JP2006255651A - Pure water producing system - Google Patents

Pure water producing system Download PDF

Info

Publication number
JP2006255651A
JP2006255651A JP2005079701A JP2005079701A JP2006255651A JP 2006255651 A JP2006255651 A JP 2006255651A JP 2005079701 A JP2005079701 A JP 2005079701A JP 2005079701 A JP2005079701 A JP 2005079701A JP 2006255651 A JP2006255651 A JP 2006255651A
Authority
JP
Japan
Prior art keywords
water
pure water
reverse osmosis
osmosis membrane
electrodeionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079701A
Other languages
Japanese (ja)
Inventor
Seiichi Onoda
成一 小野田
Masayuki Miwa
昌之 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005079701A priority Critical patent/JP2006255651A/en
Priority to PCT/JP2006/304709 priority patent/WO2006100937A1/en
Priority to US11/885,960 priority patent/US7955503B2/en
Priority to CN2006800086788A priority patent/CN101160264B/en
Priority to TW095108804A priority patent/TWI391332B/en
Publication of JP2006255651A publication Critical patent/JP2006255651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure water producing system which prevents variation in water quality of obtained pure water without using a heat exchanger. <P>SOLUTION: Raw water is filtered by an activated carbon filtration device 1, passed through a feed water pump 2 for a reverse osmosis membrane device, and sent to a reverse osmosis membrane device 3 to be desalinated. The desalinated water in the reverse osmosis membrane device 3 is brought into contact with a water quality sensor 4 equipped with a water temperature sensor 4a, thereafter sent to an electric deionization device 5 to be electrically deionized. The electrically deionized water is brought into contact with a water quality sensor 6 equipped with a water temperature sensor 6a to be extracted as a treated water, i.e. pure water. A sensing signal from the water temperature sensor 6a is input to a current control circuit 8 of the electric deionization device, and controls applied voltage and/or energizing current to the electric deionization device 5 so that electric conductivity or specific resistance of the treated water from the electric deionization device 5 becomes constant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は純水製造装置に係り、特に原水を逆浸透膜装置と電気脱イオン装置とによって処理するようにした純水製造装置に関する。   The present invention relates to a pure water production apparatus, and more particularly to a pure water production apparatus in which raw water is treated by a reverse osmosis membrane apparatus and an electrodeionization apparatus.

工水、市水、井水或いは半導体製造工程等からの回収水を処理して純水を製造するシステムとして、原水を逆浸透膜装置で処理した後、電気脱イオン装置で処理する装置が周知である(例えば下記特許文献1,2)。
特開2003−1259号公報 特開2001−29752号公報
As a system for producing pure water by treating recovered water from industrial water, city water, well water, or semiconductor manufacturing processes, etc., an apparatus that treats raw water with a reverse osmosis membrane device and then with an electrodeionization device is well known. (For example, Patent Documents 1 and 2 below).
JP 2003-1259 A JP 2001-29752 A

原水を逆浸透膜装置及び電気脱イオン装置によって処理して純水を製造する純水製造装置においては、電気脱イオン装置によって処理される水の水温が変動すると、電気脱イオン装置からの処理水の水質が変動する。   In a pure water production apparatus that produces pure water by treating raw water with a reverse osmosis membrane apparatus and an electrodeionization apparatus, if the temperature of the water treated by the electrodeionization apparatus fluctuates, the treated water from the electrodeionization apparatus The water quality varies.

従来は、この水温変動による水質変動を防止するために、電気脱イオン装置の前段側に熱交換器を設置し、電気脱イオン装置への流入水の水温を一定とするようにしている。しかしながら、このような熱交換器を設けると、純水製造装置の設備コストが嵩むことになる。   Conventionally, in order to prevent fluctuations in water quality due to fluctuations in the water temperature, a heat exchanger is installed on the upstream side of the electrodeionization apparatus so that the temperature of the inflow water to the electrodeionization apparatus is constant. However, when such a heat exchanger is provided, the equipment cost of a pure water manufacturing apparatus will increase.

本発明は、熱交換器を用いることなく、得られる純水の水質変動が防止される純水製造装置を提供することを目的とする。   An object of this invention is to provide the pure water manufacturing apparatus by which the quality change of the pure water obtained is prevented, without using a heat exchanger.

本発明(請求項1)の純水製造装置は、原水を逆浸透膜装置で処理した後、電気脱イオン装置で処理して純水を製造する純水製造装置において、原水、処理途中の水又は処理により得られた純水の水温の検知手段と、該検知手段で検知された水温に基づき、製造される純水の水質が一定となるように該電気脱イオン装置への印加電圧及び/又は通電電流を制御する制御手段とを備えたことを特徴とするものである。   The pure water production apparatus of the present invention (Claim 1) is a pure water production apparatus for producing pure water by treating raw water with a reverse osmosis membrane device and then treating it with an electrodeionization device. Alternatively, a detection means for the temperature of the pure water obtained by the treatment, and an applied voltage to the electrodeionization device and / or so that the quality of the pure water produced is constant based on the water temperature detected by the detection means. Alternatively, a control means for controlling the energization current is provided.

請求項2の純水製造装置は、請求項1において、前記水温の検知手段は、製造された純水の導電率計又は比抵抗計の温度補正用検出器と兼用されていることを特徴とするものである。   The pure water production apparatus according to claim 2 is characterized in that, in claim 1, the water temperature detecting means is also used as a temperature correction detector of the produced pure water conductivity meter or resistivity meter. To do.

本発明の純水製造装置は、原水、処理途中の水、又は処理により得られた純水の水温を検知し、この検知水温に基づいて電気脱イオン装置への印加電圧及び/又は通電電流を制御することにより、純水の水質を一定とするものである。このように電気脱イオン装置の印加電圧及び/又は通電電流を制御することにより純水の水質変動が防止されるので、電気脱イオン装置の前段側に熱交換器を設けることが不要となり、純水製造装置の設備コストが低減される。   The pure water production apparatus of the present invention detects the water temperature of raw water, water in the middle of processing, or pure water obtained by processing, and based on this detected water temperature, applies an applied voltage and / or current to the electrodeionization device. By controlling, the quality of pure water is made constant. By controlling the applied voltage and / or energization current of the electrodeionization device in this way, fluctuations in the quality of pure water can be prevented, so there is no need to provide a heat exchanger on the front side of the electrodeionization device. Equipment costs for water production equipment are reduced.

特に、この水温検知手段として、純水の水質検知用の導電率計又は比抵抗計の温度補正用検出器を利用することにより、設備コストをさらに低減させることが可能である。   In particular, it is possible to further reduce the equipment cost by using a conductivity meter for detecting the water quality of pure water or a temperature correction detector of a specific resistance meter as the water temperature detecting means.

以下、図面を参照して実施の形態について説明する。図1は実施の形態に係る純水製造装置の系統図である。   Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a system diagram of a pure water production apparatus according to an embodiment.

原水は、活性炭濾過装置1によって濾過された後、逆浸透膜装置(図1中ではROと記載されている。)用給水ポンプ2を経て逆浸透膜装置3へ送られ、脱塩処理される。逆浸透膜装置3で脱塩処理された水は、水温センサ4aを備えた水質センサ4と接触した後、電気脱イオン装置5へ送られ、電気脱イオン処理される。この電気脱イオン処理水は、水温センサ6aを有した水質センサ6と接触した後、処理水(純水)として取り出される。   The raw water is filtered by the activated carbon filtration device 1, then sent to the reverse osmosis membrane device 3 through the reverse osmosis membrane device (shown as RO in FIG. 1) feed water pump 2, and desalted. . The water demineralized by the reverse osmosis membrane device 3 is brought into contact with the water quality sensor 4 provided with the water temperature sensor 4a, and then sent to the electrodeionization device 5 and subjected to electrodeionization treatment. This electrodeionized treated water is taken out as treated water (pure water) after contacting the water quality sensor 6 having the water temperature sensor 6a.

上記の水温センサ4aの検知信号は、ポンプ制御回路7に入力され、水温が変化しても逆浸透膜装置3の浸透水量が一定となるように、ポンプ2の吐出量を制御する。   The detection signal of the water temperature sensor 4a is input to the pump control circuit 7 and controls the discharge amount of the pump 2 so that the amount of osmotic water in the reverse osmosis membrane device 3 is constant even when the water temperature changes.

また、上記水温センサ6aの検知信号は、電気脱イオン装置通電制御回路8に入力され、電気脱イオン装置5からの処理水の導電率又は比抵抗が一定となるように、電気脱イオン装置5への印加電圧及び/又は通電電流を制御する。具体的には、水温が低下すると電気脱イオン装置5への印加電圧及び/又は通電電流を増大させ、水温が低下すると電気脱イオン装置5への印加電圧及び/又は通電電流を低下させ、電気脱イオン装置5の透過水の導電率または比抵抗が一定となるようにする。   The detection signal of the water temperature sensor 6a is input to the electrodeionization device energization control circuit 8, and the electrodeionization device 5 so that the conductivity or specific resistance of the treated water from the electrodeionization device 5 is constant. The applied voltage and / or the energizing current is controlled. Specifically, when the water temperature decreases, the applied voltage and / or energization current to the electrodeionization device 5 is increased, and when the water temperature decreases, the application voltage and / or energization current to the electrodeionization device 5 is decreased, The conductivity or specific resistance of the permeated water of the deionizer 5 is made constant.

このように、この純水製造装置によると、水温センサ6aの検知水温に基づいて、電気脱イオン装置5への印加電圧及び/又は通電電流を制御して電気脱イオン装置5の処理水の水質変動を防止するので、電気脱イオン装置5の前段側に熱交換器を設けることが不要となり、純水製造装置の設備コストが低減される。   Thus, according to this pure water manufacturing apparatus, the quality of the treated water of the electrodeionization apparatus 5 is controlled by controlling the applied voltage and / or energization current to the electrodeionization apparatus 5 based on the detected water temperature of the water temperature sensor 6a. Since the fluctuation is prevented, it is not necessary to provide a heat exchanger on the front side of the electrodeionization apparatus 5, and the equipment cost of the pure water production apparatus is reduced.

特に、この実施の形態では、逆浸透膜装置3からの脱塩水の水温を水温センサ4aで検知し、これに基づいてポンプ2の吐出速度を制御して脱塩水の水量変動を防止するようにしており、純水製造装置で製造される純水の水量変動が防止される。   In particular, in this embodiment, the temperature of the demineralized water from the reverse osmosis membrane device 3 is detected by the water temperature sensor 4a, and the discharge rate of the pump 2 is controlled based on the detected temperature to prevent fluctuations in the amount of demineralized water. Therefore, fluctuations in the amount of pure water produced by the pure water production apparatus are prevented.

加えて、この実施の形態では、水温センサとして水質センサ4,6の温度補正用の水温センサ4a,6aを利用しているので、水温センサを新設する必要がなく、これによっても純水製造装置の設備コストが一層低廉化される。   In addition, in this embodiment, since the water temperature sensors 4a and 6a for correcting the temperature of the water quality sensors 4 and 6 are used as the water temperature sensors, there is no need to newly install a water temperature sensor, and the pure water production apparatus can be used also by this. The equipment cost is further reduced.

本発明において、処理対象となる原水は、工水、市水、井水又は製造プロセス回収水、例えば半導体又は液晶等の製造プロセスの洗浄排水等であり、これらの2種以上を混合して原水としても良い。半導体製造回収水のような製造プロセス回収水を原水とする場合であって、当該回収水の有機物(TOC)濃度が高い場合には、生物処理手段、加熱手段、触媒による分解手段等のTOC除去装置で予め処理してもよい。   In the present invention, raw water to be treated is industrial water, city water, well water or manufacturing process recovered water, for example, washing waste water of a manufacturing process such as semiconductor or liquid crystal. It is also good. When manufacturing process recovered water such as semiconductor manufacturing recovered water is used as raw water, and the organic matter (TOC) concentration of the recovered water is high, TOC removal such as biological treatment means, heating means, catalytic decomposition means, etc. You may process beforehand with an apparatus.

また、工水、市水、井水等の原水は、必要に応じてこの実施の形態のように、活性炭濾過装置1などで前処理するのが好ましい。なお、活性炭濾過装置以外のものとして限外濾過(UF)膜装置、精密濾過(MF)膜装置等を用いてもよい。   Moreover, it is preferable to pre-process raw water, such as industrial water, city water, and well water, with the activated carbon filtration apparatus 1 etc. like this embodiment as needed. In addition, you may use an ultrafiltration (UF) membrane apparatus, a microfiltration (MF) membrane apparatus, etc. as things other than an activated carbon filtration apparatus.

原水又はその前処理水(又はTOC除去処理水)は、HCl,HSO等の鉱酸を添加してpH4〜6に調整した後、脱酸素装置で処理してもよい。 The raw water or its pretreated water (or TOC removal treated water) may be treated with a deoxygenating apparatus after adding a mineral acid such as HCl and H 2 SO 4 to adjust the pH to 4-6.

ここで、調整pHは酸素と共に炭酸ガスを除去するために行うものであり、後段の脱塩装置の負荷を軽減させる。この脱酸素装置としては、膜脱気装置、真空脱気装置、空気ガス脱気装置等を用いることができる。pHを酸性として脱酸素装置で脱酸素処理した場合は、その後、NaOH等のアルカリを添加してpH7〜8に調整する。   Here, the adjusted pH is performed to remove carbon dioxide together with oxygen, and reduces the load on the desalting apparatus in the subsequent stage. As this deoxygenating device, a membrane degassing device, a vacuum degassing device, an air gas degassing device or the like can be used. When the pH is acid and the deoxygenation is performed by the deoxygenation device, an alkali such as NaOH is added to adjust the pH to 7-8.

逆浸透膜装置の膜としては特に制限はなく、ポリスルホン、ポリアミド、ポリ酢酸ビニル等の膜を用いることができる。   There is no restriction | limiting in particular as a film | membrane of a reverse osmosis membrane apparatus, Membranes, such as a polysulfone, polyamide, a polyvinyl acetate, can be used.

電気脱イオン装置5としては、陽極を備える陽極室と陰極を備える陰極室との間に、複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にアニオン交換樹脂とカチオン交換樹脂との混合樹脂やイオン交換繊維等のイオン交換体を充填したもの等を使用することができる。この電気脱イオン装置5の印加電圧は10〜100V特に30〜70V程度が好適であり、通電電流密度は4〜20A/m、特に6〜10A/m程度が好適である。 As the electrodeionization apparatus 5, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode to alternately form a concentration chamber and a desalting chamber. In addition, a desalting chamber filled with an ion exchanger such as a mixed resin of an anion exchange resin and a cation exchange resin or an ion exchange fiber can be used. The applied voltage of the electrodeionization device 5 is preferably about 10 to 100 V, particularly about 30 to 70 V, and the energization current density is preferably about 4 to 20 A / m 2 , particularly about 6 to 10 A / m 2 .

電気脱イオン装置5の脱イオン水は、必要に応じ、第2の逆浸透膜装置や、限外濾過膜装置(図示略)で処理して、更に残留する微量のTOCやシリカ等を除去して純度を高めてもよい。   The deionized water of the electrodeionization device 5 is treated with a second reverse osmosis membrane device or an ultrafiltration membrane device (not shown) as necessary to further remove residual traces of TOC and silica. The purity may be increased.

なお、本発明においては、電気脱イオン装置5の濃縮水を逆浸透膜装置3の入口側に返送して循環処理するのが水回収率の向上の面で好ましい。この場合においても、電気脱イオン装置5への給水は、逆浸透膜装置3による処理で十分に水質が高められているため、電気脱イオン装置濃縮水を逆浸透膜装置3の入口側に返送することによる処理水水質の低下の問題はない。   In the present invention, it is preferable to return the concentrated water of the electrodeionization device 5 to the inlet side of the reverse osmosis membrane device 3 and circulate it in terms of improving the water recovery rate. Also in this case, the water supply to the electrodeionization device 5 is sufficiently improved in quality by the treatment by the reverse osmosis membrane device 3, so the electrodeionization device concentrated water is returned to the inlet side of the reverse osmosis membrane device 3. There is no problem of deterioration of treated water quality.

本発明の純水製造装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the pure water manufacturing apparatus of this invention.

符号の説明Explanation of symbols

1 活性炭濾過装置
3 逆浸透膜装置
5 電気脱イオン装置
7 ポンプ制御回路
8 電気脱イオン装置通電制御回路
DESCRIPTION OF SYMBOLS 1 Activated carbon filtration apparatus 3 Reverse osmosis membrane apparatus 5 Electrodeionization apparatus 7 Pump control circuit 8 Electrodeionization apparatus electricity supply control circuit

Claims (2)

原水を逆浸透膜装置で処理した後、電気脱イオン装置で処理して純水を製造する純水製造装置において、
原水、処理途中の水又は処理により得られた純水の水温の検知手段と、
該検知手段で検知された水温に基づき、製造される純水の水質が一定となるように該電気脱イオン装置への印加電圧及び/又は通電電流を制御する制御手段と
を備えたことを特徴とする純水製造装置。
In a pure water production apparatus that produces pure water by treating raw water with a reverse osmosis membrane device and then treating with an electrodeionization device,
Means for detecting the temperature of raw water, water in the middle of treatment or pure water obtained by treatment;
And a control means for controlling the applied voltage and / or current applied to the electrodeionization device so that the quality of the pure water produced is constant based on the water temperature detected by the detection means. Pure water production equipment.
請求項1において、前記水温の検知手段は、製造された純水の導電率計又は比抵抗計の温度補正用検出器と兼用されていることを特徴とする純水製造装置。   2. The pure water production apparatus according to claim 1, wherein the water temperature detection means is also used as a temperature correction detector of a manufactured pure water conductivity meter or resistivity meter.
JP2005079701A 2005-03-18 2005-03-18 Pure water producing system Pending JP2006255651A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005079701A JP2006255651A (en) 2005-03-18 2005-03-18 Pure water producing system
PCT/JP2006/304709 WO2006100937A1 (en) 2005-03-18 2006-03-10 Apparatus for producing pure water
US11/885,960 US7955503B2 (en) 2005-03-18 2006-03-10 Pure water producing apparatus
CN2006800086788A CN101160264B (en) 2005-03-18 2006-03-10 Apparatus for producing pure water
TW095108804A TWI391332B (en) 2005-03-18 2006-03-15 Pure water manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079701A JP2006255651A (en) 2005-03-18 2005-03-18 Pure water producing system

Publications (1)

Publication Number Publication Date
JP2006255651A true JP2006255651A (en) 2006-09-28

Family

ID=37095437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079701A Pending JP2006255651A (en) 2005-03-18 2005-03-18 Pure water producing system

Country Status (1)

Country Link
JP (1) JP2006255651A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990899A (en) * 1982-11-15 1984-05-25 三菱電機株式会社 Voice synthesizer
KR100970950B1 (en) 2010-06-01 2010-07-20 새남해농업협동조합 Method to produce black-garlic concentrate
JP2011245371A (en) * 2010-05-24 2011-12-08 Tohzai Chemical Industry Co Ltd Apparatus and method for producing pure water
JP2014184410A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus
JP2018199104A (en) * 2017-05-29 2018-12-20 オルガノ株式会社 Operational method of electric deionized water production apparatus and electric deionized water production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPS63270592A (en) * 1987-04-30 1988-11-08 Ebara Corp Fresh water generator by reverse-osmosis membrane module
JP2000074865A (en) * 1998-08-31 2000-03-14 Daikin Ind Ltd Conductivity sensor for water quality control, and absorption type cold and hot water machine
JP2000317457A (en) * 1999-05-12 2000-11-21 Kurita Water Ind Ltd Production of pure water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPS63270592A (en) * 1987-04-30 1988-11-08 Ebara Corp Fresh water generator by reverse-osmosis membrane module
JP2000074865A (en) * 1998-08-31 2000-03-14 Daikin Ind Ltd Conductivity sensor for water quality control, and absorption type cold and hot water machine
JP2000317457A (en) * 1999-05-12 2000-11-21 Kurita Water Ind Ltd Production of pure water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990899A (en) * 1982-11-15 1984-05-25 三菱電機株式会社 Voice synthesizer
JP2011245371A (en) * 2010-05-24 2011-12-08 Tohzai Chemical Industry Co Ltd Apparatus and method for producing pure water
KR100970950B1 (en) 2010-06-01 2010-07-20 새남해농업협동조합 Method to produce black-garlic concentrate
US20110293803A1 (en) * 2010-06-01 2011-12-01 Saenamhae Nonghyup Method for producing black garlic concentrate
JP2014184410A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus
JP2018199104A (en) * 2017-05-29 2018-12-20 オルガノ株式会社 Operational method of electric deionized water production apparatus and electric deionized water production apparatus

Similar Documents

Publication Publication Date Title
JP4867182B2 (en) Pure water production equipment
TWI391332B (en) Pure water manufacturing device
JP4779391B2 (en) Pure water production equipment
Lee et al. Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO)
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP3575271B2 (en) Pure water production method
JP2010540209A (en) Low energy system and method for desalinating seawater
JP2015020131A (en) Method and device for treating boron-containing water
JP2006255651A (en) Pure water producing system
JP5953726B2 (en) Ultrapure water production method and apparatus
JP2014000575A (en) Apparatus and method for producing purified water
JP2007307561A (en) High-purity water producing apparatus and method
JP3137831B2 (en) Membrane processing equipment
JP2007307561A5 (en)
JP2000051665A (en) Desalination method
JP4691998B2 (en) Pure water production equipment
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JPH11262771A (en) Production of pure water
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP2000283939A (en) Water quality monitoring system, water quality monitoring method, and demineralizer
JP5782675B2 (en) Water treatment method and ultrapure water production method
JP2006122908A (en) Pure water producing method
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method
JP2005342587A (en) Water production method and water production device
JPH10249340A (en) Production of pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228