JP2006220252A - Two-stage pressure absorption piston-type accumulator device - Google Patents

Two-stage pressure absorption piston-type accumulator device Download PDF

Info

Publication number
JP2006220252A
JP2006220252A JP2005035939A JP2005035939A JP2006220252A JP 2006220252 A JP2006220252 A JP 2006220252A JP 2005035939 A JP2005035939 A JP 2005035939A JP 2005035939 A JP2005035939 A JP 2005035939A JP 2006220252 A JP2006220252 A JP 2006220252A
Authority
JP
Japan
Prior art keywords
pressure
piston
accumulator
oil
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035939A
Other languages
Japanese (ja)
Other versions
JP4759282B2 (en
Inventor
Masao Nakamura
正男 中村
Atsushi Yoshimoto
厚 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Koki Co Ltd
Original Assignee
Nakamura Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Koki Co Ltd filed Critical Nakamura Koki Co Ltd
Priority to JP2005035939A priority Critical patent/JP4759282B2/en
Publication of JP2006220252A publication Critical patent/JP2006220252A/en
Application granted granted Critical
Publication of JP4759282B2 publication Critical patent/JP4759282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a low-pressure/high-pressure combined accumulator device, and realize stable behavior of a piston for high pressure at the time of transition from a low-pressure stage to a high-pressure stage. <P>SOLUTION: A structure 2 of a high pressure accumulator is formed on one side of a divider member 6, which is a boundary, and a structure 4 of a low pressure accumulator is formed on the other side of the divider member 6. Then oil chambers 11, 12 are demarcated between the pistons 3, 5 of each of the accumulator structures 2, 4 and the divider member 6, and gas chambers 17, 18 are demarcated between the pistons 3, 5 and each of the end covers 9, 10. Then a communicating passage 13 is formed in the divider member 6. The communicating passage 13 connects each of the oil chambers 11, 12 to an exterior hydraulic circuit, and performs supply and discharge of hydraulic oil in accordance with the ascent/descent of the circuit pressure. Then a small-diameter boss part 19 is projected on the oil chamber side of the piston 3 for high pressure, and a fitting recess 20 for the in-and-out movement of the small-diameter boss part 19 is provided to the opening of the communicating passage 13, thus a piston load caused by upsurged pressure oil is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は二段圧吸収式ピストン型アキュムレータ装置に係り、詳しくは油圧回路において変動した圧力の作動油を低圧時と高圧時で異なるばね定数に基づき給排させることができるようにした複合アキュムレータ装置に関するものである。   The present invention relates to a two-stage pressure absorption type piston accumulator device, and more specifically, a composite accumulator device that allows hydraulic oil having a fluctuating pressure in a hydraulic circuit to be supplied and discharged based on different spring constants at low and high pressures. It is about.

油圧モータや油圧シリンダといったアクチュエータに油圧ポンプからの油圧油を供給して作動させる油圧回路においては、アクチュエータに大きな負荷が掛かったりロック状態に陥ったりすると回路圧が正常運転時より上昇する。このとき油圧回路に接続されたアキュムレータは回路の流通油を吸収してアクチュエータに掛かる負荷を和らげ、またアクチュエータのロック状態が解除されるなどすると吸収油を吐出して、油圧ポンプからの送給油の遅れを補う。このように、アキュムレータは、油室に進入してくる作動油の圧力に応じて、ガス室に封入したガスの容積を収縮させて圧力バランスを図り、油圧回路の圧力調整作用を果たす。   In a hydraulic circuit that operates by supplying hydraulic oil from a hydraulic pump to an actuator such as a hydraulic motor or a hydraulic cylinder, the circuit pressure rises higher than that in normal operation when a large load is applied to the actuator or the actuator is locked. At this time, the accumulator connected to the hydraulic circuit absorbs the circulating oil in the circuit to relieve the load applied to the actuator, and when the actuator is unlocked, the accumulator discharges the absorbed oil to Make up for the delay. In this way, the accumulator contracts the volume of the gas sealed in the gas chamber in accordance with the pressure of the hydraulic oil entering the oil chamber, thereby achieving a pressure balance and fulfilling the pressure adjusting action of the hydraulic circuit.

ところが、油圧回路で発生した急激な圧力の上昇を一つのアキュムレータによって吸収させる場合のほかに、例えば車両のサスペンション機構などにおけるように、作動油圧の大きさを二段階に分けて二つのアキュムレータにより圧油を吸収させようとする場合がある。すなわち、搭乗者が少ないときには軟らかい乗り心地を発揮させるべくばね定数の低いアキュムレータを機能させ、搭乗者数が多い場合や積荷が重い場合には高いばね定数を発揮するアキュムレータを動作させて支持力を強める。   However, in addition to the case where a sudden increase in pressure generated in the hydraulic circuit is absorbed by a single accumulator, the hydraulic pressure is divided by two accumulators in two stages, as in a vehicle suspension mechanism, for example. May try to absorb oil. In other words, when the number of passengers is small, an accumulator with a low spring constant is made to function to exhibit a soft riding comfort, and when the number of passengers is large or the load is heavy, the accumulator that exhibits a high spring constant is operated to increase the support force. ramp up.

このようにアキュムレータを二基またはそれ以上を採用し、それらを使い分けることが例えば特開2004−360885や特表2004−522905にも記載されている。図13および図14は、二つの組合せアキュムレータの動きを示したものである。図14の(a)に示すごとく、高圧用アキュムレータ51と低圧用アキュムレータ52とからなり、その各油室53,54は図示しない油圧回路に繋がる主管55に対して、枝管56,57を介して連通されている。   The use of two or more accumulators in this way and using them properly is also described in, for example, Japanese Patent Application Laid-Open No. 2004-360885 and Special Table 2004-522905. 13 and 14 show the movement of the two combination accumulators. As shown in FIG. 14 (a), a high pressure accumulator 51 and a low pressure accumulator 52 are provided, and each of the oil chambers 53, 54 is connected to a main pipe 55 connected to a hydraulic circuit (not shown) via branch pipes 56, 57. Communicated.

高圧用アキュムレータ51のガス室58には予め例えば5MPaの不活性ガスが、低圧用アキュムレータ52のガス室59には例えば2.5MPaのガスが装入栓60,61を介して封入される。管路55が油圧回路に接続される前の状態では、図13の(a)のように、いずれのピストン62,63もガス圧により、各装入栓から最も離れたところに位置する。   The gas chamber 58 of the high-pressure accumulator 51 is preliminarily filled with, for example, 5 MPa of inert gas and the gas chamber 59 of the low-pressure accumulator 52 is filled with, for example, 2.5 MPa of gas via the charging plugs 60 and 61. In a state before the pipe 55 is connected to the hydraulic circuit, as shown in FIG. 13A, both the pistons 62 and 63 are located at the furthest positions from the respective charging plugs due to the gas pressure.

接続された油圧回路での低圧段階の正常運転圧が例えば3MPa前後であると、低圧用ピストン63は図示しないが導入油を油室54に収容すべくガス室59を少し縮めて圧力バランスが得られる位置まで変位する。その状態にあるとき一時的に4.5MPaまで昇圧したとすると、図13の(b)のように低圧用ピストン63はガス室59をさらに縮めて変位する。それによって油室54は追加的に作動油を受け入れ、油圧回路における油量が油室54へ進入した分だけ減少し、回路圧を降下させる。この昇圧が一時的なものでその後に降下すれば、封入ガスの膨張によりピストン63が押し戻され、追加導入分が油圧回路へ返される。   If the normal operating pressure at the low pressure stage in the connected hydraulic circuit is, for example, around 3 MPa, the low pressure piston 63 is not shown, but the gas chamber 59 is slightly shrunk to accommodate the introduced oil in the oil chamber 54, thereby obtaining a pressure balance. Displace to the position where If the pressure is temporarily raised to 4.5 MPa in this state, the low pressure piston 63 is displaced by further contracting the gas chamber 59 as shown in FIG. As a result, the oil chamber 54 additionally receives hydraulic oil, and the amount of oil in the hydraulic circuit is reduced by the amount that has entered the oil chamber 54, thereby lowering the circuit pressure. If this pressure increase is temporary and then drops, the piston 63 is pushed back by expansion of the sealed gas, and the additional introduction is returned to the hydraulic circuit.

今述べた4.5MPaの圧力が一時的なものでなく、上記したサスペンション機構の例でいえば積荷によるものであるとすると、その荷物が降ろされるまではこの圧力が高圧段階における定常運転圧となる。このとき、5MPaのガス室58を持つ高圧用アキュムレータ51のピストン62は、依然として初期位置にとどまる。この状態は、油圧回路で5MPa以上の圧力が立つまで変わることはないが、積荷が重くて7.5MPaであったとすると、図14の(a)のように低圧用ピストン63がさらに左行すると共に、高圧用ピストン62はその圧力にバランスする位置まで変位する。   Assuming that the pressure of 4.5 MPa just described is not temporary and is due to the load in the example of the suspension mechanism described above, this pressure is the steady operating pressure in the high pressure stage until the load is unloaded. Become. At this time, the piston 62 of the high pressure accumulator 51 having the gas chamber 58 of 5 MPa still remains in the initial position. This state does not change until a pressure of 5 MPa or more is established in the hydraulic circuit, but if the load is heavy and the pressure is 7.5 MPa, the low pressure piston 63 further moves to the left as shown in FIG. At the same time, the high pressure piston 62 is displaced to a position balanced with the pressure.

荷物積載により高圧段階に入っている状態で油圧回路圧が10MPaまで一時的に上昇したとすると、図14の(b)のように高圧用ピストン62がガス室58をさらに縮めるべく変位する。なお、低圧用ピストン63もこのときのバランス圧に到達するまでガス室59を縮める。   Assuming that the hydraulic circuit pressure temporarily rises to 10 MPa while entering the high pressure stage due to the loading of the load, the high pressure piston 62 is displaced to further shrink the gas chamber 58 as shown in FIG. The low pressure piston 63 also contracts the gas chamber 59 until the balance pressure at this time is reached.

いずれのアキュムレータにおいても油室に作動油を受け入れることになるが、高圧段階においては、低圧用アキュムレータ52での増加量が高圧用アキュムレータ51におけるそれに比べて少ない。この例では、高圧段階における油量吸収の約2/3は高圧用アキュムレータが担うことになり、概して、低圧用ピストンの動きは低圧段階での昇圧軽減に寄与し、高圧用ピストンは高圧段階での昇圧抑制に貢献する。この場合、サスペンション機構は、低圧時と高圧時で異なるばね定数に基づいた支持特性を発揮することになる。
特開2004−360885 特表2004−522905
In any of the accumulators, the hydraulic oil is received in the oil chamber. However, in the high pressure stage, the amount of increase in the low pressure accumulator 52 is smaller than that in the high pressure accumulator 51. In this example, about 2/3 of the oil absorption at the high pressure stage is taken up by the high pressure accumulator. In general, the movement of the low pressure piston contributes to reducing the pressure increase at the low pressure stage, and the high pressure piston is at the high pressure stage. Contributes to the suppression of pressure increase. In this case, the suspension mechanism exhibits support characteristics based on different spring constants at low pressure and high pressure.
JP-A-2004-360885 Special table 2004-522905

このような組合せアキュムレータによれば、油圧回路に発生した一時的な圧力上昇を吸収するため、作動油圧の大きさに応じて二段階に分けて圧油収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を軽減することができる。しかし、アキュムレータが二基であり、またそれ以上の基数を必要とする場合には装置としての嵩張りが甚だしくなる。例えばサスペンション機構で採用しようとすると、車両への搭載性の観点から、その小型化の命題解決は不可欠となる。   According to such a combination accumulator, in order to absorb the temporary pressure rise generated in the hydraulic circuit, the pressure oil storage amount is changed in two stages according to the size of the operating hydraulic pressure, and the low pressure stage in the hydraulic circuit In addition, the pressure increase in each of the high pressure stages can be reduced. However, when the number of accumulators is two and more bases are required, the bulkiness of the apparatus becomes excessive. For example, if it is to be adopted in a suspension mechanism, it is indispensable to solve the miniaturization proposition from the viewpoint of mounting on a vehicle.

ところで、一つの油圧回路が低圧段階と高圧段階とをとる系である場合、その切り替わり目で問題が生じる。それは、高圧用アキュムレータが動作を開始する前後の圧油、上記した例で言えば4.5MPaが高圧段階における定常圧となっている場合に、5MPaを急速に超えて昇圧していく場面や、5MPa前後を小幅に行き来する場面で遭遇する。   By the way, when one hydraulic circuit is a system that takes a low pressure stage and a high pressure stage, a problem occurs at the switching point. It is the pressure oil before and after the high pressure accumulator starts to operate, in the above example, when 4.5 MPa is a steady pressure in the high pressure stage, the scene where the pressure is rapidly increased beyond 5 MPa, We come across a scene that goes back and forth around 5 MPa.

油圧回路圧が例えば7MPaへ急上昇した場合、ほとんど負荷の掛かっていなかった高圧用アキュムレータは急激に増大する負荷に襲われる。今まで停止していた高圧用ピストンが進入する圧油の行く手を一時的に阻むことになり、進入油の圧力をさらに高める。急動作が強いられるピストンは、これに原因してガス室側に圧力波を発生させる。波はガス室内を高速で往復伝播するから、ピストンのシール機構が断続的に加振されたり圧力衝撃波を受け、シール耐力の低下を早める。   When the hydraulic circuit pressure rapidly rises to, for example, 7 MPa, the high-pressure accumulator that is hardly loaded is attacked by a rapidly increasing load. The high pressure piston, which has been stopped until now, temporarily prevents the pressure oil from entering, further increasing the pressure of the ingress oil. Due to this, the piston that is forced to move suddenly generates a pressure wave on the gas chamber side. Since the waves reciprocate at a high speed in the gas chamber, the seal mechanism of the piston is intermittently vibrated or receives a pressure shock wave, thereby accelerating the deterioration of the seal strength.

他方、低圧段階と高圧段階との切り替わり目で圧力が小刻みに変動する場合、ピストンがそれに過敏に追従するとピストンは動きはじめては戻るという動きを繰り返す。このようなチャタリングが発生すると、ピストンはその都度シェルカバーを叩く。これによるピストン本体の損傷やピストンシール機構の損耗は、装置の信頼性を損ないまた頻繁な保守作業を要求することになる。   On the other hand, when the pressure fluctuates little by little at the time of switching between the low pressure stage and the high pressure stage, the piston repeats the movement of returning to the first time when the piston follows it sensitively. When such chattering occurs, the piston strikes the shell cover each time. This damage to the piston body and wear of the piston seal mechanism impairs the reliability of the apparatus and requires frequent maintenance work.

本発明は上記の問題に鑑みなされたもので、その目的は、低圧用アキュムレータと高圧用アキュムレータを備えた複合アキュムレータ装置において、その装置全体が占める容積をアキュムレータが二基ある場合と同等に確保しながら小型化を可能にすること、油圧回路における低圧段階から高圧段階へもしくはその逆への切り替わり目における高圧用ピストンの穏やかな加減速を可能にしまた過敏な応答動作を抑止して、装置の信頼性や耐用性を向上させることを実現する二段圧吸収式ピストン型アキュムレータ装置を提供することである。   The present invention has been made in view of the above problems, and its object is to ensure the volume occupied by the entire device in a composite accumulator device including a low-pressure accumulator and a high-pressure accumulator equivalent to the case where there are two accumulators. It is possible to reduce the size of the hydraulic circuit, and to enable gentle acceleration / deceleration of the high-pressure piston at the transition from the low pressure stage to the high pressure stage or vice versa in the hydraulic circuit, and to suppress the sensitive response operation, thereby making the device reliable. It is to provide a two-stage pressure absorption piston type accumulator device that realizes improvement in performance and durability.

本発明は、油圧回路に発生した一時的な圧力上昇を吸収するため、作動油圧の大きさを二段階に分けて収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を軽減できるようにした複圧吸収可能なアキュムレータに適用される。その特徴とするところは、図1を参照して、仕切部材6を境にして一方の側に高圧用アキュムレータ構造2が、他方の側に低圧用アキュムレータ構造4が形成される。各アキュムレータ構造2,4のピストン3,5と仕切部材6との間に油室を、ピストン3,5とアキュムレータシェルの各端部カバー9,10との間にガス室17,18を画成させる。仕切部材6には、各油室11,12と外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路13が形成される。高圧用ピストン3の油室側には、小径ボス部19が連通路13の開口に向けて突出して形成され、高圧用油室11に臨む連通路13の開口部には小径ボス部19を出入りさせる嵌挿凹部20が設けられる。これによって、低圧段階と高圧段階との切り替わり時の高圧用ピストン3を滑らかにまた安定して挙動させることができるようになる。   The present invention absorbs a temporary pressure increase generated in the hydraulic circuit, and therefore, the amount of hydraulic pressure can be divided into two stages to change the accommodation amount, thereby reducing the pressure increase in the low pressure stage and the high pressure stage in the hydraulic circuit. It is applied to an accumulator capable of absorbing double pressure. With reference to FIG. 1, the high-pressure accumulator structure 2 is formed on one side and the low-pressure accumulator structure 4 is formed on the other side with reference to FIG. Oil chambers are defined between the pistons 3 and 5 of the accumulator structures 2 and 4 and the partition member 6, and gas chambers 17 and 18 are defined between the pistons 3 and 5 and the end covers 9 and 10 of the accumulator shell. Let The partition member 6 is formed with a communication passage 13 that connects each of the oil chambers 11 and 12 and an external hydraulic circuit, and supplies and discharges hydraulic oil in accordance with the increase and decrease of the circuit pressure. A small-diameter boss portion 19 is formed on the oil chamber side of the high-pressure piston 3 so as to protrude toward the opening of the communication passage 13, and the small-diameter boss portion 19 enters and exits the opening portion of the communication passage 13 facing the high-pressure oil chamber 11. A fitting insertion recess 20 is provided. Thereby, the high pressure piston 3 at the time of switching between the low pressure stage and the high pressure stage can be made to behave smoothly and stably.

図6に示すように、内筒部材31を境にして内方側に高圧用アキュムレータ構造2Aが形成され、外方側にリング状ピストン5Bを備えた低圧用アキュムレータ構造4Aを形成させるようにすることもできる。その内筒部材31と外筒部材34を同心状に保持する一方の端部カバー32と各アキュムレータ構造2A,4Aのピストン3,5Bとの間に油室11A,12Aを、他方の端部カバー33とピストン3,5Bとの間にガス室17A,18Aを画成させる。一方の端部カバー32には、各油室11A,12Aと外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路35が形成され、高圧用ピストン3の油室側には、小径ボス部19が連通路35の開口に向けて突出して形成される。そして、高圧用油室11Aに臨む連通路35の開口部には小径ボス部19を出入りさせる嵌挿凹部20が設けられ、低圧段階と高圧段階との切り替わり時の高圧用ピストン3を滑らかにまた安定して挙動させることができるようにしている。   As shown in FIG. 6, the high pressure accumulator structure 2A is formed on the inner side with the inner cylinder member 31 as a boundary, and the low pressure accumulator structure 4A including the ring-shaped piston 5B is formed on the outer side. You can also. The oil chambers 11A and 12A are provided between the one end cover 32 that concentrically holds the inner cylinder member 31 and the outer cylinder member 34 and the pistons 3 and 5B of the accumulator structures 2A and 4A, and the other end cover. Gas chambers 17A and 18A are defined between the piston 33 and the pistons 3 and 5B. One end cover 32 is connected to each of the oil chambers 11 </ b> A and 12 </ b> A and an external hydraulic circuit, and a communication passage 35 is formed to supply and discharge hydraulic oil in accordance with the increase and decrease of the circuit pressure. On the chamber side, a small-diameter boss portion 19 is formed so as to protrude toward the opening of the communication path 35. The opening of the communication passage 35 facing the high-pressure oil chamber 11A is provided with a fitting insertion recess 20 for allowing the small-diameter boss portion 19 to enter and exit, so that the high-pressure piston 3 can be smoothly and smoothly switched between the low-pressure stage and the high-pressure stage. It is designed to be able to behave stably.

図1に戻って、小径ボス部19には、嵌挿凹部20を出入りするとき連通路13と高圧用油室11との間を移行する作動油量の増減を補助し、低圧段階から高圧段階へおよびその逆への遷移における高圧用ピストン3の動きをより一層滑らかにするための圧油給排路23を形成しておくとよい。   Returning to FIG. 1, the small-diameter boss portion 19 assists the increase / decrease in the amount of hydraulic fluid that moves between the communication passage 13 and the high-pressure oil chamber 11 when entering and exiting the fitting recess 20, and from the low pressure stage to the high pressure stage. It is preferable to form a pressure oil supply / discharge passage 23 for further smoothing the movement of the high-pressure piston 3 in the transition to and from the reverse.

図9に示すように、一方の端部カバー32に形成する連通路36は油圧回路と低圧用油室12Aとのみを繋ぐものであってもよい。その内筒部材31には、低圧用油室12Aと高圧用油室11Aとの間で作動油を流通させる直径の異なる透孔37が一方の端部カバー32の近傍に設けられる。透孔37a,37b,37cは、高圧用ピストン3Aが一方の端部カバー32の近くで変位するとき、両油室12A,11A間で移行する作動油量を滑らかに増減し、低圧段階と高圧段階との切り替わり時の高圧用ピストン3Aの挙動が安定したものとなるように、一方の端部カバー32に近接するにつれて孔径が小さく与えられる。なお、図11のように、内筒部材31を境にして形成されるアキュムレータの低圧用と高圧用を逆にすることもできる。   As shown in FIG. 9, the communication path 36 formed in one end cover 32 may connect only the hydraulic circuit and the low pressure oil chamber 12A. The inner cylinder member 31 is provided with a through hole 37 having a different diameter for allowing the working oil to flow between the low pressure oil chamber 12 </ b> A and the high pressure oil chamber 11 </ b> A in the vicinity of one end cover 32. The through holes 37a, 37b, 37c smoothly increase / decrease the amount of hydraulic oil transferred between the two oil chambers 12A, 11A when the high pressure piston 3A is displaced near one end cover 32, thereby reducing the low pressure stage and the high pressure. In order to stabilize the behavior of the high pressure piston 3 </ b> A at the time of switching to the stage, the hole diameter is given smaller as it approaches the one end cover 32. As shown in FIG. 11, the low pressure and the high pressure of the accumulator formed with the inner cylinder member 31 as a boundary can be reversed.

例えば図3の(b)にあるように、高圧用油室11に通じる補助路24が設けられ、この補助路24に油圧急上昇時の初期圧油を高圧用油室11に導入するチェックバルブ25を介装させておくようにしてもよい。   For example, as shown in FIG. 3B, an auxiliary path 24 that leads to the high pressure oil chamber 11 is provided, and a check valve 25 that introduces the initial pressure oil when the hydraulic pressure suddenly increases into the auxiliary path 24 to the high pressure oil chamber 11. You may make it interpose.

本発明によれば、仕切部材を境にして二つのアキュムレータを並べ、低圧用アキュムレータ構造も高圧用アキュムレータ構造も各油室を仕切部材側に配置し、それら油室と外部の油圧回路とを繋ぐ連通路を仕切部材に形成させるようにしたので、作動油圧の大きさを二段階に分けて収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を異なるばね定数のアキュムレータによって軽減することができる。そして、仕切部材を二つのアキュムレータのシェルカバーとして共用させることになり、複合アキュムレータとしての装置を短くし、サスペンション機構用などとして車載のための小型化を図ることができる。   According to the present invention, two accumulators are arranged with the partition member as a boundary, and both the low pressure accumulator structure and the high pressure accumulator structure are arranged on the partition member side, and these oil chambers are connected to an external hydraulic circuit. Since the communication passage is formed in the partition member, the amount of hydraulic pressure is divided into two stages, the accommodation amount is changed, and the pressure increase in the low pressure stage and the high pressure stage in the hydraulic circuit is reduced by accumulators having different spring constants. be able to. Then, the partition member is shared as the shell cover of the two accumulators, so that the device as the composite accumulator can be shortened and the vehicle can be downsized for the suspension mechanism.

高圧用ピストンの油室側に突出して形成された小径ボス部と、高圧用油室に臨む連通路の開口部に設けた嵌挿凹部とを備えるので、油圧回路における低圧段階と高圧段階との切り替わり時のピストンの不安定挙動の発生を回避させることができる。高圧用ピストンの着座・離座時の低加速度化や僅かな圧力変化に基づく過敏な挙動の抑制は、ピストンのみならず装置全体の信頼性、耐用性を高める。   Since it has a small-diameter boss formed to protrude to the oil chamber side of the high-pressure piston and a fitting insertion recess provided in the opening of the communication passage facing the high-pressure oil chamber, the low-pressure stage and the high-pressure stage in the hydraulic circuit Occurrence of unstable piston behavior at the time of switching can be avoided. Suppressing high-speed pistons during sitting and leaving, and suppressing sensitive behavior based on slight pressure changes, increase the reliability and durability of not only the piston but also the entire device.

内筒部材を境にして内方側に高圧用アキュムレータ構造を、外方側にリング状ピストンを備えた低圧用アキュムレータ構造を形成させ、各アキュムレータのピストンとの間で油室を形成させる一方の端部カバーに連通路を形成し、これに小径ボス部が出入りする嵌挿凹部を設けるようにしても、高圧段階と低圧段階との間の切り替わり目における高圧用ピストンの過剰反応的な挙動を抑止し、そして滑らかかつソフトな着座動作が助長され、前記と同様の効果が発揮される。加えて、二重配置のアキュムレータとなることから、装置全体の短小化は飛躍的に進む。   A high pressure accumulator structure is formed on the inner side with the inner cylinder member as a boundary, and a low pressure accumulator structure with a ring-shaped piston is formed on the outer side, and an oil chamber is formed between each accumulator piston. Even if a communication passage is formed in the end cover and a fitting insertion recess through which the small-diameter boss part enters and exits is provided, the excessively reactive behavior of the high-pressure piston at the switching point between the high-pressure stage and the low-pressure stage Suppressing and smooth and soft seating are promoted, and the same effect as described above is exhibited. In addition, since the accumulator has a double arrangement, the entire apparatus is rapidly shortened.

前記小径ボス部に圧油給排路を形成しておけば、小径ボス部が嵌挿凹部から抜け出るとき、および嵌挿凹部に嵌まり込もうとするときの高圧用油室と嵌挿凹部すなわち連通路との間を移行する作動油量を徐々に増減してピストンに負担を及ぼさない加減速度を与え、低圧段階と高圧段階との間の遷移をより一層滑らかにする。   If a pressure oil supply / discharge path is formed in the small-diameter boss portion, the high-pressure oil chamber and the insertion concave portion when the small-diameter boss portion comes out of the insertion concave portion and when fitting into the insertion concave portion, that is, By gradually increasing or decreasing the amount of hydraulic oil that moves between the communication passages, an acceleration / deceleration that does not impose a burden on the piston is given, and the transition between the low pressure stage and the high pressure stage is made smoother.

低圧用油室のみが油圧回路に直結され、内筒部材には低圧用油室と高圧用油室との間で作動油を流通させる複数の透孔を設けておき、一方の端部カバーに近接するにつれて小径となるようにしておけば、高圧用ピストンが端部カバー側に位置するとき、両油室間で移行する作動油量を滑らかに増減して、低圧段階と高圧段階との間での遷移を円滑にする。これは、内筒部材を境にして内方側に低圧用のアキュムレータを、外方側に高圧用を配置しても同様である。   Only the low pressure oil chamber is directly connected to the hydraulic circuit, and the inner cylinder member is provided with a plurality of through holes through which hydraulic oil flows between the low pressure oil chamber and the high pressure oil chamber. If the diameter of the high pressure piston is located on the end cover side, the amount of hydraulic oil transferred between the oil chambers is smoothly increased or decreased between the low pressure stage and the high pressure stage. Smooth transitions in This is the same even if the low pressure accumulator is disposed on the inner side and the high pressure is disposed on the outer side with the inner cylinder member as a boundary.

高圧用油室に通じる補助路にチェックバルブを介装させておけば、回路圧急上昇時の初期圧油を高圧用油室に速やかに導入することができる。小径ボス部が嵌挿凹部から抜け出る時点での油室の圧力急変がチェックバルブからの送油によって軽減され、油室で発生する衝撃や異音の発生を抑えることができる。   If a check valve is interposed in the auxiliary passage leading to the high pressure oil chamber, the initial pressure oil at the time when the circuit pressure suddenly rises can be quickly introduced into the high pressure oil chamber. The sudden change in pressure of the oil chamber when the small-diameter boss portion comes out of the insertion recess is reduced by oil feeding from the check valve, and the occurrence of impact and noise generated in the oil chamber can be suppressed.

一方、チェックバルブは油室から連通路へ出ようとする油の流れを阻止するから、回路圧の急降下による作動油の油室抜け量を抑制する。これによって、小径ボス部が嵌挿凹部に入るときの油の絞り流れの発生は損なわれず、ピストンのソフトな着座を助長して、急停止したなら生じるガスのシール機構抜けが起こらないようにしておくことができる。ちなみに、小径ボス部が設けられていない場合でも、チェックバルブは急昇圧当初に高圧用油室への送油量を増やして高圧用ピストンの初期動作を補助し、また、降圧時には補助路の遮断で排油終盤におけるピストンの急減速を和らげる。   On the other hand, since the check valve prevents the flow of oil from going out from the oil chamber to the communication path, the amount of hydraulic oil coming out of the oil chamber due to a sudden drop in circuit pressure is suppressed. As a result, the occurrence of the oil squeezing flow when the small-diameter boss part enters the insertion recess is not impaired, and the soft seating of the piston is promoted so that the gas seal mechanism is not released when it stops suddenly. I can leave. By the way, even if there is no small-diameter boss, the check valve increases the amount of oil supplied to the high-pressure oil chamber at the beginning of sudden pressure increase, assisting the initial operation of the high-pressure piston, and shutting off the auxiliary path during pressure reduction To alleviate sudden piston deceleration at the end of oil drain.

以下に、本発明に係る二段圧吸収式ピストン型アキュムレータ装置を、その実施の形態を表した図面に基づいて詳細に説明する。図1は、油圧回路において圧力の変動した作動油を低圧時と高圧時で異なるばね定数に基づき給排させることができるようにした複合アキュムレータ装置1の一例であり、高圧用アキュムレータ構造2のピストン3と低圧用アキュムレータ構造4のピストン5とが対向する形式となっている。このようなアキュムレータによって車載等のための小型化を図ることができるようにするだけでなく、複合アキュムレータ装置で発生しがちな圧力段切り替わり時の好ましからざる挙動を抑え、装置の信頼性を向上して耐用性の高いものとすることができるようにしたものである。   Hereinafter, a two-stage pressure absorption type piston accumulator device according to the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 shows an example of a composite accumulator device 1 that can supply and discharge hydraulic oil whose pressure fluctuates in a hydraulic circuit based on different spring constants at low pressure and high pressure, and a piston of a high pressure accumulator structure 2. 3 and the piston 5 of the low-pressure accumulator structure 4 are opposed to each other. Such accumulators not only make it possible to reduce the size for in-vehicle use, etc., but also suppress undesired behavior at the time of pressure stage switching that tends to occur in composite accumulator devices, improving the reliability of the device. In this way, it can be made highly durable.

図1の(a)を参照して、これは左に高圧用アキュムレータ構造2、右に低圧用アキュムレータ構造4が形成されたものであるが、中間部に配置された仕切部材6に各アキュムレータシェル7,8がねじ接合されることによって一体化されている。図の左右端にはガス室側シェルカバー(端部カバー)9,10が螺着され、仕切部材6を挟んだ空間内でピストン3,5を変位させるようにしている。その仕切部材6は高圧用アキュムレータから見ても低圧用アキュムレータから見ても油室側シェルカバーとして機能すると共に、図示しない油圧回路との連結のための口金としての役目を果たす。   Referring to FIG. 1 (a), a high-pressure accumulator structure 2 is formed on the left and a low-pressure accumulator structure 4 is formed on the right. Each accumulator shell is arranged on a partition member 6 disposed in the middle portion. 7 and 8 are integrated by screwing. Gas chamber side shell covers (end cover) 9 and 10 are screwed to the left and right ends of the figure, and the pistons 3 and 5 are displaced in a space sandwiching the partition member 6. The partition member 6 functions as an oil chamber side shell cover as viewed from the high pressure accumulator and from the low pressure accumulator and also serves as a base for connection to a hydraulic circuit (not shown).

その仕切部材6を挟んで左右には各アキュムレータの油室11,12が形成されることになるので、仕切部材6には、各油室と外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路13が形成される。その油路は軸方向に延びる高圧用通路13A、低圧用通路13Bと、油圧回路の配管を接続するプラグ孔14で終わる半径方向へ延びた主通路13Cとからなる。その仕切部材6とは反対に位置する各シェルカバー9,10にはガスの装入栓15,16があり、これを介してピストン3,5とシェルカバー9,10との間のガス室17,18に初期圧が蓄えられる。   Since the oil chambers 11 and 12 of the respective accumulators are formed on the left and right sides of the partition member 6, the partition member 6 is connected to each oil chamber and an external hydraulic circuit to increase and decrease the circuit pressure. Accordingly, a communication passage 13 for supplying and discharging hydraulic oil is formed. The oil passage is composed of a high-pressure passage 13A and a low-pressure passage 13B extending in the axial direction, and a main passage 13C extending in the radial direction ending with a plug hole 14 connecting the piping of the hydraulic circuit. Each shell cover 9, 10 located opposite to the partition member 6 has a gas charging plug 15, 16 through which a gas chamber 17 between the pistons 3, 5 and the shell cover 9, 10 is provided. , 18 is stored with the initial pressure.

ところで、高圧用ピストン3には、その油室側に小径ボス部19が高圧用通路13Aの開口に向けて突出するように設けられる。一方、高圧用油室11に臨む通路13Aの開口部にはその小径ボス部19を出入りさせる嵌挿凹部20が形成される。この凹部20は図2の(b)に示すように小径ボス部19が僅かな隙間を残す程度に嵌まり込む内径が与えられ、小径ボス部19の大部分が嵌挿凹部20から抜け出るまでの間は僅かな周囲隙間を通して、油室11(図では油を収容していないため室幅は線でしか表されていない)を徐々に昇圧させ、逆の排油時には、小径ボス部19が嵌挿凹部20に収まりきるまでの間は急激な油抜けを抑制するように作用する。   By the way, the high-pressure piston 3 is provided with a small-diameter boss portion 19 on the oil chamber side so as to protrude toward the opening of the high-pressure passage 13A. On the other hand, an insertion insertion recess 20 for allowing the small-diameter boss portion 19 to enter and exit is formed in the opening portion of the passage 13A facing the high pressure oil chamber 11. As shown in FIG. 2B, the recess 20 is provided with an inner diameter so that the small-diameter boss portion 19 is fitted to such a degree that a slight gap is left, and a large portion of the small-diameter boss portion 19 is removed from the insertion insertion recess 20. Through a slight gap, the oil chamber 11 (the chamber width is only represented by a line because it does not contain oil) is gradually increased, and the small-diameter boss portion 19 is fitted during reverse oil discharge. Until it fits in the insertion recess 20, it acts so as to suppress sudden oil leakage.

その嵌挿凹部20の周縁部には高圧用ピストン3の油室側外縁部3aを当接させる止め座面21が形成され、油圧回路から及ぶ圧力がガス室17の封入圧より低い場合には高圧用油室11に原則として油溜まりを生じさせないようにしている。嵌挿凹部20が浅くて小径ボス部19の先端が底当たりするなどの場合には(図示せず)、油室11の残油が次回の高圧油到達によるピストン変位時に負圧を生じさせ、ピストンの動き始めの滑らかさを阻害することになるからである。   A stop seat surface 21 that abuts the outer edge 3a of the oil chamber side of the high pressure piston 3 is formed at the peripheral edge of the insertion recess 20, and when the pressure from the hydraulic circuit is lower than the sealed pressure of the gas chamber 17 In principle, an oil reservoir is not generated in the high pressure oil chamber 11. If the insertion recess 20 is shallow and the tip of the small-diameter boss portion 19 touches the bottom (not shown), the residual oil in the oil chamber 11 generates a negative pressure when the piston is displaced by the next arrival of high-pressure oil, This is because the smoothness at the beginning of the piston movement is hindered.

二段圧対応型のアキュムレータとしての動作を、以下に具体的に述べる。図2の(a)は、ガス室17,18にそれぞれの所定圧を封入した状態にある。これを油圧回路に接続して、その回路が通常稼働圧状態で例えば3MPaであるとすると、低圧用ピストン5は2.5MPaで封入されているガスを圧縮して作動油を低圧用油室12に収容しようとする。いま、作動油圧が4.5MPaに上昇すると(b)のようにピストン5は約半行程をストロークする。   The operation as a two-stage pressure type accumulator will be specifically described below. FIG. 2A shows a state in which predetermined pressures are sealed in the gas chambers 17 and 18, respectively. If this is connected to a hydraulic circuit and the circuit is in a normal operating pressure state, for example, 3 MPa, the low-pressure piston 5 compresses the gas sealed at 2.5 MPa to transfer the hydraulic oil to the low-pressure oil chamber 12. Trying to contain. Now, when the operating oil pressure rises to 4.5 MPa, the piston 5 strokes about a half stroke as shown in (b).

引続き上昇して例えば6MPaが作用したとすると、小径ボス部19の前面にその圧力が作用すると共に、図1の(a)に示すように小径ボス部19と嵌挿凹部20との間の僅かな隙間を通して、矢印22のごとく作動油が油室11に入る。油室に急激に高圧油が入るわけではないので、ピストン3は徐々に後退を始める。   If the pressure continues to rise, for example, 6 MPa, the pressure acts on the front surface of the small-diameter boss portion 19 and a slight gap between the small-diameter boss portion 19 and the insertion insertion recess 20 as shown in FIG. The hydraulic oil enters the oil chamber 11 as shown by an arrow 22 through the gap. Since the high pressure oil does not suddenly enter the oil chamber, the piston 3 gradually starts to move backward.

小径ボス部19が図1の(b)のように嵌挿凹部20から完全に抜け出ると、高圧用ピストン3は図3の(a)に示すように、その両面に作用する圧力が均衡するところまで後退する。このように、ピストン3の動きが高圧油の作用に即応して敏感に動作することは抑えられ、ピストンの急変位によるガスの噛み込み、またはピストンによる高圧油塞き止め作用によるシール負担の増大といった問題が解消される。   When the small-diameter boss portion 19 is completely pulled out of the insertion recess 20 as shown in FIG. 1B, the high-pressure piston 3 balances the pressure acting on both sides thereof as shown in FIG. Retreat until. In this way, the movement of the piston 3 is suppressed from acting sensitively in response to the action of the high-pressure oil, and gas sealing due to a sudden displacement of the piston or an increase in sealing burden due to the high-pressure oil blocking action by the piston. Such a problem is solved.

一時的な昇圧で6MPaとなっていた高圧用アキュムレータ2から作動油が引くと、図1の(b)を経て(a)に戻る。小径ボス部19が嵌挿凹部20に嵌入し始めると油室11の油の急激な抜けは抑えられ、ピストン3は仕切部材6に衝撃を伴うことなくソフトに着座する。以後油圧回路が5MPa未満で変動すれば低圧用アキュムレータ4による圧油給排作用を、5MPaを超えて変動すれば高圧用アキュムレータ2も加えた圧油給排作用がなされる。   When hydraulic oil is pulled from the high pressure accumulator 2 which has been 6 MPa due to temporary pressure increase, the flow returns to (a) through (b) in FIG. When the small-diameter boss portion 19 starts to be inserted into the insertion insertion recess 20, the rapid oil removal from the oil chamber 11 is suppressed, and the piston 3 is softly seated without impact on the partition member 6. Thereafter, if the hydraulic circuit fluctuates below 5 MPa, the pressure oil supply / discharge operation by the low pressure accumulator 4 is performed, and if the hydraulic circuit fluctuates over 5 MPa, the pressure oil supply / discharge operation including the high pressure accumulator 2 is performed.

ところで、低圧段階から高圧段階への切り替わりもしくはその逆の切り替わりが繰り返されるような小刻みな昇圧があったとしても、上記した高圧用ピストンの着座・離座の低加速度化は、高圧用ピストン3の過敏な挙動を抑える。従って、高圧用ピストン3が図2の(b)のごときホームポジションにあっても、チャタリングをひき起こすことは可及的に少なくなる。このようなことから、作動油圧の大きさを二段階に分けて圧油収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を、異なるばね定数のアキュムレータによって軽減するに際しての問題が解決される。仕切部材6は二つのアキュムレータのシェルカバーともなるから装置を短くし、車両のサスペンション機構用などとしての小型化の要望にも応えられるものとなる。   By the way, even if there is a slight increase in pressure such that the switching from the low pressure stage to the high pressure stage or vice versa is repeated, the above-described low acceleration of the seating / separation of the high pressure piston is performed by the high pressure piston 3. Suppress sensitive behavior. Therefore, even if the high pressure piston 3 is at the home position as shown in FIG. 2B, chattering is reduced as much as possible. For this reason, there is a problem when the hydraulic oil capacity is changed by dividing the size of the hydraulic pressure into two stages, and the pressure increase in the low pressure stage and the high pressure stage in the hydraulic circuit is reduced by accumulators with different spring constants. Solved. Since the partition member 6 also serves as a shell cover for the two accumulators, the apparatus can be shortened to meet the demand for miniaturization for a vehicle suspension mechanism or the like.

上記した小径ボス部19の周面先端部に丸みを与えておけば(図示せず)嵌挿凹部20への進入時の小競りを回避できることは言うまでもないが、図2のいずれからも分かるように、その部分を截頭円錐面とすることによって、嵌挿凹部20の内壁との間に断面くさび形の環状路23を形成しておく。この環状路は上記した小競りを解消するだけでなく、図1の(a)の状態にあるとき、すなわち小径ボス部19が嵌挿凹部20から完全に抜け出す直前での作動油の油室11への流入量を漸増させ、ピストンの加速度を滑らかに増加するように作用する。逆の動きのときには、油室11から嵌挿凹部20への移行を徐々に規制して、ピストンの減速度を滑らかに変化させる。   Needless to say, it is possible to avoid a skit at the time of entry into the fitting insertion recess 20 by rounding the peripheral tip of the small-diameter boss 19 (not shown), but it can be seen from any of FIGS. In addition, by making the portion into a truncated conical surface, an annular path 23 having a wedge-shaped cross section is formed between the inner wall of the fitting insertion recess 20. This annular path not only eliminates the above-described skirmish, but also is in the state shown in FIG. 1A, that is, immediately before the small-diameter boss portion 19 is completely removed from the fitting recess 20, the hydraulic oil chamber 11. It gradually increases the amount of inflow into the cylinder and acts to increase the acceleration of the piston smoothly. At the time of reverse movement, the transition from the oil chamber 11 to the fitting recess 20 is gradually regulated to smoothly change the deceleration of the piston.

図3の(b)は、仕切部材6に連通路13の途中から高圧用油室11に直接通じる補助路24を設け、これに油室方向への流れのみを許容するチェックバルブ25を介装させた例である。これによれば、高圧段階に入った時点で連通路13中の圧油がチェックバルブ25をも経て油室11に導かれる。ピストン3の油室側に浅い円周溝3bでも形成しておけば、その圧力をピストンに作用させやすくなる。このようにして補助路24を介して油圧急上昇時の初期圧油を高圧用油室11に先送りしておけば、昇圧幅が大きいがために小径ボス部19が嵌挿凹部20から短時間のうちに抜け出るようなことになっても、油室11における圧力の大きい急変は抑えられ、小径ボス部の抜けによるショックや異音の発生が防止される。   3B, the partition member 6 is provided with an auxiliary passage 24 that directly leads from the middle of the communication passage 13 to the high pressure oil chamber 11, and a check valve 25 that allows only a flow in the direction of the oil chamber is provided in the partition member 6. This is an example. According to this, when entering the high pressure stage, the pressure oil in the communication passage 13 is guided to the oil chamber 11 through the check valve 25. If the shallow circumferential groove 3b is also formed on the oil chamber side of the piston 3, the pressure is easily applied to the piston. In this way, if the initial pressure oil at the time of sudden hydraulic pressure rise is forwarded to the high pressure oil chamber 11 via the auxiliary passage 24, the small-diameter boss portion 19 is moved from the insertion recess 20 for a short time because the pressure increase width is large. Even if it comes out soon, a large sudden change in pressure in the oil chamber 11 is suppressed, and the occurrence of shock and abnormal noise due to the small diameter boss portion coming off is prevented.

逆に、高圧用油室11から高圧油が急激に油圧回路へ戻される場合、チェックバルブ25は油室11から補助路24を経て連通路13に出ようとする流れを阻止する。これは、油圧回路の圧力急降下によるピストン3の戻り時の作動油の抜け速度や排油量の増大化を抑え、小径ボス部19が嵌挿凹部20に入るときの油の絞り流れの発生を損なわせず、高圧用ピストン3のソフトなリターンを保証する。ピストンの急停止に伴うガスのシール機構抜け、すなわちガスが油室に進入するといったことはなくなる。   On the contrary, when the high pressure oil is suddenly returned from the high pressure oil chamber 11 to the hydraulic circuit, the check valve 25 prevents a flow from going out from the oil chamber 11 to the communication path 13 via the auxiliary path 24. This suppresses an increase in the hydraulic oil removal speed and the amount of drained oil when the piston 3 returns due to a sudden drop in the hydraulic circuit, and the occurrence of oil throttle flow when the small-diameter boss portion 19 enters the insertion insertion recess 20. The soft return of the high pressure piston 3 is guaranteed without damage. There is no possibility that the gas sealing mechanism is lost due to the sudden stop of the piston, that is, the gas does not enter the oil chamber.

上記した例はいずれも仕切部材6に各アキュムレータ構造のためのシェル7,8を螺着させたものであるが、図4の(a)のように、一つのシリンダ状シェル8Aに仕切部材6Aを内装させ、それを境に二つのアキュムレータ構造2,4を形成することもできる。また、(b)などのように、低圧用ピストン5Aに小径ボス部19Aを形成しておいてもよい。低圧用アキュムレータにおける小径ボス部の作用は特に期待するところでないが、シェルの外観が左右酷似することにより逆据え付けとなっても、位置的に都合のよい方を高圧用アキュムレータとして機能させることができる。   In each of the above examples, the shells 7 and 8 for the respective accumulator structures are screwed to the partition member 6. However, as shown in FIG. 4A, the partition member 6A is attached to one cylindrical shell 8A. It is also possible to form two accumulator structures 2 and 4 at the boundary. Further, as shown in (b) or the like, a small-diameter boss portion 19A may be formed on the low-pressure piston 5A. Although the action of the small-diameter boss part in the low-pressure accumulator is not particularly expected, even if the shell is reversely mounted due to the appearance of the shell being very similar to the left and right, the positionally convenient one can function as the high-pressure accumulator. .

この例には、上記した環状路23に代わる凹み路26が設けられている。これは、小径ボス部19の先端周面部に位置して軸方向へ延びるもので、ピストン3に施されたような先端になるほど幅および深さが大きくなる適数個のノッチ26aであったり、ピストン5Aに描かれたごとくに幅および深さが一定の溝26bであったりする。いずれにしても、環状路23と同じ作用をしてその目的を果たす。   In this example, a recessed path 26 is provided instead of the annular path 23 described above. This is located in the tip peripheral surface portion of the small-diameter boss portion 19 and extends in the axial direction, and is an appropriate number of notches 26a whose width and depth increase as the tip is applied to the piston 3, For example, the groove 26b may have a constant width and depth as depicted on the piston 5A. In any case, the same function as that of the circular path 23 is achieved.

図5の(a)は、小径ボス部19の内部を経て外周面に至る導孔路27を設けた例であり、(b)のように導孔路27Aの出口もしくは入口に所望する大きさの小孔28aを備えたプラグ28A,28Bを取り付けることもできる。小孔28aの径選定によって圧力段の切り替わり時の繋ぎ特性を変えることができ、ピストンの標準化も進めやすくなる。環状路23を始め凹み路26、導孔路27といったこれらの圧油給排路は、小径ボス部が嵌挿凹部に進入したり退出するときの高圧用油室と連通路との間を移行する作動油量を徐々に増減してピストンに負担を及ぼさない加減速度を与えるなど、低圧段階と高圧段階との間の遷移をより一層滑らかにする。   FIG. 5A is an example in which a guide hole 27 that reaches the outer peripheral surface through the inside of the small-diameter boss portion 19 is provided. As shown in FIG. 5B, a desired size is provided at the outlet or inlet of the guide hole 27A. Plugs 28A and 28B having small holes 28a can be attached. By selecting the diameter of the small hole 28a, the connection characteristic at the time of switching of the pressure stage can be changed, and the standardization of the piston is facilitated. These pressure oil supply / discharge passages such as the annular passage 23, the recessed passage 26, and the guide hole passage 27 move between the high pressure oil chamber and the communication passage when the small-diameter boss portion enters or exits the insertion recess. The transition between the low-pressure stage and the high-pressure stage is made even smoother, such as by gradually increasing or decreasing the amount of hydraulic oil to be applied to give an acceleration / deceleration that does not impose a burden on the piston.

図6、図7(a)および(b)等の例は、アキュムレータシェルを二重筒としたものである。これは、小径ボス部19と嵌挿凹部20を設ける点(図6を参照)、チェックバルブ25(図7の(a)を参照)、圧油給排路23(図6を参照),26(図7の(b)を参照),27(図8の(a)を参照)やプラグ28(図8の(b)を参照)などを設けてもよい点については先の例と変わりがないが、二重筒を採用するゆえの相違が以下に述べるごとく存在する。   In the examples of FIGS. 6, 7A and 7B, etc., the accumulator shell is a double cylinder. This is because a small-diameter boss 19 and a fitting recess 20 are provided (see FIG. 6), a check valve 25 (see FIG. 7A), a pressure oil supply / discharge passage 23 (see FIG. 6), 26. (Refer to (b) of FIG. 7), 27 (refer to (a) of FIG. 8), plug 28 (refer to (b) of FIG. 8), etc. Although there is no difference as described below, the double cylinder is used.

まず、図6に示すように、高圧用アキュムレータ構造2Aが内筒部材31の内方側に、低圧用アキュムレータ構造4Aが外方側に形成され、後者のピストン5Bは前者のピストン3と異なりリング状となっている。シェルの端部カバー32,33は内筒部材31と外筒部材34とを同心状に保持し、一方の端部カバー32はピストン3,5Bと共にそれぞれの油室11A,12Aを画成し、他方の端部カバー33はガス室17A,18Aを画成する。前者には連通路35が、後者にはガスを充填する装入栓15A,16Aが取り付けられる。   First, as shown in FIG. 6, the high pressure accumulator structure 2A is formed on the inner side of the inner cylindrical member 31, and the low pressure accumulator structure 4A is formed on the outer side. The latter piston 5B is different from the former piston 3 in the ring. It has become a shape. The end covers 32 and 33 of the shell hold the inner cylinder member 31 and the outer cylinder member 34 concentrically, and one end cover 32 defines the oil chambers 11A and 12A together with the pistons 3 and 5B. The other end cover 33 defines gas chambers 17A and 18A. The former is provided with a communication passage 35, and the latter is provided with charging plugs 15A, 16A filled with gas.

このような二重筒アキュムレータ装置1Aにおいても、高圧段階と低圧段階との間の切り替わり目における高圧用ピストン3の過剰反応的な挙動を抑え、滑らかな加減速変化による変位挙動やソフトな着座動作が助長される。サイズ的な面では、二重配置による装置全体の短小化は当然のこととは言え目を見張る。アキュムレータ二基分の圧油収容能力を確保しても、その直径方向の嵩張りの増加は思いのほか小さく抑えられることは計算するまでもない。   Also in such a double cylinder accumulator device 1A, the excessively reactive behavior of the high-pressure piston 3 at the time of switching between the high-pressure stage and the low-pressure stage is suppressed, and the displacement behavior and the soft seating operation due to the smooth acceleration / deceleration change. Is encouraged. In terms of size, the shortening of the entire device due to the double arrangement is natural, but it is natural. Needless to say, even if the pressure oil storage capacity of two accumulators is secured, the increase in the bulkiness in the diameter direction can be suppressed to a surprisingly small value.

図9は上で述べた小径ボス部19や嵌挿凹部20を設けず、複数の連通小孔を内筒部材31に設け、これによって、両油室間で移行する作動油量を滑らかに増減し、低圧段階と高圧段階との切り替わり時のピストン挙動を安定させることができるようにしたものである。詳しく述べれば、一方の端部カバー32に形成される連通路36は、(a)に示すように、外部の油圧回路と低圧用油室12Aとのみを繋ぎ、油圧回路の上昇があると作動油を低圧用油室経由で高圧用油室に導くようにしている。   FIG. 9 does not provide the small-diameter boss portion 19 and the fitting insertion recess 20 described above, but provides a plurality of small communication holes in the inner cylinder member 31, thereby smoothly increasing or decreasing the amount of hydraulic oil that moves between the two oil chambers. Thus, the piston behavior at the time of switching between the low pressure stage and the high pressure stage can be stabilized. Specifically, the communication path 36 formed in the one end cover 32 connects only the external hydraulic circuit and the low pressure oil chamber 12A as shown in FIG. The oil is guided to the high pressure oil chamber via the low pressure oil chamber.

内筒部材31には、図9の(b)に示すように、低圧用油室12Aと高圧用油室11Aとの間で作動油を流通させる直径の異なる透孔37が一方の端部カバー32の近傍に設けられている。それらの透孔は、高圧用ピストン3Aが一方の端部カバー近くで変位するとき、両油室間で移行する作動油量を滑らかに増減させるべく、端部カバー32に近接するにつれて孔径が小さくなるように与えられている。なお、低圧用ピストン5Cはリング部の一断面における輪郭が後述する図11のように矩形であってもよいが、この例では低圧用油室側の内方部位に空隙5cを確保して、低圧用ピストンの内周シール機構38が透孔列と干渉することがないように配慮されている。   As shown in FIG. 9B, the inner cylinder member 31 has through holes 37 having different diameters through which hydraulic oil flows between the low pressure oil chamber 12A and the high pressure oil chamber 11A, as one end cover. 32 is provided in the vicinity. When the high pressure piston 3 </ b> A is displaced near one end cover, these through holes have smaller hole diameters as they approach the end cover 32 in order to smoothly increase or decrease the amount of hydraulic oil transferred between the two oil chambers. Is given to be. Note that the low-pressure piston 5C may have a rectangular outline in one section of the ring portion as shown in FIG. 11 described later, but in this example, a space 5c is secured in the inner part on the low-pressure oil chamber side, Consideration is given so that the inner peripheral sealing mechanism 38 of the low-pressure piston does not interfere with the through-hole array.

連通路36からの圧油は低圧用アキュムレータ構造で昇圧緩衝がなされるが、高圧段階に入ると低圧用油室12Aを経て透孔37から高圧用油室11Aに入る。高圧用ピストン3Aは図9の(a)のようにホームポジションにあるが、第一の透孔37aから僅かな圧油が高圧用油室に導入される。ピストンが変位し始めると、(b)に示した第二の透孔37bが開口することになり、導入油量が増える。さらに第三の透孔37cも開口すれば、この三つの透孔から進入する圧油を受け入れることになる。透孔の開口面積は三段階に分けて大きくなるから、流入油量は次第に急増加する。この例では、高圧用ピストン3Aが透孔37を開閉する「滑りスプール」としても機能していることが分かる。   The pressure oil from the communication path 36 is buffered by a low pressure accumulator structure, but when entering the high pressure stage, the pressure oil enters the high pressure oil chamber 11A through the low pressure oil chamber 12A. The high pressure piston 3A is in the home position as shown in FIG. 9A, but a slight amount of pressurized oil is introduced into the high pressure oil chamber from the first through hole 37a. When the piston starts to be displaced, the second through hole 37b shown in (b) is opened, and the amount of introduced oil increases. Further, if the third through hole 37c is opened, the pressure oil entering from the three through holes is received. Since the opening area of the through-hole increases in three stages, the amount of inflow oil gradually increases. In this example, it can be seen that the high pressure piston 3 </ b> A also functions as a “sliding spool” that opens and closes the through hole 37.

このようなアキュムレータ装置においては小径ボス部がないから、それに形成される圧油給排路も存在しないが、上記したごとく周方向には散らばるが軸方向には列をなすように配置された透孔列がそれに類する作用を実現し、高圧用ピストンの挙動もほぼ同様となる。ちなみに、図10の(a)に示したようにチェックバルブ25を連通路36と高圧用油室11Aに通じる補助路24に介装しておくこともでき、それによる給排補助作用も先に説明したところと異なるところはない。(b)は高圧用ピストン3Bのストロークエンドを第一透孔37aを超えて端部カバー32に寄せた例である。作用として特段の違いが生じるものでないが、ピストンの異なる変形例を教えている。   In such an accumulator device, since there is no small-diameter boss portion, there is no pressure oil supply / discharge passage formed in the accumulator device, but as described above, it is scattered in the circumferential direction but arranged in rows in the axial direction. The hole array realizes a similar action, and the behavior of the high-pressure piston is almost the same. Incidentally, as shown in FIG. 10 (a), the check valve 25 can be interposed in the auxiliary passage 24 that communicates with the communication passage 36 and the high pressure oil chamber 11A. There is no difference from what has been described. (B) is an example in which the stroke end of the high-pressure piston 3B is moved to the end cover 32 beyond the first through hole 37a. Although there is no particular difference in operation, it teaches different variations of the piston.

図11は内筒部材31を境にして形成されるアキュムレータの低圧用および高圧用を逆にした例である。連通路39は一直線となっているが、低圧用油室12Bのみに通じている点で前例と変わりはない。低圧用ピストン5Dの外周シール機構40が透孔37と擦れないように変形されているのも、図9と同じ思想である。高圧用ピストン3Cが(a)から(b)に変位する間に透孔37a,37b,37cを次々と開いて流通量を増やすことも、先の説明と変わらない。   FIG. 11 shows an example in which the accumulator formed with the inner cylinder member 31 as a boundary is reversed for low pressure and high pressure. The communication passage 39 is straight, but is not different from the previous example in that it communicates only with the low pressure oil chamber 12B. It is the same idea as FIG. 9 that the outer peripheral seal mechanism 40 of the low pressure piston 5D is deformed so as not to rub against the through hole 37. While the high pressure piston 3C is displaced from (a) to (b), the through holes 37a, 37b, and 37c are opened one after another to increase the flow rate, which is the same as described above.

図12は、チェックバルブ25を設けた例である。補助路24Aの形は図7などとは少し異なるが、高圧用油室11Bに流す点で機能的に同じである。それゆえ、低圧用油室12Bから出る補助路24Bにチェックバルブルブ25Aを介装することもできる。これらの例におけるチェックバルブは圧油の導入促進と、導出抑制機能を発揮するから、高圧用ピストンの加減速調整に寄与することは先に述べたことと特に異ならない。   FIG. 12 is an example in which a check valve 25 is provided. The shape of the auxiliary path 24A is slightly different from that of FIG. 7 and the like, but is functionally the same in that it flows into the high pressure oil chamber 11B. Therefore, the check valve valve 25A can be interposed in the auxiliary passage 24B exiting from the low pressure oil chamber 12B. Since the check valve in these examples exhibits the function of promoting the introduction of pressure oil and the function of suppressing the derivation, it contributes to the acceleration / deceleration adjustment of the high pressure piston.

本発明は以上の説明から分かるように、低圧用アキュムレータと高圧用アキュムレータに作動油圧の大きさを二段階に分けて収容させ、油圧回路における低圧段階および高圧段階それぞれにおける一時的な昇圧を異なるばね定数のアキュムレータによって緩衝させることができる。そして、複合アキュムレータとしての装置の長さや嵩を減らして小型化を図ることにできるようになったが、一体化させるゆえに遭遇するピストンの不安定な挙動も解消され、極めて実用性の高い複合アキュムレータとすることができる。   As can be seen from the above description, the present invention allows the low pressure accumulator and the high pressure accumulator to accommodate the size of the hydraulic pressure in two stages, and the temporary pressure increase in the low pressure stage and the high pressure stage in the hydraulic circuit is different. It can be buffered by a constant accumulator. In addition, although the length and bulk of the device as a composite accumulator can be reduced and the size can be reduced, the unstable behavior of the piston that is encountered due to the integration is eliminated, and the composite accumulator is extremely practical. It can be.

本発明に係る二段圧吸収式ピストン型アキュムレータ装置の構成断面図。1 is a cross-sectional view of a two-stage pressure absorption piston accumulator device according to the present invention. 油圧回路接続前の状態および低圧段階での圧油収容状態を示す動作図。The operation | movement figure which shows the state before a hydraulic circuit connection, and the pressure oil accommodation state in a low pressure stage. 高圧段階での圧油収容状態を示す動作図およびチェックバルブ介装図。The operation | movement figure and check valve interposition figure which show the pressure oil accommodation state in a high pressure stage. 異なる例の断面図。Sectional drawing of a different example. さらに異なる例の断面図。Furthermore, sectional drawing of a different example. 二重シェルによる複合アキュムレータ装置の断面図。Sectional drawing of the composite accumulator apparatus by a double shell. 二重シェル型アキュムレータの変形例。A modification of the double shell accumulator. 二重シェル型アキュムレータの異なる変形例。Different modifications of the double shell accumulator. 内筒部材に透孔を備えさせた二重シェル型アキュムレータの断面図。Sectional drawing of the double shell type | mold accumulator which made the inner cylinder member provide the through-hole. 透孔を備える複合アキュムレータの変形例。The modification of a composite accumulator provided with a through-hole. 高圧用アキュムレータ構造を内筒部材の外方に配置した断面図。Sectional drawing which has arrange | positioned the accumulator structure for high voltage | pressure outside the inner cylinder member. 内筒部材の外方に高圧用アキュムレータ構造を設けた変形例。The modification which provided the accumulator structure for high voltage | pressure outside the inner cylinder member. 従来技術としての複圧吸収可能なアキュムレータ装置の構成図。The block diagram of the accumulator apparatus which can absorb double pressure as a prior art. 高圧段階に入った作動説明図。The operation explanatory view which entered the high pressure stage.

符号の説明Explanation of symbols

1,1A…複合アキュムレータ装置、2,2A…高圧用アキュムレータ構造、3,3A,3B,3C…高圧用ピストン、4,4A…低圧用アキュムレータ構造、5,5A,5B,5C,5D…低圧用ピストン、6,6A…仕切部材、9,10…ガス室側シェルカバー、11,11A,11B…高圧用油室、12,12A,12B…低圧用油室、13…連通路、17,17A…高圧用ガス室、18,18A…低圧用ガス室、19,19A…小径ボス部、20…嵌挿凹部、23…環状路(圧油給排路)、24,24A,24B…補助路、25,25A…チェックバルブ、26…凹み路(圧油給排路)、27,27A…導孔路(圧油給排路)、31…内筒部材、32,33…シェルカバー(端部カバー)、34…外筒部材、35,36…連通路、37…透孔、37a…第一の透孔、37b…第二の透孔、37c…第三の透孔、39…連通路。
DESCRIPTION OF SYMBOLS 1,1A ... Composite accumulator device, 2, 2A ... High pressure accumulator structure, 3, 3A, 3B, 3C ... High pressure piston, 4, 4A ... Low pressure accumulator structure, 5, 5A, 5B, 5C, 5D ... Low pressure Piston, 6, 6A ... partition member, 9, 10 ... gas chamber side shell cover, 11, 11A, 11B ... high pressure oil chamber, 12, 12A, 12B ... low pressure oil chamber, 13 ... communication path, 17, 17A ... Gas chamber for high pressure, 18, 18A ... Gas chamber for low pressure, 19, 19A ... Small diameter boss, 20 ... Insertion recess, 23 ... Annular path (pressure oil supply / discharge path), 24, 24A, 24B ... Auxiliary path, 25 , 25A ... check valve, 26 ... recessed path (pressure oil supply / discharge path), 27, 27A ... guide hole path (pressure oil supply / discharge path), 31 ... inner cylinder member, 32, 33 ... shell cover (end cover) , 34 ... outer cylinder member, 35, 36 ... communication path, 3 ... through hole, 37a ... first through hole, 37b ... second through hole, 37c ... third hole, 39 ... communicating passage.

Claims (6)

油圧回路に発生した一時的な圧力上昇を吸収するため、作動油圧の大きさを二段階に分けて収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を軽減できるようにした複圧吸収可能なアキュムレータにおいて、
仕切部材を境にして一方の側に高圧用アキュムレータ構造が、他方の側に低圧用アキュムレータ構造が形成され、
各アキュムレータ構造のピストンと前記仕切部材との間に油室を、ピストンとアキュムレータシェルの各端部カバーとの間にガス室を画成させ、
前記仕切部材には、各油室と外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路が形成され、
高圧用ピストンの油室側には、小径ボス部が前記連通路の開口に向けて突出して形成され、
高圧用油室に臨む連通路の開口部には前記小径ボス部を出入りさせる嵌挿凹部が設けられ、低圧段階と高圧段階との切り替わり時の高圧用ピストンを滑らかにまた安定して挙動させることができるようにしたことを特徴とする二段圧吸収式ピストン型アキュムレータ装置。
In order to absorb the temporary increase in pressure generated in the hydraulic circuit, the capacity of the hydraulic circuit is divided into two stages and the capacity is changed to reduce the pressure increase in each of the low pressure and high pressure stages of the hydraulic circuit. In an accumulator capable of absorbing pressure,
A high pressure accumulator structure is formed on one side of the partition member, and a low pressure accumulator structure is formed on the other side.
An oil chamber is defined between the piston of each accumulator structure and the partition member, and a gas chamber is defined between the piston and each end cover of the accumulator shell,
The partition member is connected to each oil chamber and an external hydraulic circuit, and is formed with a communication path for supplying and discharging hydraulic oil according to the increase and decrease of the circuit pressure,
On the oil chamber side of the high-pressure piston, a small-diameter boss is formed protruding toward the opening of the communication path,
The opening of the communication passage that faces the high-pressure oil chamber is provided with a fitting insertion recess that allows the small-diameter boss portion to enter and exit, so that the high-pressure piston behaves smoothly and stably when switching between the low-pressure stage and the high-pressure stage. A two-stage pressure-absorbing piston type accumulator device characterized in that
油圧回路に発生した一時的な圧力上昇を吸収するため、作動油圧の大きさを二段階に分けて収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を軽減できるようにした複圧吸収可能なアキュムレータにおいて、
内筒部材を境にして内方側に高圧用アキュムレータ構造が、外方側にリング状ピストンを備えた低圧用アキュムレータ構造が形成され、
内筒部材と外筒部材を同心状に保持する一方の端部カバーと各アキュムレータ構造のピストンとの間に油室を、他方の端部カバーとピストンとの間にガス室を画成させ、
一方の端部カバーには、各油室と外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路が形成され、
高圧用ピストンの油室側には、小径ボス部が前記連通路の開口に向けて突出して形成され、
高圧用油室に臨む連通路の開口部には前記小径ボス部を出入りさせる嵌挿凹部が設けられ、低圧段階と高圧段階との切り替わり時の高圧用ピストンを滑らかにまた安定して挙動させることができるようにしたことを特徴とする二段圧吸収式ピストン型アキュムレータ装置。
In order to absorb the temporary increase in pressure generated in the hydraulic circuit, the capacity of the hydraulic circuit is divided into two stages and the capacity is changed to reduce the pressure increase in each of the low pressure and high pressure stages of the hydraulic circuit. In an accumulator capable of absorbing pressure,
A high pressure accumulator structure is formed on the inner side with the inner cylinder member as a boundary, and a low pressure accumulator structure having a ring-shaped piston is formed on the outer side,
An oil chamber is defined between one end cover that concentrically holds the inner cylinder member and the outer cylinder member and the piston of each accumulator structure, and a gas chamber is defined between the other end cover and the piston,
One end cover is connected to each oil chamber and an external hydraulic circuit, and a communication passage is formed to supply and discharge hydraulic oil according to the increase and decrease of the circuit pressure.
On the oil chamber side of the high-pressure piston, a small-diameter boss is formed protruding toward the opening of the communication path,
The opening of the communication passage that faces the high-pressure oil chamber is provided with a fitting insertion recess that allows the small-diameter boss portion to enter and exit, so that the high-pressure piston behaves smoothly and stably when switching between the low-pressure stage and the high-pressure stage. A two-stage pressure-absorbing piston type accumulator device characterized in that
前記小径ボス部には、嵌挿凹部を出入りするとき前記連通路と高圧用油室との間を移行する作動油量の増減を補助し、低圧段階から高圧段階へおよびその逆への遷移における高圧用ピストンの動きをより一層滑らかにするための圧油給排路が形成されていることを特徴とする請求項1または請求項2に記載された二段圧吸収式ピストン型アキュムレータ装置。   The small-diameter boss portion assists increase / decrease in the amount of hydraulic fluid that moves between the communication passage and the high-pressure oil chamber when entering / exiting the insertion recess, and in the transition from the low pressure stage to the high pressure stage and vice versa. 3. The two-stage pressure absorption piston type accumulator device according to claim 1, wherein a pressure oil supply / discharge passage for further smoothing the movement of the high pressure piston is formed. 油圧回路に発生した一時的な圧力上昇を吸収するため、作動油圧の大きさを二段階に分けて収容量を変更し、油圧回路における低圧段階および高圧段階それぞれにおける昇圧を軽減できるようにした複圧吸収可能なアキュムレータにおいて、
内筒部材を境にして内方側に高圧用アキュムレータ構造が、外方側にリング状ピストンを備えた低圧用アキュムレータ構造が形成され、
内筒部材と外筒部材を同心状に保持する一方の端部カバーと各アキュムレータのピストンとの間に油室を、他方の端部カバーとピストンとの間にガス室を画成させ、
一方の端部カバーには、低圧用油室と外部の油圧回路とを繋ぎ、回路圧の昇降に応じて作動油を給排させる連通路が形成され、
前記内筒部材には、低圧用油室と高圧用油室との間で作動油を流通させる直径の異なる透孔が前記一方の端部カバーの近傍に設けられ、
該透孔は、高圧用ピストンが一方の端部カバー近くで変位するとき、両油室間で移行する作動油量を滑らかに増減し、低圧段階と高圧段階との切り替わり時の高圧用ピストンの挙動が安定したものとなるように、前記一方の端部カバーに近接するにつれて孔径が小さく与えられていることを特徴とする二段圧吸収式ピストン型アキュムレータ装置。
In order to absorb the temporary increase in pressure generated in the hydraulic circuit, the capacity of the hydraulic circuit is divided into two stages and the capacity is changed to reduce the pressure increase in each of the low pressure and high pressure stages of the hydraulic circuit. In an accumulator capable of absorbing pressure,
A high pressure accumulator structure is formed on the inner side with the inner cylinder member as a boundary, and a low pressure accumulator structure having a ring-shaped piston is formed on the outer side,
An oil chamber is defined between one end cover that holds the inner cylinder member and the outer cylinder member concentrically and the piston of each accumulator, and a gas chamber is defined between the other end cover and the piston,
One end cover is connected to a low pressure oil chamber and an external hydraulic circuit, and a communication passage is formed to supply and discharge hydraulic oil according to the increase and decrease of the circuit pressure.
The inner cylinder member is provided with a through hole having a different diameter for allowing the working oil to flow between the low pressure oil chamber and the high pressure oil chamber in the vicinity of the one end cover,
When the high-pressure piston is displaced near one end cover, the through hole smoothly increases or decreases the amount of hydraulic oil that moves between the two oil chambers, and the high-pressure piston is switched between the low-pressure stage and the high-pressure stage. A two-stage pressure-absorbing piston type accumulator device characterized in that the hole diameter is given smaller as it approaches the one end cover so that the behavior becomes stable.
前記内筒部材を境にして形成されるアキュムレータの低圧用および高圧用を逆にしたことを特徴とする請求項4に記載された二段圧吸収式ピストン型アキュムレータ装置。   5. The two-stage pressure absorption piston type accumulator device according to claim 4, wherein the low-pressure and high-pressure accumulators formed with the inner cylinder member as a boundary are reversed. 高圧用油室に通じる補助路を設け、この補助路に油圧急上昇時の初期圧油を高圧用油室に導入するチェックバルブが介装されていることを特徴する請求項1ないし請求項5のいずれか一項に記載された二段圧吸収式ピストン型アキュムレータ装置。
6. An auxiliary passage communicating with the high pressure oil chamber is provided, and a check valve for introducing the initial pressure oil when the hydraulic pressure suddenly increases into the auxiliary passage is interposed in the auxiliary passage. A two-stage pressure absorption type piston accumulator device according to any one of the preceding claims.
JP2005035939A 2005-02-14 2005-02-14 Two-stage pressure absorption piston type accumulator Active JP4759282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035939A JP4759282B2 (en) 2005-02-14 2005-02-14 Two-stage pressure absorption piston type accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035939A JP4759282B2 (en) 2005-02-14 2005-02-14 Two-stage pressure absorption piston type accumulator

Publications (2)

Publication Number Publication Date
JP2006220252A true JP2006220252A (en) 2006-08-24
JP4759282B2 JP4759282B2 (en) 2011-08-31

Family

ID=36982710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035939A Active JP4759282B2 (en) 2005-02-14 2005-02-14 Two-stage pressure absorption piston type accumulator

Country Status (1)

Country Link
JP (1) JP4759282B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
CN109236761A (en) * 2018-10-19 2019-01-18 广东力源液压机械有限公司 A kind of hydraulic energy-accumulating control method and its hydraulic accumulating device
CN109404371A (en) * 2018-06-28 2019-03-01 吉林省正轩车架有限公司 A kind of hydraulic system can be shortened interior high-pressure molding process cycle
EP4160025A1 (en) * 2021-09-30 2023-04-05 Deere & Company Accumulator assembly
EP4242470A1 (en) * 2022-03-11 2023-09-13 Deere & Company Accumulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140305A (en) * 1982-02-15 1983-08-20 Matsushita Electric Ind Co Ltd Hydrocarbon fuel reformer
JPS63308202A (en) * 1987-04-14 1988-12-15 ゲゼルシヤフト フユール ヒドラウリーク―ツベヘア ミツト ベシュレンクター ハフツング Piston-cylinder unit
JPH08296692A (en) * 1995-04-26 1996-11-12 Kayaba Ind Co Ltd Frequency-sensitive damping force adjusting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140305A (en) * 1982-02-15 1983-08-20 Matsushita Electric Ind Co Ltd Hydrocarbon fuel reformer
JPS63308202A (en) * 1987-04-14 1988-12-15 ゲゼルシヤフト フユール ヒドラウリーク―ツベヘア ミツト ベシュレンクター ハフツング Piston-cylinder unit
JPH08296692A (en) * 1995-04-26 1996-11-12 Kayaba Ind Co Ltd Frequency-sensitive damping force adjusting device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN109404371A (en) * 2018-06-28 2019-03-01 吉林省正轩车架有限公司 A kind of hydraulic system can be shortened interior high-pressure molding process cycle
CN109236761A (en) * 2018-10-19 2019-01-18 广东力源液压机械有限公司 A kind of hydraulic energy-accumulating control method and its hydraulic accumulating device
EP4160025A1 (en) * 2021-09-30 2023-04-05 Deere & Company Accumulator assembly
EP4242470A1 (en) * 2022-03-11 2023-09-13 Deere & Company Accumulator

Also Published As

Publication number Publication date
JP4759282B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759282B2 (en) Two-stage pressure absorption piston type accumulator
JP5775368B2 (en) Relief valve
KR100764119B1 (en) Pilot poppet type relief valve
USRE41861E1 (en) Decoupled check-relief valve
JP7142602B2 (en) relief valve
US20120255432A1 (en) Multi-stage hydraulic cylinder assembly
CN107850168A (en) Orifice valve and the buffer for possessing orifice valve
JP2010101336A (en) Spool valve
US6899206B2 (en) Air cylinder with high frequency shock absorber and accelerator
JP4252178B2 (en) Relief valve
KR102531495B1 (en) fluid pressure cylinder
TWI640702B (en) Cylinder device
CN108150472B (en) A kind of buffer overflow valve
JP2006097880A (en) Hydraulic damper
JP4960367B2 (en) Valve with buffered opening system
JP2023534257A (en) Unloading valve and compound valve buffer cylinder
JP2008281208A (en) Relief valve
CN112344068B (en) Buffer valve for realizing stepless pressure
US5163352A (en) Cylinder control unit
JPH09264420A (en) Operation device for transmission
US11592073B2 (en) Variable load hydraulic control device
CN115698520B (en) Delay valve and flow controller
JP2005127478A (en) Hydraulic damper
JP4064200B2 (en) Damping device
JP7360152B2 (en) cylinder device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4759282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250