量及びチルト量から算出される前記回転軸に対する第2被検面の面頂位置と、前記第3及び第4の近軸曲率中心の偏心状態測定工程により測定された前記第1及び第2の近軸曲率中心の偏心量及び偏心方向とから、被検レンズの光軸に対する第2の非球面軸の傾き量と方向とを算出する第2の非球面偏心量算出工程とを具備したことを特徴とする非球面レンズの偏心測定方法。


The illumination light from the illumination optical system is irradiated onto the test surface of the test lens, the reflected light from the test surface is detected, and the inclination amount and direction of the aspherical axis with respect to the optical axis of the test lens are determined. A method for measuring the eccentricity of an aspheric lens to be measured,
The light beam from the illumination optical system is irradiated onto the first test surface of the test lens so as to be focused on the center of the paraxial curvature of the first test surface, and the test lens is rotated, A trajectory around the rotation axis of the spot image formed by the reflected light from the first test surface is detected, and the paraxial curvature center of the first test surface with respect to the rotation axis is detected from the detected spot image trajectory. An eccentric state measuring step of a first paraxial curvature center for measuring an eccentric amount and an eccentric direction of
While irradiating the light beam from the illumination optical system on the second test surface through the first test surface of the test lens so that the light beam from the illumination optical system is focused on the paraxial curvature center of the second test surface, By rotating the lens to be detected, a trajectory around the rotation axis of the spot image formed by the reflected light from the second surface to be detected is detected, and from the detected spot image trajectory, the second with respect to the rotation axis is detected. A second paraxial curvature center eccentricity measuring step for measuring an eccentric amount and an eccentric direction of the paraxial curvature center of the test surface;
While rotating the test lens, the distance between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is condensed on the first test surface, and the illumination optical system And a relative movement amount of the test lens and a rotation angle of the test lens, and a first surface shake amount for detecting a surface shake amount in the rotation axis direction of the first test surface based on the detection result. A detection process;
A step of inverting the lens after the first paraxial curvature center eccentricity measuring step, the second paraxial curvature center eccentricity measuring step, and the first surface deflection amount detecting step;
The second test of the test lens is such that the light beam from the illumination optical system is focused on the paraxial curvature center of the second test surface of the test lens that has been inverted by the step of inverting the test lens. Irradiates the surface, rotates the lens to be detected, detects the locus of the swing around the rotation axis of the spot image formed by the reflected light from the second surface to be detected, and detects the detected spot image A third paraxial curvature center eccentric state measuring step for measuring an eccentric amount and an eccentric direction of the paraxial curvature center of the second test surface with respect to the rotation axis from the locus of
While irradiating the light beam from the illumination optical system on the first test surface through the second test surface of the test lens so that the light beam from the illumination optical system is focused on the paraxial curvature center of the first test surface, By rotating the lens to be detected, a locus of swinging around the rotation axis of the spot image formed by the reflected light from the first surface to be detected is detected, and a first locus with respect to the rotation axis is detected from the locus of the detected spot image. A fourth paraxial curvature center eccentricity measuring step for measuring an eccentric amount and an eccentric direction of the paraxial curvature center of one test surface;
While rotating the test lens, the interval between the illumination optical system and the test lens is changed as needed so that the light beam from the illumination optical system is condensed on the second test surface, and the illumination optical system And a relative movement amount of the test lens and a rotation angle of the test lens, and a second surface shake amount for detecting a surface shake amount in the rotation axis direction of the second test surface based on the detection result. A detection process;
The surface runout amount of the first test surface detected by the first surface runout amount detection step is compared with the design data of the first test surface, and the relative difference with respect to the rotation axis is the smallest difference between the two. A shift amount and a tilt amount, and a top position of the first test surface with respect to the rotation axis calculated from the shift amount and the tilt amount, and an eccentric state of the first and second paraxial curvature centers. A first amount of inclination and direction of the first aspherical axis with respect to the optical axis of the lens to be measured is calculated from the amount of eccentricity and the direction of eccentricity of the first and second paraxial curvature centers measured in the measuring step. An aspheric eccentricity calculating step of
The surface runout amount of the second test surface detected by the second runout amount detection step is compared with the design data of the second test surface, and the relative difference with respect to the rotation axis is the smallest difference between the two. A shift amount and a tilt amount, and a top position of the second test surface with respect to the rotation axis calculated from the shift amount and the tilt amount, and an eccentric state of the third and fourth paraxial curvature centers A second amount for calculating the inclination amount and direction of the second aspherical axis with respect to the optical axis of the lens to be measured from the eccentric amount and the eccentric direction of the first and second paraxial curvature centers measured in the measuring step. A method for measuring the eccentricity of an aspherical lens.


JP2006010416A 2005-02-28 2006-01-18 Instrument and method for measuring eccentricity of aspherical lens Withdrawn JP2006267085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010416A JP2006267085A (en) 2005-02-28 2006-01-18 Instrument and method for measuring eccentricity of aspherical lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005055181 2005-02-28
JP2006010416A JP2006267085A (en) 2005-02-28 2006-01-18 Instrument and method for measuring eccentricity of aspherical lens

Publications (1)

Publication Number Publication Date
JP2006267085A true JP2006267085A (en) 2006-10-05

Family

ID=37203210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010416A Withdrawn JP2006267085A (en) 2005-02-28 2006-01-18 Instrument and method for measuring eccentricity of aspherical lens

Country Status (1)

Country Link
JP (1) JP2006267085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034183B1 (en) * 2008-10-14 2011-05-12 재영솔루텍 주식회사 Apparatus and method for measuring displacement and tilt of lens module
JPWO2016157291A1 (en) * 2015-03-27 2018-01-18 オリンパス株式会社 Measuring head and eccentricity measuring apparatus having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034183B1 (en) * 2008-10-14 2011-05-12 재영솔루텍 주식회사 Apparatus and method for measuring displacement and tilt of lens module
JPWO2016157291A1 (en) * 2015-03-27 2018-01-18 オリンパス株式会社 Measuring head and eccentricity measuring apparatus having the same

Similar Documents

Publication Publication Date Title
JP5440801B2 (en) Reference sphere detection device, reference sphere position detection device, and three-dimensional coordinate measurement device
CN100562715C (en) Be used to check or calibrate the equipment of the angular dependence (-dance) aligning of high-precision test piece
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
JP3725817B2 (en) Aspheric lens decentration measuring method and decentration measuring apparatus
JP4738949B2 (en) Lightwave interference device
US8760666B2 (en) Method and apparatus for measuring spacings between optical surfaces of an optical system
US7982882B2 (en) Optical wave interference measuring apparatus
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
JP2006267085A (en) Instrument and method for measuring eccentricity of aspherical lens
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP2007240168A (en) Inspection apparatus
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
JP2005214879A (en) Instrument and method for measuring eccentricity of non-spherical face, and aspheric lens used therefor
JP5307528B2 (en) Measuring method and measuring device
JP2014145684A (en) Measuring device
JP3167870B2 (en) Apparatus and method for measuring eccentricity of aspherical lens
JP5289026B2 (en) Measuring method and measuring device
JPH11211611A (en) Eccentricity measuring apparatus
JP2005331497A (en) Evaluation device and method for aspheric lens
JP2016136120A (en) Shape measurement method and shape measurement apparatus
JP2005156469A (en) Eccentricity measurement method and device
JP2005083981A (en) Aspheric surface eccentricity measuring apparatus and method
JP2004028672A (en) Aspheric surface eccentricity measuring device and aspheric surface eccentricity measuring method
JPH08166209A (en) Polygon mirror evaluating device
KR100820220B1 (en) Lightwave interference apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407