JP2006265189A - beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME - Google Patents

beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME Download PDF

Info

Publication number
JP2006265189A
JP2006265189A JP2005087184A JP2005087184A JP2006265189A JP 2006265189 A JP2006265189 A JP 2006265189A JP 2005087184 A JP2005087184 A JP 2005087184A JP 2005087184 A JP2005087184 A JP 2005087184A JP 2006265189 A JP2006265189 A JP 2006265189A
Authority
JP
Japan
Prior art keywords
amino acid
amyloid peptide
positions
residue
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087184A
Other languages
Japanese (ja)
Inventor
Kazuhiro Irie
一浩 入江
Kazuma Murakami
一馬 村上
Hajime Daito
肇 大東
Masaya Nagao
雅哉 永尾
Takuji Shirasawa
卓二 白澤
Takahiko Shimizu
孝彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYOTO KOREISHA KENKYU FUKUSH
TOKYOTO KOREISHA KENKYU FUKUSHI SHINKO ZAIDAN
Kyoto University
Original Assignee
TOKYOTO KOREISHA KENKYU FUKUSH
TOKYOTO KOREISHA KENKYU FUKUSHI SHINKO ZAIDAN
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYOTO KOREISHA KENKYU FUKUSH, TOKYOTO KOREISHA KENKYU FUKUSHI SHINKO ZAIDAN, Kyoto University filed Critical TOKYOTO KOREISHA KENKYU FUKUSH
Priority to JP2005087184A priority Critical patent/JP2006265189A/en
Publication of JP2006265189A publication Critical patent/JP2006265189A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Aβ (β amyloid peptide) elucidating structural factors of aggregation of the Aβ and expression of neural cytotoxicity and to provide a method for screening a therapeutic agent or a prophylactic agent for AD (Alzheimer's disease) utilizing the Aβ. <P>SOLUTION: An Aβ42 is composed of 42 amino acid residues. The Aβ42 in which a turn structure between β sheet structures based on amino acid sequences before and after the 22- and 23-positions and further the 38- and 39-positions is introduced into the 22- and 23-positions and the 38- and 39-positions is prepared. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルツハイマー病の原因物質と考えられるβアミロイドペプチド、及び当該βアミロイドペプチドを利用するアルツハイマー病治療薬のスクリーニング方法に関するものである。   The present invention relates to a β amyloid peptide considered to be a causative agent of Alzheimer's disease, and a screening method for a therapeutic agent for Alzheimer's disease using the β amyloid peptide.

アルツハイマー病(Alzheimer’s disease:AD)は、神経変性疾患の一種であるが、現状では有効な治療方法がほとんどなく、ADの発症機構の解明並びに根本的治療法の確立が強く望まれている。AD患者の脳には神経病理学上の特徴として、主として大脳新皮質に見られる球状の構造物である老人斑と、海馬及び大脳新皮質に出現する繊維状の封入体である神経原線維変化が認められる。老人斑はAD患者に対する疾患特異性が高く、AD早期から高頻度で認められることから、多くの研究者に注目されてきている。これまでに、老人斑は主として40及び42残基のアミノ酸からなるβアミロイドペプチド(Aβ)の凝集体であることが判明しており、前駆タンパク質として、アミノ酸残基数770のアミロイド前駆体タンパク質(amyloid precursor protein:APP)と命名された1回貫通型の膜タンパク質が同定されている。すなわちAβは、APPが細胞膜外でβ-セクレターゼ(β-secretase)によって切断され、次いで細胞膜内でγ-セクレターゼ(γ-secretase)によって切断されることで産生されるが、この代謝系は正常脳でも機能していることから、AβはAPPの正常な代謝産物の一つであるといえる。   Alzheimer's disease (AD) is a kind of neurodegenerative disease, but there are few effective treatment methods at present, and elucidation of the pathogenesis of AD and establishment of a fundamental treatment method are strongly desired. Neuropathological features of AD patients' brain include senile plaques, which are spherical structures mainly found in the cerebral neocortex, and neurofibrillary tangles, which are fibrous inclusions that appear in the hippocampus and cerebral neocortex. Is recognized. Senile plaques have been attracting attention by many researchers because they are highly disease-specific to AD patients and are frequently observed from early AD. So far, it has been found that senile plaques are aggregates of β-amyloid peptide (Aβ) mainly composed of amino acids of 40 and 42 residues. As a precursor protein, amyloid precursor protein having 770 amino acid residues ( A single-pass membrane protein named amyloid precursor protein (APP) has been identified. That is, Aβ is produced when APP is cleaved by β-secretase outside the cell membrane and then cleaved by γ-secretase inside the cell membrane. However, since it functions, it can be said that Aβ is one of the normal metabolites of APP.

Aβは主として40残基のAβ40、42残基のAβ42からなる。生理学的にはAβ40とAβ42は約10:1の比率で存在するが、まず特に凝集能が高いAβ42が凝集して核となり、その周りにAβ40が凝集して老人斑を形成するという考え方が一般的である。Aβは神経細胞死を引き起こすことから、ADの原因物質と考えられており(アミロイド仮説)、その神経細胞毒性は凝集活性と密接に関連しているが、凝集体そのものの毒性は低く、Aβのオリゴマー構造が毒性本体であると最近では考えられるようになってきてはいる。しかしながら、これまでのところ毒性を発するAβのオリゴマー構造は明らかとなっていない。一方、Aβが分子間βシート構造をとることによって凝集し、神経細胞毒性を発現することは明らかとなってきており、βシートコンホメーションをとるAβの性質を利用して神経毒性を阻害する物質の検定方法が考えられている(特許文献1参照)。同文献には、Aβのβシート構造と神経毒性との間に直接的な相関があることを示唆する記載はされているものの、具体的なデータは明らかにされておらず、細胞毒性のメカニズムについても何ら言及されていない。また、これまでの研究対象は、前記文献も含めて合成の比較的容易なAβ40に対するものがほとんどであり、Aβ40の生成量の約1/10しかなく合成も困難なAβ42はさほど注目されていない。近年になり、Aβ42の抗体の治療への応用が試みられるようにはなってきたが、これらの抗体は、正常なAβ42を抗原として作られたものであるため、脳炎等の副作用のために実用化には至っていないのが現状である。
特開平06−294798号公報
Aβ mainly consists of 40 residues of Aβ40 and 42 residues of Aβ42. Physiologically, Aβ40 and Aβ42 are present in a ratio of about 10: 1, but the general idea is that Aβ42, which has a particularly high aggregation ability, aggregates to form a nucleus, and Aβ40 aggregates around it to form senile plaques. Is. Since Aβ causes neuronal cell death, it is considered to be a causative agent of AD (amyloid hypothesis). Its neurotoxicity is closely related to the aggregating activity, but the aggregate itself has low toxicity, and Aβ It has recently been considered that oligomeric structures are toxic bodies. However, the oligomeric structure of Aβ that produces toxicity has not been clarified so far. On the other hand, it has been clarified that Aβ aggregates by taking an intermolecular β sheet structure and expresses neurocytotoxicity, and inhibits neurotoxicity by utilizing the property of Aβ taking β sheet conformation. An examination method for substances has been considered (see Patent Document 1). Although this document describes that there is a direct correlation between the β-sheet structure of Aβ and neurotoxicity, no specific data has been disclosed, and the mechanism of cytotoxicity is not disclosed. There is no mention about. In addition, most of the research subjects so far have been directed to Aβ40, which is relatively easy to synthesize including the above-mentioned literature, and Aβ42, which is only about 1/10 of the amount of Aβ40 produced and difficult to synthesize, has not received much attention. . In recent years, the application of Aβ42 antibodies to therapy has been attempted, but since these antibodies are produced using normal Aβ42 as an antigen, they are practically used for side effects such as encephalitis. The current situation is that it has not been realized.
Japanese Patent Laid-Open No. 06-294798

本発明は、Aβ自体に神経細胞毒性があるのではなく、Aβ42がある特異的なコンホメーションを取ることで凝集活性が高まるとの観点から、Aβ42の凝集と神経細胞毒性の発現において鍵となるAβ42の構造因子を明らかにすることで、有害なコンホメーションをとるAβ42を提供するとともに、当該Aβ42を利用する有益なAD治療薬又は予防薬のスクリーニング方法を提供することを主たる目的とするものである。   In the present invention, Aβ42 is not neurotoxic, but Aβ42 has a specific conformation, so that the aggregation activity is increased. The main object of the present invention is to provide a screening method for beneficial AD therapeutics or preventives using Aβ42, and to provide Aβ42 having a harmful conformation by clarifying the structural factor of Aβ42. Is.

本発明者らは、遺伝変異を伴う家族性AD(familial Alzheimer’s disease:FAD)におけるAβ配列の変異、特にAβの凝集体が脳血管壁に異常沈着する症例が報告されているAβ配列内の変異に着目し、これらのAβ40及びAβ42変異体を高純度で化学合成し、それらの神経細胞毒性、凝集活性並びに二次構造を精査することによって、Aβ42の凝集並びに神経細胞毒性発現機構に関する新規な知見を得て、本発明をするに至った。   The present inventors have reported a mutation in the Aβ sequence in familial AD (familial Alzheimer's disease: FAD) accompanied by a genetic mutation, in particular, a mutation in the Aβ sequence in which Aβ aggregates are abnormally deposited on the cerebral blood vessel wall. By focusing on the above, and chemically synthesizing these Aβ40 and Aβ42 mutants with high purity and examining their neurotoxicity, aggregating activity and secondary structure, new findings on the aggregation mechanism of Aβ42 and the neurocytotoxic expression mechanism To obtain the present invention.

すなわち、本発明に係るβアミロイドペプチドは、アミノ酸42残基からなるβアミロイドペプチドであって、22位及び23位のアミノ酸残基においてその前後のアミノ酸配列によるβシート構造間のターン構造をなすことを特徴とする。ここで、アミノ酸42残基のβアミロイドペプチド(Aβ42)の野生型のアミノ酸配列を配列表の配列番号1に、また比較のためアミノ酸40残基のβアミロイドペプチド(Aβ40)の野生型のアミノ酸配列を配列番号2にそれぞれ示す。   That is, the β amyloid peptide according to the present invention is a β amyloid peptide composed of 42 amino acid residues, and has a turn structure between β sheet structures based on the amino acid sequences before and after the 22 and 23 amino acid residues. It is characterized by. Here, the wild-type amino acid sequence of β-amyloid peptide (Aβ42) having 42 amino acids is represented by SEQ ID NO: 1 in the Sequence Listing, and the amino acid sequence of wild-type β-amyloid peptide (Aβ40) having 40 amino acids for comparison. Are shown in SEQ ID NO: 2, respectively.

野生型Aβ40とAβ42は、何れも凝集活性と神経細胞毒性を示すが、Aβ42の方がAβ40よりも凝集活性が高く且つ神経細胞毒性も高く持続時間も長い、という違いがある。これらAβ40とAβ42の二次構造上の相違は、C末端領域にあることを本発明者らが見出した。つまり、Aβ42のC末端2残基は分子内βシート構造形成に関与しているが、Aβ40についてはC末端領域がβシート構造をとっていない。この相違が、Aβ40とAβ42の凝集活性及び神経細胞毒性に関する決定的な違いであることが示唆されたことから、本発明は特に、アミノ酸42残基からなるβアミロイドペプチド(Aβ42)であって、22位及び23位のアミノ酸残基と、38位及び39位のアミノ酸残基において、それぞれそれらの前後のアミノ酸配列によるβシート構造間のターン構造をなすことを特徴とするβアミロイドペプチドである。   Wild-type Aβ40 and Aβ42 both exhibit aggregating activity and neurotoxicity, but Aβ42 has a higher aggregating activity, higher neuronal toxicity and longer duration than Aβ40. The present inventors have found that the difference in secondary structure between Aβ40 and Aβ42 is in the C-terminal region. That is, although the C-terminal 2 residues of Aβ42 are involved in the formation of an intramolecular β-sheet structure, the C-terminal region of Aβ40 does not have a β-sheet structure. Since this difference was suggested to be a critical difference regarding the aggregation activity and neurotoxicity of Aβ40 and Aβ42, the present invention is particularly a β amyloid peptide (Aβ42) consisting of 42 amino acid residues, It is a β amyloid peptide characterized in that the amino acid residues at positions 22 and 23 and the amino acid residues at positions 38 and 39 each form a turn structure between β sheet structures according to the amino acid sequences before and after them.

特に上記2つの本発明において、Aβ42の22位及び23位と38位及び39位で分子内βシート構造のターン構造を取りやすいアミノ酸残基としては、ターンのN末端に近い側(22位、38位)が、プロリン、セリン、リジン、アルギニン、アスパラギン酸、スレオニン、グルタミン、グリシン、アスパラギン、アラニン、グルタミン酸から選択される何れか一のアミノ酸残基であり、それに隣接するアミノ酸残基(23位、39位)が、アスパラギン、アスパラギン酸、グリシン、アルギニン、セリン、システイン、チロシン、ヒスチジン、グルタミン酸、スレオニン、リジンから選択される何れか一のアミノ酸残基であることが望ましい。   In particular, in the above-mentioned two present inventions, amino acid residues that are likely to have a turn structure of an intramolecular β-sheet structure at positions 22, 23, 38, and 39 of Aβ42 are those near the N-terminus of the turn (position 22, 38) is any one amino acid residue selected from proline, serine, lysine, arginine, aspartic acid, threonine, glutamine, glycine, asparagine, alanine and glutamic acid, and the amino acid residue adjacent to it (position 23) , Position 39) is preferably any one amino acid residue selected from asparagine, aspartic acid, glycine, arginine, serine, cysteine, tyrosine, histidine, glutamic acid, threonine, and lysine.

なかでも、アミノ酸2残基の配列によるターン構造は、そのうちターンのN末端に近い側がプロリン残基である場合に生じやすいことから、本発明に係るAβ42については、22位のグルタミン酸残基をプロリン残基に置換してなるものが好ましい。   In particular, a turn structure based on a sequence of two amino acid residues is likely to occur when the side close to the N-terminus of the turn is a proline residue. Therefore, for Aβ42 according to the present invention, the glutamic acid residue at position 22 is proline. Those substituted with a residue are preferred.

特に、Aβの強力な凝集活性と神経細胞毒性の機構を合理的に説明でき、且つAD治療薬又は予防薬の創成に極めて役立つAβ42については、22位のグルタミン酸残基及び38位のグリシン残基を、共にプロリン残基に置換してなるものが最適である。   In particular, Aβ42, which can rationally explain the mechanism of Aβ's strong aggregation activity and neurotoxicity, and is extremely useful for the creation of AD therapeutics or preventives, has a glutamic acid residue at position 22 and a glycine residue at position 38. Are optimally substituted with a proline residue.

上述したようなAβは、後に詳述するように合成により得ることができ、しかも高い凝集活性と神経細胞毒性を示すものであり、またこれまでにないAβ42の凝集及び毒性発現の新しいモデルを提供するものであることから、ADの治療薬又は予防薬(抗体を含む)の開発に大いに寄与するものである。   As described above, Aβ can be obtained by synthesis as will be described in detail later, exhibits high aggregation activity and neurotoxicity, and provides a new model of Aβ42 aggregation and toxicity expression that has never been seen before. Therefore, it greatly contributes to the development of therapeutic or preventive drugs (including antibodies) for AD.

したがって、上記の本発明に係るAβ42を利用することで、AD治療薬又は予防薬の有効成分となる物質をスクリーニングすることが可能となる。すなわち本発明に係るスクリーニング方法は、上記の何れかのAβ42に被験物質を接触させて、当該Aβ42の凝集活性を測定する工程を含むことを特徴とする方法である。   Therefore, by using Aβ42 according to the present invention described above, it becomes possible to screen a substance that is an active ingredient of an AD therapeutic agent or a preventive agent. That is, the screening method according to the present invention is a method characterized by including a step of bringing a test substance into contact with any one of the above Aβ42s and measuring the aggregation activity of the Aβ42.

その他の本発明に係るAD治療薬又は予防薬のスクリーニング方法には、上記の何れかに記載のAβ42に被験物質を接触させて、当該Aβ42による神経細胞毒性を測定する工程を含むことを特徴とする方法である。   Other screening methods for AD therapeutic agents or preventive agents according to the present invention include a step of contacting a test substance with any one of the above Aβ42 and measuring the neurotoxicity by the Aβ42. It is a method to do.

本発明のβアミロイドペプチド(Aβ42)は、アルツハイマー病(AD)の病因と考えられる合理的なAβ42の新しい凝集モデル及び神経細胞毒性発現モデルを示すものであり、Aβ42自体がADの原因となるのではなく、例えばプリオンタンパク質のように特異なコンホメーションを取ることでADの要因となることを示唆するものである。したがって、このAβ42を用いてスクリーニングを行うことで、Aβ42の構造に基づいたAD治療薬又は予防薬の開発に新たな且つ画期的な道筋をつけることが可能となる。   The β-amyloid peptide (Aβ42) of the present invention represents a rational new Aβ42 aggregation model and neurocytotoxic expression model that is considered to be the etiology of Alzheimer's disease (AD), and Aβ42 itself causes AD. Instead, it suggests that AD may be caused by taking a specific conformation such as prion protein. Therefore, screening using this Aβ42 can provide a new and innovative path to the development of AD therapeutics or preventives based on the structure of Aβ42.

以下、本発明について図面を参照して詳細に説明する。
<Aβ42の凝集モデル> 図1は、細胞膜 (cell membrane) を貫通するアミロイド前駆体タンパク質APPからγ-セクレターゼにより切断されて産生される2種類のβアミロイドペプチド(Aβ40,Aβ42、但し、何れも野生型)と、家族性アルツハイマー病(familial Alzheimer’s disease:FAD)におけるAβ配列の変異を示すモデル図である。なお同図では、各アミノ酸を1文字表記で表している。Aβの配列内の中央部付近に突然変異を有するFADにおいては、21位のアラニン残基がグリシン残基に変異している(A21G-Aβ)家系(Flemish)、22位のグルタミン酸残基がグルタミン残基に変異している(E22Q-Aβ)家系(Dutch)、22位のグルタミン酸残基がリジン残基に変異している(E22K-Aβ)家系(Italian)、22位のグルタミン酸残基がグリシン残基に変異している(E22G-Aβ)家系(Arctic)、23位のアスパラギン酸残基がアスパラギン残基に変異している(D23N-Aβ)家系(Iowa)がある。そこで、後述する実施例に示す方法により、これらFADに見られる5種類の変異型Aβ40及びAβ42(A21G,E22Q,E22K,E22G,D23N)を高純度で化学合成し、これらの変異体の神経細胞毒性についてPC12細胞を用いたMTT法によって調べたところ、図2に示すように、22位、23位のAβ40及びAβ42変異体は何れも野生型(Wild-type)よりも高い毒性を示した。また、Aβ42変異体の毒性は、対応するAβ40変異体と比較して50倍から200倍高かった。これらの結果から、Aβ42変異体がFADの病因となっている可能性が示唆された。次に、各変異体の凝集活性を、遠心分離後の上清をHPLCにより定量することによって調べたところ、図3(a)に示すように、E22G-Aβ42(Arctic)及びD23N-Aβ42(Iowa)の凝集活性は野生型とほぼ同程度であったのに対して、E22K-Aβ42(Italian)及びE22Q-Aβ4(Dutch)は、野生型よりも著しく凝集した。この結果は、Italian及びDutch家系FAD患者の脳内で、Aβの凝集体の異常沈着が認められる(Science, 248, 1124-1126 (1990),Alzheimer’s Rep., 2, S28 (1999))こととよく符合する。さらにこれらの凝集体の電子顕微鏡撮影を行ったところ、いずれの変異体においても野生型と同様のフィブリル(微小線維)が観察された。以上の結果より、Aβの22位及び23位の変異体において、神経細胞毒性と凝集活性との間に高い相関が認められることが明らかとなった。一方、A21G-Aβ42(Flemish)は、野生型とほぼ同程度の神経細胞毒性を示したが凝集能は低かったことから、Aβのフィブリル形成は、神経細胞毒性の発現においては必ずしも必要なのではなく、結果である可能性が示唆される。
Hereinafter, the present invention will be described in detail with reference to the drawings.
<Aβ42 Aggregation Model> FIG. 1 shows two types of β-amyloid peptides (Aβ40, Aβ42, both of which are produced by cleaving γ-secretase from the amyloid precursor protein APP penetrating the cell membrane. It is a model figure which shows the variation | mutation of the A (beta) arrangement | sequence in familial Alzheimer's disease (familial Alzheimer's disease: FAD). In the figure, each amino acid is represented by one letter. In FAD having a mutation near the center in the sequence of Aβ, the alanine residue at position 21 is mutated to a glycine residue (A21G-Aβ) family (Flemish), and the glutamic acid residue at position 22 is glutamine. Mutated to residue (E22Q-Aβ) Family (Dutch), Glutamic acid residue at position 22 is mutated to lysine residue (E22K-Aβ) Family (Italian), Glutamic acid residue at position 22 is glycine There are families that are mutated to residues (E22G-Aβ) (Arctic), and aspartic acid residues at position 23 are mutated to asparagine residues (D23N-Aβ). Therefore, five types of mutant Aβ40 and Aβ42 (A21G, E22Q, E22K, E22G, D23N) found in these FADs were chemically synthesized with high purity by the method shown in the examples described later, and these mutant neurons Toxicity was examined by the MTT method using PC12 cells. As shown in FIG. 2, the Aβ40 and Aβ42 mutants at positions 22 and 23 both showed higher toxicity than the wild-type. In addition, the toxicity of the Aβ42 mutant was 50 to 200 times higher than that of the corresponding Aβ40 mutant. These results suggested that the Aβ42 mutant may be a cause of FAD. Next, the aggregation activity of each mutant was examined by quantifying the supernatant after centrifugation by HPLC. As shown in FIG. 3 (a), E22G-Aβ42 (Arctic) and D23N-Aβ42 (Iowa ) Was almost the same as the wild type, whereas E22K-Aβ42 (Italian) and E22Q-Aβ4 (Dutch) aggregated significantly more than the wild type. This result shows that abnormal deposition of aggregates of Aβ is observed in the brains of Italian and Dutch family FAD patients (Science, 248, 1124-1126 (1990), Alzheimer's Rep., 2, S28 (1999)). Match well. Further, when these aggregates were photographed with an electron microscope, fibrils (microfibers) similar to the wild type were observed in all the mutants. From the above results, it was clarified that a high correlation was observed between the neurotoxicity and the aggregation activity in the mutants at positions 22 and 23 of Aβ. On the other hand, A21G-Aβ42 (Flemish) showed almost the same level of neurotoxicity as that of the wild type, but its aggregation ability was low. Therefore, fibril formation of Aβ is not always necessary for the expression of neurotoxicity. This suggests a possible result.

ところで、Aβが凝集するためには、特定部位においてβシート構造をとることが重要であると考えられており(Int. J. Exp. Clin. Invest., 5, 121-142 (1998))、上記の各Aβ42変異体の凝集前後の試料についてフーリエ変換赤外分光法(FT-IR)にて二次構造解析を行った結果、何れの試料も凝集によりβシート含有量が増大することが認められた。一方、高い凝集活性が認められた前記各変異体の22位及び23位の2アミノ酸残基の配列を考慮してみると、何れも分子内βシート構造の折り返しとなるターン構造によく認められる配列である(J. Mol. Biol., 115, 135-175 (1977))ことが判明した。そこで、上述した各種FADの変異体と同様の方法により、ターン構造を最も取りやすいアミノ酸残基であるプロリン残基と、ターン構造を最も取りにくいアミノ酸残基であるバリン残基でそれぞれ22位のグルタミン酸残基を置換したAβ42(E22P-Aβ42,E22V-Aβ42)、同じく22位のグルタミン酸残基をプロリン残基で置換したAβ40(E22P-Aβ40)を合成して、それらの凝集活性(図3(b))と神経細胞毒性(図2参照)を調べた。その結果、E22P-Aβ42とE22P-Aβ40は野生型と比べて極めて高い凝集活性と毒性を示したのに対して、E22V-Aβ42は凝集活性も毒性も示さなかった。以上の結果から、Aβの凝集と神経細胞毒性には、Aβの22位及び23位でのターン構造が強く関与していることが判明した。   By the way, in order for Aβ to aggregate, it is considered important to have a β sheet structure at a specific site (Int. J. Exp. Clin. Invest., 5, 121-142 (1998)). As a result of conducting secondary structure analysis by Fourier transform infrared spectroscopy (FT-IR) for the samples before and after the aggregation of each of the Aβ42 mutants, it was found that the β sheet content was increased by aggregation in any sample. It was. On the other hand, considering the sequences of the 2 amino acid residues at positions 22 and 23 of each of the mutants that showed high aggregating activity, both were well observed in the turn structure that turned the intramolecular β-sheet structure back. It was found to be a sequence (J. Mol. Biol., 115, 135-175 (1977)). Therefore, in the same manner as the above-mentioned various FAD mutants, the proline residue which is the amino acid residue which is most likely to have a turn structure and the valine residue which is the amino acid residue which is most difficult to take a turn structure are each positioned at the 22nd position. Aβ42 (E22P-Aβ42, E22V-Aβ42) substituted with a glutamic acid residue, and Aβ40 (E22P-Aβ40) in which the glutamic acid residue at position 22 was substituted with a proline residue were synthesized, and their aggregating activities (FIG. 3 ( b)) and neurotoxicity (see FIG. 2) were examined. As a result, E22P-Aβ42 and E22P-Aβ40 showed extremely high aggregation activity and toxicity compared to the wild type, whereas E22V-Aβ42 showed neither aggregation activity nor toxicity. From the above results, it was found that the turn structures at the 22 and 23 positions of Aβ are strongly involved in the aggregation and neurotoxicity of Aβ.

そこで、Aβ42について、各位のアミノ酸残基を順にプロリン残基に置換した変異体を34種作成し、それぞれの変異体の凝集活性を調べた。その結果を図4に示す。同図からも明らかなように、15位から32位の変異体のなかでは、22位の変異体(E22P-Aβ42)だけが野生型よりも極めて高く且つ迅速な凝集活性を示したが、15位から21位、24位から32位の変異体については凝集しにくいという結果が得られた。すなわち野生型よりも凝集活性が低下する部位はβシート構造をなしており、逆に凝集活性が低下しない部位はもともとターン構造をなしているといえる。このことから、Aβの15位から21位、24位から32位はそれぞれβシート構造をなしており、22位及び23位はターン構造であることが分かった。同様に、凝集活性の低下が認められた部位と認められない部位との検討から、Aβの35位から37位、及び40位から42位はβシート構造をなしており、33位と34位、及び38位と39位はターン構造であることが分かった。以上の結果に基づいて、図5(a)に、22位及び23位、33位及び34位、38位及び39位にそれぞれターン構造を有する本発明のAβ42凝集モデルを示す。図中、板状の矢印はβシート構造をなす部位を表している。最近の研究では、Aβ40のC末端は、βシートを形成していないことが明らかになってきている(J. Mol. Biol., 335, 833-842 (2004))ことから、Aβ42とAβ40の二次構造上の決定的な相違は、C末端にβシートが存在するか否か、という点にあるといえる。なお、2つのアミノ酸残基の配列によるターン構造の取りやすさは、ターンのN末端に近い側をプロリン残基とした場合に限られるものではない。すなわち図5(b)にターン構造を取りやすいアミノ酸2残基の組み合わせを一覧表として示すように、上述のAβ42凝集モデルにおいてターン構造をとる部位のN末端に近い側(first position)のアミノ酸残基には、プロリン残基以外に、セリン、リジン、アルギニン、アスパラギン酸、スレオニン、グルタミン、グリシン、アスパラギン、アラニン、グルタミン酸の各残基のうちの何れかを適用することができる。他方、ターンのC末端に近い側のアミノ酸残基(second position)には、アスパラギン、アスパラギン酸、グリシン、アルギニン、セリン、システイン、チロシン、ヒスチジン、グルタミン酸、スレオニン、リジンの各残基のうちの何れかを適用することができる。   Therefore, for Aβ42, 34 types of mutants in which amino acid residues at each position were substituted with proline residues in order were prepared, and the aggregation activity of each mutant was examined. The result is shown in FIG. As is clear from the figure, among the mutants at positions 15 to 32, only the mutant at position 22 (E22P-Aβ42) showed a much higher and faster aggregation activity than the wild type. It was found that the mutants at positions 21 to 24 and positions 24 to 32 were less likely to aggregate. That is, it can be said that the site where the aggregation activity is lower than that of the wild type has a β sheet structure, and conversely, the site where the aggregation activity does not decrease has a turn structure. From this, it was found that the 15th to 21st positions and the 24th to 32nd positions of Aβ each have a β sheet structure, and the 22nd and 23rd positions have a turn structure. Similarly, from the examination of the site where the decrease in the aggregation activity was observed and the site where the aggregation activity was not observed, Aβ 35-position to 37-position and 40-position to 42-position have β-sheet structure, and 33-position and 34-position. , And positions 38 and 39 were found to be turn structures. Based on the above results, FIG. 5A shows the Aβ42 aggregation model of the present invention having turn structures at the 22nd and 23rd positions, the 33rd and 34th positions, the 38th and 39th positions, respectively. In the figure, a plate-like arrow represents a part having a β sheet structure. Recent studies have revealed that the C-terminus of Aβ40 does not form a β-sheet (J. Mol. Biol., 335, 833-842 (2004)). It can be said that the critical difference in the secondary structure is whether or not a β sheet is present at the C-terminal. In addition, the ease of taking a turn structure by the arrangement of two amino acid residues is not limited to the case where the side close to the N-terminal of the turn is a proline residue. That is, as shown in FIG. 5 (b), combinations of two amino acid residues that are likely to have a turn structure are listed, and in the above-mentioned Aβ42 aggregation model, the amino acid residue on the side close to the N-terminus of the site having the turn structure (first position) In addition to proline residues, any of serine, lysine, arginine, aspartic acid, threonine, glutamine, glycine, asparagine, alanine, and glutamic acid residues can be applied to the group. On the other hand, the amino acid residue (second position) closer to the C-terminus of the turn includes any of the residues of asparagine, aspartic acid, glycine, arginine, serine, cysteine, tyrosine, histidine, glutamic acid, threonine, and lysine. Can be applied.

<Aβ42の凝集及び神経細胞毒性発現機構> AD患者の脳には、酸化ストレスの増大が特徴的に認められる。その原因としては、酸素分子がCu(II)、Zn(II)、Fe(III)等の金属触媒存在下でAβによって還元されて過酸化水素(H)が発生し、脂質やタンパク質等の生体分子が損傷されることによって神経細胞毒性が発現することにある。その機構は、Aβの10位のチロシルラジカルと35位のメチオニンラジカル(メチオニン残基の硫黄原子上に生成されるラジカル)の両方が関与している、との報告がなされている(Brain Res. Bull., 50, 133-141 (1999),Biochemistry, 43, 560-568 (2004)等)が、未だ不明な点が多い。さらに上述したように、これまでの研究はAβ40を対象にしたものがほとんどであり、Aβ42とAβ40との凝集能及び細胞毒性の差異を合理的に説明できなかった。 <Aβ42 Aggregation and Neurocytotoxic Expression Mechanism> Increased oxidative stress is characteristically observed in the brain of AD patients. The cause is that oxygen molecules are reduced by Aβ in the presence of metal catalysts such as Cu (II), Zn (II), Fe (III), etc. to generate hydrogen peroxide (H 2 O 2 ), and lipids and proteins In other words, neurotoxicity is manifested by damaging biomolecules such as. It has been reported that the mechanism involves both the tyrosyl radical at position 10 of Aβ and the methionine radical at position 35 (a radical generated on the sulfur atom of the methionine residue) (Brain Res Bull., 50, 133-141 (1999), Biochemistry, 43, 560-568 (2004), etc.) are still unclear. Further, as described above, most of the studies so far have been directed to Aβ40, and the difference in aggregation ability and cytotoxicity between Aβ42 and Aβ40 could not be rationally explained.

しかしながら、図5(a)に示したAβ42の凝集モデルであれば、このAβ42とAβ40との凝集性及び細胞毒性の差異を説明できる可能性が考えられた。そこでまず、Aβ42の22位及び23位のターン形成がAβ42の神経細胞毒性発現に与える影響について調べた。そのために、22位のグルタミン酸残基に変異のある前述のE22K-Aβ42(Italian)、E22Q-Aβ42(Dutch)、E22G-Aβ42(Arctic)、E22P-Aβ42、E22V-Aβ42、野生型(Wild-type)Aβ42を用い、それらのHの生成について検討した。図6(a)に示すように、E22K-Aβ42、E22Q-Aβ42、E22G-Aβ42、E22P-Aβ42は野生型Aβ42の2倍以上のHを生成したのに対して、E22V-Aβ42は野生型Aβ42よりも低いH生成量しか示さなかった。また、PBN(N-tert-butyl-α-phenylnitrone)をトラップ試薬として用いた電子スピン共鳴(ESR)分光分析でも、図6(b)に示すように、暗所、37℃の条件下で48時間後には、E22V-Aβ42を除く各変異体には野生型Aβ42よりもシグナル強度の増大が認められた一方、E22V-Aβ42については野生型Aβ42よりも低下が認められ、特に前4者の変異体では特徴的な4重線が認められた(図6(c))。これらの結果は、Hの産生、ラジカル形成、神経細胞毒性に高い相関関係があることを示しており、これより、Aβ42の22位と23位におけるターン構造がラジカル形成を通じた神経細胞毒性発現に不可欠であるという結論が導かれる。なお詳述しないが、本発明者らは、E22K-Aβ42のフィブリルを対象とした固体NMRにより、22位と23位にターン構造が存在することを確認しており、このことは上記の結果をよく支持するものであるといえる。 However, with the Aβ42 aggregation model shown in FIG. 5 (a), the possibility of explaining the difference in aggregation and cytotoxicity between Aβ42 and Aβ40 was considered. Therefore, first, the influence of the turn formation at positions 22 and 23 of Aβ42 on the expression of Aβ42 neurotoxicity was examined. For this purpose, the aforementioned E22K-Aβ42 (Italian), E22Q-Aβ42 (Dutch), E22G-Aβ42 (Arctic), E22P-Aβ42, E22V-Aβ42, wild type (Wild-type) having a mutation in the glutamic acid residue at position 22 ) Aβ42 was used to examine their production of H 2 O 2 . As shown in FIG. 6 (a), E22K-Aβ42, E22Q-Aβ42, E22G-Aβ42, and E22P-Aβ42 produced H 2 O 2 more than twice that of wild-type Aβ42, whereas E22V-Aβ42 Only a lower amount of H 2 O 2 was produced than wild type Aβ42. Further, even in electron spin resonance (ESR) spectroscopic analysis using PBN (N-tert-butyl-α-phenylnitrone) as a trap reagent, as shown in FIG. After time, each mutant except E22V-Aβ42 showed an increase in signal intensity compared to wild-type Aβ42, while E22V-Aβ42 showed a decrease compared to wild-type Aβ42. A characteristic quadruple line was observed in the body (FIG. 6C). These results indicate that there is a high correlation between H 2 O 2 production, radical formation, and neurocytotoxicity. From this, the turn structure at positions 22 and 23 of Aβ42 is a neuronal cell through radical formation. A conclusion is drawn that it is essential for the development of toxicity. Although not described in detail, the present inventors have confirmed that a turn structure exists at the 22-position and the 23-position by solid-state NMR for the fibril of E22K-Aβ42. It can be said that it is well supported.

次に、10位のチロシン残基(Tyr-10)と35位のメチオニン残基(Met-35)の神経細胞毒性に与える影響について調べた。そのために、10位のチロシン残基(Tyr-10)をフェニルアラニン残基に置換したAβ42変異体(Y10F-Aβ42)と、35位のメチオニン残基(Met-35)をノルバリン(nV;2-アミノペンタン酸)に置換したAβ42変異体(M35nV-Aβ42)と、10位と35位をそれぞれフェニルアラニン残基とノルバリンに置換したAβ42変異体(Y10F,M35nV-Aβ42)について、ラジカル生成量を測定した。なお、ノルバリンは、メチル基がS-メチル基に似た疎水性を有しているために採用したものである。図7(a)に示すように、Y10F-Aβ42、M35nV-Aβ42、Y10F,M35nV-Aβ42の各変異体は何れも野生型Aβ42と比較して極めて低いHの産生しか示さなかった。また、ESR分光分析でも、図7(b)に示すように、これらの各変異体は、24時間のインキュベーション後に野生型と比べてシグナル強度の低下が認められた。さらに、各変異体のPC12細胞に対する神経毒性についても、図7(c)に示すように、有意な低下が認められた。これらの結果から、10位のチロシルラジカルと35位のメチオニンラジカルは、Aβ42のラジカルを介した神経細胞毒性に関して極めて重要な役割を果たしていることを示している。一方、Aβ25-36を用いた実験により、Met-35の酸化された硫黄原子のラジカルカチオンが酸化的ストレスを有効に引き起こすには、その寿命は短すぎると考えられる(J. Am. Chem. Soc. 122, 10224-10225 (2000))。 Next, the effects of the tyrosine residue at position 10 (Tyr-10) and the methionine residue at position 35 (Met-35) on neuronal toxicity were examined. For this purpose, an Aβ42 mutant (Y10F-Aβ42) in which a tyrosine residue at position 10 (Tyr-10) is substituted with a phenylalanine residue, and a methionine residue at position 35 (Met-35) as norvaline (nV; 2-amino Radical production was measured for Aβ42 mutant (M35nV-Aβ42) substituted with pentanoic acid) and Aβ42 mutant (Y10F, M35nV-Aβ42) substituted with phenylalanine residue and norvaline at positions 10 and 35, respectively. Norvaline is employed because the methyl group has hydrophobicity similar to that of the S-methyl group. As shown in FIG. 7 (a), each of the mutants Y10F-Aβ42, M35nV-Aβ42, Y10F, M35nV-Aβ42 showed extremely low production of H 2 O 2 compared to wild-type Aβ42. Also, in ESR spectroscopic analysis, as shown in FIG. 7 (b), these mutants showed a decrease in signal intensity compared to the wild type after incubation for 24 hours. Furthermore, as shown in FIG. 7 (c), a significant decrease in the neurotoxicity of each mutant against PC12 cells was also observed. From these results, it is shown that the tyrosyl radical at the 10th position and the methionine radical at the 35th position play an extremely important role with respect to the neurotoxicity via the Aβ42 radical. On the other hand, according to experiments using Aβ25-36, it is considered that the radical cation of the oxidized sulfur atom of Met-35 is too short to cause oxidative stress effectively (J. Am. Chem. Soc 122, 10224-10225 (2000)).

ところで、上述したAβ42の凝集モデルでは、C末端領域において、38位と39位のターン構造により35位から37位のβシート領域と40位から42位の領域とが分け隔てられた構造を有している。このことから、図8(a)のC末端の構造モデルに示すように、Aβ42の35位から42位の間で、分子内逆平行βシートが形成されており、Met-35の酸化された硫黄原子とC末端のカルボン酸陰イオンとの反応を可能にしていることが示唆される。そこで、C末端のカルボン酸をアミドに変換したAβ42(amide)を用い、そのラジカル生産性と神経細胞毒性について検討した。Aβ42(amide)のH産生量(図8(b))とラジカル生成量(図8(c))、神経細胞毒性(図8(d))は、野生型Aβ42と比較して有意に低下した。この結果から、Aβ42のC末端領域における分子内逆平行βシートを通じたC末端のカルボン酸陰イオンと35位のメチオニンラジカルは、Aβ42の神経細胞毒性発現に必須であることが強く示唆される。ここで、Aβ40の場合は、C末端領域にβシート構造を持たないために、35位のメチオニンラジカルが不安定で、低い神経細胞毒性しか示さない。また、稀に生じる43残基のAβペプチド(Aβ43)のラジカル生成と神経毒性発現のレベルも低いことから(同図(b)(c)参照)、Aβ42のC末端領域の長さが、ラジカル生成を通じた神経細胞毒性発現に極めて重要であるといえる。 By the way, the Aβ42 aggregation model described above has a structure in which the β-sheet region from the 35th position to the 37th position and the region from the 40th position to the 42nd position are separated by the turn structure at the 38th and 39th positions in the C-terminal region. is doing. From this, as shown in the C-terminal structural model of FIG. 8 (a), an intramolecular antiparallel β sheet was formed between positions 35 and 42 of Aβ42, and Met-35 was oxidized. This suggests that the reaction between the sulfur atom and the C-terminal carboxylate anion is possible. Thus, Aβ42 (amide) obtained by converting a C-terminal carboxylic acid into an amide was used to examine the radical productivity and neurotoxicity. Aβ42 (amide) produced H 2 O 2 (FIG. 8 (b)), radical production (FIG. 8 (c)), and neurotoxicity (FIG. 8 (d)) were significantly higher than wild type Aβ42. Declined. This result strongly suggests that the C-terminal carboxylate anion and the methionine radical at position 35 through the intramolecular antiparallel β-sheet in the C-terminal region of Aβ42 are essential for the expression of Aβ42 neurocytotoxicity. Here, in the case of Aβ40, since it does not have a β-sheet structure in the C-terminal region, the methionine radical at position 35 is unstable and exhibits only low neurocytotoxicity. Moreover, since the radical generation and neurotoxicity expression levels of the rarely-occurring 43-residue Aβ peptide (Aβ43) are low (see FIGS. (B) and (c)), the length of the C-terminal region of Aβ42 is It can be said that it is extremely important for the development of neurotoxicity through generation.

上述の通り、AβのPC12細胞への毒性と凝集機構には相関があることが認められるが、凝集が如何にラジカル形成に基づく神経細胞毒性と関係しているかという具体的なメカニズムを解明する必要がある。そこで次に、前記の10位、35位、42位を置換した全てのAβ変異体について、ラジカル生成能と凝集能について検討した。図9(a)に示すように、Y10F-Aβ42、M35nV-Aβ42、Y10F,M35nV-Aβ42の各変異体は何れも野生型Aβ42と比較して凝集が遅いことが分かった。このことは、10位のチロシルラジカルと35位のメチオニンラジカルがAβ42の凝集において重要な役割を担っていることを示唆している。また、Aβ42(amide)とAβ43については野生型Aβ42と同程度の反応速度であった(但し、Aβ42(amide)とAβ43の平衡状態下における水溶性ペプチドのモル濃度はそれぞれ、2.2±0.22,2.3±0.10μMであり、野生型Aβの同モル濃度の0.85±0.04μMよりも高い)。このことは、Aβ42(amide)とAβ43のフィブリルの熱力学的な安定性が野生型Aβ42よりも低いことを示唆している。本結果は、Met-35の酸化された硫黄原子とC末端(Ala-42)のカルボン酸陰イオンとの間のS-O結合によって、Aβ42のオリゴマーが極めて安定的となることを示している。   As described above, it is recognized that there is a correlation between the toxicity of Aβ to PC12 cells and the aggregation mechanism, but it is necessary to clarify the specific mechanism of how aggregation is related to neurotoxicity based on radical formation. There is. Then, next, the radical production ability and the aggregation ability were examined for all the Aβ mutants substituted at the 10-position, 35-position and 42-position. As shown in FIG. 9 (a), it was found that each of the mutants Y10F-Aβ42, M35nV-Aβ42, Y10F, M35nV-Aβ42 has a slower aggregation compared to wild-type Aβ42. This suggests that the 10th tyrosyl radical and the 35th methionine radical play an important role in the aggregation of Aβ42. Aβ42 (amide) and Aβ43 had the same reaction rate as wild type Aβ42 (however, the molar concentration of the water-soluble peptide in the equilibrium state of Aβ42 (amide) and Aβ43 was 2.2 ± 0, respectively. .22, 2.3 ± 0.10 μM, higher than the same molar concentration of wild-type Aβ of 0.85 ± 0.04 μM). This suggests that the thermodynamic stability of fibrils of Aβ42 (amide) and Aβ43 is lower than that of wild type Aβ42. This result shows that the oligomer of Aβ42 becomes extremely stable due to the S—O bond between the oxidized sulfur atom of Met-35 and the carboxylate anion at the C-terminus (Ala-42). .

前述のAβ42におけるC末端の構造モデル(図8(a))によれば、C末端にコアを有するAβ42だけがオリゴマーないしフィブリル内にラジカルを蓄積することができ、モノマーへの平衡化により細胞が持続的に損傷されることを意味する。この仮説を証明するため、Aβ42とAβ40のラジカル生成量をESR(明所、37℃の条件下では、6重線のシグナルが認められる)により経時的に測定したところ、図9(b)に示すように、Aβ42については12.5時間のインキュベーション後に観測可能なレベルのシグナルが観測され、そのシグナル強度は24時間のインキュベーション後まで増大して最大値に達した。これに対してAβ40は、24時間のインキュベーション後でも有意なレベルのシグナルを示さなかった。一方、ESR測定での濃度(165μM)よりも低濃度での凝集活性試験(25μM)においては、図9(c)に示すように、16時間のインキュベーション後に90%以上のAβ42が凝集した。これに対してAβ40は、24時間のインキュベーション後でも有意な凝集を示さなかった。また、図8(d)に示したように、Aβ40の神経細胞毒性は極めて低かった。以上のことから、Aβ40はオリゴマーないしフィブリル形成によるラジカル生成を安定化できない結果、Aβ42よりも神経細胞毒性が低いのに対して、Aβ42のオリゴマーないしフィブリルはラジカルを放出し続けることができることが明らかとなった。   According to the C-terminal structural model of Aβ42 described above (FIG. 8A), only Aβ42 having a core at the C-terminus can accumulate radicals in oligomers or fibrils. It means being permanently damaged. In order to prove this hypothesis, the amount of radicals produced by Aβ42 and Aβ40 was measured over time by ESR (light, a 6-fold signal was observed under the conditions of 37 ° C.). As shown, an observable level of signal was observed for Aβ42 after 12.5 hours of incubation, and the signal intensity increased to a maximum after 24 hours of incubation. In contrast, Aβ40 did not show a significant level of signal even after 24 hours of incubation. On the other hand, in the aggregation activity test (25 μM) at a concentration lower than the concentration measured by ESR (165 μM), as shown in FIG. 9 (c), 90% or more of Aβ42 aggregated after 16 hours of incubation. In contrast, Aβ40 did not show significant aggregation even after 24 hours of incubation. Further, as shown in FIG. 8 (d), the neurocytotoxicity of Aβ40 was extremely low. From the above, it is clear that Aβ40 cannot stabilize radical generation by oligomer or fibril formation, and as a result, Aβ42 oligomer or fibril can continue to release radicals, whereas Aβ42 is less neurotoxic than Aβ42. became.

以上の結果に基づいて、Aβ42の凝集と神経細胞毒性発現の機構モデルを図10に示す。すなわち、まずAβ42は微量の金属イオンがN末端のヒスチジンにキレートすることで、10位のチロシン残基(10-Tyr)のフェノール性水酸基が酸化される。そして、Aβ42の22位及び23位のターン構造が、酸化により生成したチロシルラジカルをMet-35の硫黄原子へ接近させることで、メチオニンラジカルが生成する(同図(a))。そして、このメチオニンラジカルは、38位及び39位でターンした35位から37位と40位から42位の分子内βシートを通じてC末端のカルボン酸陰イオンに接近して結合し、Aβ42のC末端領域が安定化する(同図(b))。その結果、Aβ42のC末端にコアが形成されてAβ42のオリゴマー形成ないしフィブリル形成が誘導され、Aβ42モノマーの平衡化を通じて持続的に発生させられるラジカル種がAβ42オリゴマーによって安定化されることとなる(同図(c))。このことは、C末端にβシート構造を持たないAβ40と比較して、C末端にβシート構造を持つAβ42が極めて凝集しやすく、且つ長時間に亘って神経細胞毒性を発現することと非常によく符合する。   Based on the above results, a mechanism model of Aβ42 aggregation and neurotoxicity expression is shown in FIG. That is, first, Aβ42 oxidizes the phenolic hydroxyl group of the 10-position tyrosine residue (10-Tyr) by chelating a small amount of metal ion to N-terminal histidine. Then, the turn structures at the 22nd and 23rd positions of Aβ42 bring the tyrosyl radical generated by oxidation closer to the sulfur atom of Met-35, thereby generating a methionine radical ((a) in the figure). The methionine radicals bind to the C-terminal carboxylate anion through intramolecular β-sheets at positions 35 to 37 and 40 to 42, which are turned at positions 38 and 39, and bind to the C-terminal of Aβ42. The region is stabilized ((b) in the figure). As a result, a core is formed at the C-terminus of Aβ42 to induce oligomerization or fibril formation of Aβ42, and radical species that are continuously generated through equilibration of Aβ42 monomer are stabilized by the Aβ42 oligomer ( (C) in the figure. This means that Aβ42 having a β-sheet structure at the C-terminus is very likely to aggregate and exhibits neurotoxicity for a long time compared to Aβ40 having no β-sheet structure at the C-terminus. Match well.

<AD治療薬又は予防薬のスクリーニング方法> 上述のようなAβ42の凝集モデルとそれに基づく神経細胞毒性発現のモデルを利用することで、ADの治療薬又は予防薬となる成分を含む物質のスクリーニングを行うことが可能である。スクリーニングの方法としては、Aβ42の凝集活性を測定する方法、又はAβ42の神経細胞毒性を測定する方法を挙げることができる。ここで、利用可能なAβ42としては、22位及び23位と、38位及び39位にターン構造を有する前記の各種変異体の如く、一部のアミノ酸残基を置換した態様のものが適しているが、ターン構造を最もとりやすく且つこのスクリーニングに最適なペプチドは、配列番号3にアミノ酸配列を示す通り、22位と38位の両方にプロリン残基を導入したAβ42(E22P,G38P-Aβ42)である。   <Screening Method for AD Therapeutic Agent or Preventive Agent> By using the Aβ42 aggregation model as described above and a neurocytotoxic expression model based thereon, screening of a substance containing a component that becomes a therapeutic agent or a preventive agent for AD is performed. Is possible. Examples of the screening method include a method for measuring the aggregation activity of Aβ42, and a method for measuring the neurotoxicity of Aβ42. Here, as Aβ42 that can be used, those in which some amino acid residues are substituted, such as the above-mentioned various mutants having a turn structure at positions 22 and 23, and positions 38 and 39, are suitable. However, the peptide having the most easy turn structure and the most suitable for this screening is Aβ42 (E22P, G38P-Aβ42) in which a proline residue is introduced at both positions 22 and 38 as shown in SEQ ID NO: 3. It is.

このようなAβ42を利用して、その凝集活性を測定することに基づくスクリーニング方法としては、例えばAβ42に被験物質と蛍光色素であるチオフラビンTを加えてインキュベーションし、蛍光強度を低下させる物質をスクリーニングする方法(Th-Tアッセイ;Anal. Biochem., 177, 244-249 (1989),J. Biol. Chem., 278, 46179-46187 (2003))を例示することができる。具体的な被験物質の候補には、食品、微生物代謝産物、植物抽出物に代表される天然物由来物質を例示することができる。   As a screening method based on measuring the aggregation activity using such Aβ42, for example, a test substance and thioflavin T which is a fluorescent dye are added to Aβ42 and incubated to screen a substance which decreases the fluorescence intensity. The method (Th-T assay; Anal. Biochem., 177, 244-249 (1989), J. Biol. Chem., 278, 46179-46187 (2003)) can be exemplified. Specific test substance candidates include natural product-derived substances represented by foods, microbial metabolites, and plant extracts.

また、上記のAβ42を利用して、神経細胞毒性を測定することに基づくスクリーニング方法としては、RNAアプタマーを用いたランダムスクリーニングを例示することができる。この場合、神経細胞毒性を低下させる阻害剤の立体構造を明らかにして、それを模倣する低分子有機化合物をAD治療薬又は予防薬としてデザインすることが期待できる。   Moreover, as a screening method based on measuring neurocytotoxicity using the above Aβ42, a random screening using an RNA aptamer can be exemplified. In this case, it can be expected that the three-dimensional structure of the inhibitor that reduces neurotoxicity is clarified and a low-molecular-weight organic compound that mimics it is designed as an AD therapeutic or prophylactic.

以上のようなスクリーニング方法の他にも、例えばAβ42における22位と38位の何れか一方又は両方のターン構造を模倣する低分子化合物のデザインを行い、それをハプテンとしてモノクローナル抗体を作成することも、AD治療薬又は予防薬の創成のための有用な方法であると考えられる。   In addition to the screening methods described above, for example, a low molecular weight compound that mimics the turn structure of either one or both of positions 22 and 38 in Aβ42 can be designed, and a monoclonal antibody can be produced using that as a hapten. It is considered to be a useful method for the creation of AD therapeutic agents or preventive agents.

<βアミロイドペプチド(Aβ)変異体の合成> 上述した各種Aβ42変異体は、Aβ42(amide)を除き、固相合成法(Fmoc法(Biochem. Biophys. Res. Commun., 295, 306-311 (2002) , J. Biol. Chem., 279, 52781-52788 (2004) , Biochem. Biophys. Res. Commun., 294, 5-10 (2002) , J. Biol. Chem., 278, 46179-46187 (2003)))に基づき、Pioneer (商品名)ペプチド合成機( Applied Biosystems社製)において0.1mmolのFmoc-Ala-PEG-PS樹脂に段階的にFmocアミノ酸を供することで合成した。Aβ42(amide)の合成には、Fmoc-PAL-PEG-PS樹脂を利用した。Aβ43は、株式会社ペプチド研究所(日本、大阪)から購入した。ペプチド鎖延長の完了後、各ペプチド-樹脂複合体を、最終的な脱保護と樹脂からの脱離のためにTFA溶液を含む混合物として処理した。ジエチルエーテルで沈殿させた粗ペプチドは、HPLCにて塩基性下で精製した。そして、得られたAβ42に凍結乾燥を施し、HPLCにて純度を確認した(>98%)。精製したAβ42は、MALDI-TOF-MS分析装置( Applied Biosystems社製)にて満足のいくデータが得られた。すなわち、分子量の計算値と理論値の差は1質量単位未満であった。なお、この合成工程を図11に示す。   <Synthesis of β Amyloid Peptide (Aβ) Mutant> The various Aβ42 mutants described above, except for Aβ42 (amide), were prepared by solid phase synthesis (Fmoc method (Biochem. Biophys. Res. Commun., 295, 306-311 ( 2002), J. Biol. Chem., 279, 52781-52788 (2004), Biochem. Biophys. Res. Commun., 294, 5-10 (2002), J. Biol. Chem., 278, 46179-46187 ( Based on 2003))), it was synthesized by supplying Fmoc amino acid stepwise to 0.1 mmol of Fmoc-Ala-PEG-PS resin in a Pioneer (trade name) peptide synthesizer (manufactured by Applied Biosystems). For the synthesis of Aβ42 (amide), Fmoc-PAL-PEG-PS resin was used. Aβ43 was purchased from Peptide Institute, Inc. (Osaka, Japan). After completion of peptide chain extension, each peptide-resin complex was treated as a mixture containing TFA solution for final deprotection and release from the resin. The crude peptide precipitated with diethyl ether was purified under basicity by HPLC. The obtained Aβ42 was freeze-dried and the purity was confirmed by HPLC (> 98%). Satisfactory data was obtained for the purified Aβ42 using a MALDI-TOF-MS analyzer (Applied Biosystems). That is, the difference between the calculated molecular weight and the theoretical value was less than 1 mass unit. This synthesis process is shown in FIG.

<in vitro 過酸化水素アッセイ> Hの産生は、カラーメトリックHアッセイキット(OXIS社製)を用いその仕様書に従って計測した。各Aβ変異体は、5mMのリン酸ナトリウム緩衝溶液(150mM NaClを含む、pH7.4)に165μMで溶解し、37℃で4、8、16、24、48時間インキュベートした。各溶液100μlを、ソルビトールとアンモニウム鉄硫酸塩による酸性溶液中、キシレノールオレンジを含有する呈色試薬1mlに添加し、560nmで吸光度を測定した。なお、ペプチド以外のバックグラウンド値は差し引いた。 Production of <in vitro hydrogen peroxide assay> H 2 O 2 was measured in accordance with the specifications with a color metric H 2 O 2 assay kit (OXIS Co.). Each Aβ variant was dissolved in 5 mM sodium phosphate buffer solution (containing 150 mM NaCl, pH 7.4) at 165 μM and incubated at 37 ° C. for 4, 8, 16, 24, 48 hours. 100 μl of each solution was added to 1 ml of a color reagent containing xylenol orange in an acidic solution of sorbitol and ammonium iron sulfate, and the absorbance was measured at 560 nm. Note that background values other than peptides were subtracted.

<ESR分光分析> 各Aβ変異体は、酢酸エチル/ヘキサン中で繰り返し再結晶化することで精製したPBN(Aldrich社製)50mMを含有する5mMリン酸ナトリウム緩衝溶液(150mM NaClを含む、pH7.4)に、165μMに希釈して用いた。過度な金属触媒反応による影響を抑制するために、前記の緩衝液を、Chelex-100樹脂(Aldrich社製)の存在下、室温にて48時間攪拌した。Aβの添加前に、前記の緩衝液にデフェロキサミンメシレート(deferoxamine mesylate)を2mMになるように加えた。得られたペプチド溶液は、37度で24時間又は48時間インキュベートした。ESR分析に備えて、各溶液400μlを、ESRフラットセル中に適当時間静置した。ESR分光分析は、EMX ESR分光分析機(Burker社製)で、室温下37℃にて行った。計測のパラメータは次の通りである。マイクロ波出力:20mW,マイクロ波周波数:9.8GHz,変調周波数:100kHz,振幅変調:1.0G,変換時間:40.96ms,スキャン:100回(室温)又は200回(37℃)。ラジカル強度の積分演算は、バックグラウンドのスペクトルの除去後に行った。   <ESR spectroscopic analysis> Each Aβ variant is 5 mM sodium phosphate buffer solution containing 50 mM PBN (manufactured by Aldrich) purified by repeated recrystallization in ethyl acetate / hexane, containing 150 mM NaCl, pH 7. In 4), it was diluted to 165 μM. In order to suppress the influence of an excessive metal catalyst reaction, the buffer solution was stirred at room temperature for 48 hours in the presence of Chelex-100 resin (Aldrich). Prior to the addition of Aβ, deferoxamine mesylate was added to the buffer to a concentration of 2 mM. The resulting peptide solution was incubated at 37 degrees for 24 or 48 hours. In preparation for ESR analysis, 400 μl of each solution was placed in an ESR flat cell for a suitable time. ESR spectroscopic analysis was performed at 37 ° C. at room temperature with an EMX ESR spectroscopic analyzer (Burker). The measurement parameters are as follows. Microwave output: 20 mW, microwave frequency: 9.8 GHz, modulation frequency: 100 kHz, amplitude modulation: 1.0 G, conversion time: 40.96 ms, scan: 100 times (room temperature) or 200 times (37 ° C.). The radical intensity integration was performed after removing the background spectrum.

<細胞生存の評価> ラットの副腎褐色細胞腫由来であるPC12細胞のミトコンドリアの機能をMTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)還元アッセイにより評価した。実験手法は既知の文献(Biochem. Biophys. Res. Commun., 295, 306-311 (2002) , J. Biol. Chem., 279, 52781-52788 (2004) , Biochem. Biophys. Res. Commun., 294, 5-10 (2002) , J. Biol. Chem., 278, 46179-46187 (2003))に記載の方法に従った。   <Evaluation of cell survival> Mitochondrial function of PC12 cells derived from rat adrenal pheochromocytoma was evaluated by MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) reduction assay. . Experimental methods are described in known literature (Biochem. Biophys. Res. Commun., 295, 306-311 (2002), J. Biol. Chem., 279, 52781-52788 (2004), Biochem. Biophys. Res. Commun., 294, 5-10 (2002), J. Biol. Chem., 278, 46179-46187 (2003)).

<凝集試験> 各Aβ変異体の凝集速度は、沈降アッセイにより評価した。実験手法は既知の文献(Biochem. Biophys. Res.Commun.,295,306-311(2002),J. Biol.Chem.,279,52781-52788(2004),Biochem. Biophys. Res.Commun.,294,5-10(2002),J. Biol. Chem.,278,46179-26187(2003))に記載の方法に従った。220nmの吸収領域を積分して、コントロールに対する割合で示した。Aβフィブリルの熱力学的安定性は、Micro BCA proteinアッセイ(Pierce社製)を利用してその仕様書に従い、平衡状態にある可溶性Aβのモル濃度を測定することにより評価した。   <Aggregation Test> The aggregation rate of each Aβ mutant was evaluated by a sedimentation assay. Experimental methods are described in known literature (Biochem. Biophys. Res. Commun., 295, 306-311 (2002), J. Biol. Chem., 279, 52781-52788 (2004), Biochem. Biophys. Res. Commun., 294, 5-10 (2002), J. Biol. Chem., 278, 46179-26187 (2003)). The 220 nm absorption region was integrated and expressed as a percentage of the control. The thermodynamic stability of Aβ fibrils was evaluated by measuring the molar concentration of soluble Aβ in equilibrium using the Micro BCA protein assay (Pierce) according to its specifications.

なお、本発明は上述した実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更することができるのは勿論である。   Note that the present invention is not limited to the above-described embodiments, and can of course be modified as appropriate without departing from the spirit of the present invention.

AβがAPPから切り出されるモデルを示す図The figure which shows the model where Aβ is cut out from APP Aβ42変異体の神経細胞毒性活性試験結果を示す図The figure which shows the neurocytotoxic activity test result of A (beta) 42 variant Aβ42変異体の凝集活性試験結果を示す図The figure which shows the aggregation activity test result of A (beta) 42 variant Aβ42プロリン導入変異体の凝集活性試験結果を示す図The figure which shows the aggregation activity test result of an A (beta) 42 proline introduction mutant Aβ42の凝集モデルを示す図The figure which shows the aggregation model of A (beta) 42 Aβ42変異体の22位及び23位のターン形成が神経細胞毒性発現に与える影響を示す各種試験結果を表す図The figure showing the various test results which show the influence which the 22nd and 23rd turn formation of A (beta) 42 mutant has on neurocytotoxic expression Aβ42変異体のTyr-10およびMet-35の神経細胞毒性に与える影響を示す各種試験結果を表す図The figure showing the various test results which show the influence which it has on neurocytotoxicity of Tyr-10 and Met-35 of A (beta) 42 mutant Aβ42変異体のC末端モデル、並びにラジカル生成と神経細胞毒性との関係を示す各種試験結果を表す図The figure showing various test results showing the relationship between C-terminal model of Aβ42 mutant and radical generation and neurotoxicity Aβ42変異体のラジカル生成と凝集活性との関係を示す各種試験結果を表す図The figure showing the various test results which show the relationship between radical production | generation and aggregation activity of A (beta) 42 variant Aβ42の凝集及び神経細胞毒性発現の機構を示すモデル図Model diagram showing the mechanism of Aβ42 aggregation and neurotoxicity expression Aβ変異体の合成方法を示す概略的な工程図Schematic process diagram showing the synthesis method of Aβ mutant

符号の説明Explanation of symbols

Aβ…βアミロイドペプチド
APP…アミロイド前駆体タンパク質
Aβ ... β amyloid peptide APP ... Amyloid precursor protein

Claims (7)

アミノ酸42残基からなるβアミロイドペプチドであって、22位及び23位のアミノ酸残基においてその前後のアミノ酸配列によるβシート構造間のターン構造をなすことを特徴とするβアミロイドペプチド。 A β-amyloid peptide comprising 42 amino acid residues, wherein the amino acid residues at positions 22 and 23 form a turn structure between β-sheet structures according to the amino acid sequences before and after the amino acid sequence. 38位及び39位のアミノ酸残基において、それぞれそれらの前後のアミノ酸配列によるβシート構造間のターン構造をなすことを特徴とする請求項1記載のβアミロイドペプチド。 The β-amyloid peptide according to claim 1, wherein the amino acid residues at positions 38 and 39 form a turn structure between β-sheet structures based on the amino acid sequences before and after them. 前記ターン構造をなす2つのアミノ酸残基のうちN末端に近い側が、プロリン、セリン、リジン、アルギニン、アスパラギン酸、スレオニン、グルタミン、グリシン、アスパラギン、アラニン、グルタミン酸から選択される何れか一のアミノ酸残基であり、それに隣接するアミノ酸残基が、アスパラギン、アスパラギン酸、グリシン、アルギニン、セリン、システイン、チロシン、ヒスチジン、グルタミン酸、スレオニン、リジンから選択される何れか一のアミノ酸残基である請求項1又は2記載のβアミロイドペプチド。 Any one amino acid residue selected from proline, serine, lysine, arginine, aspartic acid, threonine, glutamine, glycine, asparagine, alanine, and glutamic acid, of the two amino acid residues constituting the turn structure. The amino acid residue which is a group and is adjacent thereto is any one amino acid residue selected from asparagine, aspartic acid, glycine, arginine, serine, cysteine, tyrosine, histidine, glutamic acid, threonine, and lysine. Or β-amyloid peptide according to 2. 22位のグルタミン酸残基をプロリン残基に置換してなる請求項1記載のβアミロイドペプチド。 The β-amyloid peptide according to claim 1, wherein the glutamic acid residue at position 22 is substituted with a proline residue. 22位のグルタミン酸残基及び38位のグリシン残基を、共にプロリン残基に置換してなる請求項2記載のβアミロイドペプチド。 The β-amyloid peptide according to claim 2, wherein both the glutamic acid residue at position 22 and the glycine residue at position 38 are substituted with proline residues. アルツハイマー病治療薬又は予防薬の有効成分となる物質をスクリーニングする方法であって、請求項1乃至5の何れかに記載のβアミロイドペプチドに被験物質を接触させて当該βアミロイドペプチドの凝集活性を測定する工程を含むことを特徴とする方法。 A method for screening a substance which is an active ingredient of an Alzheimer's disease therapeutic agent or preventive agent, wherein the test substance is brought into contact with the β amyloid peptide according to any one of claims 1 to 5, and the aggregation activity of the β amyloid peptide is measured. A method comprising the step of measuring. アルツハイマー病治療薬又は予防薬の有効成分となる物質をスクリーニングする方法であって、請求項1乃至5の何れかに記載のβアミロイドペプチドに被験物質を接触させて当該βアミロイドペプチドによる神経細胞毒性を測定する工程を含むことを特徴とする方法。
A method for screening a substance which is an active ingredient of an Alzheimer's disease therapeutic agent or preventive drug, comprising contacting a test substance with the β-amyloid peptide according to any one of claims 1 to 5 and causing neurocytotoxicity by the β-amyloid peptide A method comprising the step of measuring.
JP2005087184A 2005-03-24 2005-03-24 beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME Pending JP2006265189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087184A JP2006265189A (en) 2005-03-24 2005-03-24 beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087184A JP2006265189A (en) 2005-03-24 2005-03-24 beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME

Publications (1)

Publication Number Publication Date
JP2006265189A true JP2006265189A (en) 2006-10-05

Family

ID=37201523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087184A Pending JP2006265189A (en) 2005-03-24 2005-03-24 beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER'S DISEASE USING THE SAME

Country Status (1)

Country Link
JP (1) JP2006265189A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514454A (en) * 2007-01-05 2010-05-06 ユニバーシティ・オブ・チューリッヒ Methods of providing disease-specific binding molecules and targets
WO2011045945A1 (en) * 2009-10-16 2011-04-21 国立大学法人京都大学 ANTIBODY RECOGNIZING TURN STRUCTURE IN AMYLOID β
KR101082484B1 (en) * 2007-11-06 2011-11-11 한국과학기술원 Method for Screening Drug for Neurodegenerative Diseases Treatment
JP2012139219A (en) * 2007-01-05 2012-07-26 Univ Of Zuerich Method for providing disease-specific binding molecule and target
JP2012217379A (en) * 2011-04-07 2012-11-12 Japan Health Science Foundation Method for screening therapeutic agent for dementia, transgenic non-human animal and expression vector
US8497072B2 (en) 2005-11-30 2013-07-30 Abbott Laboratories Amyloid-beta globulomer antibodies
US8691224B2 (en) 2005-11-30 2014-04-08 Abbvie Inc. Anti-Aβ globulomer 5F7 antibodies
US8877190B2 (en) 2006-11-30 2014-11-04 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US8895004B2 (en) 2007-02-27 2014-11-25 AbbVie Deutschland GmbH & Co. KG Method for the treatment of amyloidoses
US8987419B2 (en) 2010-04-15 2015-03-24 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9062101B2 (en) 2010-08-14 2015-06-23 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9176150B2 (en) 2003-01-31 2015-11-03 AbbVie Deutschland GmbH & Co. KG Amyloid beta(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
JP2016052337A (en) * 2016-01-21 2016-04-14 国立研究開発法人国立長寿医療研究センター Expression vector
WO2016092865A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 ANTIBODY HIGHLY SPECIFICALLY RECOGNIZING TURN STRUCTURE AT 22- AND 23-POSITIONS IN AMYLOID β
US9580493B2 (en) 2011-06-23 2017-02-28 Biogen International Neuroscience Gmbh Anti-α synuclein binding molecules
US9896504B2 (en) 2008-12-19 2018-02-20 Biogen International Neuroscience Gmbh Human anti-alpha-synuclein antibodies
US10842871B2 (en) 2014-12-02 2020-11-24 Biogen International Neuroscience Gmbh Methods for treating Alzheimer's disease
CN112851786A (en) * 2019-11-12 2021-05-28 深圳市新产业生物医学工程股份有限公司 Soluble Abeta 1-42 variant, Abeta 1-42 calibrator and kit
WO2022075540A1 (en) * 2020-10-08 2022-04-14 경상국립대학교산학협력단 Composition for prevention, alleviation or treatment of brain damage and mild cognitive impairment, comprising glutamine as active ingredient
US11655289B2 (en) 2017-08-22 2023-05-23 Biogen Ma Inc. Pharmaceutical compositions containing anti-beta amyloid antibodies
JP7357354B2 (en) 2020-02-04 2023-10-06 国立大学法人京都大学 Amyloid β42 cross-linked analog peptide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010007532, J. Biol. Chem., 2004, Vol.279, No.50, p.52781−52788 *
JPN6010007535, 日本農芸化学会大会講演要旨集, 2005.03.05, Vol.2005, p.12 *
JPN6010007542, J. Mol. Biol., 1977, Vol.115, p.135−175 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464976B2 (en) 2003-01-31 2019-11-05 AbbVie Deutschland GmbH & Co. KG Amyloid β(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
US9176150B2 (en) 2003-01-31 2015-11-03 AbbVie Deutschland GmbH & Co. KG Amyloid beta(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
US8691224B2 (en) 2005-11-30 2014-04-08 Abbvie Inc. Anti-Aβ globulomer 5F7 antibodies
US10538581B2 (en) 2005-11-30 2020-01-21 Abbvie Inc. Anti-Aβ globulomer 4D10 antibodies
US10323084B2 (en) 2005-11-30 2019-06-18 Abbvie Inc. Monoclonal antibodies against amyloid beta protein and uses thereof
US10208109B2 (en) 2005-11-30 2019-02-19 Abbvie Inc. Monoclonal antibodies against amyloid beta protein and uses thereof
US9540432B2 (en) 2005-11-30 2017-01-10 AbbVie Deutschland GmbH & Co. KG Anti-Aβ globulomer 7C6 antibodies
US8497072B2 (en) 2005-11-30 2013-07-30 Abbott Laboratories Amyloid-beta globulomer antibodies
US9394360B2 (en) 2006-11-30 2016-07-19 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US9359430B2 (en) 2006-11-30 2016-06-07 Abbvie Inc. Abeta conformer selective anti-Abeta globulomer monoclonal antibodies
US9951125B2 (en) 2006-11-30 2018-04-24 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US8877190B2 (en) 2006-11-30 2014-11-04 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US8906367B2 (en) 2007-01-05 2014-12-09 University Of Zurich Method of providing disease-specific binding molecules and targets
US9670272B2 (en) 2007-01-05 2017-06-06 University Of Zurich Method of providing disease-specific binding molecules and targets
JP2012139219A (en) * 2007-01-05 2012-07-26 Univ Of Zuerich Method for providing disease-specific binding molecule and target
US10202445B2 (en) 2007-01-05 2019-02-12 University Of Zurich Method of providing disease-specific binding molecules and targets
JP2015120744A (en) * 2007-01-05 2015-07-02 ユニバーシティ・オブ・チューリッヒUniversity Of Zurich Method for providing disease-specific binding molecule and target
JP2013226162A (en) * 2007-01-05 2013-11-07 Univ Of Zuerich Method for providing disease-specific binding molecule and target
US10131708B2 (en) 2007-01-05 2018-11-20 University Of Zürich Methods of treating Alzheimer's disease
JP2010514454A (en) * 2007-01-05 2010-05-06 ユニバーシティ・オブ・チューリッヒ Methods of providing disease-specific binding molecules and targets
US9828420B2 (en) 2007-01-05 2017-11-28 University Of Zürich Method of providing disease-specific binding molecules and targets
US8895004B2 (en) 2007-02-27 2014-11-25 AbbVie Deutschland GmbH & Co. KG Method for the treatment of amyloidoses
KR101082484B1 (en) * 2007-11-06 2011-11-11 한국과학기술원 Method for Screening Drug for Neurodegenerative Diseases Treatment
US10703808B2 (en) 2008-12-19 2020-07-07 Biogen International Neuroscience Gmbh Human anti-alpha-synuclein antibodies
US9896504B2 (en) 2008-12-19 2018-02-20 Biogen International Neuroscience Gmbh Human anti-alpha-synuclein antibodies
JPWO2011045945A1 (en) * 2009-10-16 2013-03-04 国立大学法人京都大学 An antibody that recognizes the turn structure of amyloid β
US8710193B2 (en) 2009-10-16 2014-04-29 Kyoto University Antibody recognizing turn structure in amyloid β
WO2011045945A1 (en) * 2009-10-16 2011-04-21 国立大学法人京都大学 ANTIBODY RECOGNIZING TURN STRUCTURE IN AMYLOID β
CN102596999B (en) * 2009-10-16 2014-12-24 国立大学法人京都大学 Antibody recognizing turn structure in amyloid beta
CN102596999A (en) * 2009-10-16 2012-07-18 国立大学法人京都大学 Antibody recognizing turn structure in amyloid beta
US8987419B2 (en) 2010-04-15 2015-03-24 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9822171B2 (en) 2010-04-15 2017-11-21 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US10047121B2 (en) 2010-08-14 2018-08-14 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9062101B2 (en) 2010-08-14 2015-06-23 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
JP2012217379A (en) * 2011-04-07 2012-11-12 Japan Health Science Foundation Method for screening therapeutic agent for dementia, transgenic non-human animal and expression vector
US9580493B2 (en) 2011-06-23 2017-02-28 Biogen International Neuroscience Gmbh Anti-α synuclein binding molecules
US9975947B2 (en) 2011-06-23 2018-05-22 Biogen International Neuroscience Gmbh Anti-alpha synuclein binding molecules
US10301381B2 (en) 2011-06-23 2019-05-28 Biogen International Neuroscience Gmbh Anti-alpha synuclein binding molecules
US10842871B2 (en) 2014-12-02 2020-11-24 Biogen International Neuroscience Gmbh Methods for treating Alzheimer's disease
WO2016092865A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 ANTIBODY HIGHLY SPECIFICALLY RECOGNIZING TURN STRUCTURE AT 22- AND 23-POSITIONS IN AMYLOID β
JP2016052337A (en) * 2016-01-21 2016-04-14 国立研究開発法人国立長寿医療研究センター Expression vector
US11655289B2 (en) 2017-08-22 2023-05-23 Biogen Ma Inc. Pharmaceutical compositions containing anti-beta amyloid antibodies
CN112851786A (en) * 2019-11-12 2021-05-28 深圳市新产业生物医学工程股份有限公司 Soluble Abeta 1-42 variant, Abeta 1-42 calibrator and kit
CN112851786B (en) * 2019-11-12 2022-11-15 深圳市新产业生物医学工程股份有限公司 Soluble Abeta 1-42 variant, abeta 1-42 calibrator and kit
JP7357354B2 (en) 2020-02-04 2023-10-06 国立大学法人京都大学 Amyloid β42 cross-linked analog peptide
WO2022075540A1 (en) * 2020-10-08 2022-04-14 경상국립대학교산학협력단 Composition for prevention, alleviation or treatment of brain damage and mild cognitive impairment, comprising glutamine as active ingredient

Similar Documents

Publication Publication Date Title
JP2006265189A (en) beta-AMYLOID PEPTIDE AND METHOD FOR SCREENING THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR ALZHEIMER&#39;S DISEASE USING THE SAME
Turnbull et al. α-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro
Dufty et al. Calpain-cleavage of α-synuclein: connecting proteolytic processing to disease-linked aggregation
Cabrera et al. Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition
Tabner et al. Formation of hydrogen peroxide and hydroxyl radicals from Aβ and α-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease
KR100994748B1 (en) Immunological methods and compositions for the treatment of alzheimer&#39;s disease
US20070213512A1 (en) Amyloid beta peptide analogs and assemblies thereof
Maki et al. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson's disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment
Turnbull et al. New evidence that the Alzheimer β-amyloid peptide does not spontaneously form free radicals: An ESR study using a series of spin-traps
JP2001519753A (en) Peptides for the treatment of disorders or diseases associated with abnormally folding of proteins to produce amyloid or amyloid-like deposits and pharmaceutical compositions of said peptides
Lin et al. Alzheimer’s amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity
Gospodarska et al. Binding studies of truncated variants of the Aβ peptide to the V-domain of the RAGE receptor reveal Aβ residues responsible for binding
WO2012054008A2 (en) Methods and compositions comprising tau oligomers
Hadrovic et al. Molecular lysine tweezers counteract aberrant protein aggregation
JP2004530704A (en) β-secretase substrate and use thereof
JP2020055833A (en) Modification of human secretoglobin proteins and novel compositions
Zhang et al. An aptamer-functionalized gold nanoparticle biosensor for the detection of prion protein
JP3910569B2 (en) Reagent for amplifying amyloid fibrillation of amyloid β protein
Parvathy et al. Aβ peptide conformation determines uptake and interleukin-1α expression by primary microglial cells
Michno et al. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer’s disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma
White et al. Diverse fibrillar peptides directly bind the Alzheimer’s amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation
JP4937143B2 (en) Method for detecting autoantibodies having specificity for non-diffusible globular Aβ (X-38..43) oligomeric structural epitopes
US20210230244A1 (en) Peptide complex with immunodulatory and anti-inflammatory function
Yang et al. Coordinating to three histidine residues: Cu (II) promotes oligomeric and fibrillar amyloid-β peptide to precipitate in a non-β aggregation manner
US11643448B2 (en) Oxidized Aβ peptide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100609