JP2006231477A - Calibration method for distance detection means in mobile element - Google Patents

Calibration method for distance detection means in mobile element Download PDF

Info

Publication number
JP2006231477A
JP2006231477A JP2005051299A JP2005051299A JP2006231477A JP 2006231477 A JP2006231477 A JP 2006231477A JP 2005051299 A JP2005051299 A JP 2005051299A JP 2005051299 A JP2005051299 A JP 2005051299A JP 2006231477 A JP2006231477 A JP 2006231477A
Authority
JP
Japan
Prior art keywords
distance
moving body
detecting means
traveling
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005051299A
Other languages
Japanese (ja)
Inventor
Eitetsu Takeda
英哲 竹田
Hiroyuki Nakayama
博之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005051299A priority Critical patent/JP2006231477A/en
Publication of JP2006231477A publication Critical patent/JP2006231477A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration method for a distance detection means in a mobile element such as an autonomous mobile robot, in which calibration work to a distance detection means (distance sensor) installed on the mobile element can be easily performed to achieve correct results of calibration. <P>SOLUTION: This calibration method is for a distance detection means in a mobile element provided with a plurality of drive wheels to travel, a light receiving part to receive reflection light of radiation light projected from a light emitting part to a travel surface in a travel zone, and the distance detection means for detecting distance to the travel surface in the travel zone. The distance detection means is calibrated using a target surface vertically provided on the travel surface at the farthest part in a possible detection range of the distance detection means in the travel zone of the mobile element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、移動体に発光部と受光部とを有して設けられ、移動体前方の障害物などを検出する距離検出手段の校正方法に係わり、特に、自律移動型ロボット等の移動体における障害物を検知する距離検出手段などに適用して好適な、移動体における距離検出手段の校正方法に係わるものである。   The present invention relates to a calibration method of a distance detecting means that is provided with a light emitting unit and a light receiving unit on a moving body and detects an obstacle or the like in front of the moving body, and more particularly in a moving body such as an autonomous mobile robot. The present invention relates to a method for calibrating distance detection means in a moving body, which is suitable for application to distance detection means for detecting an obstacle.

多関節アームロボットや搬送ロボット等の産業用ロボットは古くから知られ、工場等で多く用いられている。しかしながらこれら産業用ロボットは、その使用目的が溶接、塗装、運搬等といったように限定されており、アームロボット等のように1箇所に固定されたものや、搬送ロボットのように決められたルートを決められた順序で移動するものがほとんどであった。   Industrial robots such as articulated arm robots and transfer robots have been known for a long time and are often used in factories and the like. However, these industrial robots are limited in their purpose of use such as welding, painting, transportation, etc., and are fixed in one place such as an arm robot or a route determined like a transport robot. Most of them moved in a predetermined order.

ところが近年、自律移動型のロボットが発表されている。この自律移動型のロボットは、所定の空間内を自由に移動することができるよう構成され、人間の住環境下で人間と共存し、産業活動や生産活動等における単純作業や危険作業、難作業等の作業の手助けや代行を行うことを目的としている。このような作業としては、例えば原子力プラントや火力発電プラント等におけるメンテナンス作業、高層ビルにおける清掃作業、火災現場等の災害現場での救助活動等を挙げることができる。   However, in recent years, autonomous mobile robots have been announced. This autonomous mobile robot is configured to be able to move freely within a predetermined space, coexists with humans in a human living environment, and performs simple, dangerous, and difficult tasks in industrial and production activities. It is intended to help and act as a substitute. Examples of such work include maintenance work in nuclear power plants and thermal power plants, cleaning work in high-rise buildings, rescue activities at disaster sites such as fire sites, and the like.

また、自律移動型ロボットの活用範囲として、例えば1人暮らしの高齢者の家等に設置し、部屋の掃除や住人の体調管理、あるいは住人が家を留守にしたときの屋内安全確認等、人間の生活に密着して生活支援型としたロボットも発表されている。こういった生活支援型ロボットは、一般家庭にも適用可能なロボットとして位置付けられる。   In addition, the range of use of autonomous mobile robots is, for example, installed in the homes of elderly people living alone, such as cleaning the room, managing the physical condition of the resident, or checking indoor safety when the resident is away from the house. A robot designed to support daily life and to support life has also been announced. Such life-supporting robots are positioned as robots that can be applied to general households.

こういったロボットにおいては、動作範囲に障害物があると作業に支障を来すから、常に周囲を監視し、障害物がないか、行動範囲に人が進入して危険を及ぼさないか等を監視する必要がある。   In these robots, if there is an obstacle in the movement range, it will hinder the work, so always monitor the surroundings to see if there is an obstacle or whether a person enters the movement range and poses a danger. Need to be monitored.

しかしながら、前記したアームロボットのような固定ロボットや、搬送ロボットのように決められたルートを決められた順路で移動するロボットなどにおける障害物に対する監視は、アームの移動範囲や決められたルート内だけで良く、例えば行動範囲全体を撮像して障害物が無いか判断すればよいが、自律移動型ロボットにおいては、まず、これから走行する先に本当に床や地面等の走行面があるかが問題となり、次いで走行領域に障害物が存在しないかを判断し、それによって走行先に障害物が有る場合や走行面がない場合は、迂回したり場合によっては障害物を乗り越えるなどの行動を取る必要がある。   However, monitoring of obstacles in a fixed robot such as the arm robot described above and a robot that moves along a predetermined route such as a transfer robot can be performed only within the arm movement range and the predetermined route. For example, it is only necessary to image the entire action range and determine whether there is an obstacle, but in an autonomous mobile robot, first of all, there is a problem whether there is a running surface such as the floor or the ground ahead of the future, Next, it is necessary to determine whether there is an obstacle in the driving area, and if there is an obstacle in the destination or there is no driving surface, it is necessary to take action such as detouring or getting over the obstacle in some cases .

そのため、自律移動型ロボットにおいては、走行面の存在や障害物を検知する技術が必要不可欠であり、自律移動型ロボットなどの移動体に赤外線などを用いた発光部と受光部とからなる距離検出手段を設け、こういった移動体の走行する先の床や地面などの確認や、障害物の確認を行うことが提案されている。   For this reason, technology for detecting the presence of a running surface and obstacles is indispensable for autonomous mobile robots. Distance detection using a light emitting unit and a light receiving unit using infrared rays or the like for a mobile object such as an autonomous mobile robot. It has been proposed to provide a means to check the floor or the ground where such a moving body travels and to check an obstacle.

このような床や地面などの確認や障害物の確認を行う距離検出手段は、単一の方向のみでなく、移動体の走行領域全般にわたる情報を取得し、それによって移動体への制動や迂回路の探索が行えるようにすることが好ましい。   Such distance detection means for confirming floors and grounds and obstacles acquire information not only in a single direction but also in the entire travel area of the moving object, thereby braking or detouring the moving object. It is preferable that the search can be performed.

こういった技術に関しては、例えば特許文献1や特許文献2に、移動体の幅方向に複数配置した距離検出手段によって前方障害物から移動体までの距離を測定し、障害物を検知した距離検出手段の各幅方向の位置と検出距離に基づいて移動体が障害物を回避するための旋回方向と旋回半径を算出し、障害物を回避する方法が示されている。このとき移動体は、算出した旋回方向と旋回半径に基づいて障害物の回避軌道を移動するが、前記距離検出手段が障害物を検知しなくなっても移動体が障害物の横に到達するまで旋回動作を続行させる。   With regard to such technology, for example, in Patent Document 1 and Patent Document 2, distance detection means that measures a distance from a front obstacle to a moving body by a plurality of distance detection means arranged in the width direction of the moving body, and detects the obstacle. A method of avoiding an obstacle by calculating a turning direction and a turning radius for the moving body to avoid an obstacle based on the position in each width direction of the means and the detection distance is shown. At this time, the moving body moves along the obstacle avoidance trajectory based on the calculated turning direction and turning radius, but until the moving body reaches the side of the obstacle even if the distance detecting unit does not detect the obstacle. Continue turning.

しかしながら、このように距離検出手段を移動体の幅方向に複数配置した場合、個々の距離検出手段における発光部の取り付け角度のバラツキや、受光部における受光光学系の取り付け誤差、発光部の発光強度のバラツキなどによって受光部を構成する受光素子の出力が図5に示したように、個々の距離検出手段毎にばらついてしまうということが生じる。この図5において、横軸は距離検出手段から測定点までの距離で単位はmm、縦軸は受光部を構成する受光素子の出力電圧(V)であり、51と52のカーブは、ある一つの受光素子の距離に対する出力電圧の最大値(51のカーブ)と、同じく受光素子の距離に対する出力電圧の最小値(52のカーブ)で、他の受光素子出力電圧はハッチングをかけた範囲に入っていることを示している。   However, when a plurality of distance detecting means are arranged in the width direction of the moving body in this way, variation in the mounting angle of the light emitting part in each distance detecting means, mounting error of the light receiving optical system in the light receiving part, light emission intensity of the light emitting part As shown in FIG. 5, the output of the light receiving element constituting the light receiving unit varies depending on the individual distance detecting means due to the variation of the distance. In FIG. 5, the horizontal axis is the distance from the distance detecting means to the measurement point, the unit is mm, the vertical axis is the output voltage (V) of the light receiving element constituting the light receiving unit, and the curves 51 and 52 are a certain one. The maximum output voltage (51 curve) with respect to the distance between two light receiving elements and the minimum output voltage (52 curve) with respect to the distance between the light receiving elements, and other light receiving element output voltages fall within the hatched range. It shows that.

すなわちこの図5のグラフは、例え同じ条件で測定しても、個々の距離検出手段毎に出力電圧と距離の関係が異なることを示しており、そのため、個々の距離検出手段毎に出力電圧と距離の関係を明らかにし、それによって受光部からの出力電圧と距離の関係を算出する計算式を求める校正作業が必要となる。   That is, the graph of FIG. 5 shows that the relationship between the output voltage and the distance differs for each individual distance detection means even if measured under the same conditions. A calibration work is required to clarify the relationship between the distances and thereby obtain a calculation formula for calculating the relationship between the output voltage from the light receiving unit and the distance.

しかしながら、こういった距離検出手段を用いる移動体が少ない場合はよいが、移動体を量産する場合など、多数の距離検出手段毎にこういった校正作業を行うことは大変な時間を要し、実用的ではない。   However, it is good if there are few moving bodies that use such distance detection means, but it takes a lot of time to perform such calibration work for each of many distance detection means, such as when mass-producing moving bodies. Not practical.

さらにこのような距離検出手段は、移動体の走行面からある高さを有して設けられ、走行面にある角度を持って照射光を投光するのが一般的であるため、走行面の形状や汚れなどによって反射光量にバラツキが生じ、正確な距離検出ができない場合が生じる。   Furthermore, since such a distance detection means is generally provided with a certain height from the traveling surface of the moving body and projects the irradiation light at an angle on the traveling surface, Variations in the amount of reflected light may occur due to the shape and dirt, and accurate distance detection may not be possible.

こういった距離検出手段(距離センサ)の校正に関して特許文献3には、電車のパンタグラフの摩耗度合いを計測する距離センサの校正についてのものではあるが、電車の架線の上方に配置される吊架線に校正板を配置し、距離センサ群を備えた摩耗検出装置を枕木方向に移動可能にして前記校正板上で摩耗検出装置を移動させ、それぞれの距離センサで校正板までの距離を計測して各距離センサの校正板との計測距離データを比較し、距離データの変動誤差の校正を行うようにした装置が示されている。   Regarding the calibration of such a distance detection means (distance sensor), Patent Document 3 relates to the calibration of a distance sensor that measures the degree of wear of a pantograph of a train, but a suspended wire arranged above the overhead wire of the train. A calibration plate is placed on the wear plate, and the wear detection device equipped with a distance sensor group can be moved in the direction of the sleepers, the wear detection device is moved on the calibration plate, and each distance sensor measures the distance to the calibration plate. An apparatus is shown in which measurement distance data with a calibration plate of each distance sensor is compared to calibrate a variation error of the distance data.

特許第2608509号公報Japanese Patent No. 2608509 特許第2627472号公報Japanese Patent No. 2627472 特開2004−56901号公報JP 2004-56901 A

しかしながら、この特許文献3に示された装置は、複数の距離検出手段(距離センサ)を用いてはいるが、パンタグラフの摩耗度合いを測定する前に予めわかっている距離を計測し、それによって計測誤差が生じた距離センサの出力を校正するもので、この校正作業は前記した自律移動型ロボットのような移動体に取り付けた距離検出手段(距離センサ)の校正作業とは異なり、移動体に取り付けた複数の距離センサにおける出力電圧のバラツキを校正した後で生じた誤差を修正するためのものであり、図5に示したような個々の距離検出手段における出力電圧のバラツキを校正する作業に適用できるものではない。   However, although the apparatus shown in Patent Document 3 uses a plurality of distance detection means (distance sensors), it measures a distance that is known in advance before measuring the wear level of the pantograph, and thereby measures it. This is to calibrate the output of the distance sensor where the error occurred. This calibration work is different from the calibration work of the distance detection means (distance sensor) attached to the moving body such as the autonomous mobile robot described above. In order to correct an error that has occurred after calibrating output voltage variations in a plurality of distance sensors, the present invention is applied to an operation for calibrating output voltage variations in individual distance detection means as shown in FIG. It is not possible.

また、前記したように移動体に設けられる距離検出手段は、移動体の走行面からある高さを有した位置に、投光する照射光が走行面に対してある角度を有するように取り付けられるから、走行面の形状や汚れなどによって反射光量にバラツキが生じるが、この特許文献3に記載された装置では、こういったバラツキに対処することもできない。   Further, as described above, the distance detecting means provided on the moving body is attached to a position having a certain height from the traveling surface of the moving body so that the irradiation light to be projected has an angle with respect to the traveling surface. Therefore, the amount of reflected light varies due to the shape of the traveling surface, dirt, and the like. However, the apparatus described in Patent Document 3 cannot cope with such variations.

そのため本発明においては、自律移動型ロボットのような移動体に取り付けた距離検出手段(距離センサ)の校正作業を簡単に行え、かつ、校正結果が正確な、移動体における距離検出手段の校正方法を提供することが課題である。   Therefore, in the present invention, the distance detecting means (distance sensor) attached to the moving body such as the autonomous mobile robot can be easily calibrated, and the calibration result of the distance detecting means in the moving body is accurate. It is a problem to provide.

上記課題を解決するため本発明になる移動体における距離検出手段の校正方法は、
複数の駆動輪を備えて走行し、発光部から走行領域の走行面に投光した照射光の反射光を受光する受光部を有して走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域の最遠部に校正点を持たせて校正することを特徴とする。
また、上記課題を解決するため本発明になる移動体における距離検出手段の校正方法は、
複数の駆動輪を備えて走行し、発光部から走行領域の走行面に投光した照射光の反射光を受光する受光部を有して走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域における最遠部の走行面に立設したターゲット面を用いて校正することを特徴とする。
In order to solve the above problems, the calibration method of the distance detection means in the moving body according to the present invention is:
A distance detection unit that travels with a plurality of drive wheels and has a light receiving unit that receives reflected light of the irradiation light projected from the light emitting unit onto the traveling surface of the traveling region, and detects the distance to the traveling surface in the traveling region A method for calibrating a distance detecting means in a moving body comprising:
The distance detecting means is calibrated by providing a calibration point at the farthest part of the detectable area of the distance detecting means in the traveling area of the moving body.
Further, in order to solve the above problem, the calibration method of the distance detection means in the moving body according to the present invention is:
A distance detection unit that travels with a plurality of drive wheels and has a light receiving unit that receives reflected light of the irradiation light projected from the light emitting unit onto the traveling surface of the traveling region, and detects the distance to the traveling surface in the traveling region A method for calibrating a distance detecting means in a moving body comprising:
The distance detecting means calibrates using a target surface erected on the farthest traveling surface in the detectable region of the distance detecting means in the traveling region of the moving body.

赤外線などを走行面に投光して反射光を受光部で検出し、その出力電圧により距離を検出するようにした距離検出手段では、走行面からの反射光は発光部からの距離の2乗に半比例して少なくなるから、遠方になるほど受光部の出力が急激に小さくなって距離の増加に対して電圧変化が少なくなる。そのため、例えば予め複数の距離検出手段によって計測した前記図5に示したような複数の距離−電圧特性により計算式を作成し、特定距離における距離検出手段受光部出力を予め定めた特定電圧とすることにより校正を行うようにした場合、距離検出手段と校正点の距離が短いと電圧差が大きいから近距離の誤差は少なくなるが、遠距離においては少しの電圧変動で距離が大きく変化してしまう。しかしこのように、移動体の走行領域における距離検出手段の検知可能領域の最遠部に校正点を持たせると、その近辺の距離が正確に算出でき、正確な校正が行える移動体における距離検出手段の校正方法を提供することができる。   In distance detection means that projects infrared light or the like on the traveling surface, detects reflected light at the light receiving unit, and detects the distance based on the output voltage, the reflected light from the traveling surface is the square of the distance from the light emitting unit. Therefore, as the distance increases, the output of the light receiving unit decreases rapidly, and the change in voltage decreases as the distance increases. Therefore, for example, a calculation formula is created by a plurality of distance-voltage characteristics as shown in FIG. 5 measured in advance by a plurality of distance detection means, and the distance detection means light receiving unit output at a specific distance is set to a predetermined specific voltage. If the distance between the distance detection means and the calibration point is short, the voltage difference is large and the error in the short distance is reduced. End up. However, in this way, if a calibration point is provided at the farthest part of the detectable area of the distance detecting means in the traveling area of the moving body, the distance in the vicinity can be accurately calculated, and distance detection in the moving body that can perform accurate calibration A calibration method of the means can be provided.

また校正点を、距離検出手段の検知可能領域における最遠部の走行面に立設したターゲット面とすることで、走行面を校正点とした場合は前記したように走行面の形状や汚れなどによって反射光量にバラツキが生じるが、こういった問題も解消できる。   In addition, by setting the calibration point as a target surface erected on the farthest traveling surface in the detectable region of the distance detecting means, when the traveling surface is used as the calibration point, as described above, the shape of the traveling surface, dirt, etc. However, these problems can be solved.

そして前記校正は、前記校正点からの反射光を受光した前記受光部の出力電圧と、予め求めた電圧との差を求めておこなうことが本発明の好適な実施形態である。   In a preferred embodiment of the present invention, the calibration is performed by obtaining a difference between an output voltage of the light receiving unit that receives reflected light from the calibration point and a voltage obtained in advance.

さらに、上記課題を解決するため本発明になる移動体における距離検出手段の校正方法は、
複数の駆動輪を備えて走行し、複数の発光部から走行領域の走行面に投光した照射光の反射光を前記複数の発光部のそれぞれに対応して設けられた受光部で受光し、走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域の最遠部に前記複数の発光部のそれぞれに対応して立設したターゲット面を用いて校正することを特徴とする。
Furthermore, in order to solve the above-mentioned problem, the calibration method of the distance detection means in the moving body according to the present invention is:
Traveling with a plurality of drive wheels, the reflected light of the irradiation light projected from the plurality of light emitting units to the traveling surface of the traveling region is received by a light receiving unit provided corresponding to each of the plurality of light emitting units, A method for calibrating a distance detecting means in a moving body comprising a distance detecting means for detecting a distance to a running surface in a running area,
The distance detecting means calibrates using a target surface erected corresponding to each of the plurality of light emitting parts at the farthest part of the detectable area of the distance detecting means in the traveling area of the moving body. And

そして前記校正は、前記校正点からの反射光を受光した前記複数の受光部のそれぞれにおける出力電圧と、予め定めた電圧との差を求めておこなうことにより、前記した本発明の効果に加え、複数の距離検出手段のそれぞれにおける校正点の出力電圧と予め定めた電圧との差を取るという簡単な方法で行うことができ、非常に簡単に大量の距離検出手段の校正を行うことができる、移動体における距離検出手段の校正方法を提供することができる。   And, in addition to the effect of the present invention described above, the calibration is performed by obtaining the difference between the output voltage at each of the plurality of light receiving units that have received the reflected light from the calibration point and a predetermined voltage, It can be performed by a simple method of taking the difference between the output voltage of the calibration point and a predetermined voltage in each of the plurality of distance detection means, and a large amount of distance detection means can be calibrated very easily. It is possible to provide a calibration method for distance detection means in a moving object.

さらに、前記距離検出手段の検知可能領域は、前記移動体の制動能力に依存して定めることにより、移動体が障害物を検出したとき、それに衝突することなく回避動作を行うことができる移動体における距離検出手段の校正方法を提供することができる。   Further, the detectable region of the distance detection means is determined depending on the braking ability of the moving body, so that when the moving body detects an obstacle, the moving body can perform an avoiding operation without colliding with the obstacle. Can provide a calibration method of the distance detecting means.

以上記載のごとく本発明によれば、非常に簡単に、自律移動型ロボットのような移動体に取り付けた距離検出手段(距離センサ)の校正作業を行うことができ、かつ、校正結果も正確な移動体における距離検出手段の校正方法を提供することができる。   As described above, according to the present invention, it is possible to calibrate distance detection means (distance sensor) attached to a moving body such as an autonomous mobile robot very easily, and the calibration result is also accurate. It is possible to provide a calibration method of distance detection means in a moving object.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は本発明になる移動体における距離検出手段の校正方法を実施する構成を示した側面図(A)と上面図(B)、図2は距離検出手段における発光部の移動体上の位置と走行面へ投光する照射光の角度との関係を示した図(A)と各照射光の照射範囲を示した図(B)、図3は本発明の移動体における距離検出手段の校正方法のフロー図、図4は本発明の校正方法により校正した距離検出手段の受光部出力を示したグラフである。図中同一構成要素には同一番号を付してある。また、以下の説明では本発明における移動体を、自律移動型ロボットとした場合を例に説明するが、本発明はこういったロボットだけでなく、自律移動する種々の移動体に応用できることは明かである。   FIG. 1 is a side view (A) and a top view (B) showing a configuration for carrying out a calibration method for distance detection means in a moving body according to the present invention, and FIG. (A) showing the relationship between the angle of the irradiation light projected onto the traveling surface, (B) showing the irradiation range of each irradiation light, and FIG. 3 are calibrations of the distance detecting means in the moving body of the present invention. FIG. 4 is a graph showing the light receiving unit output of the distance detecting means calibrated by the calibration method of the present invention. In the figure, the same components are given the same numbers. Further, in the following description, the case where the moving body in the present invention is an autonomous mobile robot will be described as an example, but it is clear that the present invention can be applied not only to such a robot but also to various moving bodies that move autonomously. It is.

本発明になる移動体における距離検出手段の校正方法を実施する移動体1は、図1にその概略を示したように、略人型をして、走行面2を走行するための複数の駆動輪3と補助輪4とを有し、走行面2から所定高さに、例えば図1(B)に示したように1つのセンサから5本の光ビームを出力する発光部と、5つの反射光を別個に受光する受光部を備えた距離検出手段たるワイドアングルセンサ5(以下WASと略称する)を5、5、5のように複数設け、このWAS5、5、5によって走行面2を照射して反射光を受光することで、走行面2の存在と障害物までの距離を検知できるようになっている。 The moving body 1 that performs the calibration method of the distance detecting means in the moving body according to the present invention has a substantially human shape and a plurality of drives for traveling on the traveling surface 2 as schematically shown in FIG. A light emitting unit having a wheel 3 and an auxiliary wheel 4 and outputting five light beams from a traveling sensor 2 at a predetermined height, for example, as shown in FIG. A plurality of wide angle sensors 5 (hereinafter abbreviated as WAS), which are distance detecting means including a light receiving portion for receiving light separately, are provided as 5 1 , 5 2 , 5 3 , and the WAS 5 1 , 5 2 , 5 3. By irradiating the traveling surface 2 and receiving reflected light, the presence of the traveling surface 2 and the distance to the obstacle can be detected.

そして本発明においては、この移動体1に設けられたWAS5、5、5から所定距離を置いて走行面2に略直角(90°)に立設したターゲット6に、このWAS5からの光ビームを照射して反射光を受光部で受光し、その出力電圧を予め定めた所定電圧と比較してその差電圧を校正電圧とし、それによって簡易的に校正が行えるようにしたもので、例えば校正のための基準出力電圧を1.2Vと定めた場合、WAS5からそれよりも大きな電圧が出力された場合はこの1.2Vとの差を減算し、小さな電圧が出力された場合は差を加算して、その差を校正値とするものである。そして、複数のWAS5を用いた前記図5に示したような計測結果から共通の校正式を予め求めておき、測定して求めた校正電圧を受光部出力電圧に加算することによって、ほぼ正しい距離を算出できるようにした。 In the present invention, from the WAS 5 to the target 6 standing at a substantially right angle (90 °) to the traveling surface 2 at a predetermined distance from the WAS 5 1 , 5 2 , 5 3 provided on the moving body 1. The reflected light is received by the light receiving part by irradiating the light beam, the output voltage is compared with a predetermined voltage, and the difference voltage is used as a calibration voltage, thereby enabling easy calibration. For example, when the reference output voltage for calibration is set to 1.2V, if a voltage larger than that is output from WAS5, the difference from 1.2V is subtracted, and if a small voltage is output, the difference is output. And the difference is used as a calibration value. Then, a common calibration equation is obtained in advance from the measurement results as shown in FIG. 5 using a plurality of WASs 5, and the calibration voltage obtained by measurement is added to the light receiving unit output voltage, so that a substantially correct distance is obtained. Can be calculated.

ここでWAS5からの照射光ビーム8は、走行面2を照射するため、図1(A)のように走行面2方向にある角度を持って向かわせているが、走行面2からの影響を考慮して走行面2に対して所定高さとなる測定台7とその測定台7への登坂部7、及び移動体1の停止板7とを用意し、移動体1たる自律移動型ロボットが自力で測定台7へ登り、停止板7の位置で停止して測定を行えるようにしてある。 Here, the irradiation light beam 8 from the WAS 5 irradiates the traveling surface 2 and is directed at an angle in the direction of the traveling surface 2 as shown in FIG. prepared and uphill section 71, and the stop plate 7 3 of the moving body 1 in consideration measurement platform 7 2 serving as a predetermined height relative to the running surface 2 and its measurement table 7 2, moving the moving body 1 barrel autonomous type robot to climb to the measuring table 71 on their own, it is to allow the measurement stopped at the stop plate 7 3.

そして各WAS5、5、5、5からは、図1(B)に示したように、例えば5本ずつの照射光ビーム811、812、813、814、815、821、822、823、824、825、831、832、833、834、835、が出力され、それぞれのWAS5、5、5、5に対応して設けられたターゲット6、6、6を照射して測定を行う。 Then, from each of the WASs 5, 5 1 , 5 2 , 5 3 , as shown in FIG. 1B, for example, five irradiation light beams 8 11 , 8 12 , 8 13 , 8 14 , 8 15 , 8 21 , 8 22 , 8 23 , 8 24 , 8 25 , 8 31 , 8 32 , 8 33 , 8 34 , 8 35 , are output and provided corresponding to the respective WAS 5, 5 1 , 5 2 , 5 3. Measurement is performed by irradiating the targets 6 1 , 6 2 , and 6 3 .

WAS5と走行面2、及びターゲット6との関係は、図2(A)に示したように、一例としてWAS5の走行面2からの設置高さZw0を347.45mm、WAS5からの出射光と走行面2とのなす角度θを30°とすると、WAS5から出射した光が走行面2に達する地点までの水平距離Lw0は585.26mm、WAS5から走行面2までの直線距離Xw0は680.55mmとなり、WAS5とターゲット6との距離Lw1を519.6mmとすると、WAS5とターゲット6の間の直線距離Xw1は600mmとなる。 As shown in FIG. 2A, the relationship between the WAS 5 and the traveling surface 2 and the target 6 is, for example, that the installation height Z w0 from the traveling surface 2 of the WAS 5 is 347.45 mm, and the emitted light from the WAS 5 Assuming that the angle θ w formed with the traveling surface 2 is 30 °, the horizontal distance L w0 to the point where the light emitted from the WAS 5 reaches the traveling surface 2 is 585.26 mm, and the linear distance X w0 from the WAS 5 to the traveling surface 2 is When the distance L w1 between the WAS 5 and the target 6 is 519.6 mm, the linear distance X w1 between the WAS 5 and the target 6 is 600 mm.

また、WAS5を出射した光の広がり角度θbwを片側5°で両側に10°とすると、図2(B)に示したようにターゲット6上において各光の横方向広がりBwwは105mm、縦方向広がりBwhは148mmとなる。また、測定台7の高さZは一例として150mmとし、ターゲット6は高さTwLを300mm、幅Twwを360mmとして、5つの光ビームの照射範囲をBw5とすると、光ビームが互いに重なっているためこのBw5は約200mmとなり、それに光ビームの幅Bwwを加えると、305mmの幅を照射することになる。また、ターゲットの表面形状は、白色のつや消しとし、凹凸も少ないものを使用する。 If the spread angle θ bw of the light emitted from the WAS 5 is 5 ° on one side and 10 ° on both sides, the lateral spread B ww of each light on the target 6 is 105 mm as shown in FIG. The direction spread Bwh is 148 mm. Further, a 150mm as the height Z 0 is an example of the measuring table 7 2, the target 6 is a height T wL 300 mm, a width T ww as 360 mm, when the irradiation range of the five light beams and B w5, the light beam Since they overlap each other, this Bw5 is about 200 mm. When the width Bww of the light beam is added to this, a width of 305 mm is irradiated. Further, the surface shape of the target is white matte and has a few irregularities.

なお、WAS5とターゲット6の間の直線距離Xw1を一例として600mmとしたのは、距離の増加に対する受光部の出力電圧変化の割合が少ない、WAS5の検知可能領域の最遠部で校正を行ない、遠距離での誤差を少なくするためである。すなわち、WAS5から発射された光は発光部からの距離の2乗に半比例して少なくなってゆき、遠方になるほど、受光部の出力電圧変化の割合が少なくなるが、近距離においては少しの距離変化で電圧が大きく変わり、校正を近距離で行うと、遠距離の部分の誤差が大きくなる。そのため、WAS5の検知可能領域の最遠部である600mm付近を校正点として選んだもので、これは、ロボットなどの移動体1の制動距離も勘案した値である。なお、この距離は、移動体1の制動距離とWAS5の能力に依存するもので、上記距離に限定されないことは自明である。 The reason was 600mm linear distance X w1 between WAS5 and target 6 as an example, a small proportion of the output voltage change of the light receiving portion with respect to the increase in the distance, performs calibration farthest portion of the detection area of WAS5 This is to reduce errors at a long distance. In other words, the light emitted from the WAS 5 decreases in proportion to the square of the distance from the light emitting unit, and as the distance increases, the rate of change in the output voltage of the light receiving unit decreases. When the distance changes, the voltage changes greatly. When calibration is performed at a short distance, the error at a long distance increases. For this reason, the vicinity of 600 mm, which is the farthest part of the detectable area of the WAS 5, is selected as the calibration point, and this is a value that also takes into account the braking distance of the moving body 1 such as a robot. It is obvious that this distance depends on the braking distance of the moving body 1 and the ability of the WAS 5, and is not limited to the above distance.

実際の校正作業は図3に示したフロー図に従って行う。すなわちまずステップS1で、図1に1、1として示したように、移動体1を登坂部7から測定台7へ移動させて停止板7の位置で停止させる。そして次のステップS2で、光ビーム811、812、813、814、815、821、822、823、824、825、831、832、833、834、835をターゲット6に向けて照射させ、反射光を検出して、出力電圧を前記したように予め定めた基準電圧1.2V(一例である)と比較し、その差を校正電圧として取り込んで記憶する。 The actual calibration work is performed according to the flowchart shown in FIG. That is, first in step S1, as shown as 1 1, 1 2 in Figure 1, it is moved to stop at the position of the stop plate 7 3 mobile 1 from the uphill section 71 to the measuring table 7 2. In the next step S2, the light beams 8 11 , 8 12 , 8 13 , 8 14 , 8 15 , 8 21 , 8 22 , 8 23 , 8 24 , 8 25 , 8 31 , 8 32 , 8 33 , 8 34 , 835 is irradiated toward the target 6, the reflected light is detected, the output voltage is compared with the reference voltage 1.2V (which is an example) set in advance as described above, and the difference is taken as the calibration voltage. Remember me.

全ての校正電圧が取り込まれたら、次のステップS3でこの校正電圧をオフセット値として各WAS5のそれぞれに反映させ、最後のステップS4で前記したように、複数のWAS5を用いた前記図5に示したような計測結果から予め求めた共通の校正式に当てはめ、WAS5の出力電圧を距離に変換するわけである。   When all the calibration voltages have been captured, the calibration voltage is reflected in each WAS 5 as an offset value in the next step S3, and as shown in FIG. 5 using a plurality of WASs 5 as described above in the last step S4. In other words, the output voltage of the WAS 5 is converted into a distance by applying to a common calibration formula obtained in advance from such measurement results.

図4は、以上説明してきた本発明の校正方法により校正したWAS5の受光部出力を示したグラフで、前記図5と同様、横軸はWAS5から測定点までの距離で(単位mm)、縦軸は受光部を構成する受光素子の出力電圧(V)であり、41と42のカーブは、受光素子の距離に対する出力電圧の最大値(41のカーブ)と、同じく距離に対する出力電圧の最小値(42のカーブ)を示している。前記図5で示したグラフでは、WAS5は、発光部の取り付け角度のバラツキや受光部における受光光学系の取り付け誤差などにより、受光部を構成する受光素子の出力が個々の発光部毎にばらついていたが、本発明による校正を行った後では、最も必要とする300mmから800mm程度の領域で、ほぼ正確な値が得られており、非常に簡単に正確な値が得られる校正方法であることがわかる。   FIG. 4 is a graph showing the light receiving unit output of the WAS 5 calibrated by the calibration method of the present invention described above. As in FIG. 5, the horizontal axis is the distance from the WAS 5 to the measurement point (unit: mm), and the vertical axis. The axis is the output voltage (V) of the light receiving element constituting the light receiving unit, and the curves 41 and 42 are the maximum value of the output voltage with respect to the distance of the light receiving element (the curve of 41) and the minimum value of the output voltage with respect to the distance. (42 curves). In the graph shown in FIG. 5, the WAS 5 has a variation in the output of the light receiving element constituting the light receiving unit for each light emitting unit due to variations in the mounting angle of the light emitting unit and the mounting error of the light receiving optical system in the light receiving unit. However, after calibrating according to the present invention, the most accurate value is obtained in the most necessary region of about 300 mm to 800 mm, and the calibration method can obtain an accurate value very easily. I understand.

以上種々述べてきたように本発明によれば、移動体1の走行領域におけるWAS5の検知可能領域の最遠部にターゲット6を立設して校正を行うことにより、必要な領域の距離がほぼ正確に算出でき、正確な校正が行える移動体における距離検出手段の校正方法を提供することができる。   As described above, according to the present invention, the distance of the necessary region is substantially reduced by performing the calibration by standing the target 6 at the farthest part of the detectable region of the WAS 5 in the traveling region of the moving body 1. It is possible to provide a calibration method for distance detection means in a moving object that can be accurately calculated and can be accurately calibrated.

そして校正は、ターゲット6からの反射光を受光した受光部のそれぞれにおける出力電圧と、予め定めた電圧との差を求めておこなうことにより、複数のWAS5のそれぞれにおける校正点の出力電圧と予め定めた電圧との差を取るという簡単な方法で行うことができ、非常に簡単に大量の距離検出手段の校正を行うことができる、移動体における距離検出手段の校正方法を提供することができる。   The calibration is performed by calculating the difference between the output voltage at each of the light receiving units that have received the reflected light from the target 6 and a predetermined voltage, thereby determining the output voltage at the calibration point in each of the plurality of WASs 5 in advance. It is possible to provide a method for calibrating the distance detecting means in the moving body, which can be performed by a simple method of taking a difference from the measured voltage, and can calibrate a large number of distance detecting means very easily.

本発明によれば、バラツキの大きい距離検出手段を多数用いても、容易に必要な校正値を得ることができるから距離検出手段を有する移動体を安価に提供することができる。   According to the present invention, a necessary calibration value can be easily obtained even if a large number of distance detecting means having large variations are used, so that a movable body having the distance detecting means can be provided at low cost.

本発明になる移動体における距離検出手段の校正方法を実施する構成を示した側面図(A)と上面図(B)である。It is the side view (A) and top view (B) which showed the structure which implements the calibration method of the distance detection means in the moving body which becomes this invention. 距離検出手段における発光部の移動体上の位置と走行面へ投光する照射光の角度との関係を示した図(A)と各照射光の照射範囲を示した図(B)である。It is the figure which showed the relationship between the position on the moving body of the light emission part in a distance detection means, and the angle of the irradiation light projected on a driving | running | working surface, and the figure (B) which showed the irradiation range of each irradiation light. 本発明の移動体における距離検出手段の校正方法のフロー図である。It is a flowchart of the calibration method of the distance detection means in the moving body of this invention. 本発明の校正方法により校正した距離検出手段の受光部出力を示したグラフである。It is the graph which showed the light-receiving part output of the distance detection means calibrated by the calibration method of this invention. 複数の距離検出手段を用い、それぞれの発光部で照射した移動体の走行面からの反射光を各発光部に対応して設けた受光部で受け、発光部から反射点までの距離と出力電圧の関係をプロットしたグラフである。Using a plurality of distance detection means, the reflected light from the traveling surface of the moving object irradiated by each light emitting unit is received by the light receiving unit provided corresponding to each light emitting unit, and the distance from the light emitting unit to the reflection point and the output voltage It is the graph which plotted the relationship of.

符号の説明Explanation of symbols

1 移動体
2 走行面
3 駆動輪
4 補助輪
5、5、5、5 ワイドアングルセンサ(WAS)
6 ターゲット
登坂部
測定台
停止板
8 WASの照射光ビーム
DESCRIPTION OF SYMBOLS 1 Mobile body 2 Running surface 3 Drive wheel 4 Auxiliary wheel 5, 5 1 , 5 2 , 5 3 Wide angle sensor (WAS)
6 Target 7 1 Climbing section 7 2 Measuring stand 7 3 Stop plate 8 WAS irradiation light beam

Claims (6)

複数の駆動輪を備えて走行し、発光部から走行領域の走行面に投光した照射光の反射光を受光する受光部を有して走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域の最遠部に校正点を持たせて校正することを特徴とする移動体における距離検出手段の校正方法。
A distance detection unit that travels with a plurality of drive wheels and has a light receiving unit that receives reflected light of the irradiation light projected from the light emitting unit onto the traveling surface of the traveling region, and detects the distance to the traveling surface in the traveling region A method for calibrating a distance detecting means in a moving body comprising:
The distance detecting means calibrates by providing a calibration point at the farthest part of the detectable area of the distance detecting means in the traveling area of the moving body.
複数の駆動輪を備えて走行し、発光部から走行領域の走行面に投光した照射光の反射光を受光する受光部を有して走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域における最遠部の走行面に立設したターゲット面を用いて校正することを特徴とする移動体における距離検出手段の校正方法。
A distance detection unit that travels with a plurality of drive wheels and has a light receiving unit that receives reflected light of the irradiation light projected from the light emitting unit onto the traveling surface of the traveling region, and detects the distance to the traveling surface in the traveling region A method for calibrating a distance detecting means in a moving body comprising:
The distance detecting means calibrates using a target surface erected on the farthest traveling surface in the detectable region of the distance detecting means in the traveling area of the moving body. Calibration method.
前記校正は、前記校正点からの反射光を受光した前記受光部の出力電圧と、予め求めた電圧との差を求めておこなうことを特徴とする請求項1または2に記載した移動体における距離検出手段の校正方法。   The distance in the moving body according to claim 1 or 2, wherein the calibration is performed by obtaining a difference between an output voltage of the light receiving unit that receives reflected light from the calibration point and a voltage obtained in advance. Calibration method for detection means. 複数の駆動輪を備えて走行し、複数の発光部から走行領域の走行面に投光した照射光の反射光を前記複数の発光部のそれぞれに対応して設けられた受光部で受光し、走行領域における走行面までの距離を検知する距離検出手段を備えた移動体における距離検出手段の校正方法であって、
前記距離検出手段は、前記移動体の走行領域における前記距離検出手段の検知可能領域の最遠部に前記複数の発光部のそれぞれに対応して走行面に立設したターゲット面を用いて校正することを特徴とする移動体における距離検出手段の校正方法。
Traveling with a plurality of drive wheels, the reflected light of the irradiation light projected from the plurality of light emitting units to the traveling surface of the traveling region is received by a light receiving unit provided corresponding to each of the plurality of light emitting units, A method for calibrating a distance detecting means in a moving body comprising a distance detecting means for detecting a distance to a running surface in a running area,
The distance detecting means calibrates using a target surface erected on the traveling surface corresponding to each of the plurality of light emitting units at the farthest part of the detectable region of the distance detecting means in the traveling region of the moving body. A method for calibrating a distance detecting means in a moving body.
前記校正は、前記校正点からの反射光を受光した前記複数の受光部のそれぞれにおける出力電圧と、予め定めた電圧との差を求めておこなうことを特徴とする請求項4に記載した移動体における距離検出手段の校正方法。   5. The moving body according to claim 4, wherein the calibration is performed by calculating a difference between an output voltage at each of the plurality of light receiving units that receive reflected light from the calibration point and a predetermined voltage. Calibration method of distance detection means in 前記距離検出手段の検知可能領域は、前記移動体の制動能力に依存して定められることを特徴とする請求項1乃至5のいずれかに記載した移動体における距離検出手段の校正方法。   6. The method of calibrating a distance detecting means in a moving body according to claim 1, wherein the detectable region of the distance detecting means is determined depending on a braking ability of the moving body.
JP2005051299A 2005-02-25 2005-02-25 Calibration method for distance detection means in mobile element Withdrawn JP2006231477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051299A JP2006231477A (en) 2005-02-25 2005-02-25 Calibration method for distance detection means in mobile element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051299A JP2006231477A (en) 2005-02-25 2005-02-25 Calibration method for distance detection means in mobile element

Publications (1)

Publication Number Publication Date
JP2006231477A true JP2006231477A (en) 2006-09-07

Family

ID=37039681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051299A Withdrawn JP2006231477A (en) 2005-02-25 2005-02-25 Calibration method for distance detection means in mobile element

Country Status (1)

Country Link
JP (1) JP2006231477A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290184A (en) * 2007-05-24 2008-12-04 Fujitsu Ltd Correcting robot system and correcting method of distance sensor
CN104117987A (en) * 2013-04-26 2014-10-29 恩斯迈电子(深圳)有限公司 Mobile robot
US20150151765A1 (en) * 2013-11-29 2015-06-04 Toyota Jidosha Kabushiki Kaisha Abnormality determination system and determination method thereof
WO2016005012A1 (en) * 2014-07-10 2016-01-14 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
WO2021187696A1 (en) * 2020-03-17 2021-09-23 Lg Electronics Inc. Recharging apparatus for robot cleaner
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
DE102010060347B4 (en) 2010-11-04 2024-05-16 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for carrying out a check of distance measurement accuracy

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290184A (en) * 2007-05-24 2008-12-04 Fujitsu Ltd Correcting robot system and correcting method of distance sensor
DE102010060347B4 (en) 2010-11-04 2024-05-16 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for carrying out a check of distance measurement accuracy
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
CN104117987A (en) * 2013-04-26 2014-10-29 恩斯迈电子(深圳)有限公司 Mobile robot
US9540014B2 (en) * 2013-11-29 2017-01-10 Toyota Jidosha Kabushiki Kaisha Abnormality determination system and determination method thereof
US20150151765A1 (en) * 2013-11-29 2015-06-04 Toyota Jidosha Kabushiki Kaisha Abnormality determination system and determination method thereof
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
JP2017521755A (en) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス Method for detecting measurement error in robot-type cleaning device
WO2016005012A1 (en) * 2014-07-10 2016-01-14 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
WO2021187696A1 (en) * 2020-03-17 2021-09-23 Lg Electronics Inc. Recharging apparatus for robot cleaner

Similar Documents

Publication Publication Date Title
JP2006231477A (en) Calibration method for distance detection means in mobile element
JP3934413B2 (en) Apparatus and method for detecting position of elevator car inside hoistway
JP4279703B2 (en) Autonomous mobile robot system
CN106197472A (en) A kind of rail mounted robot Distance positioning and mileage calibrating installation and method
JP2004198330A (en) Method and apparatus for detecting position of subject
JP6011562B2 (en) Self-propelled inspection device and inspection system
CN104703905A (en) Guide rail straightness measuring system for elevator installations
JP5837800B2 (en) Floor height adjustable double deck elevator
KR20120068081A (en) Crosswalk walking assistance system and controlling method thereof
JP2015032182A (en) Autonomous mobile device and control method of the same
US20200248863A1 (en) Stable mobile platform for coordinate measurement
JP2009525793A (en) Application control unit
US9739874B2 (en) Apparatus for detecting distances in two directions
JP4525473B2 (en) Mobile robot position control system and position control method
JP2014089173A (en) Self-propelled inspection apparatus for metal plate and inspection method
JP2006146376A (en) Autonomous moving robot and detecting method for unmovable area
JP2008033760A (en) Mobile robot
JP6187499B2 (en) Self-localization method for autonomous mobile robot, autonomous mobile robot, and landmark for self-localization
JP2009223757A (en) Autonomous mobile body, control system, and self-position estimation method
JP5422322B2 (en) Rail detection method and rail displacement measurement device in rail displacement measurement
JP2016188803A (en) Detecting device for obstacle on railway track
JP2009176031A (en) Autonomous mobile body, autonomous mobile body control system and self-position estimation method for autonomous mobile body
WO2014061301A1 (en) Laser distance measurement method and laser distance measurement device
WO2021018036A1 (en) Apparatus and method for measuring track data, and track inspection robot
KR100904769B1 (en) Detecting device of obstacle and method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513