JP2006246560A - Rotor manufacturing method of permanent magnet motor and curing degree prediction method - Google Patents

Rotor manufacturing method of permanent magnet motor and curing degree prediction method Download PDF

Info

Publication number
JP2006246560A
JP2006246560A JP2005055480A JP2005055480A JP2006246560A JP 2006246560 A JP2006246560 A JP 2006246560A JP 2005055480 A JP2005055480 A JP 2005055480A JP 2005055480 A JP2005055480 A JP 2005055480A JP 2006246560 A JP2006246560 A JP 2006246560A
Authority
JP
Japan
Prior art keywords
rotor
adhesive
temperature
permanent magnet
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005055480A
Other languages
Japanese (ja)
Other versions
JP4581745B2 (en
Inventor
Kenichiro Fukumaru
健一郎 福丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005055480A priority Critical patent/JP4581745B2/en
Publication of JP2006246560A publication Critical patent/JP2006246560A/en
Application granted granted Critical
Publication of JP4581745B2 publication Critical patent/JP4581745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor manufacturing method of a permanent magnet motor that can make a permanent magnet firmly adhere to a magnet storage hole formed at a rotor without causing the leakage of an adhesive to the outside, when adhesion-fixing the permanent magnet to the magnet storage hole formed at the rotor, can set a curing condition, and can shorten a manufacturing time of the rotor, and a curing degree prediction method. <P>SOLUTION: The rotor manufacturing method comprises: an adhesive injection step that injects the adhesive into a slot formed at a rotor core; a magnet insertion step that inserts the permanent magnet into the slot; an installation step that superimposes and fixes an end plate on the rotor core and blocks the slot; an inverting preheating step that holds the rotor at a temperature higher than a normal temperature and lower than the curing start temperature of the adhesive in a state that the top and the bottom of the rotor are inverted different form a state in the adhesive injection step; an erecting preheating step that holds the rotor at a preheating temperature by returning the top and the bottom of the rotor back to the same state in the adhesive injection step; and a thermosetting step that thermally cures the adhesive in the slot by heating the rotor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,永久磁石を備える永久磁石モータのロータの製造方法,およびその製造方法に用いられ,接着剤の硬化度を予測する硬化度予測方法に関する。さらに詳細には,ロータコアに設けられた収納穴の中に永久磁石を接着固定することによる永久磁石モータのロータ製造方法および硬化度予測方法に関するものである。   The present invention relates to a method for manufacturing a rotor of a permanent magnet motor including a permanent magnet, and a curing degree prediction method used in the manufacturing method for predicting the curing degree of an adhesive. More specifically, the present invention relates to a method for manufacturing a rotor of a permanent magnet motor and a method for predicting the degree of cure by bonding and fixing a permanent magnet in a storage hole provided in the rotor core.

例えば積層鋼板等によって形成されたロータコアに,磁石収納穴を設け,その中に永久磁石を挿入固定することによって製造される永久磁石式のロータがある。このようなロータにおいて,従来より一般的に行われている磁石の固定方法として,例えば,ロータコアに設けた磁石収納穴に接着剤を注入し,その中へ永久磁石を挿入して接着する方法がある。さらに,永久磁石を磁石収納穴内の適切な位置に配置させるために,収納穴の形状等に様々な工夫がされてきた(例えば,特許文献1,特許文献2参照。)。   For example, there is a permanent magnet type rotor manufactured by providing a magnet housing hole in a rotor core formed of laminated steel sheets or the like and inserting and fixing a permanent magnet therein. In such a rotor, as a conventional method for fixing a magnet, for example, there is a method in which an adhesive is injected into a magnet housing hole provided in a rotor core and a permanent magnet is inserted into the magnet housing hole for adhesion. is there. Furthermore, in order to arrange the permanent magnet at an appropriate position in the magnet housing hole, various devices have been devised in the shape of the housing hole (see, for example, Patent Document 1 and Patent Document 2).

さらに,このようなロータにおいては,接着剤の接着面積を大きくとることも重要である。そこで本発明者は,以前の出願(特願2004−119934号参照。)において,磁石収納穴に接着剤と磁石とを挿入した後,コアの上下を返して硬化させることを提案した。この方法によれば,磁石収納穴の下方に溜まっていた接着剤を磁石に沿って上方まで付着させることができるので,強固で均一な接着状態が得られるのである。さらにその出願において,接着剤が硬化しない程度に加熱するプリヒート工程を組み入れ,接着剤の流動性を高めてコアの上下を返すことにより,硬化工程の前に接着剤を磁石に沿って広げておくことも提案した。   Further, in such a rotor, it is also important to increase the bonding area of the adhesive. Therefore, the present inventor proposed in an earlier application (see Japanese Patent Application No. 2004-119934) that an adhesive and a magnet are inserted into a magnet housing hole, and then the core is turned upside down and cured. According to this method, the adhesive accumulated in the lower part of the magnet housing hole can be attached to the upper part along the magnet, so that a strong and uniform adhesive state can be obtained. In addition, the application incorporates a pre-heating process that heats the adhesive to an extent that it does not cure, and improves the fluidity of the adhesive and turns the core up and down to spread the adhesive along the magnet before the curing process. I also proposed that.

また,接着剤の使用に際しては,熱硬化工程における硬化条件の把握も重要である。従来,接着剤の硬化条件としては一般に,接着剤メーカから硬化温度とその温度での保持時間という形式での標準硬化条件が提示される。すなわち,所定温度で所定時間保持すれば,ほぼ硬化されているという条件である。しかし,実際の工程では,常温からの所定温度までの昇温時間や硬化後の冷却時間も必要であるため,このメーカ推奨の硬化条件を確実に含む設定では,熱硬化工程に時間がかかりすぎる。そのため,従来より,様々な条件で硬化実験を行い,接着剤の硬化状態を調べることにより,処理時間の短縮方法を模索してきた。
特開平5−207692号公報 特開2001−352702号公報
In addition, when using adhesives, it is important to understand the curing conditions in the thermosetting process. Conventionally, as an adhesive curing condition, an adhesive manufacturer generally presents a standard curing condition in the form of a curing temperature and a holding time at the temperature. That is, it is a condition that if it is kept at a predetermined temperature for a predetermined time, it is almost cured. However, in the actual process, it takes time to raise the temperature from room temperature to the specified temperature and the cooling time after curing. Therefore, the setting that reliably includes the curing conditions recommended by the manufacturer takes too much time for the thermosetting process. . For this reason, we have sought a method for shortening the processing time by conducting curing experiments under various conditions and examining the cured state of the adhesive.
JP-A-5-207692 JP 2001-352702 A

しかしながら,前記した従来のロータの製造方法では,以下のような問題点があった。本発明者による既提案のようにコアの上下を逆転させてプリヒート工程を行った場合,接着剤の中に発生した気泡が,磁石収納穴の底部(プリヒート工程中は上方に配置されている)に溜まる。その後,コアの上下を戻してすぐに熱硬化工程を行うと,気泡が磁石収納穴の上方へ上がりきらないうちに硬化が始まる場合があった。そのため,気泡が磁石収納穴の中央部付近に残ったままで熱により膨張され,気泡の周囲の接着剤がコアの積層面間から押し出されて外部に洩れる原因となるおそれがあった。特に,コアの積層方向の両端側の密閉度が高い場合には,気泡の移動速度が遅くなり,この現象が起きがちであるという問題点があった。   However, the conventional rotor manufacturing method described above has the following problems. When the preheating process is performed by reversing the top and bottom of the core as previously proposed by the present inventor, the bubbles generated in the adhesive are located at the bottom of the magnet housing hole (disposed above during the preheating process). It collects in. After that, if the thermosetting process was performed immediately after returning the top and bottom of the core, hardening might start before the bubbles could rise above the magnet housing hole. For this reason, the bubbles are expanded by heat while remaining in the vicinity of the central portion of the magnet housing hole, and the adhesive around the bubbles may be pushed out from between the laminated surfaces of the core and leak to the outside. In particular, when the sealing degree at both ends in the core stacking direction is high, the bubble moving speed becomes slow, and this phenomenon tends to occur.

また,ロータの製造工程にプリヒート工程を追加すれば,その分,永久磁石の接着工程全体にかかる時間が長くなる。そのため,全体としてのロータの製造時間が長くなるという問題点があった。また,硬化条件の予想がさらに困難となり,多数のテストピースによる硬化テストを行う必要があった。そのため,硬化条件の設定に時間も手間もかかることになるという問題点もあった。   In addition, if a preheating process is added to the rotor manufacturing process, the time required for the entire permanent magnet bonding process is increased accordingly. For this reason, there is a problem that the manufacturing time of the rotor as a whole becomes long. In addition, it became more difficult to predict the curing conditions, and it was necessary to conduct a curing test with a large number of test pieces. Therefore, there is a problem that setting the curing conditions takes time and labor.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,ロータに形成された磁石収納穴に永久磁石を接着固定するに際し,接着剤が外部に洩れず強固に接着できるとともに,硬化条件の設定やロータの製造時間を短縮できる永久磁石モータのロータ製造方法および硬化度予測方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, the problem is that when the permanent magnet is bonded and fixed to the magnet housing hole formed in the rotor, the adhesive can be firmly bonded without leaking to the outside, and the setting of the curing conditions and the manufacturing time of the rotor can be shortened. An object of the present invention is to provide a method for manufacturing a rotor of a permanent magnet motor and a method for predicting the degree of cure.

この課題の解決を目的としてなされた本発明の永久磁石モータのロータ製造方法は,ロータコアに形成されたスロット内に接着剤を注入する接着剤注入工程と,そのスロット内に永久磁石を挿入する磁石挿入工程と,ロータコアにエンドプレートを重ねて固定しスロットを塞さぐ取付工程と,ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程とを有する永久磁石モータのロータ製造方法であって,取付工程と熱硬化工程との間に,接着剤注入工程のときとはロータの上下を逆転させた状態で,ロータを,常温より高く接着剤の硬化開始温度より低いプリヒート温度に保持する倒立プリヒート工程と,ロータの上下を接着剤注入工程のときと同じ状態に戻して,ロータをプリヒート温度に保持する正立プリヒート工程とを有するものである。   In order to solve this problem, the rotor manufacturing method of the permanent magnet motor of the present invention includes an adhesive injection process for injecting an adhesive into a slot formed in the rotor core, and a magnet for inserting the permanent magnet into the slot. A method for manufacturing a rotor of a permanent magnet motor, comprising: an insertion step; an attachment step in which an end plate is stacked and fixed on a rotor core to close the slot; and a thermosetting step in which the adhesive in the slot is thermally cured by heating the rotor. The rotor is maintained at a preheating temperature higher than normal temperature and lower than the adhesive curing start temperature, with the rotor upside down as compared with the adhesive injection process between the mounting process and the thermosetting process. Erecting preheating process to maintain the rotor at the preheating temperature by returning the top and bottom of the rotor to the same state as in the adhesive injection process. And it has a door.

本発明の永久磁石モータのロータ製造方法によれば,取付工程の後に,倒立プリヒート工程を有するので,接着剤が永久磁石に沿って広げられる。さらに,正立プリヒート工程を有するので,接着剤中に発生した気泡が上方へと移動される。従って,この気泡が熱硬化工程において熱膨張されたとしても容易に外部へ押し出され,接着剤を押し出すおそれはない。これにより,ロータに形成された磁石収納穴に永久磁石を接着固定するに際し,接着剤が外部に洩れず強固に接着できる永久磁石モータのロータ製造方法となっている。   According to the method for manufacturing a rotor of a permanent magnet motor of the present invention, since the inverted preheating step is provided after the mounting step, the adhesive is spread along the permanent magnet. Furthermore, since it has an erecting preheating process, bubbles generated in the adhesive are moved upward. Therefore, even if the bubbles are thermally expanded in the thermosetting process, they are easily pushed out and there is no possibility of pushing out the adhesive. Thus, when the permanent magnet is bonded and fixed to the magnet housing hole formed in the rotor, the rotor manufacturing method of the permanent magnet motor can be firmly bonded without leakage of the adhesive to the outside.

また本発明の永久磁石モータのロータ製造方法は,ロータコアに形成されたスロット内に接着剤を注入する接着剤注入工程と,そのスロット内に永久磁石を挿入する磁石挿入工程と,ロータコアにエンドプレートを重ねて固定しスロットを塞さぐ取付工程と,ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程とを有する永久磁石モータのロータ製造方法であって,取付工程と熱硬化工程との間に,ロータを常温より高く接着剤の硬化開始温度より低いプリヒート温度に保持するプリヒート工程を有し,プリヒート工程の前期を,接着剤注入工程のときとはロータの上下を逆転させた状態で行い,プリヒート工程の後期を,ロータの上下を接着剤注入工程のときと同じ状態に戻して行うものであってもよい。
このようにしても,上記と同様の効果が得られる。
The method of manufacturing a rotor of a permanent magnet motor according to the present invention includes an adhesive injection step of injecting an adhesive into a slot formed in the rotor core, a magnet insertion step of inserting a permanent magnet into the slot, and an end plate on the rotor core. A method of manufacturing a rotor of a permanent magnet motor, comprising: an attaching step for fixing the two layers and closing the slot; and a thermosetting step for thermosetting the adhesive in the slot by heating the rotor. There is a preheating process in which the rotor is maintained at a preheating temperature higher than normal temperature and lower than the curing start temperature of the adhesive between the processes, and the upper and lower sides of the rotor are reversed from the previous stage of the preheating process. The latter stage of the preheating step may be performed by returning the upper and lower portions of the rotor to the same state as in the adhesive injection step.
Even in this case, the same effect as described above can be obtained.

さらに本発明では,熱硬化工程を,接着剤の硬化開始温度より高い温度で,ロータの上下を接着剤注入工程のときと同じ状態にして行うことが望ましい。
このようにすれば,ロータを硬化開始温度より高い温度とした場合でも,接着剤が外部に洩れることはない。
Further, in the present invention, it is desirable that the thermosetting process is performed at a temperature higher than the curing start temperature of the adhesive, and the top and bottom of the rotor are in the same state as in the adhesive injection process.
In this way, even when the rotor is set to a temperature higher than the curing start temperature, the adhesive does not leak to the outside.

さらに本発明では,熱硬化工程を,ロータの温度が接着剤の硬化開始温度以上である期間にわたる,温度値の二乗×第1の係数+温度値×第2の係数+第3の係数の積算値が判定しきい値以上となる温度パターンで行うことが望ましい。
このようにすれば,熱硬化工程における適切な温度パターンを容易に予測できる。従って,多数の硬化実験を行う必要が無く,硬化条件の設定やロータの製造にかかる時間を短縮することができる。
Further, in the present invention, the thermosetting process is performed by integrating the square of the temperature value × the first coefficient + the temperature value × the second coefficient + the third coefficient over a period in which the rotor temperature is equal to or higher than the curing start temperature of the adhesive. It is desirable to carry out with a temperature pattern in which the value is equal to or greater than the determination threshold value.
In this way, an appropriate temperature pattern in the thermosetting process can be easily predicted. Therefore, it is not necessary to perform many curing experiments, and the time required for setting the curing conditions and manufacturing the rotor can be shortened.

また,本発明は,ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程での接着剤の硬化の程度の良否を予測する硬化度予測方法であって,ロータの温度が接着剤の硬化開始温度以上である期間にわたる,温度値の二乗×第1の係数+温度値×第2の係数+第3の係数の積算値を判定しきい値と比較し,積算値が判定しきい値以上であれば硬化十分と判定し,積算値が判定しきい値未満であれば硬化不十分と判定する硬化度予測方法にも及ぶ。   The present invention also relates to a curing degree prediction method for predicting the degree of curing of the adhesive in the thermosetting process in which the adhesive in the slot is thermally cured by heating the rotor, and the temperature of the rotor is bonded to the adhesive. The integrated value of the square of the temperature value x first coefficient + temperature value x second coefficient + third coefficient over a period that is equal to or higher than the curing start temperature of the agent is compared with the determination threshold value, and the integrated value is determined. If the threshold value is not less than the threshold value, it is determined that the curing is sufficient.

本発明の永久磁石モータのロータ製造方法および硬化度予測方法によれば,ロータに形成された磁石収納穴に永久磁石を接着固定するに際し,接着剤が外部に洩れず強固に接着できるとともに,硬化条件の設定やロータの製造時間を短縮できる。   According to the method for manufacturing a rotor of a permanent magnet motor and the method for predicting the degree of hardening of the present invention, when the permanent magnet is bonded and fixed to the magnet housing hole formed in the rotor, the adhesive can be firmly bonded without leaking to the outside and cured. Setting conditions and manufacturing time of the rotor can be shortened.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,モータのインナーロータの製造方法に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a method of manufacturing an inner rotor of a motor.

本形態で使用するロータ1は,図1と図2に示すように,中心のロータシャフト11からフランジ11aが径方向外側に延び,その先端に断面がL字状のコア受け11bが形成されている。コア受け11bには,その下側段差部にリング状のマグネットエンド12が装着され,その上に複数枚の電磁鋼板13aが積層されたロータコア13が設けられている。また,各電磁鋼板13aにはそれぞれ同じ位置に穴が形成されており,それらが重ねられてスロット14が形成される。スロット14の内部にはそれぞれ,接着剤15によって,永久磁石16が固定されている。ここで,図1に示すように,スロット14は永久磁石16よりやや幅広く形成されているので,永久磁石16の脇に接着剤の柱14aが形成されている。   As shown in FIGS. 1 and 2, the rotor 1 used in this embodiment has a flange 11a extending radially outward from a central rotor shaft 11, and a core receiver 11b having an L-shaped cross section is formed at the tip thereof. Yes. A ring-shaped magnet end 12 is attached to the lower step portion of the core receiver 11b, and a rotor core 13 in which a plurality of electromagnetic steel plates 13a are stacked is provided. Further, holes are formed at the same positions in the respective electromagnetic steel sheets 13a, and the slots 14 are formed by overlapping the holes. A permanent magnet 16 is fixed inside the slot 14 by an adhesive 15. Here, as shown in FIG. 1, since the slot 14 is formed slightly wider than the permanent magnet 16, an adhesive column 14 a is formed on the side of the permanent magnet 16.

さらに,図2に示すように,ロータコア13の図中上方にエンドプレート17が重ねられて,ロータコア13に蓋がされている。さらに,電磁鋼板13aの積層方向の両端に接して,それぞれ薄鋼板18,19が重ねられ,スロット14の両端部が塞がれている。ここで,マグネットエンド12とエンドプレート17はいずれもアルミ等であり,ロータコア13に比較して熱膨張率が大きい材質で形成されている。一方,薄鋼板18,19はSUS等であり,ロータコア13とほぼ同じ熱膨張率である。さらに,薄鋼板18,19の両面にはフッ素樹脂によるコーティング処理が施され,接着剤15による薄鋼板18,19とロータコア13との接着が防止されている。また,ここで使用される接着剤15は,例えば,エポキシ系の接着剤15である。なお,図1では,エンドプレート17と薄鋼板18とを省略して図示している。   Further, as shown in FIG. 2, an end plate 17 is overlaid on the upper side of the rotor core 13 in the figure, and the rotor core 13 is covered. Further, the thin steel plates 18 and 19 are stacked in contact with both ends of the electromagnetic steel plate 13a in the stacking direction, and both ends of the slot 14 are closed. Here, both the magnet end 12 and the end plate 17 are made of aluminum or the like, and are formed of a material having a higher coefficient of thermal expansion than the rotor core 13. On the other hand, the thin steel plates 18 and 19 are made of SUS or the like and have substantially the same thermal expansion coefficient as that of the rotor core 13. Further, the both surfaces of the thin steel plates 18 and 19 are coated with a fluororesin so that the adhesive between the thin steel plates 18 and 19 and the rotor core 13 by the adhesive 15 is prevented. The adhesive 15 used here is, for example, an epoxy adhesive 15. In FIG. 1, the end plate 17 and the thin steel plate 18 are omitted.

次に,本形態のロータ1の製造方法を説明する。この製造方法は,以下の手順によって行われる。まず第1に,図3に示すロータ1の組み立て工程を行う。次に,図4に示す倒立プリヒート工程を行う。次に,図5に示す正立プリヒート工程を行う。最後に,図6に示す熱硬化工程を行う。以下,各工程を順次説明する。   Next, a method for manufacturing the rotor 1 of this embodiment will be described. This manufacturing method is performed according to the following procedure. First, the assembly process of the rotor 1 shown in FIG. 3 is performed. Next, the inverted preheating process shown in FIG. 4 is performed. Next, an upright preheating process shown in FIG. 5 is performed. Finally, the thermosetting process shown in FIG. 6 is performed. Hereafter, each process is demonstrated one by one.

まず,ロータ1の組み立て工程を図3を参照して説明する。組み立て工程では,図3(a)に示すように,ロータシャフト11のコア受け11bにマグネットエンド12と薄鋼板19と複数枚の電磁鋼板13aが嵌め込まれ,ロータコア13が形成される。さらに,スロット14内部に所定量の接着剤15が注入される。そして,スロット14内へ永久磁石16が挿入される。   First, the assembly process of the rotor 1 will be described with reference to FIG. In the assembly process, as shown in FIG. 3A, the magnet end 12, the thin steel plate 19, and the plurality of electromagnetic steel plates 13 a are fitted into the core receiver 11 b of the rotor shaft 11 to form the rotor core 13. Further, a predetermined amount of adhesive 15 is injected into the slot 14. Then, the permanent magnet 16 is inserted into the slot 14.

次に,図3(b)に示すように,エンドプレート17の取り付けが行われる。エンドプレート17はリング状の厚板であり,その内周側が面取りされて楔状の被かしめ部が形成されている。この工程では,積層された電磁鋼板13aの上に薄鋼板18とエンドプレート17とを重ね,マンドレル20などによってコア受け11bの上端部が折り曲げられてかしめられる。これによって,接着剤15の注入されたスロット14が薄鋼板18,19によって気密に塞がれる。この状態では,接着剤15は,スロット14内の比較的下部に溜まっており,まだ硬化していない。ここまでで,ロータ1の組み立て工程は終了する。この組み立て工程は,従来の工程と同様である。   Next, as shown in FIG. 3B, the end plate 17 is attached. The end plate 17 is a ring-shaped thick plate, and the inner peripheral side thereof is chamfered to form a wedge-shaped caulking portion. In this step, the thin steel plate 18 and the end plate 17 are stacked on the laminated electromagnetic steel plates 13a, and the upper end portion of the core receiver 11b is bent and crimped by a mandrel 20 or the like. As a result, the slot 14 filled with the adhesive 15 is hermetically closed by the thin steel plates 18 and 19. In this state, the adhesive 15 has accumulated in a relatively lower portion in the slot 14 and has not yet been cured. Thus, the assembly process of the rotor 1 is completed. This assembly process is the same as the conventional process.

次に,倒立プリヒート工程を図4を参照して説明する。この工程は,接着剤15をスロット14内で,広範囲に広げるためのものである。そこでまず,図4(a)に示すように,組み立てられたロータ1の上下が逆転され,プリヒート温度に保持される。すなわち,先の組み立て工程時の状態とは上下逆転されたロータ1が定温囲い21の中に入れられ,その定温囲い21内がヒータ22によって加熱される。ここでは,定温囲い21内の加熱温度は,約40〜80℃に設定され,約30分ほどかけて加熱処理が行われる。   Next, the inverted preheating process will be described with reference to FIG. This process is for spreading the adhesive 15 in the slot 14 over a wide range. Therefore, first, as shown in FIG. 4A, the assembled rotor 1 is turned upside down and held at the preheat temperature. That is, the rotor 1 turned upside down from the state in the previous assembly process is placed in the constant temperature enclosure 21, and the inside of the constant temperature enclosure 21 is heated by the heater 22. Here, the heating temperature in the constant temperature enclosure 21 is set to about 40 to 80 ° C., and the heating process is performed for about 30 minutes.

この工程において,エンドプレート17はアルミ製なので,ロータコア13に比較して大きく熱膨張する。ここでは,エンドプレート17はその外周側をロータコア13に密着させるように形成されている。そのため,図4(b)に示すように,この熱膨張によってロータ1の内周側がやや浮いた状態となる。この図4(b)は,永久磁石16に沿った方向に見た断面図であり,図中左側がロータ1の内周側である。一方で,エンドプレート17とロータコア13との間には薄鋼板18が,またマグネットエンド12とロータコア13との間には薄鋼板19がそれぞれ挿入され,これらはロータコア13とほぼ同等の熱膨張率であるので,スロット14の気密性は薄鋼板18,19によって保持される。従って,このように逆さにしても接着剤15がスロット15の外部に漏れることはない。   In this process, since the end plate 17 is made of aluminum, the end plate 17 is thermally expanded as compared with the rotor core 13. Here, the end plate 17 is formed so that the outer peripheral side thereof is in close contact with the rotor core 13. Therefore, as shown in FIG. 4B, the inner peripheral side of the rotor 1 is slightly lifted by this thermal expansion. FIG. 4B is a cross-sectional view seen in the direction along the permanent magnet 16, and the left side in the figure is the inner peripheral side of the rotor 1. On the other hand, a thin steel plate 18 is inserted between the end plate 17 and the rotor core 13, and a thin steel plate 19 is inserted between the magnet end 12 and the rotor core 13, and these have a thermal expansion coefficient substantially equal to that of the rotor core 13. Therefore, the airtightness of the slot 14 is maintained by the thin steel plates 18 and 19. Therefore, the adhesive 15 does not leak out of the slot 15 even if it is reversed in this way.

このプリヒート温度は,接着剤15の硬化が始まらない温度であるとともに,接着剤15の粘性が低下する温度である。そのため,接着剤15は図4(b)に示すように,スロット14内で重力によって下方(すなわち,正位置でのスロット14の上方)へ流れて移動する。そして,スロット14の内壁と永久磁石16との隙間に満遍なく広がる。このとき,接着剤15の内部で気泡ができる場合がある。特に,柱14aにおいて顕著に発生する。この気泡は,倒立プリヒート工程中に,図4(b)に示すように,接着剤15の内部を上昇し,薄鋼板19の近傍に到達する。   This preheating temperature is a temperature at which the curing of the adhesive 15 does not start and a temperature at which the viscosity of the adhesive 15 decreases. Therefore, as shown in FIG. 4B, the adhesive 15 flows and moves downward in the slot 14 due to gravity (that is, above the slot 14 in the normal position). And it spreads evenly in the gap between the inner wall of the slot 14 and the permanent magnet 16. At this time, bubbles may be formed inside the adhesive 15. In particular, it occurs remarkably in the column 14a. During the inverted preheating process, the bubbles rise inside the adhesive 15 and reach the vicinity of the thin steel plate 19 as shown in FIG.

この倒立プリヒート工程が終了したら,次に,正立プリヒート工程を行う。すなわち,再びロータ1の上下を逆転して,図5(a)に示すように,プリヒート温度に保持する。プリヒートの温度条件は,図4の倒立プリヒート工程と同様である。従って,ここでは,倒立プリヒート工程の後,保持温度を変化させることなく保ったままで,ロータ1の上下を逆転させるのみでよい。これにより,図5(b)に示すように,接着剤15中の気泡は,再び上昇し,薄鋼板18の近傍に集まる。   When this inverted preheating process is completed, an upright preheating process is performed next. That is, the rotor 1 is turned upside down again and held at the preheat temperature as shown in FIG. The preheating temperature condition is the same as that of the inverted preheating step of FIG. Therefore, here, after the inverted preheating process, it is only necessary to reverse the rotor 1 upside down while keeping the holding temperature unchanged. Thereby, as shown in FIG. 5 (b), the bubbles in the adhesive 15 rise again and gather in the vicinity of the thin steel plate 18.

次に,図6(a)に示すように,熱硬化工程が行われる。ここではロータ1の上下及び外周側に設置した3つのヒータ22が使用され,約200℃の温度で加熱が行われる。ロータ1は正位置のままである。ここでも,前工程の正立プリヒート工程から保持温度を一旦下げる必要はなく,そのままさらに加熱すればよい。スロット14内の接着剤15は,前の倒立プリヒート工程および正立プリヒート工程によって永久磁石16の全体に行き渡るように広がっており,この加熱によって速やかに流動性を失う。従って,広がった接着剤15が再び下に寄ってしまうことはない。   Next, a thermosetting process is performed as shown in FIG. Here, three heaters 22 installed on the upper and lower sides and the outer peripheral side of the rotor 1 are used, and heating is performed at a temperature of about 200 ° C. The rotor 1 remains in the normal position. Again, there is no need to lower the holding temperature from the erecting preheating step of the previous step, and heating may be performed as it is. The adhesive 15 in the slot 14 spreads over the entire permanent magnet 16 by the previous inverted preheating process and erecting preheating process, and quickly loses fluidity by this heating. Therefore, the spread adhesive 15 does not come down again.

接着剤15の内部に発生した気泡は,前段の正立プリヒート工程によって,図5(b)に示すように,スロット14内の上部に溜まっている。ここでのさらなる加熱によってその一部分はスロット14から逃げる。またたとえ,図6(b)に示すように,スロット14内の上部に残ったままで熱膨張されたとしても,この位置であれば接着剤15をロータコア13から押し出すことはない。従って,接着剤15が外部に洩れることなく,永久磁石16の面全体に広がった状態で接着剤15が硬化するので,強固に接着できる。そして,接着剤15が硬化したところでロータ1が完成する。   Bubbles generated in the adhesive 15 are accumulated in the upper portion of the slot 14 as shown in FIG. 5B by the upright preheating process of the previous stage. A portion of it escapes from the slot 14 by further heating here. Further, as shown in FIG. 6B, even if the thermal expansion is performed while remaining in the upper portion of the slot 14, the adhesive 15 is not pushed out from the rotor core 13 at this position. Therefore, since the adhesive 15 is cured in a state where it spreads over the entire surface of the permanent magnet 16 without leaking to the outside, the adhesive 15 can be firmly bonded. The rotor 1 is completed when the adhesive 15 is cured.

次に,最終工程である熱硬化工程の所要時間について説明する。背景技術で述べたように,接着剤メーカからは硬化温度とその温度での保持時間という形式での標準硬化条件が提示される。本形態で使用したエポキシ系の接着剤15では,例えば,120℃60分または150℃30分という標準硬化条件が提示されている。これに対し,本形態の製造方法では,まず常温状態あるいはプリヒート温度から加熱し,接着剤15の硬化開始温度を超えて,ロータ1の加熱上限である約200℃まで昇温させる。その後,所定時間放置して自然冷却させる。さらにその後,強制冷却することにより常温まで降温させるという手順で工程を実施している。   Next, the time required for the thermosetting process, which is the final process, will be described. As mentioned in the background art, the adhesive manufacturer provides standard curing conditions in the form of curing temperature and holding time at that temperature. For the epoxy adhesive 15 used in this embodiment, standard curing conditions of, for example, 120 ° C. for 60 minutes or 150 ° C. for 30 minutes are proposed. In contrast, in the manufacturing method of the present embodiment, first, heating is performed from a normal temperature state or a preheating temperature, and the temperature is increased to about 200 ° C., which is the upper limit of heating of the rotor 1, exceeding the curing start temperature of the adhesive 15. After that, it is allowed to cool for a predetermined time. After that, the process is carried out according to the procedure of cooling to room temperature by forced cooling.

ここで,本発明者は,保持温度と保持時間による接着剤の硬化条件をプロットすると,保持温度の2次関数で保持時間を近似的に表すことができることを見出した(図7参照)。このことから,次式の左辺P1で,接着剤の硬化の程度をかなりよく近似できることが分かったのである。
P1=∫(α×Ti2+β×Ti+γ)
ここで,Tiは接着剤の温度であり,α,β,γは実験的に求められる定数である。積分は,温度Tiが接着剤の硬化開始温度以上である期間にわたって行う。実際には,適当なサンプリング間隔で温度測定して次式で積算値P2を求めればよい。
P2=Σ(α×Ti2+β×Ti+γ)
Here, the present inventor has found that the retention time can be approximately expressed by a quadratic function of the retention temperature by plotting the curing conditions of the adhesive according to the retention temperature and the retention time (see FIG. 7). From this, it was found that the degree of curing of the adhesive can be approximated fairly well by the left side P1 of the following equation.
P1 = ∫ (α × Ti 2 + β × Ti + γ)
Here, Ti is the temperature of the adhesive, and α, β, and γ are experimentally determined constants. The integration is performed over a period in which the temperature Ti is equal to or higher than the curing start temperature of the adhesive. Actually, the integrated value P2 may be obtained by the following equation by measuring the temperature at an appropriate sampling interval.
P2 = Σ (α × Ti 2 + β × Ti + γ)

今回使用した接着剤15では,硬化開始温度は120℃であった。また,サンプリング間隔を1分とした場合,αは0.00121,βは−0.29543,γは19.1であった。これに上記のメーカ標準硬化条件を当てはめると,P2=64.3(120℃60分),P2=60.3(150℃30分)となった。そこで,本形態の接着剤15では,判定しきい値を60とし,P2≧60を満たす温度パターンであれば,硬化が十分できていると判定することとした。この条件を満たすような温度パターンの例として,図8に示すような温度パターンS(P2=61.6)を見出し,この温度パターンSに基づいた硬化実験を行った。この結果,接着剤15の硬化状態を確認したところ,十分な硬化状態が得られていることが確認できた。   In the adhesive 15 used this time, the curing start temperature was 120 ° C. When the sampling interval was 1 minute, α was 0.00121, β was −0.29543, and γ was 19.1. When the manufacturer standard curing conditions described above were applied, P2 = 64.3 (120 ° C. for 60 minutes) and P2 = 60.3 (150 ° C. for 30 minutes). Therefore, in the adhesive 15 of this embodiment, the determination threshold value is set to 60, and it is determined that the curing is sufficient if the temperature pattern satisfies P2 ≧ 60. As an example of a temperature pattern that satisfies this condition, a temperature pattern S (P2 = 61.6) as shown in FIG. 8 was found, and a curing experiment based on this temperature pattern S was performed. As a result, when the cured state of the adhesive 15 was confirmed, it was confirmed that a sufficient cured state was obtained.

すなわち,本形態の接着剤15が硬化する条件としては,上記の積算値P2が,60以上となるように温度パターンを設定すればよいことが分かった。このように,温度パターンを用いて加熱硬化条件を決定できるので,熱硬化工程にかかる時間を短縮できる。さらに,多数のテストピースを使用した実験を行う必要がないので,硬化条件設定のためのコストや時間が短縮された。   That is, it was found that the temperature pattern should be set so that the integrated value P2 is 60 or more as a condition for curing the adhesive 15 of the present embodiment. Thus, since the heat curing conditions can be determined using the temperature pattern, the time required for the heat curing process can be shortened. Furthermore, since it is not necessary to conduct experiments using a large number of test pieces, the cost and time for setting the curing conditions were reduced.

なお,本形態では,図9に示すように,永久磁石16の上下に小さな突起16aを設けてもよい。このようにすれば,倒立プリヒート工程や正立プリヒート工程において,上下方向のみでなく,突起16aの周囲を通って左右方向へも接着剤15が流れることができる。従って,永久磁石16の全表面によりスムーズに接着剤15を広げることができる。特に,永久磁石16と薄鋼板18,19との間に十分な量の接着剤15を配置できるので,より確実な接着状態が得られる。   In this embodiment, as shown in FIG. 9, small protrusions 16 a may be provided above and below the permanent magnet 16. In this way, the adhesive 15 can flow not only in the vertical direction but also in the horizontal direction through the periphery of the protrusion 16a in the inverted preheating process and the erecting preheating process. Accordingly, the adhesive 15 can be spread more smoothly on the entire surface of the permanent magnet 16. In particular, since a sufficient amount of the adhesive 15 can be disposed between the permanent magnet 16 and the thin steel plates 18 and 19, a more reliable bonding state can be obtained.

さらに,スロット14が比較的大きく,各スロット14に対して2個の永久磁石16を組み合わせて挿入する場合もある。この場合には,図10に示すように,永久磁石16の上下面で互いにずれた位置に小さな突起16aを形成するとよい。特に,図10(a)と図10(c)に示すように,永久磁石16の上下面内の対角線位置に配置することが好ましい。ここで,図10(a)は,図10(b)を上から見た図であり,図10(c)は,図10(b)を下から見た図である。   Furthermore, the slots 14 are relatively large, and there are cases where two permanent magnets 16 are inserted in combination in each slot 14. In this case, as shown in FIG. 10, small protrusions 16 a may be formed at positions shifted from each other on the upper and lower surfaces of the permanent magnet 16. In particular, as shown in FIGS. 10 (a) and 10 (c), the permanent magnets 16 are preferably arranged at diagonal positions in the upper and lower surfaces. Here, FIG. 10A is a diagram when FIG. 10B is viewed from above, and FIG. 10C is a diagram when FIG. 10B is viewed from below.

このようにすると,2個の永久磁石16を積み重ねたときに,図11に示すように,安定して配置できる。さらに,2個の永久磁石16の間に適切な隙間を設けることができるので,ここの隙間にも接着剤15を配置させることができ,2個の永久磁石16を互いに確実に接着することができる。なお,これらの突起16aの形状は,図に示した半球状のものに限らず,角柱や角錐,円柱,円錐等何でもよい。   In this way, when two permanent magnets 16 are stacked, they can be stably arranged as shown in FIG. Furthermore, since an appropriate gap can be provided between the two permanent magnets 16, the adhesive 15 can be disposed also in this gap, and the two permanent magnets 16 can be securely bonded to each other. it can. The shape of these protrusions 16a is not limited to the hemispherical shape shown in the figure, and may be any shape such as a prism, a pyramid, a cylinder, or a cone.

以上詳細に説明したように,本形態のロータ1の製造方法によれば,ロータ1の組み立て工程の後,倒立プリヒート工程と正立プリヒート工程とを行うので,永久磁石16の表面に広い範囲にわたって接着剤15を付着させることができる。さらに,接着剤15中に発生した気泡は,正立プリヒート工程中にロータ1の上面近くへと集められる。上面近くに集められた気泡が次の熱硬化工程中に膨張しても,接着剤15を外部に押し出すおそれはない。   As described in detail above, according to the method for manufacturing the rotor 1 of the present embodiment, since the inverted preheating process and the erecting preheating process are performed after the assembly process of the rotor 1, the surface of the permanent magnet 16 is spread over a wide range. An adhesive 15 can be attached. Furthermore, bubbles generated in the adhesive 15 are collected near the upper surface of the rotor 1 during the erecting preheating process. Even if the bubbles collected near the upper surface expand during the next thermosetting process, there is no risk of pushing the adhesive 15 out.

さらに,接着剤15の熱硬化に必要な温度と時間との関係を2次式で近似したので,温度パターンの積算値P2を算出することにより判定しきい値以上であるかどうかを容易に予測できる。硬化開始温度は接着剤の種類ごとに既知であるので,接着剤の種類に応じて,各係数α,β,γを求めさえすれば,各温度パターンの積算値P2を算出することは容易である。さらに,標準硬化条件から判定のしきい値を設定することも容易である。従って,多数のテストピースによる実験が不要であり,硬化条件の設定が低コストかつ短時間で可能となった。またこれにより,熱硬化工程にかかる時間を短縮する温度パターンを容易に見つけられ,ロータ1の製造工程全体の所要時間も短縮できる。これらのことから,ロータ1に形成されたスロット14に永久磁石16を接着固定するに際し,接着剤15が外部に洩れず強固に接着できるとともに,硬化条件の設定やロータ1の製造時間を短縮できる製造方法となっている。   Furthermore, since the relationship between the temperature and time required for the thermosetting of the adhesive 15 is approximated by a quadratic expression, it can be easily predicted whether or not the determination threshold value is exceeded by calculating the integrated value P2 of the temperature pattern. it can. Since the curing start temperature is known for each type of adhesive, it is easy to calculate the integrated value P2 of each temperature pattern as long as each coefficient α, β, γ is obtained according to the type of adhesive. is there. Furthermore, it is easy to set a threshold value for determination from the standard curing conditions. Therefore, experiments with a large number of test pieces are not required, and curing conditions can be set at a low cost and in a short time. This also makes it possible to easily find a temperature pattern that shortens the time required for the thermosetting process, and to shorten the time required for the entire manufacturing process of the rotor 1. For these reasons, when the permanent magnet 16 is bonded and fixed to the slot 14 formed in the rotor 1, the adhesive 15 can be firmly bonded without leaking to the outside, and the setting of curing conditions and the manufacturing time of the rotor 1 can be shortened. It is a manufacturing method.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,本形態では薄鋼板18をエンドプレート17とロータコア13との間に挟んでいるが,エンドプレート17が電磁鋼板13aとほぼ同じ熱膨張率である場合は,薄鋼板18は不要である。また,本形態では薄鋼板19をマグネットエンド12とロータコア13との間に挟んでいるが,マグネットエンド12が電磁鋼板13aとほぼ同じ熱膨張率である場合は,薄鋼板19は不要である。
また例えば,熱硬化工程における温度パターンは,上記の積算値P2がそのしきい値以上となるものであればよく,図8に例示した温度パターンSに限るものではない。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, although the thin steel plate 18 is sandwiched between the end plate 17 and the rotor core 13 in this embodiment, the thin steel plate 18 is not necessary when the end plate 17 has substantially the same thermal expansion coefficient as that of the electromagnetic steel plate 13a. In the present embodiment, the thin steel plate 19 is sandwiched between the magnet end 12 and the rotor core 13, but the thin steel plate 19 is not necessary when the magnet end 12 has substantially the same thermal expansion coefficient as that of the electromagnetic steel plate 13a.
Further, for example, the temperature pattern in the thermosetting process is not limited to the temperature pattern S illustrated in FIG. 8 as long as the integrated value P2 is equal to or greater than the threshold value.

本形態に係るロータを示す平面図である。It is a top view which shows the rotor which concerns on this form. 本形態に係るロータを示す断面図である。It is sectional drawing which shows the rotor which concerns on this form. ロータの製造方法のうち組み立て工程を示す説明図である。It is explanatory drawing which shows an assembly process among the manufacturing methods of a rotor. ロータの製造方法のうち倒立プリヒート工程を示す説明図である。It is explanatory drawing which shows an inverted preheating process among the manufacturing methods of a rotor. ロータの製造方法のうち正立プリヒート工程を示す説明図である。It is explanatory drawing which shows an erecting preheating process among the manufacturing methods of a rotor. ロータの製造方法のうち熱硬化工程を示す説明図である。It is explanatory drawing which shows the thermosetting process among the manufacturing methods of a rotor. 接着剤の硬化条件を示すグラフ図である。It is a graph which shows the hardening conditions of an adhesive agent. 接着剤の硬化条件を示すグラフ図である。It is a graph which shows the hardening conditions of an adhesive agent. 永久磁石の形状の例を示す説明図である。It is explanatory drawing which shows the example of the shape of a permanent magnet. 永久磁石の形状の例を示す説明図である。It is explanatory drawing which shows the example of the shape of a permanent magnet. 永久磁石の形状の例を示す説明図である。It is explanatory drawing which shows the example of the shape of a permanent magnet.

符号の説明Explanation of symbols

1 ロータ
13 ロータコア
14 スロット
15 接着剤
16 永久磁石
17 エンドプレート
1 Rotor 13 Rotor Core 14 Slot 15 Adhesive 16 Permanent Magnet 17 End Plate

Claims (5)

ロータコアに形成されたスロット内に接着剤を注入する接着剤注入工程と,そのスロット内に永久磁石を挿入する磁石挿入工程と,ロータコアにエンドプレートを重ねて固定しスロットを塞さぐ取付工程と,ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程とを有する永久磁石モータのロータ製造方法において,
前記取付工程と前記熱硬化工程との間に,
前記接着剤注入工程のときとはロータの上下を逆転させた状態で,ロータを,常温より高く接着剤の硬化開始温度より低いプリヒート温度に保持する倒立プリヒート工程と,
ロータの上下を前記接着剤注入工程のときと同じ状態に戻して,ロータをプリヒート温度に保持する正立プリヒート工程とを有することを特徴とする永久磁石モータのロータ製造方法。
An adhesive injection step of injecting an adhesive into a slot formed in the rotor core, a magnet insertion step of inserting a permanent magnet into the slot, an attachment step of fixing the end plate over the rotor core and closing the slot, A method for manufacturing a rotor of a permanent magnet motor, comprising: a thermosetting step of thermosetting the adhesive in the slot by heating the rotor;
Between the mounting step and the thermosetting step,
An inverted preheating step of maintaining the rotor at a preheating temperature higher than normal temperature and lower than the curing start temperature of the adhesive, with the rotor being turned upside down with the adhesive injection step;
A method for manufacturing a rotor of a permanent magnet motor, comprising: an erecting preheating step for returning the upper and lower portions of the rotor to the same state as in the adhesive injection step and maintaining the rotor at a preheating temperature.
ロータコアに形成されたスロット内に接着剤を注入する接着剤注入工程と,そのスロット内に永久磁石を挿入する磁石挿入工程と,ロータコアにエンドプレートを重ねて固定しスロットを塞さぐ取付工程と,ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程とを有する永久磁石モータのロータ製造方法において,
前記取付工程と前記熱硬化工程との間に,ロータを常温より高く接着剤の硬化開始温度より低いプリヒート温度に保持するプリヒート工程を有し,
前記プリヒート工程の前期を,前記接着剤注入工程のときとはロータの上下を逆転させた状態で行い,
前記プリヒート工程の後期を,ロータの上下を前記接着剤注入工程のときと同じ状態に戻して行うことを特徴とする永久磁石モータのロータ製造方法。
An adhesive injection step of injecting an adhesive into a slot formed in the rotor core, a magnet insertion step of inserting a permanent magnet into the slot, an attachment step of fixing the end plate over the rotor core and closing the slot, A method for manufacturing a rotor of a permanent magnet motor, comprising: a thermosetting step of thermosetting the adhesive in the slot by heating the rotor;
A preheating step of maintaining the rotor at a preheating temperature higher than normal temperature and lower than the curing start temperature of the adhesive between the attachment step and the thermosetting step;
The first stage of the preheating process is performed with the rotor upside down reversed from the time of the adhesive injection process,
A rotor manufacturing method for a permanent magnet motor, characterized in that the latter stage of the preheating step is performed by returning the top and bottom of the rotor to the same state as in the adhesive injection step.
請求項1または請求項2に記載の永久磁石モータのロータ製造方法において,
前記熱硬化工程を,接着剤の硬化開始温度より高い温度で,ロータの上下を前記接着剤注入工程のときと同じ状態にして行うことを特徴とする永久磁石モータのロータ製造方法。
In the rotor manufacturing method of the permanent magnet motor according to claim 1 or 2,
A method of manufacturing a rotor for a permanent magnet motor, wherein the thermosetting step is performed at a temperature higher than the curing start temperature of the adhesive, and the upper and lower sides of the rotor are in the same state as in the adhesive injection step.
請求項1から請求項3までのいずれか1つに記載の永久磁石モータのロータ製造方法において,前記熱硬化工程を,
ロータの温度が接着剤の硬化開始温度以上である期間にわたる,
温度値の二乗×第1の係数+温度値×第2の係数+第3の係数
の積算値が判定しきい値以上となる温度パターンで行うことを特徴とする永久磁石モータのロータ製造方法。
In the rotor manufacturing method of the permanent magnet motor according to any one of claims 1 to 3, the thermosetting step includes
Over a period when the rotor temperature is equal to or higher than the curing start temperature of the adhesive,
A method of manufacturing a rotor for a permanent magnet motor, characterized in that the temperature value square is multiplied by a first pattern + first coefficient + temperature value * second coefficient + third coefficient.
ロータを加熱することによってスロット内の接着剤を熱硬化させる熱硬化工程での接着剤の硬化の程度の良否を予測する硬化度予測方法において,
ロータの温度が接着剤の硬化開始温度以上である期間にわたる,
温度値の二乗×第1の係数+温度値×第2の係数+第3の係数
の積算値を判定しきい値と比較し,
積算値が判定しきい値以上であれば硬化十分と判定し,
積算値が判定しきい値未満であれば硬化不十分と判定することを特徴とする硬化度予測方法。
In a curing degree prediction method for predicting the degree of curing of the adhesive in the thermal curing process in which the adhesive in the slot is thermally cured by heating the rotor,
Over a period when the rotor temperature is equal to or higher than the curing start temperature of the adhesive,
The integrated value of the square of temperature value x first coefficient + temperature value x second coefficient + third coefficient is compared with the judgment threshold value,
If the integrated value is equal to or greater than the judgment threshold, it is judged that curing is sufficient.
If the integrated value is less than the determination threshold, it is determined that the curing is insufficient.
JP2005055480A 2005-03-01 2005-03-01 Method for manufacturing rotor of permanent magnet motor Expired - Fee Related JP4581745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055480A JP4581745B2 (en) 2005-03-01 2005-03-01 Method for manufacturing rotor of permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055480A JP4581745B2 (en) 2005-03-01 2005-03-01 Method for manufacturing rotor of permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2006246560A true JP2006246560A (en) 2006-09-14
JP4581745B2 JP4581745B2 (en) 2010-11-17

Family

ID=37052379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055480A Expired - Fee Related JP4581745B2 (en) 2005-03-01 2005-03-01 Method for manufacturing rotor of permanent magnet motor

Country Status (1)

Country Link
JP (1) JP4581745B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000771A1 (en) 2007-03-27 2008-10-02 Aisin Seiki Kabushiki Kaisha, Kariya Rotor and method of making same
JP2009124881A (en) * 2007-11-15 2009-06-04 Toyota Motor Corp Rotary electric machine
US20090278417A1 (en) * 2006-07-10 2009-11-12 Toyota Jidosha Kabushiki Kaisha IPM Rotor, IPM Rotor Manufacturing Method and IPM Rotor Manufacturing Apparatus
JP2010017065A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Permanent magnet type rotor
JP2011254663A (en) * 2010-06-03 2011-12-15 Toyota Motor Corp Manufacturing method of rotor for rotary electric machine and shaft material for rotary electric machine
JP2012228020A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Rotor for rotary electric machine and rotary electric machine
KR20140028737A (en) * 2012-08-30 2014-03-10 현대모비스 주식회사 Rotator for high power motor
US20140196276A1 (en) * 2013-01-15 2014-07-17 Mitsui High-Tec, Inc. Method of manufacturing laminated rotor core
CN105529876A (en) * 2016-01-28 2016-04-27 高俊 Manufacturing technology for hybrid exciting permanent magnet wind generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039085A (en) * 2020-08-27 2022-03-10 株式会社アイシン Manufacturing method of rotor core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185046A (en) * 1984-09-18 1986-04-30 Mitsuba Denki Seisakusho:Kk Rotor of magnet generator and manufacture thereof
JPH1198735A (en) * 1997-09-18 1999-04-09 Toyota Motor Corp Rotor of dynamo-electric machine, and manufacture of rotor of dynamo-electric machine
JP2001328874A (en) * 2000-05-17 2001-11-27 Sumitomo Metal Ind Ltd Method for bonding ceramics substrate and bonding jig used therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185046A (en) * 1984-09-18 1986-04-30 Mitsuba Denki Seisakusho:Kk Rotor of magnet generator and manufacture thereof
JPH1198735A (en) * 1997-09-18 1999-04-09 Toyota Motor Corp Rotor of dynamo-electric machine, and manufacture of rotor of dynamo-electric machine
JP2001328874A (en) * 2000-05-17 2001-11-27 Sumitomo Metal Ind Ltd Method for bonding ceramics substrate and bonding jig used therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415849B2 (en) * 2006-07-10 2013-04-09 Toyota Jidosha Kabushiki Kaisha IPM rotor and IPM rotor manufacturing method
US20090278417A1 (en) * 2006-07-10 2009-11-12 Toyota Jidosha Kabushiki Kaisha IPM Rotor, IPM Rotor Manufacturing Method and IPM Rotor Manufacturing Apparatus
DE102008000771A1 (en) 2007-03-27 2008-10-02 Aisin Seiki Kabushiki Kaisha, Kariya Rotor and method of making same
JP2009124881A (en) * 2007-11-15 2009-06-04 Toyota Motor Corp Rotary electric machine
JP2010017065A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Permanent magnet type rotor
JP4605481B2 (en) * 2008-07-07 2011-01-05 本田技研工業株式会社 Permanent magnet rotor
JP2011254663A (en) * 2010-06-03 2011-12-15 Toyota Motor Corp Manufacturing method of rotor for rotary electric machine and shaft material for rotary electric machine
JP2012228020A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Rotor for rotary electric machine and rotary electric machine
KR20140028737A (en) * 2012-08-30 2014-03-10 현대모비스 주식회사 Rotator for high power motor
US20140196276A1 (en) * 2013-01-15 2014-07-17 Mitsui High-Tec, Inc. Method of manufacturing laminated rotor core
US9768673B2 (en) * 2013-01-15 2017-09-19 Mitsui High-Tec, Inc. Method of manufacturing laminated rotor core
CN105529876A (en) * 2016-01-28 2016-04-27 高俊 Manufacturing technology for hybrid exciting permanent magnet wind generator
CN105529876B (en) * 2016-01-28 2018-08-10 沈阳工业大学 A kind of composite excitation permanent magnet wind power generator manufacturing process

Also Published As

Publication number Publication date
JP4581745B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4581745B2 (en) Method for manufacturing rotor of permanent magnet motor
JP4143631B2 (en) Manufacturing method of rotor
JP6089983B2 (en) Cylindrical sputtering target and manufacturing method thereof
US7608966B2 (en) Rotor and method of manufacturing
TWI466739B (en) Methods and systems for integrally trapping a glass insert in a metal bezel
JP5506992B2 (en) Rotor for electric machine
US9995991B2 (en) Image pickup apparatus
US20090129986A1 (en) Fluid container composed of two plates
JP6322324B2 (en) Semiconductor module
JP6583105B2 (en) Coil end forming method
US9653974B2 (en) Core of rotating electrical machine having fixing agent for fixing permanent magnets in accommodating slots and method for manufacturing the core
US11043863B2 (en) Rotor manufacturing method
RU2008126190A (en) METHOD AND DEVICE FOR OBTAINING COMPONENT COMPOUND
JP3585854B2 (en) Injection molding method
JP4338677B2 (en) Case parts and manufacturing method thereof
US11374471B2 (en) Method of manufacturing core product
WO2020145410A1 (en) Method for manufacturing rotor, and rotor
JP6392626B2 (en) ROTOR MANUFACTURING METHOD AND ROTOR
JP6538959B2 (en) Multi-part device and method of manufacturing this multi-part device
KR100796621B1 (en) Fixing structure of rod for ceramics heater
US11260642B2 (en) Methods for fast and reversible dry adhesion tuning between composite structures and substrates using dynamically tunable stiffness
FR2789624A1 (en) PROCEDURE FOR APPLYING EDGE PROTECTION TO A SHEET CONSISTING OF A FRAGILE MATERIAL, IN PARTICULAR TO A COOKING TOP
KR101552842B1 (en) A seal apparatus and method of manufacturing the same
KR101210561B1 (en) Method for sealing fluid inlet
KR100984095B1 (en) Thermoelectric module unit and the manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees