JP2006238728A - Method for producing sugars from drainage during papermaking - Google Patents

Method for producing sugars from drainage during papermaking Download PDF

Info

Publication number
JP2006238728A
JP2006238728A JP2005055658A JP2005055658A JP2006238728A JP 2006238728 A JP2006238728 A JP 2006238728A JP 2005055658 A JP2005055658 A JP 2005055658A JP 2005055658 A JP2005055658 A JP 2005055658A JP 2006238728 A JP2006238728 A JP 2006238728A
Authority
JP
Japan
Prior art keywords
acid
pulp
cellulose
sugars
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005055658A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
等 伊藤
Tatsuaki Iwaki
達明 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Chemicals Co Ltd
Original Assignee
Nippon Paper Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Chemicals Co Ltd filed Critical Nippon Paper Chemicals Co Ltd
Priority to JP2005055658A priority Critical patent/JP2006238728A/en
Publication of JP2006238728A publication Critical patent/JP2006238728A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing sugars as useful resources from drainage from the production process of paper or powdery cellulose and using them effectively, and also utilizing an acid used for the production by circulating in its reaction system. <P>SOLUTION: This method for producing the sugars is characterized by having a process A of producing the sugars by hydrolyzing pulp contained in the drainage drained from a pulp-screening/collecting process and/or papermaking process with the acid, and a process B of hydrolyzing the pulp in a powdery cellulose production process by the acid, in its system, recovering the sugars through a process C of separating the reaction liquid obtained from the acid-hydrolyzation process A and acid-hydrolyzing process B to the sugars and acid and returning the acid separated in the process C to the acid-hydrolyzation process A and/or acid-hydrolyzation process B for utilizing by circulating. Further, the method for producing bacterial cellulose is characterized by using the sugars as culturing substrates. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、製紙工程あるいは粉末セルロースの製造工程からの排水から糖類を得る方法及び製造に用いた酸を循環利用する方法、さらには、得られた糖類を発酵の培養基質として用いたバクテリアセルロースの製造方法に関する。   The present invention relates to a method for obtaining saccharides from wastewater from a papermaking process or a process for producing powdered cellulose, a method for recycling and using the acid used in the production, and further a method for producing bacterial cellulose using the obtained saccharides as a culture substrate for fermentation. It relates to a manufacturing method.

製紙工場の製紙工程において排出される排水は、製紙装置で用いるワイヤークロスの網目等から流出した広葉樹および/または針葉樹を原料とする木材パルプ繊維(いわゆる流失原質)、填料等の懸濁物質および溶解した有機物等が含まれているため、その廃水処理は、従来は活性汚泥法、凝集沈澱法等で排水を固液分離処理した後、さらにその固形分であるペーパースラッジをプレス等で脱水処理して焼却炉、ボイラー等で焼却するのが一般的である。
このような従来の方法では、排水処理とともに木質系バイオマスの燃焼による熱回収という側面を併せ持たせることも不可能ではないが、セルロースを主体とする貴重な天然糖質資源を高度に有効利用しているとは言い難い状況であった。
Wastewater discharged in the papermaking process of the paper mill is made of hardwood and / or softwood wood pulp fibers (so-called lost raw material), fillers and other suspended substances that have flowed out from the wire cloth mesh used in the papermaking machine. Because it contains dissolved organic matter, the wastewater treatment is conventionally solid-liquid separation treatment of wastewater by the activated sludge method, coagulation sedimentation method, etc., and then the paper sludge that is the solid content is dehydrated with a press etc. Then, it is common to incinerate with an incinerator or boiler.
In such a conventional method, it is not impossible to combine wastewater treatment with the aspect of heat recovery by burning woody biomass, but highly efficient use of valuable natural carbohydrate resources mainly composed of cellulose. It was hard to say.

一方、早急な対応を求められている地球温暖化物質のCO削減や、埋蔵量・採掘技術等で制約条件のある石炭、石油、天然ガス等化石資源の節約・温存という視点から、環境対策が進んでいる。資源の有効活用という観点から、バイオマスの利用も行われるようになってきた。このように、資源の有効活用を図った例としては、バイオマス起源の生分解性樹脂への原料モノマー供給を目指した乳酸発酵、特異な性質と用途を持つが工業的には今後の開拓が待たれるバクテリアセルロース発酵、バイオマス由来燃料としてのエタノール発酵等がある。これらの発酵用の基質として、安価で多量な糖質資源の獲得が求められている。 On the other hand, CO 2 reduction and global warming substances sought immediate attention, coal with constraints in reserves, mining techniques, etc., petroleum, from the perspective of conservation and preservation of natural gas or the like fossil resources, environmental protection Is progressing. From the viewpoint of effective use of resources, biomass has also been used. In this way, examples of effective utilization of resources include lactic acid fermentation aimed at supplying raw material monomers to biomass-derived biodegradable resins, with unique properties and applications, but industrial development has awaited future development Bacterial cellulose fermentation and ethanol fermentation as biomass-derived fuel. As a substrate for such fermentation, acquisition of a large amount of carbohydrate resources at low cost is required.

安価で多量な糖質資源の獲得方法として、例えば、食品廃棄物、規格外農産物、間伐材・林地残材、建築廃材、未回収古紙等各種の植物系原料から、酵素分解法、酸加水分解法等によってセルロース、ヘミセルロース、デンプン等を解重合し、グルコース、キシロース等の糖質を得る試みがされている。酵素分解法では、高価な酵素を用いるためコストが高くなる。また、酸加水分解する方法については、特許文献1〜3等に開示されているが、特許1及び2では、原料として植物を用いるため、セルロースの他にリグニンなどの不純物が多く、糖化反応は高温高圧下で行う必要があった。原料の収集・輸送に要するコストや、糖を製造した後に発生する排水・廃棄物処理等の課題があった。特許文献2では、セルロースを原料としているが、装置が複雑であり、また、原料の調達が困難である等の欠点があった。   As a method for acquiring abundant carbohydrate resources at low cost, for example, food waste, nonstandard agricultural products, thinned wood / forest residue, building waste, unrecovered waste paper, various plant-based raw materials, enzymatic decomposition method, acid hydrolysis Attempts have been made to obtain sugars such as glucose and xylose by depolymerizing cellulose, hemicellulose, starch and the like by a method or the like. In the enzymatic decomposition method, since an expensive enzyme is used, the cost is increased. Moreover, although the method of acid hydrolysis is disclosed by patent documents 1-3 etc., in patent 1 and 2, since a plant is used as a raw material, in addition to cellulose, there are many impurities, such as lignin, and saccharification reaction is It was necessary to carry out under high temperature and high pressure. There were problems such as costs for collecting and transporting raw materials and wastewater and waste disposal generated after sugar production. In Patent Document 2, cellulose is used as a raw material, but there are drawbacks such as complicated equipment and difficulty in procuring raw materials.

特開昭53−124632号公報JP-A-53-124632 特開昭56−92800号公報JP-A-56-92800 特開昭59−98700号公報JP 59-98700 A

近年は、環境に配慮した循環型社会が求められており、資源を循環再利用する技術が望まれている。本発明は、製紙工程あるいは粉末セルロースの製造工程からの排水から、有用な資源である糖類を製造するとともに、製造に用いた酸を反応系で循環利用する方法を提供することを課題とする。   In recent years, there has been a demand for a recycling-oriented society that is environmentally friendly, and a technology for recycling and recycling resources is desired. An object of the present invention is to provide a method for producing saccharides, which are useful resources, from wastewater from a papermaking process or a process for producing powdered cellulose, and to circulate and use an acid used in the production in a reaction system.

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、特定の工程を組み合わせることにより、上記課題を解決できた。即ち、本発明は、
(1)パルプ抄取工程及び/または抄紙工程から排出される排水中に含まれるパルプを酸加水分解し糖類を製造する工程Aと、粉末セルロース製造工程においてパルプを酸加水分解する工程Bとを系内に有し、前記酸加水分解工程A及び酸加水分解工程Bにより得られる反応液を糖類と酸とに分離する工程Cを経て糖類を回収し、さらに前記工程Cで分離した酸を前記酸加水分解工程A及び/または酸加水分解工程Bへ返送して系内で循環利用することを特徴とする糖類の製造方法。
(2)(1)に記載の糖類を培養基質として用いることを特徴とするバクテリアセルロースの製造方法。
As a result of intensive studies to solve the above problems, the present inventors have been able to solve the above problems by combining specific steps. That is, the present invention
(1) A step A in which pulp contained in waste water discharged from the pulp drawing step and / or paper making step is acid hydrolyzed to produce saccharides, and a step B in which the pulp is acid hydrolyzed in the powder cellulose production step. In the system, the saccharide is recovered through the step C of separating the reaction liquid obtained by the acid hydrolysis step A and the acid hydrolysis step B into a saccharide and an acid, and the acid separated in the step C is further A method for producing a saccharide characterized in that it is returned to the acid hydrolysis step A and / or acid hydrolysis step B and recycled in the system.
(2) A method for producing bacterial cellulose, wherein the saccharide according to (1) is used as a culture substrate.

本発明は排水の有効利用を目的とし、製紙工場から大量に廃棄していた排水から、有用な資源となる糖類を製造し、各種発酵に用いる基質を初めとする様々な用途に利用できる。酢酸菌の培地の糖源として用いれば、安価にバクテリアセルロースを製造できる。さらには、糖類を製造した際に用いた酸を反応系で循環利用することにより、資源を有効活用することができ、環境面、資源面からも好ましく、資源循環型社会に適している。   The present invention is intended for effective use of wastewater, and can be used for various uses such as substrates used for various fermentations by producing saccharides as useful resources from wastewater that has been discarded in large quantities from paper mills. Bacterial cellulose can be produced at low cost if used as a sugar source for the medium of acetic acid bacteria. Furthermore, resources can be effectively used by recycling the acid used in the production of saccharides in the reaction system, which is preferable in terms of environment and resources, and is suitable for a resource recycling society.

本発明は、製紙工場という定点内で昼夜連続して、大量に排出されている抄紙機およびパルプ設備排水を、セルロース資源としての価値に着目してセルロース繊維の回収と酸加水分解による糖化を行ない、かつ、その際に使う酸の回収、有効利用を目的として、粉末セルロース製造工程で使用する新規投入酸の代わりに回収した酸をカスケード的に用いてプロセス全体の合理性を追求したものである。
本発明の概念図を図1に示す。
本発明は、製紙工程中のパルプ抄取工程及び/または抄紙工程から排出される排水を酸加水分解し、糖類を製造する工程Aと、パルプから粉末セルロースを製造する工程中のパルプを酸加水分解する工程Bと、工程AとBから得られる酸加水分解反応液を糖類と酸に分離し、糖類を回収する工程Cとからなり、該工程Cで分離した酸を工程A及び/または工程Bの酸分解工程に返送することにより系内で循環利用するものである。
The present invention performs continuous recovery day and night within a fixed point of a paper mill, and performs saccharification by collecting cellulose fibers and acid saccharifying wastewater discharged from a paper machine and pulp equipment, focusing on the value as a cellulose resource. In addition, in order to recover the acid used at that time, and to use it effectively, the rationality of the whole process was pursued by using the recovered acid in cascade instead of the newly added acid used in the powder cellulose production process. .
A conceptual diagram of the present invention is shown in FIG.
In the present invention, the pulp draining process in the papermaking process and / or the wastewater discharged from the papermaking process is hydrolyzed to produce sugars, and the pulp in the process of producing powdered cellulose from pulp is acid hydrolyzed. It comprises a step B for decomposing and a step C for separating the acid hydrolysis reaction solution obtained from steps A and B into a saccharide and an acid and recovering the saccharide, and the acid separated in the step C is converted into the step A and / or the step It is recycled in the system by returning to the acid decomposition step of B.

1.製紙工程中のパルプ抄取工程又は抄紙工程から排出される排水を酸加水分解して糖類を製造する工程A。
本発明における製紙工程から排出される排水は、パルプが含まれていればよいが、抄紙工程にて抄紙機より排出される排水またはパルプの抄取工程にてパルプ抄取装置から排出される排水が好適である。抄紙機の種類としては、どのような種類の紙のものであってもよく、例えば、上級紙、新聞用紙、家庭紙、特殊紙、板紙等が挙げられる。
抄紙に用いるパルプの原料チップは、広葉樹でも針葉樹でもよく、それらの混合物であっても良い。パルプとしては、セルロース又はヘミセルロースを含有していればよく、クラフトパルプ、サルファイトパルプ、メカニカルパルプ、サーモメカニカルパルプ、セミケミカルパルプ、古紙パルプ、脱墨パルプなどが挙げられる。
1. Process A in which saccharides are produced by acid hydrolysis of the wastewater discharged from the pulp making process or the paper making process in the papermaking process.
The drainage discharged from the papermaking process in the present invention may contain pulp, but the drainage discharged from the papermaking machine in the papermaking process or the drainage discharged from the pulp harvesting apparatus in the pulp harvesting process. Is preferred. The type of the paper machine may be any type of paper, and examples include high grade paper, newsprint, household paper, special paper, and paperboard.
The raw material chip of pulp used for papermaking may be hardwood, softwood, or a mixture thereof. The pulp may contain cellulose or hemicellulose, and examples thereof include kraft pulp, sulfite pulp, mechanical pulp, thermomechanical pulp, semi-chemical pulp, waste paper pulp, and deinked pulp.

本発明における排水は、パルプ製造の過程(蒸解工程など)においてリグノセルロース物質である木材から、リグニンを完全又は一部を除去したパルプを用いた抄紙工程あるいはパルプの抄取工程からの排水であるため、その排水の主成分はパルプであり、セルロース繊維以外の不純物が少なく、容易に糖化しやすい。
抄紙工程にて抄紙機より排出される排水とは、抄紙機のワイヤーパートやプレスパートでパルプを脱水する際に生じる排水である。パルプの抄取工程とは、木材チップを蒸解後、洗浄、漂白してパルプにしたものを抄紙工程に送る過程で水分を脱水、抄取る工程を意味し、パルプ抄取装置とは、その工程で使用される装置をいう。抄紙工程またはパルプ抄取工程からの排水は、主としてパルプ及び水を含有する。
また、抄紙工程及びパルプ抄取り工程の排水としては、工場の操業に伴い、定常的に排出される排水の他に、非定常的に行なう機械装置、塔、タンク類の空槽、洗浄等により排出される排水も含まれる。
The waste water in the present invention is waste water from a paper making process or a pulp picking process using pulp from which lignin has been completely or partially removed from wood which is a lignocellulosic material in a pulp manufacturing process (such as a cooking process). Therefore, the main component of the wastewater is pulp, and there are few impurities other than cellulose fiber, and it is easily saccharified.
The waste water discharged from the paper machine in the paper making process is waste water generated when the pulp is dewatered by the wire part or press part of the paper machine. Pulp paper extraction process means the process of dewatering and paper removal in the process of sending wood pulp to the paper making process after cooking, bleaching and bleaching wood chips. Means the equipment used in Waste water from the paper making process or the pulp picking process mainly contains pulp and water.
In addition to wastewater that is regularly discharged as the factory operates, wastewater from the papermaking process and pulp picking process can be used by unsteady machinery, towers, tank tanks, washing, etc. Also includes wastewater discharged.

抄紙工程での排水にはパルプの他に、通常、固形物量全体に対して数%〜数十重量%程度の炭酸カルシウム、カオリン、タルク、酸化チタン等の填料が含まれているため、この無機成分はセルロースの糖化を行う前に、湿式サイクロン、デカンター等の一般的に行われている公知の技術を単独、または組み合わせて用いることにより分離、除去することが望ましい。パルプの抄取工程にて排出される排水には、通常、填料を添加していないので、上記のような前処理は必要ない。   In addition to pulp, wastewater in the paper making process usually contains fillers such as calcium carbonate, kaolin, talc, titanium oxide, etc. The components are desirably separated and removed by using commonly known techniques such as wet cyclones and decanters alone or in combination before saccharification of cellulose. The wastewater discharged in the pulp drawing process does not normally contain a filler, so that the pretreatment as described above is not necessary.

抄紙工程あるいはパルプの抄取工程からの排水(以下、併せて製紙工程からの排水ということがある)は、濾過、プレス等の公知の方法により、99.5重量%〜50重量%程度の水分濃度まで脱水する。
前述した填料等の無機成分の分離処理およびセルロース繊維分の脱水処理において、損失する排水中の繊維分、懸濁物質、溶解物質等については、新たに回収設備を設けて回収しても良いし、既存の抄紙工程やパルプ抄取工程に付設している排水処理設備を利用しても良い。抄紙工程やパルプ抄取工程の排水は、元来有効利用されているとは言い難く、廃棄されている資源であるので、その利用は、経済性等が見合う範囲で行うことができる。
脱水した排水を、酸加水分解して、糖化する。酸加水分解で用いる酸は特に限定されないが、酸加水分解に用いた酸を粉末セルロース製造工程に再利用することを考えると、当該工程で用いられている硫酸、塩酸、硝酸、リン酸等の鉱酸を用いるのが好ましい。
Wastewater from the papermaking process or pulping process (hereinafter sometimes referred to as wastewater from the papermaking process) is about 99.5 wt% to 50 wt% of water by a known method such as filtration or pressing. Dehydrate to concentration.
In the separation process of inorganic components such as fillers and the dehydration process of cellulose fibers described above, fibers, suspended substances, dissolved substances, etc. in the wastewater that are lost may be collected by newly installing a recovery facility. The waste water treatment equipment attached to the existing paper making process and pulp making process may be used. The waste water from the paper making process and the pulp picking process is not said to be effectively used from the beginning, and is a discarded resource. Therefore, its use can be performed within a range that is economical.
The dewatered wastewater is hydrolyzed by acid hydrolysis. The acid used in the acid hydrolysis is not particularly limited, but considering that the acid used in the acid hydrolysis is reused in the powder cellulose production process, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. used in the process It is preferred to use a mineral acid.

本発明においては、酸加水分解により、単糖及び/又はオリゴ糖を製造することができる。酸加水分解の条件は、セルロースを解重合して効率良くグルコース等の単糖ないしはオリゴ糖を得ることができれば特に限定されないが、二段階加水分解法を用いた糖化が好適である。二段階加水分解法とは、酸加水分解の処理条件である繊維分濃度、酸濃度、温度、時間等を変えた二段階で行うことである。反応条件の違う二段階の酸加水分解を行うことにより、グルコースの収率を高くすることができる。二段階法では、一段階目の酸加水分解には、濃酸を用いてセルロースを可溶性グルコースポリマーにまで分解し、二段目に希酸を用いて可溶性グルコースポリマーを単糖及び/またはオリゴ糖に分解する。   In the present invention, monosaccharides and / or oligosaccharides can be produced by acid hydrolysis. The conditions for acid hydrolysis are not particularly limited as long as cellulose can be depolymerized to efficiently obtain monosaccharides or oligosaccharides such as glucose, but saccharification using a two-stage hydrolysis method is preferred. The two-stage hydrolysis method is performed in two stages in which the fiber hydrolysis concentration, acid concentration, temperature, time, etc., which are treatment conditions for acid hydrolysis, are changed. Glucose yield can be increased by carrying out two-stage acid hydrolysis with different reaction conditions. In the two-stage method, in the first stage acid hydrolysis, the concentrated acid is used to decompose the cellulose to soluble glucose polymer, and the second stage is used to dilute the soluble glucose polymer to monosaccharide and / or oligosaccharide. Disassembled into

酸加水分解における反応条件は、一段目は、酸濃度40〜50重量%、好ましくは、50〜80重量%、温度は、1〜100℃、好ましくは15〜98℃、反応時間は1分〜180分、好ましくは、5分〜60分とするのが好適である。二段目は、酸濃度1〜40重量%、好ましくは、10〜30重量%、温度は、1〜100℃、好ましくは15〜98℃、反応時間は1分〜180分、好ましくは、5分〜60分とするのが好適である。
粉末セルロース製造工程への酸の再利用を考慮すると、酸加水分解にて用いる酸濃度が高い方が再利用しやすいが、濃度が低い場合は公知の方法にて酸を濃縮して使用すればよい。
本発明の特徴として、糖化の原料として、製紙工程からの排水に含まれるセルロースを用いることにより、リグニン等の不純物が少ないため、糖化反応の反応条件が、穏和であることが挙げられる。即ち、リグニン等を含む木材などのリグノセルロース物質の酸加水分解は、高温高圧下で行われるのに対し、本発明は、反応温度は100℃以下でよく、圧力容器を必要としない。
Regarding the reaction conditions in the acid hydrolysis, the acid concentration is 40 to 50% by weight, preferably 50 to 80% by weight, the temperature is 1 to 100 ° C., preferably 15 to 98 ° C., and the reaction time is 1 minute to It is suitable for 180 minutes, preferably 5 to 60 minutes. The second stage has an acid concentration of 1 to 40% by weight, preferably 10 to 30% by weight, a temperature of 1 to 100 ° C., preferably 15 to 98 ° C., and a reaction time of 1 minute to 180 minutes, preferably 5 It is preferable that the time is from 60 minutes to 60 minutes.
Considering the reuse of acid in the powder cellulose production process, the higher the acid concentration used in the acid hydrolysis, the easier it is to reuse, but if the concentration is low, if the acid is concentrated and used by a known method Good.
As a feature of the present invention, by using cellulose contained in the waste water from the papermaking process as a raw material for saccharification, since there are few impurities such as lignin, the reaction conditions of the saccharification reaction are mild. That is, acid hydrolysis of lignocellulosic materials such as wood containing lignin and the like is performed under high temperature and high pressure, whereas the present invention does not require a pressure vessel because the reaction temperature may be 100 ° C. or lower.

2.パルプから粉末セルロースを製造する工程中のパルプを酸加水分解する工程B。
粉末セルロースは、木材パルプ等の植物性繊維を機械的な粉砕を行なうか、または酸により部分的に軽く加水分解処理した後で粉砕して製造する白色の粉末製品である。用途は食用・工業用の濾過助剤、食品添加物、ゴム・プラスチック用充填剤、錠剤成型の賦型剤、飼料・ペットフード用等多方面にわたり、日本薬局法にも収載されている天然素材であり、安全性が高い。
粉末セルロースの製造において、パルプの酸加水分解を行なう場合は通常、硫酸、塩酸、硝酸、リン酸等の鉱酸を用い、反応後の廃酸は粉末セルロース工程で極力循環、再利用されるが、工程内において損失分が発生する。その場合は、新たに酸が補充される。粉末セルロース製造の酸加水分解の酸濃度は1重量%〜30重量%、好ましくは、5重量%〜15重量%であり、セルロースを単糖にまで強く解重合を進める場合の酸濃度に比べてかなり低い。酸加水分解で排出される排水には、パルプを酸加水分解した際に生成する糖と反応に用いた酸が含まれている。
2. Process B which hydrolyzes the pulp in the process of manufacturing powdered cellulose from a pulp.
Powdered cellulose is a white powder product produced by mechanically pulverizing vegetable fibers such as wood pulp or by partially hydrolyzing them with an acid and then pulverizing them. Applications include food and industrial filter aids, food additives, rubber and plastic fillers, tablet molding excipients, feed and pet food, and other natural materials listed in the Japanese Pharmacy Law. It is safe.
In the production of powdered cellulose, when acid hydrolysis of pulp is usually used, mineral acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid are used, and the spent acid after reaction is circulated and reused as much as possible in the powdered cellulose process. A loss occurs in the process. In that case, a new acid is replenished. The acid concentration of acid hydrolysis in the production of powdered cellulose is 1% to 30% by weight, preferably 5% to 15% by weight, compared to the acid concentration when cellulose is strongly depolymerized to monosaccharides. Pretty low. The wastewater discharged by acid hydrolysis contains the sugar produced when the pulp is acid hydrolyzed and the acid used for the reaction.

3.酸加水分解工程A及び/又はBにより得られる反応液を糖類と酸に分離する工程Cを経て、糖類を回収する工程及び酸の循環利用。
酸加水分解した反応液を糖と酸とに分離する。製紙工程からの排水の酸加水分解液および粉末セルロース製造工程からの排水に含まれる糖は、グルコース、キシロース等であり、公知の方法、例えば、アルコールによる抽出、透析、電気透析、イオン交換樹脂、各種クロマトグラフィー、ゲル濾過法などの定法を用いることができるが、本発明においては、電気透析法を用いるのが好ましい。電気透析法とは、カチオン交換膜とアニオン交換膜を交互に配置したセルの中に反応液を流して、両端の電極から直流電源を印加することにより、電解質(酸)は電気泳動で膜を通過して移動し、一方の非電解質(糖質)は移動せずに残留するため、反応液中の両成分が分離されるものである。電気透析法の利点は、他の方法に比べて、工業化しやすいことである。
3. A step of recovering the saccharide through the step C of separating the reaction liquid obtained by the acid hydrolysis step A and / or B into a saccharide and an acid, and a circulating use of the acid.
The acid-hydrolyzed reaction solution is separated into sugar and acid. The sugar contained in the acid hydrolyzate of the wastewater from the papermaking process and the wastewater from the powdered cellulose production process is glucose, xylose, etc., and known methods such as extraction with alcohol, dialysis, electrodialysis, ion exchange resin, Various conventional methods such as chromatography and gel filtration can be used, but in the present invention, electrodialysis is preferably used. In electrodialysis, the reaction solution is passed through a cell in which cation exchange membranes and anion exchange membranes are alternately arranged, and a DC power supply is applied from the electrodes at both ends. Since one non-electrolyte (sugar) remains without moving, the two components in the reaction solution are separated. The advantage of the electrodialysis method is that it can be industrialized more easily than other methods.

反応液を、糖類と酸とに分離すれば、それぞれを有効利用することができる。特に、酸は反応系内に返送することにより循環利用することができる。酸と糖類を分離しない場合、酸を廃棄する際には、塩基性物質にて中和し、生成した塩を各種方法で廃棄しなければならず、廃棄処理が困難である。例えば、硫酸の場合は、石灰で中和し、生成した多量の硫酸カルシウムを処理することが必要となる。
工程Cで分離した酸は、工程Aおよび/または工程Bで用いる酸として、適当な濃度に調整し、系内に返送し循環利用することができる。
特に、工程Aの酸加水反応液から分離した酸は、工程Bで利用する酸よりも高濃度であるため、工程Bでの使用に都合がよい。酸を再利用することにより、粉末セルロース製造工程で損失する酸の全量あるいは一部を賄うことができる。
If a reaction liquid is isolate | separated into saccharides and an acid, each can be used effectively. In particular, the acid can be recycled by returning it to the reaction system. When the acid and the saccharide are not separated, when discarding the acid, it must be neutralized with a basic substance and the generated salt must be discarded by various methods, and the disposal process is difficult. For example, in the case of sulfuric acid, it is necessary to neutralize with lime and treat a large amount of calcium sulfate produced.
The acid separated in step C can be adjusted to an appropriate concentration as the acid used in step A and / or step B, returned to the system, and recycled.
In particular, since the acid separated from the acid hydrolyzing reaction solution in Step A has a higher concentration than the acid used in Step B, it is convenient for use in Step B. By reusing the acid, it is possible to cover the whole or a part of the acid lost in the powder cellulose production process.

4.分離した糖類の利用。
工程Cで分離して得た糖類は、各種微生物を培養する培地の糖源として利用できる。排水の種類により含まれる糖組成が異なり、様々な菌の培地として用いることができる。例えば、針葉樹チップを用いて製造したパルプ工程からの排水の方が、広葉樹パルプを用いたものよりグルコース含有量は多い。また、広葉樹パルプを用いた粉末セルロース製造工程からの排水は、キシロースを多く含んでおり、それ自体を単離して各種食品、医薬品等の素材として用いることもできる。
本発明の酸加水分解液の糖組成は、製紙工程あるいは粉末セルロース工程で用いる原材料にもよるが、通常、グルコース0.1重量%〜3重量%、キシロース0.1重量%〜2重量%である。
4). Use of separated sugars.
The saccharide obtained by separation in Step C can be used as a sugar source for a medium in which various microorganisms are cultured. The sugar composition contained varies depending on the type of drainage, and can be used as a medium for various bacteria. For example, wastewater from a pulp process manufactured using coniferous chips has a higher glucose content than those using hardwood pulp. Moreover, the waste water from the powdered cellulose manufacturing process using hardwood pulp contains a lot of xylose, and it can be isolated and used as a raw material for various foods and pharmaceuticals.
The sugar composition of the acid hydrolyzate of the present invention is usually 0.1% to 3% by weight of glucose and 0.1% to 2% by weight of xylose, although it depends on the raw materials used in the papermaking process or the powdered cellulose process. is there.

本発明においては、酢酸菌のバクテリアセルロース産生のための培養培地への糖源として利用することができる。バクテリアセルロースは、高等植物のセルロースと違って、極めて微細な繊維形態であるとともに、シート状等の成形物は網目構造をとるため金属に匹敵する非常に高いヤング率を示す等、特異な性質を持っている。現在、食用(ナタデココ等)のほか、音響振動板(ヘッドホンやスピーカーコーン用)等に使われており、さらに今後は医療分野等で生体適合性素材としての応用や環境負荷の小さい生分解性材料の特徴を生かして、化石資源由来の高分子材料等に代わる各種用途の開発、発展が期待されている。しかし、価格が極めて高いこともあって現状では用途が限られ、期待ほどには普及していない。本発明においては、酢酸菌培養培地の糖源として、低コストのセルロースが使用でき、バクテリアセルロースを安価に製造することができる。   In this invention, it can utilize as a sugar source to the culture medium for bacterial cellulose production of acetic acid bacteria. Bacterial cellulose, unlike higher plant cellulose, is in the form of very fine fibers, and the sheet-like molded product has a network structure and exhibits a very high Young's modulus comparable to metal. have. Currently, it is used not only for food (Natadecoko, etc.) but also for acoustic diaphragms (headphones and speaker cones). In the future, it will be applied as a biocompatible material in the medical field and biodegradable materials with low environmental impact. Taking advantage of these characteristics, development and development of various applications to replace polymer materials derived from fossil resources are expected. However, due to the extremely high price, the applications are limited at present and not as popular as expected. In the present invention, low-cost cellulose can be used as the sugar source of the acetic acid bacteria culture medium, and bacterial cellulose can be produced at low cost.

以下に、本発明を実施例を挙げて具体的に示すが、これに限定されるものではない。
[実施例1]
〈工程A〉製紙工程排水の酸加水分解工程
上級紙を製造している製紙工程(日本製紙(株)勇払工場)からの排水(パルプは、広葉樹晒しクラフトパルプが主体)を採取し、沈降法による濃縮を2回繰り返し、固形分濃度1.1重量%のスラリーを得た。当該スラリーを遠心分離し、水分を濃縮し、濃度15重量%の排水を得た。
上記排水を表1の条件にて、二段階酸加水分解を行った。1段目は、硫酸濃度72重量%で行い、2段目は水で希釈して3種類の濃度で行った。加水分解反応は、ビーカーを用い
てガラス棒で攪拌しながら行った。結果を表2に示す。
Hereinafter, the present invention will be specifically described by way of examples, but is not limited thereto.
[Example 1]
<Process A> Acid hydrolysis process of papermaking process wastewater Wastewater (pulp is mainly hardwood bleached kraft pulp) collected from the papermaking process (Nippon Paper Industries Co., Ltd. Yufutsu Mill), and settled Concentration was repeated twice to obtain a slurry having a solid content concentration of 1.1% by weight. The slurry was centrifuged and the water was concentrated to obtain a wastewater having a concentration of 15% by weight.
The waste water was subjected to two-stage acid hydrolysis under the conditions shown in Table 1. The first stage was performed at a sulfuric acid concentration of 72% by weight, and the second stage was diluted with water at three concentrations. The hydrolysis reaction was performed while stirring with a glass rod using a beaker. The results are shown in Table 2.

Figure 2006238728
Figure 2006238728

Figure 2006238728

表2の結果から、2段目の反応における硫酸濃度と反応時間が大きくなるに従い、加水分解も進んでグルコース収率が高くなることがわかった。最適条件での収率は、約80%程度であった。各硫酸濃度とも反応時間が長くなるにつれて、グルコース収率が低下する傾向が見られた、これは、繊維の成分が単糖までの分解にとどまらず、さらにフルフラール等にまで分解が進むためと推測される。
Figure 2006238728

From the results in Table 2, it was found that as the sulfuric acid concentration and reaction time in the second stage reaction increased, hydrolysis progressed and the glucose yield increased. The yield under the optimum conditions was about 80%. Glucose yield tended to decrease as the reaction time increased for each sulfuric acid concentration, which is presumed to be due to the decomposition of the fiber components not only to monosaccharides but also to furfural etc. Is done.

〈工程B〉粉末セルロース製造工程の酸加水分解工程
粉末セルロース製造工程(日本製紙ケミカル(株)勇払製造所)、の酸加水分解工程において、硫酸濃度8重量%にて、25分間広葉樹晒しクラフトパルプの酸加水分解反応を行った。
<Process B> Acid hydrolysis process of powdered cellulose manufacturing process In the acid hydrolysis process of powdered cellulose manufacturing process (Nippon Paper Chemical Co., Ltd. Yufutsu Mill), hardwood bleached kraft pulp for 25 minutes at a sulfuric acid concentration of 8% by weight The acid hydrolysis reaction of was carried out.

〈工程C〉−1 製紙工程排水の酸加水分解液からの糖類と酸との分離
工程Aの酸加水分解において、グルコース収率の高かった2段目硫酸濃度20重量%、反応時間20分の反応液300mlを、卓上型電気透析式イオン交換装置(旭化成製、マイクロアシライザーEX3型)を用いて、電極液に硫酸ナトリウムを用いて透析を行った。表3に硫酸濃度、導電率、電力量の経時変化を示す。
<Step C> -1 Separation of saccharide and acid from acid hydrolyzate of papermaking process wastewater In the acid hydrolysis of step A, the second stage sulfuric acid concentration of 20% by weight and the reaction time of 20 minutes were high in the yield of glucose. 300 ml of the reaction solution was dialyzed using sodium sulfate as the electrode solution using a desktop electrodialysis ion exchange device (manufactured by Asahi Kasei Co., Ltd., microacylator EX3 type). Table 3 shows changes over time in sulfuric acid concentration, conductivity, and electric energy.

Figure 2006238728

表3の結果から、時間経過と共に硫酸が順調に透析され、90分処理で約99%の移動量となった。また、累積の電力量は、43.5Whであり、供試硫酸量55.9gから電力原単位を計算すると、約0.78Wh/g−硫酸となる。なお、脱酸した透析反応液中のグルコース濃度をグルコスタット法にて測定した結果、5.2g/Lであった。
Figure 2006238728

From the results shown in Table 3, sulfuric acid was smoothly dialyzed with the passage of time, and the transfer amount was about 99% after 90 minutes treatment. Moreover, the accumulated electric energy is 43.5 Wh, and when the electric power consumption is calculated from 55.9 g of the test sulfuric acid amount, it becomes about 0.78 Wh / g-sulfuric acid. In addition, as a result of measuring the glucose concentration in the deoxidized dialysis reaction solution by the glucostat method, it was 5.2 g / L.

〈工程C〉−2 粉末セルロース製造工程の酸加水分解液からの糖類と酸の分離
工程Bからの排水を310ml採取し、上記工程C−1と同様の方法で電気透析を行った。硫酸濃度、導電率、電力量の経時変化を表4に示す。
<Step C> -2 Separation of saccharide and acid from acid hydrolyzate in powder cellulose production step 310 ml of waste water from step B was collected and electrodialyzed in the same manner as in step C-1. Table 4 shows changes with time in sulfuric acid concentration, conductivity, and electric energy.

Figure 2006238728

表4の結果から、時間の経過と共に硫酸は順調に透析され、60分処理で99%以上の移動量となった。また、累積の電力量は22.9Whであり、供試硫酸量25.9gから電力原単位を計算すると、約0.88Wh/g−硫酸となる。なお、脱酸した透析反応液中の糖濃度は、ダイオネックス社製糖分析計より測定した結果、キシロース4.3g/L、グルコース0.5g/Lであり、オリゴ糖の生成はなかった。
Figure 2006238728

From the results shown in Table 4, sulfuric acid was smoothly dialyzed with the passage of time, resulting in a transfer amount of 99% or more after 60 minutes of treatment. Moreover, the accumulated electric energy is 22.9 Wh, and when the electric power consumption is calculated from the amount of test sulfuric acid 25.9 g, it becomes about 0.88 Wh / g-sulfuric acid. In addition, as a result of measuring the sugar concentration in the deoxidized dialysis reaction solution using a sugar analyzer manufactured by Dionex, xylose was 4.3 g / L and glucose was 0.5 g / L, and no oligosaccharide was produced.

〈酸の再利用〉工程C−1で分離した酸の工程Bへの再利用。
広葉樹晒クラフトパルプ100部に対し、硫酸濃度が約10重量%となるように、上記工程Aの2段目硫酸濃度20重量%、反応時間20分の酸加水分解反応液から、電気透析法にて回収した硫酸1100部を加え、さらに水800部を加えてパルプスラリーを調整した。これを、攪拌機付きのセパラブルフラスコに入れ、95℃、45分間攪拌しながら保持し、酸加水分解を行った。反応終了後、ブフナー漏斗にて固液分離を行い、固形分を温水洗浄後、苛性ソーダで中和して酸加水分解パルプを回収した。酸加水分解パルプを温風乾燥機で乾燥後、穴径0.5mmφのスクリーンをセットした粉砕機(ホソカワミクロン社製、サンプルミル)で粉砕し、粉末セルロースを得た。収率は、94.8%であり、平均重合度440、100メッシュ篩い不通過率0%、嵩密度0.32g/mlであった。工業用硫酸を用いて製造している現行製品と同等の品質であった。
<Reuse of acid> Reuse of the acid separated in step C-1 to step B.
From 100 parts of hardwood bleached kraft pulp to a sulfuric acid concentration of about 10% by weight, the acid hydrolysis reaction solution from the second stage sulfuric acid concentration in the above step A of 20% by weight and reaction time of 20 minutes is used for electrodialysis. 1100 parts of the recovered sulfuric acid was added, and 800 parts of water was further added to prepare a pulp slurry. This was put into a separable flask equipped with a stirrer and kept at 95 ° C. with stirring for 45 minutes to carry out acid hydrolysis. After completion of the reaction, solid-liquid separation was performed with a Buchner funnel, and the solid content was washed with warm water and then neutralized with caustic soda to recover acid hydrolyzed pulp. The acid hydrolyzed pulp was dried with a hot air dryer and then pulverized with a pulverizer (sample mill manufactured by Hosokawa Micron Corporation) equipped with a screen having a hole diameter of 0.5 mmφ to obtain powdered cellulose. The yield was 94.8%, the average degree of polymerization was 440, the 100 mesh sieve impermeability was 0%, and the bulk density was 0.32 g / ml. The quality was equivalent to the current product manufactured using industrial sulfuric acid.

[実施例2]
実施例1で、電気透析により得られた糖化液をバクテリアセルロース発酵の試料として用いた。糖化液のグルコース濃度は、約5g/L、pH1.7であった。前記糖化液を水酸化ナトリウムでpH6.0に調整後、ロータリーエバポレーターで糖濃度2重量%に濃縮した。これを50ml容三角フラスコに15mlずつ分注し、シリコ栓をしてオートクレーブ中121℃、15分間滅菌処理した。その他の成分無添加のものを培地Aとし、酵母エキス(日本製紙ケミカル社製)0.5重量%添加したものを培地Bとした。
[Example 2]
In Example 1, the saccharified solution obtained by electrodialysis was used as a sample for bacterial cellulose fermentation. The glucose concentration of the saccharified solution was about 5 g / L and pH 1.7. The saccharified solution was adjusted to pH 6.0 with sodium hydroxide and then concentrated to a sugar concentration of 2% by weight using a rotary evaporator. This was dispensed in 15 ml portions into a 50 ml Erlenmeyer flask, sealed with a silicone stopper, and sterilized in an autoclave at 121 ° C. for 15 minutes. Medium A was added with no other components, and medium B was added 0.5% by weight of yeast extract (Nippon Paper Chemical Co., Ltd.).

培地A及びBに、Hestrin−Schramm培地にて3日間、28℃で培養した酢酸菌(Acetobacter Xylinum ATCC 10245)の培養液500μL添加し、インキュベーターで28℃、3日間及び7日間静置培養した。培養により得られたバクテリアセルロースは、2%水酸化ナトリウム中に浸せきしてタンパク質を除いた後、1%酢酸により中和し、水洗して、プラスチックシート上で風乾した。その後、減圧乾燥して重量を測定した。培養により得られたバクテリアセルロースの収量と対グルコース収率を表5に示す。   To mediums A and B, 500 μL of a culture solution of acetic acid bacteria (Acetobacter Xylinum ATCC 10245) cultured at 28 ° C. for 3 days in a Hestrin-Schramm medium was added, followed by static culture at 28 ° C. for 3 days and 7 days. Bacterial cellulose obtained by culturing was immersed in 2% sodium hydroxide to remove proteins, neutralized with 1% acetic acid, washed with water, and air-dried on a plastic sheet. Then, it dried under reduced pressure and measured the weight. Table 5 shows the yield of bacterial cellulose obtained by the culture and the yield relative to glucose.

Figure 2006238728
Figure 2006238728

本発明の糖類の製造工程を示す工程図Process drawing which shows the manufacturing process of the saccharide | sugar of this invention

Claims (2)

パルプ抄取工程及び/または抄紙工程から排出される排水中に含まれるパルプを酸加水分解し糖類を製造する工程Aと、粉末セルロース製造工程においてパルプを酸加水分解する工程Bとを系内に有し、前記酸加水分解工程A及び酸加水分解工程Bにより得られる反応液を糖類と酸とに分離する工程Cを経て糖類を回収し、さらに前記工程Cで分離した酸を前記酸加水分解工程A及び/または酸加水分解工程Bへ返送して系内で循環利用することを特徴とする糖類の製造方法。 The process A in which the pulp contained in the waste water discharged from the pulp drawing process and / or the paper making process is acid-hydrolyzed to produce saccharides, and the process B in which the pulp is acid-hydrolyzed in the powdered cellulose production process are included in the system. The saccharide is recovered through a step C of separating the reaction liquid obtained by the acid hydrolysis step A and the acid hydrolysis step B into a saccharide and an acid, and the acid separated in the step C is further converted to the acid hydrolysis. A method for producing a saccharide, comprising returning to step A and / or acid hydrolysis step B and recycling in the system. 請求項1に記載の糖類を培養基質として用いることを特徴とするバクテリアセルロースの製造方法。
A method for producing bacterial cellulose, wherein the saccharide according to claim 1 is used as a culture substrate.
JP2005055658A 2005-03-01 2005-03-01 Method for producing sugars from drainage during papermaking Pending JP2006238728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055658A JP2006238728A (en) 2005-03-01 2005-03-01 Method for producing sugars from drainage during papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055658A JP2006238728A (en) 2005-03-01 2005-03-01 Method for producing sugars from drainage during papermaking

Publications (1)

Publication Number Publication Date
JP2006238728A true JP2006238728A (en) 2006-09-14

Family

ID=37045751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055658A Pending JP2006238728A (en) 2005-03-01 2005-03-01 Method for producing sugars from drainage during papermaking

Country Status (1)

Country Link
JP (1) JP2006238728A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069865A (en) * 1996-07-31 1998-03-10 Chuka Eikan Kofun Yugenkoshi Video display device
WO2009004950A1 (en) * 2007-06-29 2009-01-08 Nippon Oil Corporation Method for production of monosaccharide and/or water-soluble polysaccharide by hydrolysis of cellulose-containing material
WO2009005168A1 (en) * 2007-07-03 2009-01-08 Takashi Kawasaki Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2009232747A (en) * 2008-03-27 2009-10-15 National Univ Corp Shizuoka Univ Production system of water-soluble saccharide derived from paper sludge and production method of water-soluble saccharide derived from paper sludge
KR101073726B1 (en) 2009-10-30 2011-10-13 씨제이제일제당 (주) Economical manufacturing process of xylose from biomass hydrolysate using electrodialysis and direct recovery method
JP2011211973A (en) * 2010-03-31 2011-10-27 Hitachi Zosen Corp Method for producing bioethanol
JP2012183031A (en) * 2011-03-07 2012-09-27 Kawasaki Heavy Ind Ltd Method for electrodialysis and apparatus for electrodialysis
JP2013507953A (en) * 2009-10-30 2013-03-07 シージェイ チェイルジェダン コーポレイション Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
JP2013529088A (en) * 2010-05-24 2013-07-18 ザイレコ,インコーポレイテッド Biomass processing
WO2014077854A1 (en) * 2012-11-19 2014-05-22 Washington State University Research Foundation Nanocrystalline cellulose materials and methods for their preparation
JP2015083011A (en) * 2014-12-21 2015-04-30 シージェイ チェイルジェダン コーポレイション Economical process for production of xylose from saccharified liquid using electrodialysis and direct recovery method
JP2016532553A (en) * 2013-08-19 2016-10-20 ポール コーニグ, Waste treatment system
US9637802B2 (en) 2013-03-08 2017-05-02 Xyleco, Inc. Upgrading process streams
CN112391218A (en) * 2020-11-30 2021-02-23 中国水稻研究所 Lignocellulose separation method and application of planting industry solid waste
EP4227418A1 (en) * 2022-02-10 2023-08-16 Seiko Epson Corporation Cellulose saccharification method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069865A (en) * 1996-07-31 1998-03-10 Chuka Eikan Kofun Yugenkoshi Video display device
WO2009004950A1 (en) * 2007-06-29 2009-01-08 Nippon Oil Corporation Method for production of monosaccharide and/or water-soluble polysaccharide by hydrolysis of cellulose-containing material
CN101730751B (en) * 2007-07-03 2012-07-18 川崎隆 Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
WO2009005168A1 (en) * 2007-07-03 2009-01-08 Takashi Kawasaki Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
AU2008272035B2 (en) * 2007-07-03 2010-08-12 Kabushiki Kaisha, Taiyu Kensetsu Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
US8324374B2 (en) 2007-07-03 2012-12-04 Taiyu Kensetsu Kabushiki Kaisha Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
KR101135403B1 (en) * 2007-07-03 2012-04-17 타이유 켄세츠 카부시키카이샤 Process for production of monosaccharide and process for production of ethanol both utilizing cellulose-based substance
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2009232747A (en) * 2008-03-27 2009-10-15 National Univ Corp Shizuoka Univ Production system of water-soluble saccharide derived from paper sludge and production method of water-soluble saccharide derived from paper sludge
JP2013507953A (en) * 2009-10-30 2013-03-07 シージェイ チェイルジェダン コーポレイション Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
KR101073726B1 (en) 2009-10-30 2011-10-13 씨제이제일제당 (주) Economical manufacturing process of xylose from biomass hydrolysate using electrodialysis and direct recovery method
US9133229B2 (en) 2009-10-30 2015-09-15 Cj Cheiljedang Corporation Economic process for producing xylose from hydrolysate using electrodialysis and direct recovery method
JP2011211973A (en) * 2010-03-31 2011-10-27 Hitachi Zosen Corp Method for producing bioethanol
JP2013529088A (en) * 2010-05-24 2013-07-18 ザイレコ,インコーポレイテッド Biomass processing
US9206453B2 (en) 2010-05-24 2015-12-08 Xyleco, Inc. Processing biomass
JP2012183031A (en) * 2011-03-07 2012-09-27 Kawasaki Heavy Ind Ltd Method for electrodialysis and apparatus for electrodialysis
WO2014077854A1 (en) * 2012-11-19 2014-05-22 Washington State University Research Foundation Nanocrystalline cellulose materials and methods for their preparation
US9724213B2 (en) 2012-11-19 2017-08-08 Washington State University Nanocrystalline cellulose materials and methods for their preparation
US9925496B2 (en) 2013-03-08 2018-03-27 Xyleco, Inc. Upgrading process streams
US10543460B2 (en) 2013-03-08 2020-01-28 Xyleco, Inc. Upgrading process streams
US9637802B2 (en) 2013-03-08 2017-05-02 Xyleco, Inc. Upgrading process streams
JP2016532553A (en) * 2013-08-19 2016-10-20 ポール コーニグ, Waste treatment system
US10195552B2 (en) 2013-08-19 2019-02-05 Paul KOENIG Waste processing system
JP2015083011A (en) * 2014-12-21 2015-04-30 シージェイ チェイルジェダン コーポレイション Economical process for production of xylose from saccharified liquid using electrodialysis and direct recovery method
CN112391218A (en) * 2020-11-30 2021-02-23 中国水稻研究所 Lignocellulose separation method and application of planting industry solid waste
EP4227418A1 (en) * 2022-02-10 2023-08-16 Seiko Epson Corporation Cellulose saccharification method

Similar Documents

Publication Publication Date Title
JP2006238728A (en) Method for producing sugars from drainage during papermaking
US11827771B2 (en) Oleophilic and hydrophobic nanocellulose materials
US11795345B2 (en) Processes for producing lignin-coated hydrophobic cellulose, and compositions and products produced therefrom
CA2972810C (en) Sulfite-based processes for producing nanocellulose, and compositions and products produced therefrom
CA2809519C (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
US20160237102A1 (en) Processes and apparatus for lignin separation in biorefineries
JP4928254B2 (en) Method for saccharification of cellulose-containing materials
US20210340706A1 (en) Nanocellulose production co-located at a pulp and paper mill
CA3062877A1 (en) Nanocellulose-reinforced corrugated medium
WO2015200584A1 (en) Processes for producing nanocellulose-lignin composite materials, and compositions obtained therefrom
CN105860090A (en) Method for extracting high-activity lignin from biomass and lignin extracted by same
WO2014105997A1 (en) Process for producing purified cellulose
US10544270B2 (en) Nanocellulose-reinforced cellulose fibers
CA3108308A1 (en) Acid bisulfite pretreatment
US20150136345A1 (en) Methods of washing cellulose-rich solids from biomass fractionation to reduce lignin and ash content
US20160326697A1 (en) Refining cellulose in a solvent for production of nanocellulose materials
EP2336194A1 (en) Process for the treatment of lignocellulosic feed
WO2015187296A1 (en) Refining cellulose in a solvent for production of nanocellulose materials
WO2015153536A1 (en) Nanocellulose production using lignosulfonic acid
JP2011057568A (en) Concentration method of saccharified liquid from cellulose-based raw material
JP2007215479A (en) Method for producing saccharide from reject
TW202144581A (en) Saccharified liquid and refined saccharified liquid
JP2013247924A (en) Method for preprocessing biomass containing lignocellulose