JP2006210824A - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element Download PDF

Info

Publication number
JP2006210824A
JP2006210824A JP2005023897A JP2005023897A JP2006210824A JP 2006210824 A JP2006210824 A JP 2006210824A JP 2005023897 A JP2005023897 A JP 2005023897A JP 2005023897 A JP2005023897 A JP 2005023897A JP 2006210824 A JP2006210824 A JP 2006210824A
Authority
JP
Japan
Prior art keywords
layer
electrode
light emitting
nitride semiconductor
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023897A
Other languages
Japanese (ja)
Other versions
JP5255745B2 (en
Inventor
Takahide Shiroichi
隆秀 城市
Hiroaki Okagawa
広明 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2005023897A priority Critical patent/JP5255745B2/en
Publication of JP2006210824A publication Critical patent/JP2006210824A/en
Application granted granted Critical
Publication of JP5255745B2 publication Critical patent/JP5255745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large chip type GaN based light emitting element having a light emitting pattern unlike before, for which etching workability is improved. <P>SOLUTION: A laminated body S is formed on a substrate 1, a plurality of recessed parts h are formed on the laminated body S from an upper surface, and an n-type layer is exposed inside each recess. A p electrode P2 is provided in the remaining region of the upper surface of the laminated body S, and the p electrode is covered with an insulator layer m. The n-type layer exposed inside each recess is provided with an n electrode P1, and n electrodes are connected with each other by a conductor layer P3 connecting the recesses with each other over the insulator layer m, and the large chip type nitride semiconductor light emitting element is attained for which a light emitter is spread in a mesh shape. The laminated body S is composed of a nitride semiconductor and is provided with a laminated structure for which the n-type layer 2 and a p-type layer 4 hold a light emitting layer 3 therebetween for instance, and the n-type layer is positioned on a substrate side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、素子1つ当りの外周形状および発光面積が元来の1チップよりも大きい、所謂ラージチップとして形成された窒化物半導体発光素子に関し、とりわけ、基板の裏面を光取出し面とするフリップチップ型として有用な窒化物半導体発光素子に関する。   The present invention relates to a nitride semiconductor light emitting device formed as a so-called large chip having an outer peripheral shape per device and a light emitting area larger than the original one chip, and in particular, a flip having a back surface of a substrate as a light extraction surface. The present invention relates to a nitride semiconductor light emitting device useful as a chip type.

窒化物半導体発光素子(以下「GaN系発光素子」または単に「発光素子」とも呼ぶ)は、素子構造の主要部分(発光層等)に窒化物半導体を用いた発光素子である。
図9は、従来のGaN系発光素子の代表的な素子構造を概略的に示した図であって、絶縁体であるサファイア基板100上に、窒化物半導体からなるn型層101、発光層102、p型層103がこの順に積層成長しており、n型層、p型層に、それぞれn電極P10、p電極P20が設けられている。
サファイア基板面には、結晶品質を向上させ、光取り出し効率を改善する等の目的で、バッファ層や凹凸構造が設けられ、また、窒化物半導体層は、さらに専用のコンタクト層やクラッド層、量子井戸構造などへと多層に細分化されるが、それら細部の描写は省略している。
A nitride semiconductor light-emitting device (hereinafter also referred to as “GaN-based light-emitting device” or simply “light-emitting device”) is a light-emitting device using a nitride semiconductor as a main part of the device structure (such as a light-emitting layer).
FIG. 9 is a diagram schematically showing a typical element structure of a conventional GaN-based light emitting element. On a sapphire substrate 100 which is an insulator, an n-type layer 101 made of a nitride semiconductor and a light emitting layer 102 are formed. The p-type layer 103 is stacked and grown in this order, and the n-type layer and the p-type layer are provided with the n-electrode P10 and the p-electrode P20, respectively.
The surface of the sapphire substrate is provided with a buffer layer and a concavo-convex structure for the purpose of improving the crystal quality and improving the light extraction efficiency, and the nitride semiconductor layer further includes a dedicated contact layer, cladding layer, quantum Although it is subdivided into multiple layers such as a well structure, the details are not shown.

n電極P10の一般的な形成プロセスは、積層体(n型層101/発光層102/p型層103)を上面から凹状にエッチングすることでp型層および発光層を部分的に除去し、n型層を露出させてn電極形成面とし、このn電極形成面上にn電極P10を形成するという手順である。n電極P10は、n型層とオーミック接触している。図9の例では、発光層から発せられた光L10が、基板100の裏面から外界に出ている。
また、p電極P20は、前記のn電極形成面を形成した後、残りのp型層上のほぼ全面に、p型層とオーミック接触するp電極を形成することにより構成される。
A general formation process of the n-electrode P10 is to partially remove the p-type layer and the light-emitting layer by etching the stacked body (n-type layer 101 / light-emitting layer 102 / p-type layer 103) from the upper surface into a concave shape, In this procedure, the n-type layer is exposed to form an n-electrode forming surface, and an n-electrode P10 is formed on the n-electrode forming surface. The n electrode P10 is in ohmic contact with the n-type layer. In the example of FIG. 9, the light L <b> 10 emitted from the light emitting layer is emitted from the back surface of the substrate 100 to the outside.
The p-electrode P20 is formed by forming a p-electrode in ohmic contact with the p-type layer on almost the entire surface of the remaining p-type layer after forming the n-electrode formation surface.

今日では、1つの素子で素子複数個分の発光面積または発光量をカバーするために、1つの素子の外形を大きくし発光層の面積を大きくする(即ち、層厚方向に垂直な横方向へと拡張する)ラージチップ化の試みがなされている。
しかし、GaN系発光素子は上記のような素子構造であるために、例えば、図9のチップを横方向に単純に拡張してラージチップ化したとしても、n型層内における横方向の電流拡散が不十分となり、その結果、発光層での発光も不均一になり、大きさに見合うだけの発光量は得られない。
Today, in order to cover the light emission area or light emission amount of a plurality of elements with one element, the outer shape of one element is increased and the area of the light emitting layer is increased (that is, in the lateral direction perpendicular to the layer thickness direction). Attempts have been made to make large chips.
However, since the GaN-based light emitting device has the above-described device structure, for example, even if the chip of FIG. 9 is simply expanded in the horizontal direction to form a large chip, the current diffusion in the horizontal direction in the n-type layer As a result, light emission in the light-emitting layer becomes non-uniform, and a light emission amount corresponding to the size cannot be obtained.

そこで、発光に係るp/n構造部分(発光現象が生じるように、n型層、発光層、p型層が積層された部分;以下、発光構造部)を区分し、区分された各発光構造部に対して給電を行う構造が提案されている(例えば、特許文献1、特許文献2)。   Therefore, the p / n structure portion related to light emission (a portion where an n-type layer, a light-emitting layer, and a p-type layer are stacked so as to cause a light-emitting phenomenon; hereinafter referred to as a light-emitting structure portion) is divided, and each divided light-emitting structure is divided. A structure for supplying power to a part has been proposed (for example, Patent Document 1 and Patent Document 2).

特許文献1に開示された発光素子の構造を概略的に説明すると、該文献の図1、2に示されているとおり、ラージチップとなり得る大面積の基板を土台とし、この土台の上に、複数(具体的には4つ)の凸状の発光構造部を設け、これらが1つのn電極を共有するという構成である。このような素子構造は、図9のチップを複数並べて一体化した構造であると言える。
このようなラージチップの素子構造は、土台の上に発光構造部が複数突起しているために、各発光構造部の側面全周にわたって発光層の層端面が露出している。そのため、発光層で発生した光のうちのかなりの量の光が層端面から素子外へ漏れる。
よって、このような発光素子をフリップチップ実装して基板裏面から光を取り出そうとすると、発光構造部の側面からの漏洩の分だけ基板裏面から取り出される利用可能な光の量が少なくなるという問題がある。
Schematically explaining the structure of the light-emitting element disclosed in Patent Document 1, as shown in FIGS. 1 and 2 of the document, a large area substrate that can be a large chip is used as a base, and on this base, A plurality (specifically, four) of convex light emitting structures are provided, and these share one n-electrode. It can be said that such an element structure is a structure in which a plurality of chips shown in FIG.
In such an element structure of a large chip, since a plurality of light emitting structure portions protrude on the base, the layer end face of the light emitting layer is exposed over the entire side surface of each light emitting structure portion. Therefore, a considerable amount of light generated in the light emitting layer leaks out of the element from the layer end face.
Therefore, when such a light emitting device is flip-chip mounted and light is extracted from the back surface of the substrate, there is a problem that the amount of available light extracted from the back surface of the substrate is reduced by the amount of leakage from the side surface of the light emitting structure. is there.

特許文献2には、上記した特許文献1の問題を解決するラージチップの発光素子が開示されている。
特許文献2に開示されたラージチップの素子構造を概略的に説明すると、図10(a)に示すように、大面積の基板200を共通の土台とし、この土台の上に凸状(図の例では六角錘台形状の発光構造部210が多数形成されている。各発光構造部から発せられた光(太い実線の矢印、隠れ線の矢印で示している)L10は、それぞれに図の下方に向っており、基板200の裏面から外界に出射されている。
特許文献2の態様は、単発的な発光構造部を寄せ集めた点では特許文献1と同様であるが、特許文献2では、p電極によって各発光構造部の上面のみならず側面をも覆っている。本願の図10(a)では詳細な図示を省略しているが、特許文献2の図13には、p電極とn電極とが短絡しないように絶縁膜が設けられ、p電極がラージチップの素子上面全体を覆っている積層構造が詳細に示されている。p電極が全体を覆うことによって、発光層の層端面から漏洩しようとする光が素子内部へ反射し、光の漏洩のロスが改善され、基板の裏面から光を取り出す場合の光の量の減少も改善される。
Patent Document 2 discloses a large-chip light-emitting element that solves the problem of Patent Document 1 described above.
The element structure of the large chip disclosed in Patent Document 2 will be schematically described. As shown in FIG. 10A, a large-area substrate 200 is used as a common base, and a convex shape (shown in the figure) is formed on this base. In the example, a large number of hexagonal pyramid-shaped light emitting structure portions 210 are formed, and light L10 (indicated by thick solid line arrows and hidden line arrows) L10 emitted from each light emitting structure portion is below the figure. It faces and is emitted from the back surface of the substrate 200 to the outside.
The aspect of Patent Document 2 is the same as that of Patent Document 1 in that the single light emitting structure portions are gathered together. However, in Patent Document 2, not only the upper surface of each light emitting structure portion but also the side surfaces are covered by the p-electrode. Yes. Although detailed illustration is omitted in FIG. 10A of the present application, in FIG. 13 of Patent Document 2, an insulating film is provided so that the p electrode and the n electrode are not short-circuited, and the p electrode is a large chip. The layered structure covering the entire top surface of the device is shown in detail. By covering the entire surface with the p-electrode, the light leaking from the end face of the light emitting layer is reflected inside the device, the loss of light leakage is improved, and the amount of light when extracting light from the back surface of the substrate is reduced. Will be improved.

特許文献2の例とは逆に、n電極を反射層として利用する態様が特許文献3に記載されている。特許文献3では、1つのチップの発光構造部の側面をn電極で覆っている。ただし、特許文献3の発明は、元来の小さい単一チップに関するものであって、ラージチップについては全く想定していない。   Contrary to the example of Patent Document 2, an aspect in which the n electrode is used as a reflective layer is described in Patent Document 3. In Patent Document 3, the side surface of the light emitting structure of one chip is covered with an n electrode. However, the invention of Patent Document 3 relates to an original small single chip and does not assume a large chip at all.

本発明者等の検討によれば、特許文献1、2のような従来のラージチップの素子構造は、いずれの態様も、複数の独立した小突起状の発光構造部の集合であって、特許文献3に記載されたような小さい1チップを数多く寄せ集めたようなものである。
特許文献2では、本願の図10(a)に示すように、凸状の発光構造部を、正三角形の頂点に配置して細密の配置パターンとして寄せ集めている。このようなラージチップの発光面を見た場合、その発光パターンは、図10(b)に模式的に示すように、点状の光源が分散したパターンである。図10(b)において、ハッチングの無い白い部分が発光している部分(発光構造部が存在する部分)であり、ハッチングを施した部分が発光していない暗い部分(発光構造部が削除され、n電極が設けられている部分)である。
According to the study by the present inventors, the conventional large chip element structure as disclosed in Patent Documents 1 and 2 is a collection of a plurality of independent small protrusion-like light emitting structure portions. It is like collecting many small chips as described in Reference 3.
In patent document 2, as shown to Fig.10 (a) of this application, the convex light emission structure part is arrange | positioned at the vertex of an equilateral triangle, and is gathered up as a precise | minute arrangement pattern. When the light emitting surface of such a large chip is viewed, the light emission pattern is a pattern in which dotted light sources are dispersed as schematically shown in FIG. In FIG. 10 (b), a white portion without hatching is a portion that emits light (portion where the light emitting structure portion exists), and a dark portion that does not emit light (the light emitting structure portion is deleted), a portion where an n-electrode is provided).

図10(b)のような点状の光源が分散した発光パターンとして発光させる構造では、次のような理由によって発光状態が不安定になり、さらには発光しなくなる可能性もある。
即ち、図10に示すような構造の素子では、発光量を大きくするためには凸状の発光構造部をより大きく確保しなければならず、そのために各発光構造部間に設けられるn電極が細くならざるをえない。その結果、導通が不安定となり、十分な電流拡散が阻害されるため、発光状態が不安定になる可能性がある。また、製造プロセス上においても、n電極が細くなると断線する可能性が高く歩留まりが悪化し、また製品化した後に断線する可能性もある。しかし、n電極のために十分広い領域を確保すれば、凸状の発光構造部が大型化できず、大きな発光量は得られない。
また、図10に示すような構造の素子を用いて、発光部を上側とし基板を下側としたワイヤーボンディング実装(通常姿勢での実装)を行う場合には、発光部で発生した熱を基板側に逃がす際の放熱性が基板の熱伝導性に左右されることになる。そのため、基板の材料としてサファイアのような熱伝導性の不十分なものを用いた場合には、発光部で発生した熱によって素子全体が熱くなり、光出力を低下させる事態を招く恐れがあった。
更に、図10に示すような構造の素子は、p層を上面にもつ独立した発光部が離散しているため、発光部を下側とし基板裏面を取り出し面とするフリップチップ実装(上下を反転させての実装)を行う場合には、次の問題が生じる。該問題とは、ボンディングにバンプを用いる場合には、発光部の数だけ多数のバンプを要するので、バンプを多数形成するための手間がかかること、さらにAuなど高価なバンプ材料を用いる場合には多数形成のためにコストが高くなることであり、AuSn共晶はんだを用いる場合には近接するn電極と接触する可能性があるため実装が非常に困難であるということである。
In the structure that emits light as a light emission pattern in which point light sources are dispersed as shown in FIG. 10B, the light emission state becomes unstable for the following reason, and there is a possibility that the light emission may not be performed.
That is, in the element having the structure as shown in FIG. 10, in order to increase the amount of light emission, it is necessary to secure a larger convex light emitting structure, and for this purpose, n electrodes provided between the light emitting structures are provided. It must be thin. As a result, conduction becomes unstable and sufficient current diffusion is hindered, so that the light emission state may become unstable. Also in the manufacturing process, if the n-electrode becomes thin, there is a high possibility of disconnection and the yield is deteriorated, and there is a possibility that the product is disconnected after being manufactured. However, if a sufficiently wide area is ensured for the n-electrode, the convex light emitting structure cannot be increased in size and a large amount of light emission cannot be obtained.
In addition, when wire bonding mounting (mounting in a normal posture) with the light emitting portion on the upper side and the substrate on the lower side using the element having the structure shown in FIG. 10, the heat generated in the light emitting portion is performed on the substrate. The heat dissipation when escaping to the side depends on the thermal conductivity of the substrate. Therefore, when a material having insufficient thermal conductivity such as sapphire is used as the material of the substrate, the entire element is heated by the heat generated in the light emitting section, which may cause a situation in which the light output is reduced. .
Furthermore, since the element having the structure shown in FIG. 10 has discrete light-emitting portions with the p layer on the top surface, flip-chip mounting with the light-emitting portion on the bottom and the back side of the substrate as the take-out surface (inverted upside down) The following problems arise when performing the implementation. The problem is that when bumps are used for bonding, as many bumps as the number of light emitting portions are required, so it takes time to form a large number of bumps. Furthermore, when using an expensive bump material such as Au. The cost is increased due to the formation of a large number, and in the case of using AuSn eutectic solder, there is a possibility of contact with adjacent n electrodes, which makes mounting very difficult.

また、上記のような従来のラージチップの素子構造では、基板上に全面的に形成された(n型層/発光層/p型層)積層体から、図10(a)のように小突起状の発光構造部が多数形成されるまで網目状にエッチングしなければならない。このような加工態様では、各発光構造部の側面全周を露出させねばならず、特に特許文献2の態様では、網目状の溝を基板が露出する深さまで形成しなければならないので、エッチングに多量のエネルギーを要し、また、エッチング時間も長くなり、製造効率や歩留が悪いという問題がある。
また、露出したn型層の層端面にn電極を形成する加工は、発光層やp型層との短絡が生じないように注意する必要があり、加工が困難である。
特開平10−275935「半導体発光素子」 特開2004−71644「窒化物半導体発光素子」 特開平11−340514「フリップチップ型光半導体素子」 特開2002−280611「半導体発光素子」
Further, in the element structure of the conventional large chip as described above, a small protrusion as shown in FIG. 10A is formed from the (n-type layer / light-emitting layer / p-type layer) laminate formed on the entire surface of the substrate. It must be etched in a mesh until a large number of light emitting structures are formed. In such a processing mode, the entire circumference of the side surface of each light emitting structure must be exposed. In particular, in the mode of Patent Document 2, a mesh-like groove must be formed to a depth at which the substrate is exposed. There is a problem that a large amount of energy is required, the etching time is long, and manufacturing efficiency and yield are poor.
In addition, the processing for forming the n-electrode on the exposed end face of the n-type layer needs to be careful not to cause a short circuit with the light emitting layer or the p-type layer, and is difficult to process.
Japanese Patent Laid-Open No. 10-275935 “Semiconductor Light Emitting Element” JP 2004-71644 “Nitride Semiconductor Light Emitting Element” Japanese Patent Application Laid-Open No. 11-340514 “Flip-Chip Optical Semiconductor Device” JP 2002-280611 “Semiconductor Light Emitting Element”

本発明の目的は、上記問題を解決し、従来に無い発光パターンを有し、エッチング加工性が改善され、特にフリップ実装タイプの素子として好ましい構造を有する、ラージチップ型のGaN系発光素子を提供する点にある。   An object of the present invention is to provide a large chip type GaN-based light emitting device that solves the above problems, has an unprecedented light emitting pattern, has improved etching processability, and has a particularly preferable structure as a flip mounting type device. There is in point to do.

本発明は、次の特徴を有するものである。
(1)基板上に窒化物半導体からなる積層体が形成され、該積層体中には、下側から順に、第一伝導型層、発光層、第二伝導型層が含まれている窒化物半導体発光素子であって、
該積層体の上面には凹部が複数形成され、各凹部内には第一伝導型層が露出しており、各凹部内の第一伝導型層の露出面には第一電極が接続され、
積層体の上面の残された領域には第二電極が設けられ、第二電極は、絶縁体層によって覆われており、
前記絶縁体層上を越えて凹部内同士を連絡する導体層によって、第一電極同士が互いに接続されている、窒化物半導体発光素子。
(2)当該窒化物半導体発光素子が、実装用基板に積層体が向くように姿勢を上下反転させて実装するフリップチップ型の素子である、上記(1)記載の窒化物半導体発光素子。
(3)上記の絶縁体層を越えて凹部内同士を結ぶ導体層が、第一電極自体が延伸し絶縁体層を越えて広がった第一電極層であって、
第二電極と外部との接続に用いられる端子部分を除いて、凹部の内面を含んだ積層体の上面全体が第一電極層によって覆われており、第一電極層と接触すべきでない部分は絶縁体層によって保護されている、上記(1)または(2)記載の窒化物半導体発光素子。
(4)第一伝導型層がn型層、第一電極がn電極であり、第二伝導型層がp型層、第二電極がp電極である、上記(1)〜(3)のいずれかに記載の窒化物半導体発光素子。
(5)基板の上面が凹凸面として加工され、窒化物半導体が該凹凸面を覆う層として成長し、積層体の最下層となっている、上記(1)記載の窒化物半導体発光素子。
(6)上記積層体の上面への凹部の配置パターンが、正三角形を最小構成単位とする細密の網状パターンの各正三角形の頂点に、凹部が形成された配置パターンである、上記(1)記載の窒化物半導体発光素子。
(7)凹部の開口形状が正六角形であって、その正六角形を構成する辺と、配置パターンとしての細密の網状パターンの最小構成単位である正三角形の辺とが、互いに直交するように、凹部の開口形状の正六角形の向きが決定されている、上記(6)記載の窒化物半導体発光素子。
The present invention has the following features.
(1) A laminated body made of a nitride semiconductor is formed on a substrate, and the laminated body includes a first conduction type layer, a light emitting layer, and a second conduction type layer in order from the lower side. A semiconductor light emitting device,
A plurality of recesses are formed on the upper surface of the laminate, the first conductivity type layer is exposed in each recess, the first electrode is connected to the exposed surface of the first conductivity type layer in each recess,
A second electrode is provided in the remaining region of the upper surface of the laminate, and the second electrode is covered with an insulator layer,
A nitride semiconductor light-emitting element in which first electrodes are connected to each other by a conductor layer that communicates with each other in the recesses over the insulator layer.
(2) The nitride semiconductor light-emitting element according to (1), wherein the nitride semiconductor light-emitting element is a flip-chip type element that is mounted with its posture turned upside down so that the stacked body faces the mounting substrate.
(3) The conductor layer connecting the recesses beyond the insulator layer is a first electrode layer in which the first electrode itself extends and extends beyond the insulator layer,
Except for the terminal portion used for connection between the second electrode and the outside, the entire top surface of the laminate including the inner surface of the recess is covered with the first electrode layer, and the portion that should not be in contact with the first electrode layer is The nitride semiconductor light-emitting device according to (1) or (2), which is protected by an insulator layer.
(4) The above-mentioned (1) to (3), wherein the first conductivity type layer is an n-type layer, the first electrode is an n-electrode, the second conductivity-type layer is a p-type layer, and the second electrode is a p-electrode. The nitride semiconductor light emitting device according to any one of the above.
(5) The nitride semiconductor light-emitting element according to (1), wherein the upper surface of the substrate is processed as an uneven surface, and the nitride semiconductor grows as a layer covering the uneven surface to form the bottom layer of the laminate.
(6) The arrangement pattern of the recesses on the top surface of the laminate is an arrangement pattern in which a recess is formed at the apex of each equilateral triangle of a fine mesh pattern having an equilateral triangle as a minimum structural unit. The nitride semiconductor light emitting device described.
(7) The opening shape of the concave portion is a regular hexagon, and the sides that form the regular hexagon and the sides of the regular triangle that is the minimum constituent unit of the fine mesh pattern as the arrangement pattern are orthogonal to each other, The nitride semiconductor light emitting device according to (6), wherein the direction of the regular hexagon of the opening shape of the recess is determined.

本発明の発光素子は、第一伝導型層、発光層、第二伝導型層によって構成された発光構造部を有する積層体に、単発的な凹部が分散して形成され、該凹部内には第一電極形成面(典型的な例ではn電極形成面)が形成されている。さらに、各凹部内の第一電極を互いに連絡するように、積層体の上を覆う導体層が設けられている。導体層と第二伝導型層との短絡や、導体層と第二電極との短絡が無いように、これらの間には絶縁体層を介在させている。
このような十分に広い導体層を設けた構造によって、安定した導通が得られる。したがって、導体層として発光素子全体にn電極を配置できるため、従来の問題点であったn電極が細くなることから生じる断線の問題を解決でき、n型層内での電流の拡散が良好となる。
The light emitting device of the present invention is formed by disperse discrete recesses in a laminate having a light emitting structure composed of a first conductive type layer, a light emitting layer, and a second conductive type layer. A first electrode formation surface (typically an n electrode formation surface) is formed. Furthermore, the conductor layer which covers the top of a laminated body is provided so that the 1st electrode in each recessed part may mutually communicate. An insulator layer is interposed between the conductor layer and the second conductivity type layer so that there is no short circuit between the conductor layer and the second conductivity type layer or between the conductor layer and the second electrode.
With such a structure provided with a sufficiently wide conductor layer, stable conduction can be obtained. Therefore, since the n electrode can be arranged as the conductor layer over the entire light emitting element, the problem of disconnection caused by the thinning of the n electrode, which has been a problem in the past, can be solved, and current diffusion in the n-type layer is good. Become.

従来のラージチップの発光パターンが、図10(b)に示すように、点状の光源が分散した発光パターンであったのに対して、本発明では、図2(b)に例示するように、ハッチングを施した暗い部分(第一電極形成面)が点状に分散し、白い発光部分が網目状に広がる発光パターンとしているので、発光構造部が従来よりも大型化(即ち、発光面積が増大)している。しかも、本発明の素子構造では、発光構造部と、n電極の導通経路とが、互いに阻害し合うことなくそれぞれ十分に大きな状態として素子構造内に両立し得る。これによって、大型化した発光構造部に十分に大きな電流が供給され、従来では達成できなかった高い発光効率と、高い発光出力を達成している。   The light emission pattern of the conventional large chip is a light emission pattern in which dot-like light sources are dispersed as shown in FIG. 10B, whereas in the present invention, as shown in FIG. Since the hatched dark part (first electrode formation surface) is dispersed in the form of dots and the white light emitting part spreads in a mesh pattern, the light emitting structure is larger than the conventional one (that is, the light emitting area is smaller). Increased). In addition, in the element structure of the present invention, the light emitting structure and the conduction path of the n electrode can both be sufficiently large in the element structure without interfering with each other. As a result, a sufficiently large current is supplied to the enlarged light emitting structure, and a high light emission efficiency and a high light emission output that could not be achieved in the past are achieved.

本発明では、第一電極形成面が分散しているのに対し、第一電極同士は互いに導通しているので、フリップチップ実装に適した構造となっている。これによって、少ないボンディングで全ての第一電極に給電することもできるので、構造が簡素化できるとともに、Auバンプ等を用いたボンディング工程の効率が良くなる。
また、本発明の素子によれば、発光部ほぼ全域をフリップチップ実装用基板と接触する様に実装する事が可能となるため、ラージチップで問題となる大電流注入時の発熱を抑制する事が出来る。この発熱を抑制する事で大電流投入時に出力が熱によって飽和する問題を解消する事が出来る。
In the present invention, the first electrode forming surfaces are dispersed, whereas the first electrodes are electrically connected to each other, so that the structure is suitable for flip chip mounting. Accordingly, power can be supplied to all the first electrodes with a small amount of bonding, so that the structure can be simplified and the efficiency of the bonding process using Au bumps or the like is improved.
In addition, according to the element of the present invention, since it is possible to mount the light emitting portion almost entirely in contact with the flip chip mounting substrate, it is possible to suppress heat generation during large current injection, which is a problem with large chips. I can do it. By suppressing this heat generation, it is possible to solve the problem that the output is saturated by heat when a large current is input.

本発明では、凹部内において発光構造部の側面に露出する発光層の端面が、絶縁膜を介して導体層(特にn電極材料自体)で覆われるために、発光層で発生した光の漏洩が抑制され、フリップチップ実装時に上側に位置する基板裏面から取り出される光の量が増加する。特に、導体層をn電極とした場合、材料として光反射率の高いAlを使用できるため、光取出し効率がさらに向上する。
また、従来のラージチップ型の素子、特に特許文献2の素子と比べると、本発明の素子では第一電極形成面を形成するためのエッチング深さを浅くでき、また、そのエッチング加工すべき形状も連なった網目ではなく単発的な穴であるために、エッチングに要するエネルギーや加工時間を削減できる。
In the present invention, the end face of the light emitting layer exposed on the side surface of the light emitting structure in the recess is covered with the conductor layer (especially the n-electrode material itself) via the insulating film, so that light leakage generated in the light emitting layer is prevented. It is suppressed, and the amount of light extracted from the back surface of the substrate located on the upper side during flip chip mounting increases. In particular, when the conductor layer is an n-electrode, Al having a high light reflectance can be used as a material, so that the light extraction efficiency is further improved.
In addition, compared with the conventional large chip type element, particularly the element of Patent Document 2, the element of the present invention can reduce the etching depth for forming the first electrode formation surface, and the shape to be etched. However, since it is not a continuous mesh but a single hole, energy and processing time required for etching can be reduced.

また、従来公知の発光素子では、発光層からの光は四方八方に広がるため、基板表面に到達した光は、所定角度で進入する光以外、屈折率の関係で全反射され、基板と反対側に取り出されるか、第一伝導型層にて多重反射されその後減衰するという問題点がある。
これに対して、基板の積層体側の表面を凹凸状にすることで、発光層からの光が基板表面で反射されずにそのまま通過するため、基板側からの発光量が増大し、フリップチップ実装に好適となる。
Further, in the conventionally known light emitting element, the light from the light emitting layer spreads in all directions, so that the light reaching the substrate surface is totally reflected due to the refractive index other than the light entering at a predetermined angle, and is opposite to the substrate Or is reflected multiple times by the first conductivity type layer and then attenuated.
On the other hand, by making the surface of the laminate side of the substrate uneven, the light from the light-emitting layer passes through the substrate without being reflected by the substrate surface, increasing the amount of light emitted from the substrate side and flip chip mounting. It becomes suitable for.

本発明でいう第一伝導型、第二伝導型は、どちらか一方がn型であり、残る他方がp型であればよい。以下、第一伝導型をn型とし、その第一伝導型層に設けられる第一電極をn電極として、本発明の発光素子を説明する。   One of the first conductivity type and the second conductivity type in the present invention may be n-type and the remaining other may be p-type. Hereinafter, the light-emitting element of the present invention will be described with the first conductivity type being n-type and the first electrode provided in the first conductivity-type layer being an n-electrode.

図1は、本発明による発光素子の構造の一例を示す断面図であって、説明のために端面だけを示している。同図に示すように、基板1上に、窒化物半導体からなる積層体Sが形成されており、該積層体S中には、下側から順に、第一伝導型層、発光層、第二伝導型層が含まれている。積層体Sには上面から凹部hが複数形成され、各凹部内にはn型層2が露出している。この凹部内におけるn型層の露出部が、n型電極とのオーミックコンタクト部分である。各凹部内に露出したn型層にはそれぞれn型電極P1が設けられている。
一方、積層体Sの上面に残された領域には、p型電極P2が設けられており、p型電極は、図2(a)に示すように、網目状をなして積層体上面に広がっている。さらに、p型電極P2は、その上に設けられる下記導体層と短絡しないように絶縁体層mによって覆われ保護されている(ボンディングのために必要な部分は露出している)。
そして、各凹部内のn型電極P1同士が、前記絶縁体層mを越えて凹部内同士を結ぶ導体層P3によって互いに接続されている。すなわち、図1において積層体上を覆う絶縁体層mの上に導体層P3が積層されている。
上記構成の素子構造によって、図2(b)に示すように、網目状に面発光するラージチップが得られる。
FIG. 1 is a cross-sectional view showing an example of the structure of a light emitting device according to the present invention, and only an end face is shown for explanation. As shown in the figure, a laminated body S made of a nitride semiconductor is formed on a substrate 1, and in the laminated body S, in order from the lower side, a first conductivity type layer, a light emitting layer, and a second layer. A conductive layer is included. A plurality of recesses h are formed in the laminate S from the upper surface, and the n-type layer 2 is exposed in each recess. The exposed portion of the n-type layer in the recess is an ohmic contact portion with the n-type electrode. An n-type electrode P1 is provided on each n-type layer exposed in each recess.
On the other hand, a p-type electrode P2 is provided in a region left on the upper surface of the stacked body S, and the p-type electrode forms a mesh shape and spreads on the upper surface of the stacked body as shown in FIG. ing. Further, the p-type electrode P2 is covered and protected by the insulator layer m so as not to short-circuit the following conductor layer provided thereon (the part necessary for bonding is exposed).
The n-type electrodes P1 in each recess are connected to each other by a conductor layer P3 that connects the recesses beyond the insulator layer m. That is, the conductor layer P3 is laminated on the insulator layer m covering the laminated body in FIG.
As shown in FIG. 2B, a large chip that emits light in a mesh shape is obtained by the element structure having the above configuration.

当該発光素子は、図1、2に示すように、結晶基板1とその上に形成された積層体Sとを有し、該積層体にn電極とp電極とが設けられて、発光ダイオード(LED)として機能するように構成されたものであればよく、付帯的な細部の素子構造に限定は無い。
該積層体は、窒化物半導体結晶層からなり(目的に応じて、窒化物半導体以外の材料からなる構造を含んでいてもよい)電流注入によって光を発生し得るようにn型層とp型層とが発光層を挟んだ積層構造を有するものであればよい。前記のような、n型層とp型層とが発光層を挟んだ積層構造としては、単一量子井戸(SQW)構造、多重量子井戸(MQW)構造、SQW構造がさらに積層された構造などの、種々の量子井戸構造や、DH構造などが挙げられる。
As shown in FIGS. 1 and 2, the light-emitting element includes a crystal substrate 1 and a stacked body S formed thereon, and an n-electrode and a p-electrode are provided on the stacked body, and a light-emitting diode ( Any device may be used as long as it is configured to function as an LED), and there is no limitation on the element structure of incidental details.
The stacked body is made of a nitride semiconductor crystal layer (may include a structure made of a material other than a nitride semiconductor, depending on the purpose), and an n-type layer and a p-type so that light can be generated by current injection. Any layer may be used as long as it has a laminated structure with a light emitting layer interposed therebetween. Examples of the stacked structure in which the n-type layer and the p-type layer sandwich the light emitting layer as described above include a single quantum well (SQW) structure, a multiple quantum well (MQW) structure, and a structure in which an SQW structure is further stacked. These include various quantum well structures and DH structures.

本発明でいう窒化物半導体とは、式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で決定される3族窒化物からなる化合物半導体である。
上記式中の組成比a、bを選択することによって、例えば、GaN、AlGaN、InGaN、AlInGaNなど、2元〜4元の任意の混晶が得られる。
なお、3族元素の一部をホウ素(B)、タリウム(Tl)等で置換することができ、また、Nの一部をリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換できる。
窒化物半導体にn型伝導性を与えるための不純物としては、ケイ素(Si)、ゲルマニウム(Ge)、炭素(C)、セレン(Se)、テルル(Te)などが挙げられる。
The nitride semiconductor referred to in the present invention is a group III nitride determined by the formula Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1). It is a compound semiconductor.
By selecting the composition ratios a and b in the above formula, any binary to quaternary mixed crystal such as GaN, AlGaN, InGaN, and AlInGaN can be obtained.
Part of the Group 3 element can be replaced with boron (B), thallium (Tl), or the like, and part of N can be replaced with phosphorus (P), arsenic (As), antimony (Sb), bismuth ( Bi) and the like can be substituted.
Examples of impurities for imparting n-type conductivity to the nitride semiconductor include silicon (Si), germanium (Ge), carbon (C), selenium (Se), and tellurium (Te).

基板は、窒化物半導体結晶層が成長し得る基板であればよく、材料として、例えば、サファイア(C面、A面、R面)、SiC(6H、4H、3C)、GaN、AlN、Si、スピネル、ZnO、GaAs、NGOなどが挙げられる。
これらの基板のなかでも、サファイア基板は絶縁性であって、n型電極、p型電極の両方を、積層体に設けなければならないため、本発明の利点がもっとも顕著となる。
The substrate may be any substrate on which a nitride semiconductor crystal layer can be grown. Examples of the material include sapphire (C plane, A plane, R plane), SiC (6H, 4H, 3C), GaN, AlN, Si, Examples include spinel, ZnO, GaAs, and NGO.
Among these substrates, the sapphire substrate is insulative, and both the n-type electrode and the p-type electrode must be provided in the laminate, so that the advantage of the present invention is most remarkable.

ウエハー基板上に窒化物半導体結晶層(GaN系結晶層)を成長させる方法としては、HVPE法、MOVPE法、MBE法などが挙げられる。
ウエハー基板上に高品質なGaN系結晶層を成長させるために必要となる手法、構造、技術などは適宜用いてよい。そのようなものとしては、例えば、結晶基板とGaN系結晶層との間にバッファ層(特に、GaN系低温成長バッファ層)を介在させる技術、基板面にSiOマスクパターンを設けまたは基板面自体に凹凸加工をし、GaN系結晶層をラテラル成長やファセット成長によって形成し、それによって結晶中の転位密度を低下させる技術などが挙げられる。
Examples of methods for growing a nitride semiconductor crystal layer (GaN-based crystal layer) on a wafer substrate include HVPE, MOVPE, and MBE.
Techniques, structures, techniques, and the like necessary for growing a high-quality GaN-based crystal layer on the wafer substrate may be used as appropriate. As such, for example, a technique of interposing a buffer layer (particularly, a GaN-based low-temperature growth buffer layer) between the crystal substrate and the GaN-based crystal layer, providing a SiO 2 mask pattern on the substrate surface, or the substrate surface itself And a technique for forming a GaN-based crystal layer by lateral growth or facet growth, thereby reducing the dislocation density in the crystal.

基板面自体に凹凸加工を施し、該凹凸を覆うようにGaN系結晶層を成長させて行なう転位密度低減技術として、LEPS法(Lateral Epitaxy on a Patterned Substrate)が知られている。
LEPS法は、基板の主面への凹凸加工を完了させた後に、基板表面処理(バッファ層の形成、窒化処理等)を含めたGaN系結晶の成長を行う方法であり、SiOなどからなる選択成長マスクは用いない。これらの点から、LEPS法は、結晶の横方向成長を意図的に発生させる転位密度低減方法の中でも、最も製造工程が簡素化でき、かつ、GaN系結晶の汚染や変質を最小限に抑えられる方法である。
A LEPS method (Lateral Epitaxy on a Patterned Substrate) is known as a technique for reducing dislocation density by performing uneven processing on a substrate surface itself and growing a GaN-based crystal layer so as to cover the unevenness.
The LEPS method is a method of growing a GaN-based crystal including substrate surface treatment (buffer layer formation, nitridation treatment, etc.) after completing uneven processing on the main surface of the substrate, and is made of SiO 2 or the like. A selective growth mask is not used. From these points, the LEPS method can most simplify the manufacturing process and minimize contamination and alteration of the GaN-based crystal among the dislocation density reduction methods that intentionally generate the lateral growth of the crystal. Is the method.

LEPS法の中でも、基板凹凸面の凹部底面と凸部上面のそれぞれに、独立した結晶単位を発生させ、これらをファセット成長させて凹凸面を埋め込ませる手法(ファセットLEPS法)は、平坦化後の結晶層表面における転位密度(貫通転移の密度)が一様に低くなる優れた結晶成長法である。
ファセットLEPS法を適用し高品質な結晶層を成長させることによって、活性層における発光効率の向上、pn接合部の耐圧特性の向上や、素子の動作電圧低減に係わる、コンタクト層の導電率の向上、コンタクト層と電極との接触抵抗の低減等の、好ましい効果が期待できる。
ファセットLEPS法については、上記特許文献4に詳細に記載されている。また、基板の凹凸面上に独立した結晶単位が発生し、互いに結合して層となっていく様は、該特許文献4の図2に模式的に表されている。
Among the LEPS methods, a method (facet LEPS method) in which independent crystal units are generated on the concave bottom surface and the convex top surface of the concave / convex surface of the substrate, and the concave / convex surface is embedded by faceting them, This is an excellent crystal growth method in which the dislocation density (density of threading transition) on the surface of the crystal layer is uniformly reduced.
By applying a facet LEPS method to grow a high-quality crystal layer, the light emitting efficiency in the active layer is improved, the breakdown voltage characteristics of the pn junction is improved, and the conductivity of the contact layer is improved for reducing the operating voltage of the device. A favorable effect such as a reduction in contact resistance between the contact layer and the electrode can be expected.
The facet LEPS method is described in detail in Patent Document 4 described above. Further, the manner in which independent crystal units are generated on the uneven surface of the substrate and are combined with each other to form a layer is schematically shown in FIG.

ファセットLEPS法は、凹凸の仕様と成長条件との組合わせが重要である。凹凸面は、GaN系結晶がc軸配向し得る主面(その主面上にGaN系結晶を成長させた場合にその結晶のc軸が該主面に対し垂直となるような板面)に凹凸加工を施すことによって形成する。
この主面上に、c軸方向の成長速度が高く、c軸に直交する方向の成長速度が低くなる成長条件(比較的低い温度、比較的高い水素ガス濃度、比較的高い圧力)を用いて、GaN系結晶の成長を行う。これによって、結晶成長の過程で、基板凹凸面の凹部底面および凸部上面のそれぞれに、{1−101}ファセット、{11−22}ファセットのような、主面に対して斜めに配向したファセット(以下「斜めファセット」という)を側壁面とする独立した結晶単位が発生する。これがファセット成長である。
In the facet LEPS method, a combination of unevenness specifications and growth conditions is important. The concavo-convex surface is a main surface on which the GaN-based crystal can be c-axis oriented (a plate surface whose c-axis is perpendicular to the main surface when the GaN-based crystal is grown on the main surface). It is formed by applying uneven processing.
On this main surface, using growth conditions (relatively low temperature, relatively high hydrogen gas concentration, relatively high pressure) in which the growth rate in the c-axis direction is high and the growth rate in the direction perpendicular to the c-axis is low. GaN-based crystals are grown. Accordingly, facets oriented obliquely with respect to the main surface, such as {1-101} facets and {11-22} facets, on the concave bottom surface and convex top surface of the substrate uneven surface in the course of crystal growth. Independent crystal units having side wall surfaces (hereinafter referred to as “oblique facets”) are generated. This is facet growth.

上記のように、ファセット成長では、その成長の初期に、斜めファセットを側壁面として有する微小な結晶が多数形成される。この微小な結晶同士が合体を繰り返して大きくなる過程で、転位の伝播方向が曲がり、逆方向の転位がループを形成して消滅していくことにより、転位密度の低減が生じる。
また、ファセット成長から平坦化へと移行するとき、凹部底面および凸部上面に発生した結晶体の側壁面から横方向成長が発生し、転位の伝播方向が曲げられるために、上方に伝播する転位の密度が低減する。
後者の効果を最大とするために、ファセット成長工程で発生させる結晶体は、側壁面となる斜めファセットの面積が最大となる形状とすることが好ましい。その形状は、多角形状の凹部または凸部から成長する結晶体の場合には、該多角形を底面とする角錐状であり、ストライプ状の凹部または凸部から成長する結晶体の場合には、ストライプの長手方向に伸びる、断面三角形の屋根形である。
As described above, in facet growth, a large number of fine crystals having oblique facets as side wall surfaces are formed in the initial stage of the growth. In the process in which the small crystals are repeatedly united and become larger, the propagation direction of the dislocations is bent, and the dislocations in the opposite direction form loops and disappear, thereby reducing the dislocation density.
Also, when shifting from facet growth to flattening, lateral growth occurs from the side wall surface of the crystal generated on the bottom surface of the concave portion and the top surface of the convex portion, and the propagation direction of the dislocation is bent. Density is reduced.
In order to maximize the latter effect, it is preferable that the crystal generated in the facet growth process has a shape that maximizes the area of the oblique facet that becomes the side wall surface. In the case of a crystal growing from a polygonal concave or convex portion, the shape is a pyramid with the polygon as the bottom, and in the case of a crystal growing from a striped concave or convex portion, It is a roof shape with a triangular cross section extending in the longitudinal direction of the stripe.

基板の凹凸をストライプ状パターンとする場合、その凹溝幅、凸稜幅は、共に1μm〜10μm、特に2μm〜6μmが好ましい。この帯幅が1μm以上であれば、エッチングマスクのパターニングに際して、レジストマスクの露光を安価なコンタクト露光装置で行うことができる。より高精度の露光が可能な、ステッパ等の露光装置を用いる場合には、更に狭い帯幅としてもよい。
基板の凹凸の段差は、凹部底面から結晶単位が成長し得、かつ凸部上面から成長した結晶単位と合体し得るように、また後述のように、凹凸界面が光散乱の作用を充分に示すように、0.1μm〜5μm、特に0.5μm〜2μmとすることが好ましい。これによって、凹凸形状を精度よく成長させることが容易となり、光の散乱効果を最も効率よく得ることができるようになる。
これらの値は、基板の凹凸を多角形状とする場合の、多角形の高さや、隣接する多角形の構成辺間の間隔として適用してよい。
When making the unevenness | corrugation of a board | substrate into a striped pattern, both the groove width and the convex ridge width are 1 micrometer-10 micrometers, Especially 2 micrometers-6 micrometers are preferable. When the band width is 1 μm or more, the resist mask can be exposed with an inexpensive contact exposure apparatus when patterning the etching mask. When using an exposure apparatus such as a stepper capable of higher-accuracy exposure, a narrower band width may be used.
As for the uneven step of the substrate, the uneven interface sufficiently exhibits the effect of light scattering so that the crystal unit can grow from the bottom surface of the concave portion and can merge with the crystal unit grown from the top surface of the convex portion. Thus, it is preferable to set it as 0.1 micrometer-5 micrometers, especially 0.5 micrometer-2 micrometers. As a result, it becomes easy to grow the concavo-convex shape with high accuracy, and the light scattering effect can be obtained most efficiently.
These values may be applied as the height of the polygon and the interval between adjacent sides of the polygon when the unevenness of the substrate is a polygon.

ファセット成長によって、凹凸基板の凹部底面と凸部上面のそれぞれに独立した結晶単位が発生した後も成長を継続すると、各結晶単位は横方向にも徐々に伸張して行く。やがて、隣り合った結晶単位同士が接すると、より速い横方向成長が発生して、隣り合う結晶単位の側壁面(斜めファセット)の間が埋め込まれて行き、表面が平坦化する。   If the crystal growth is continued even after independent crystal units are generated on the concave bottom surface and the convex top surface of the concave-convex substrate by facet growth, each crystal unit gradually expands in the lateral direction. Eventually, when adjacent crystal units come into contact with each other, faster lateral growth occurs, and the space between the side wall surfaces (diagonal facets) of the adjacent crystal units gradually fills, flattening the surface.

平坦化の工程を早く開始させるには、凹凸基板の凹部底面と凸部上面に独立した結晶単位が形成されたところで、成長条件を変化させ、二次元成長が優勢となる成長条件(より高い温度、より低い雰囲気中水素ガス濃度、より低い圧力)に切り替える。このような成長条件の切り替えを行うと、基板表面が短時間でGaN系結晶に覆い尽くされ、また、その後の、隣り合う結晶単位の側壁面の間の埋め込みも短時間で進み、表面平坦化がより早く達成される。   In order to start the flattening process early, the growth conditions are changed when the independent crystal units are formed on the concave bottom surface and the convex top surface of the concavo-convex substrate. , Lower atmospheric hydrogen gas concentration, lower pressure). When such growth conditions are switched, the substrate surface is completely covered with the GaN-based crystal in a short time, and the subsequent filling between the side wall surfaces of adjacent crystal units also proceeds in a short time, thereby flattening the surface. Is achieved faster.

凹凸基板上にGaN系結晶を成長させる方法は特に限定されるものではなく、MOVPE法の他、ハイドライド気相成長(HVPE)法、分子ビーム蒸着(MBE)法等、従来公知の方法を適宜使用することができる。
また、製造効率の点からは、基礎基板上に積層されるGaN系半導体層の成長を、全てMOVPE法により、ひとつの成長炉内で一貫して行うことが好ましい。
The method for growing the GaN-based crystal on the concavo-convex substrate is not particularly limited. In addition to the MOVPE method, a conventionally known method such as a hydride vapor phase epitaxy (HVPE) method or a molecular beam deposition (MBE) method is appropriately used. can do.
From the viewpoint of manufacturing efficiency, it is preferable that the growth of the GaN-based semiconductor layer stacked on the base substrate is performed consistently in one growth furnace by the MOVPE method.

ファセットLEPS法において、転位密度低減のために形成した基板の凹凸と、それを埋め込んだGaN系結晶層との凹凸界面は、発光層からの光を散乱させ、より多くの光を外部に取り出すことを可能とする(光取り出し効率の向上)。特に、当該発光素子がフリップチップ実装型である場合には、該凹凸界面での光散乱によって、より多くの光を基板内に進入させて基板裏面から外界に取り出すことが可能になる。
よって、基板面に凹凸加工を施してファセットLEPS法を適用し、かつ、当該発光素子をフリップチップ実装型とする態様は、当該発光素子の光出力を高めるための最も好ましい態様である。
In the facet LEPS method, the uneven surface of the substrate formed to reduce the dislocation density and the uneven surface between the embedded GaN-based crystal layer scatters the light from the light emitting layer and extracts more light to the outside. (Improves light extraction efficiency). In particular, when the light-emitting element is a flip chip mounting type, more light can enter the substrate and be extracted from the back surface of the substrate to the outside due to light scattering at the uneven interface.
Accordingly, an aspect in which the facet LEPS method is applied by performing uneven processing on the substrate surface and the light emitting element is a flip chip mounting type is the most preferable aspect for increasing the light output of the light emitting element.

n型層の露出の態様としては、図3(a)に示すように、積層体上面に形成した凹部hの底面にn型層2が露出する態様や、図3(b)に示すように、凹部の底面には基板1が露出し、内壁面としてn型層2が露出する態様などが挙げられる。
前者の態様は、n型層上に形成するn電極との接触面積を広くする事が出来、n電極とn層との接触抵抗を低減する事が出来る。また、露出するために要する時間も短縮する事が出来るため、好ましい露出の態様である。
一般に、図3(b)に示される態様の凹部hを形成するには、図3(a)に示される態様の凹部hの底面までの深さをDとして、図3(a)の凹部hの底面からさらに7D〜14D程度深くエッチング等によって掘り下げる必要がある。従って、図3(a)に示される構造の方が生産性がよいという利点がある。
As an aspect of the n-type layer exposure, as shown in FIG. 3A, the n-type layer 2 is exposed on the bottom surface of the recess h formed on the top surface of the laminate, or as shown in FIG. The substrate 1 is exposed on the bottom surface of the recess, and the n-type layer 2 is exposed as the inner wall surface.
In the former mode, the contact area with the n electrode formed on the n-type layer can be widened, and the contact resistance between the n electrode and the n layer can be reduced. Moreover, since the time required for exposure can be shortened, it is a preferable mode of exposure.
In general, in order to form the recess h in the mode shown in FIG. 3B, the depth to the bottom surface of the recess h in the mode shown in FIG. It is necessary to dig deeper by etching or the like about 7D to 14D further from the bottom surface. Therefore, the structure shown in FIG. 3A has an advantage that the productivity is better.

積層体上面に形成する凹部の断面形状は限定されないが、開口形状(積層体上面における形状)と底面形状とが略等しい矩形波状、または開口形状よりも底面形状の方が小さい逆台形状などが挙げられる。
積層体上面の凹部の断面形状が逆台形状であれば、図3(a)に示すように、凹部の内壁面(=積層体の側面)は斜面となり、発光層内で発せられた光Lが該斜面で反射して基板裏面方向へと向うので好ましい。凹部の内壁面を斜面とする場合の該斜面の傾斜角度θは、15度以上90度未満がよく、15度以上60度以下が好ましく、最も好ましくは45度である。
このような傾斜を設けるには、積層体の端面を露出させるエッチング工程で用いるエッチングマスクの断面形状を、マスク端部に近くなる程マスク厚が薄くなるように形成することで達成できる。
The cross-sectional shape of the recess formed on the top surface of the laminate is not limited, but a rectangular wave shape in which the opening shape (shape on the top surface of the laminate) and the bottom surface shape are substantially equal, or an inverted trapezoidal shape in which the bottom surface shape is smaller than the opening shape, etc. Can be mentioned.
If the cross-sectional shape of the concave portion on the upper surface of the laminate is an inverted trapezoidal shape, as shown in FIG. 3A, the inner wall surface of the concave portion (= the side surface of the laminate) becomes a slope, and Is preferably reflected on the inclined surface and directed toward the back surface of the substrate. When the inner wall surface of the recess is a slope, the slope angle θ of the slope is preferably 15 degrees or more and less than 90 degrees, preferably 15 degrees or more and 60 degrees or less, and most preferably 45 degrees.
Providing such an inclination can be achieved by forming the cross-sectional shape of the etching mask used in the etching process for exposing the end face of the stacked body so that the mask thickness becomes thinner as it approaches the edge of the mask.

以下、積層体上面の凹部の底面にn型層が露出しているものとし、その底面を「n型電極形成面」と呼び、凹部の内壁面が斜面であっても、便宜上、凹部の開口形状と底面形状とが等しいとみなして、本発明の構成を説明する。   Hereinafter, it is assumed that the n-type layer is exposed at the bottom surface of the concave portion on the top surface of the laminate, and the bottom surface is referred to as an “n-type electrode forming surface”. The configuration of the present invention will be described assuming that the shape and the bottom shape are equal.

積層体上面の凹部は互いに独立したものが複数あればよく、積層体への配置パターン(積層体上面における凹部開口の配置パターン)は限定されないが、ラージチップとして発光面積をより広くし、かつ、より強い発光を得るため好ましい配置パターンとしては、次のものが例示される。
(イ)複数の凹部開口が、いずれも積層体の上面領域の外周線に接することなく上面領域内に含まれるパターン。例えば、図4(a)では矩形の凹部開口が2つ設けられ、図4(b)では矩形の凹部開口が4つ設けられ、図4(c)ではU字状の凹部開口が互いにかみ合っている。
(ロ)複数の凹部開口が、いずれも積層体の上面領域の元の外周線(凹部形成前の外周線)に接した状態で形成されているパターン。このパターンでは積層体の外周側面にも凹部が開いている。例えば、図5(a)では、矩形の凹部開口が2つ設けられて、残された積層体の上面領域がS字を描いており、図5(b)では積層体の上面領域の四隅に凹部開口が設けられ、残された積層体の上面領域が十文字を描いており、図5(c)、(d)では積層体の上面領域の外周のうち、一部と残りの大部分に接するように凹部開口が設けられ、図5(e)ではストライプ状をなすように凹部開口が設けられている。
(ハ)上記(イ)と(ロ)とを組合わせたパターン。即ち、積層体の上面領域内に含まれ外周に接しない凹部開口と、外周に接した凹部開口とよって形成されているパターン。例えば、図6(a)では、積層体の上面領域の外周縁全周と中央とに凹部開口が形成され、図6(b)では、積層体の上面領域の外周縁のうちの3辺に凹部が形成され、残る1辺に偏るように上面領域内に凹部開口が形成されている。また、図6(c)では、積層体の上面領域の四隅と中央に凹部開口が形成されている。
(ニ)凹部が同心状に形成されたパターン。例えば、図6(d)では、積層体の上面領域の外周縁全周と中央とに環状の凹部開口が形成され、図6(e)では、積層体の上面領域内に環状の凹部開口が形成され、さらに中央には単発的な凹部が形成されている。
(ホ)上記(イ)〜(ニ)の各パターンを任意に組み合わせたパターン。
It is sufficient if there are a plurality of recesses on the upper surface of the laminate, and the arrangement pattern on the laminate (arrangement pattern of the recess openings on the upper surface of the laminate) is not limited, but the light emitting area is increased as a large chip, and Examples of preferable arrangement patterns for obtaining stronger light emission include the following.
(A) A pattern in which a plurality of recess openings are all included in the upper surface region without being in contact with the outer peripheral line of the upper surface region of the laminate. For example, two rectangular recess openings are provided in FIG. 4 (a), four rectangular recess openings are provided in FIG. 4 (b), and U-shaped recess openings are engaged with each other in FIG. 4 (c). Yes.
(B) A pattern in which a plurality of recess openings are in contact with the original outer peripheral line (the outer peripheral line before forming the concave part) of the upper surface region of the laminate. In this pattern, recesses are also opened on the outer peripheral side surface of the laminate. For example, in FIG. 5A, two rectangular recess openings are provided, and the remaining upper surface region of the stacked body is drawn in an S shape. In FIG. 5B, the upper surface region of the stacked body is formed at four corners. A recessed opening is provided, and the remaining upper surface area of the stacked body draws a cross, and in FIGS. 5C and 5D, a part of the outer periphery of the upper surface area of the stacked body is in contact with most of the remaining area. In FIG. 5E, the recess openings are provided so as to form a stripe shape.
(C) A pattern combining the above (a) and (b). That is, a pattern formed by a recess opening that is included in the upper surface region of the laminate and does not contact the outer periphery, and a recess opening that contacts the outer periphery. For example, in FIG. 6 (a), recess openings are formed in the entire periphery and center of the outer peripheral edge of the upper surface region of the laminate, and in FIG. 6 (b), on the three sides of the outer peripheral edge of the upper surface region of the laminate. A recess is formed, and a recess opening is formed in the upper surface region so as to be biased toward the remaining one side. Moreover, in FIG.6 (c), the recessed part opening is formed in the four corners and center of the upper surface area | region of a laminated body.
(D) A pattern in which concave portions are formed concentrically. For example, in FIG. 6D, an annular recess opening is formed in the entire periphery and center of the outer peripheral edge of the upper surface region of the laminate, and in FIG. 6E, an annular recess opening is formed in the upper surface region of the laminate. In addition, a single recess is formed at the center.
(E) A pattern obtained by arbitrarily combining the patterns (a) to (d) above.

図4〜5では、積層体上面の凹部の開口形状を矩形として例示しているが、それに代えて、円形、楕円形、三角形、四角形、五角形、六角形、その他の多角形、不定形など、種々のドット状の形状(縦横の寸法比が0.5〜2程度の形状)としてもよい。
また、凹部が描くパターンは、ストライプ状、L字やコの字等の屈曲線状、環状、1以上に枝分れした形状(櫛形状を含む)、放射状(T字状、Y字状、十字状を含む)、網状(格子状)、アミダ状、その他任意のパターン等が挙げられる。
前記のストライプ状、屈曲線状などのパターンは、いずれも、直線および/または曲線で構成されていてもよい。
In FIGS. 4 to 5, the opening shape of the concave portion on the top surface of the laminate is illustrated as a rectangle, but instead, a circle, an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, other polygons, an indeterminate shape, etc. It is good also as various dot-like shape (shape whose vertical-horizontal dimension ratio is about 0.5-2).
Further, the pattern drawn by the concave portions is a stripe shape, a bent line shape such as an L-shape or a U-shape, an annular shape, a shape branched into one or more (including a comb shape), a radial shape (T-shape, Y-shape, (Including a cross shape), a net shape (lattice shape), an amid shape, and other arbitrary patterns.
Each of the patterns such as the stripe shape and the bent line shape may be constituted by a straight line and / or a curved line.

積層体上面の凹部の配置パターンの中でも、図2(a)に示すように、正三角形(一点鎖線)を最小構成単位とする細密の網状パターンを描き、その各正三角形の頂点に凹部を形成する配置パターンは、積層体上面全体に効率よくn型電極形成面を配設できる点で好ましい。
この配置パターンのなかでも、図7(a)に示すように、凹部の開口形状を正六角形とし、その正六角形の辺W1と、配置パターンとしての最小構成単位である正三角形(一点鎖線)の辺W2とが、互いに直交するように、正六角形の向きが決定されている配置態様は、隣り合った正六角形同士では頂点同士の間でも辺同士の間でも等しい距離となるため、電流拡散が全体的に均一に安定する点で好ましい態様である。これに対して、図7(b)に示すように、正六角形の頂点W3が正三角形(一点鎖線)の辺W2上にあるように正六角形の向きが決定されている配置態様は、本発明の態様の1つではあるが、隣り合った正六角形の頂点同士は接近するが、辺同士は頂点同士の距離よりも離れるため、局部的な電流拡散が生じる恐れがある。
Among the arrangement pattern of the recesses on the top surface of the laminate, as shown in Fig. 2 (a), draw a fine mesh pattern with a regular triangle (one-dot chain line) as the minimum structural unit, and form a recess at the apex of each regular triangle. The arrangement pattern is preferable in that the n-type electrode forming surface can be efficiently arranged on the entire top surface of the laminate.
Among these arrangement patterns, as shown in FIG. 7A, the opening shape of the recess is a regular hexagon, and the side W1 of the regular hexagon and the equilateral triangle (one-dot chain line) which is the minimum constitutional unit as the arrangement pattern. In the arrangement mode in which the directions of the regular hexagons are determined so that the sides W2 are orthogonal to each other, the adjacent regular hexagons have the same distance between the vertices and between the sides, so that the current diffusion is This is a preferred embodiment in that it is uniformly stabilized as a whole. On the other hand, as shown in FIG. 7B, an arrangement mode in which the orientation of the regular hexagon is determined so that the vertex W3 of the regular hexagon is on the side W2 of the regular triangle (dashed line) is the present invention. In this aspect, adjacent regular hexagonal vertices are close to each other, but the sides are separated from each other by the distance between the vertices, which may cause local current diffusion.

積層体上面の凹部内の底面にn型層が露出している場合、その底面に設けられるn電極は、できる限り大きく底面内に広がっていることが好ましく、底面の外周線と、n電極の外周線との距離は、好ましくは15μm以下、より好ましくは10μm以下、特に好ましくは5μm以下である。   When the n-type layer is exposed at the bottom surface in the concave portion on the top surface of the stacked body, the n electrode provided on the bottom surface preferably extends as large as possible in the bottom surface. The distance from the outer peripheral line is preferably 15 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less.

当該素子の特徴は、凹部内同士を結ぶ導体層によって、n電極同士が互いに接続されている点にあり、少なくとも2つのn電極が互いに接続されていればよいが、できるだけ多数のn電同士が接続されている程、ボンディング箇所の数を減らせるために好ましい。最も好ましいのは、全ての凹部内のn電極同士が互いに接続されている態様である。
独立したn電極が多数になると、例えば、ワイヤボンディングの場合には、各n電極にワイヤを接続する必要があるために、構造が複雑になり、結果として、製造コストや歩留りの点で不利となる。また、チップ側の電極と、リードフレームやサブマウントなどのマウント基材側の電極とを、導電性の接合材(ハンダ、銀ペースト等)で接合する場合にも、各n電極との位置合わせに必要となる精度が高くなり、同様の問題がある。
The element is characterized in that n electrodes are connected to each other by a conductor layer that connects the insides of the recesses, and at least two n electrodes need only be connected to each other. The more connected, the better because the number of bonding points can be reduced. Most preferred is an embodiment in which the n electrodes in all the recesses are connected to each other.
When there are a large number of independent n electrodes, for example, in the case of wire bonding, since it is necessary to connect a wire to each n electrode, the structure becomes complicated, resulting in disadvantages in terms of manufacturing cost and yield. Become. In addition, when the electrode on the chip side and the electrode on the side of the mounting substrate such as a lead frame or submount are bonded with a conductive bonding material (solder, silver paste, etc.), alignment with each n electrode is also possible. The accuracy required for this is increased, and there are similar problems.

n電極の厚さは、金属光沢が得られ、層内から外に出ようとする光に対して十分な反射性を有する厚さとすればよく、そのためには30nm以上とすることが好ましい。n電極の厚さを500nm以上に厚くすると、放熱効果が高くなり、好ましい。   The thickness of the n-electrode may be a thickness that provides a metallic luster and has sufficient reflectivity for light going out of the layer, and for that purpose it is preferably 30 nm or more. Increasing the thickness of the n electrode to 500 nm or more is preferable because the heat dissipation effect is increased.

積層体上面の凹部が形成された後に残された積層体の形状は、該凹部の形状や配置パターンによって異なるが、凹部によって積層体が分断されると、ワイヤボンディングの場合には、分断された積層体毎にp電極にワイヤを接続しなければならなくなり、結果として、製造コストや歩留りの点で不利となる。
また、チップ側の電極と、リードフレームやサブマウントなどのマウント基材側の電極とを、導電性の接合材(ハンダ、銀ペースト等)で接合する場合にも、各p電極(またはpボンディング電極)とマウント基材側のリード電極との位置合わせに必要な精度が高くなり、これも製造コストや歩留りの点で不利となる。
従って、独立した積層体の数は、4つ以下にとどめることが好ましく、3つ以下さらには2つ以下がより好ましく、最も好ましいのは、図2に示すように、積層体およびその上のp電極が分断されることなく、網目状を呈して1つにつながっている態様である。
The shape of the laminate left after the recess on the top surface of the laminate is formed differs depending on the shape and arrangement pattern of the recess, but when the laminate is divided by the recess, it is divided in the case of wire bonding. A wire must be connected to the p-electrode for each stacked body, resulting in a disadvantage in terms of manufacturing cost and yield.
In addition, each p-electrode (or p-bonding) is also used when the chip-side electrode and the electrode on the mount base such as a lead frame or submount are joined with a conductive bonding material (solder, silver paste, etc.). Electrode) and the lead electrode on the side of the mounting base material are required to be highly accurate, which is disadvantageous in terms of manufacturing cost and yield.
Accordingly, the number of independent laminates is preferably limited to 4 or less, more preferably 3 or less, and even more preferably 2 or less, and most preferably, as shown in FIG. This is an aspect in which the electrodes are connected to one with a mesh shape without being divided.

ダイシングやスクライビング、レーザスクライブ、レーザ溶断等によって素子分離を行う際に、積層体の破断が伴うと、発光領域がダメージを受けて、発光特性が悪化する傾向がある。
そこで、分断ラインを含んだ帯状領域は、素子分離前に予めエッチングによって少なくとも発光層に達する深さまで取り除いておくことが好ましい、このエッチング工程は、凹部の形成工程と兼用とすると効率的である。
分断ラインを含んだ帯状領域を除去した場合、積層体の端面(発光層の端面を含む)が露出するが、これを透明絶縁膜で覆い、さらにその上をn電極が覆うように、n電極を延在させるようにすることが好ましい。
When element separation is performed by dicing, scribing, laser scribing, laser fusing, or the like, if the laminate is broken, the light emitting region tends to be damaged and the light emission characteristics tend to deteriorate.
Therefore, it is preferable to remove at least the depth that reaches the light emitting layer by etching before element isolation before element separation, and this etching process is efficient if it is also used as a recess formation process.
When the strip-like region including the dividing line is removed, the end face of the laminate (including the end face of the light emitting layer) is exposed, but this is covered with a transparent insulating film, and the n electrode is further covered by the n electrode. Is preferably extended.

積層体上面の凹部内同士を結ぶ導体層によって、n電極同士を互いに接続する場合には、図8に示すように、p電極P2と導体層P3(=n電極P1)との間に、絶縁体層mを介在させて両者の短絡を防止ればよい。
また、導体層P3に接触すべきでない部分(例えば、凹部内壁面に露出した発光層、p型層など)も、図8に示すように絶縁体層mによって保護すればよい。
このように、意図する部分だけを絶縁体層mによって保護するには、積層体Sの上面全体を絶縁体層(透明絶縁膜)mで覆い、意図する部分だけを残して、それ以外の部分をエッチング等によって除去すればよい。
図8に示すように、p電極を外部に接続するために用いられる端子部分(ボンディングを行うためのバンプ状の導体部分)P21は、外部との接続が可能なように、絶縁体層mによって覆わず、また、導体層P3からも絶縁した状態にて露出させておく。
このように、端子部分P21とその周囲だけを局所的に露出させるには、例えば、導体層P3が覆うべきでない領域だけにフォトレジストを形成し、それ以外の領域全面に導体層P3を蒸着などによって成膜し、その後、フォトレジストをリフトオフするなどの手順が挙げられる。
When n electrodes are connected to each other by a conductor layer that connects the concave portions on the upper surface of the multilayer body, as shown in FIG. 8, insulation is provided between the p electrode P2 and the conductor layer P3 (= n electrode P1). What is necessary is just to prevent both short circuit by interposing the body layer m.
Further, a portion that should not be in contact with the conductor layer P3 (for example, a light emitting layer exposed on the inner wall surface of the recess, a p-type layer, etc.) may be protected by the insulator layer m as shown in FIG.
Thus, in order to protect only the intended portion with the insulator layer m, the entire upper surface of the laminate S is covered with the insulator layer (transparent insulating film) m, leaving only the intended portion, and the other portions. May be removed by etching or the like.
As shown in FIG. 8, a terminal portion (a bump-like conductor portion for bonding) P21 used for connecting the p-electrode to the outside is formed by an insulator layer m so that it can be connected to the outside. It is not covered and exposed in a state of being insulated from the conductor layer P3.
Thus, in order to locally expose only the terminal portion P21 and its periphery, for example, a photoresist is formed only in a region that should not be covered by the conductor layer P3, and a conductor layer P3 is deposited over the entire other region. And the like, and then the photoresist is lifted off.

絶縁体層の材料には限定はないが、好ましくは、近紫外〜可視短波長領域における光反射性の高いSiO、SiNなどの透明絶縁膜が好ましいものとして挙げられる。透明が好ましい理由は、発光層で発生した光を吸収することなく取り出すことが出来るからである。
p電極、n電極の直上に透明絶縁膜を形成する場合には、該p電極、n電極の表面にNiの薄膜を形成しておくと、透明絶縁膜との密着力が向上するので、好ましい。
Although there is no limitation to the material of the insulating layer, preferably, it is mentioned as a transparent insulating film such as a near-ultraviolet ~ SiO 2 having high light reflectivity in the visible short wavelength region, SiN x is preferable. The reason why transparency is preferable is that light generated in the light emitting layer can be extracted without absorbing it.
In the case where a transparent insulating film is formed immediately above the p-electrode and n-electrode, it is preferable to form a Ni thin film on the surface of the p-electrode and n-electrode, since the adhesion with the transparent insulating film is improved. .

当該発光素子の外周形状は、特に限定されないが、分断工程を考慮すると方形が好ましい。当該発光素子の大きさもまた限定はされないが、例えば、外周形状が正方形の場合、好ましい一辺の長さは0.5mm〜5mm、より好ましくは0.5mm〜3mm、さらに好ましくは0.5mm〜2mmである。ラージチップの寸法を大きくすると、絶対光量が増え、また小さくすると1枚のウエハーから得られる発光素子の数が増える。このような要素を考慮してラージチップの寸法を決定すればよい。
前記範囲はあくまでラージチップの寸法の一例であって、個々の素子の小型化に伴ない、前記範囲よりも小さいものであってもよいし、広大な発光面積を持った面発光ボードへの要求に応じて、ウエハと同等の大きさなどとしてもよい。
The outer peripheral shape of the light-emitting element is not particularly limited, but a rectangular shape is preferable in consideration of the dividing step. The size of the light-emitting element is also not limited. For example, when the outer peripheral shape is a square, a preferable length of one side is 0.5 mm to 5 mm, more preferably 0.5 mm to 3 mm, and still more preferably 0.5 mm to 2 mm. It is. Increasing the size of the large chip increases the absolute light amount, and decreasing it increases the number of light emitting elements obtained from a single wafer. The dimensions of the large chip may be determined in consideration of such factors.
The above range is merely an example of the size of a large chip, and may be smaller than the above range due to the downsizing of individual elements, or a requirement for a surface emitting board having a large light emitting area. Depending on the size, it may be the same size as the wafer.

n電極には、少なくともn型層と接触する領域に、n型窒化物半導体とオーミック接触を形成し得る材料を用いる。基板側からの光取出し効率の点から、半導体層全体(p電極ボンディング部を除く)に対しn電極を形成する態様が好ましい。また、n型層との接触面の全面が該オーミック性の材料からなるようにしてもよいが、部分的であってもよい。後者の例として、オーミック性のTi−Al合金からなる層を、n電極形成面上に開口部を有する格子形状に形成し、その上に、より反射性の高い非オーミック性のAg層を積層したり、オーミック性のAlを、Alからなる領域が島状をなす程度の膜厚(10nm以下)に形成し、その上に高いAg層を積層する態様が挙げられる。   For the n-electrode, a material capable of forming ohmic contact with the n-type nitride semiconductor is used at least in a region in contact with the n-type layer. From the viewpoint of light extraction efficiency from the substrate side, an embodiment in which the n electrode is formed on the entire semiconductor layer (excluding the p electrode bonding portion) is preferable. Further, the entire contact surface with the n-type layer may be made of the ohmic material, but may be partial. As an example of the latter, a layer made of an ohmic Ti-Al alloy is formed in a lattice shape having openings on the n-electrode forming surface, and a non-ohmic Ag layer having higher reflectivity is laminated thereon. Alternatively, ohmic Al is formed in a film thickness (10 nm or less) such that an area made of Al forms an island shape, and a high Ag layer is stacked thereon.

n電極材料としてのAlは、n型層とオーミック接触を形成し、かつ近紫外〜可視短波長領域の光の反射性が高い。従って、n電極をAl単層で形成してもよい。
n電極材料として、純Alの代わりに、Al−Nd合金など、高い光反射性を持ちながら、高い耐熱性をも有するAl合金を用いてもよい。Agの場合も、Ag−Cu合金、Ag−Bi合金などが好適に用いられる。
Al as the n-electrode material forms an ohmic contact with the n-type layer and has high light reflectivity in the near ultraviolet to visible short wavelength region. Therefore, the n electrode may be formed of an Al single layer.
As the n-electrode material, an Al alloy having high heat resistance while having high light reflectivity, such as an Al—Nd alloy, may be used instead of pure Al. Also in the case of Ag, an Ag—Cu alloy, an Ag—Bi alloy, or the like is preferably used.

AlやAl合金からなるn電極の表面には、酸化膜が容易に形成される。そのため、化学的な安定性が高いが、反面、ワイヤボンディング時や、ハンダ等の金属材料で電極との接合を行うときの、金属材料との接合性が余り良好でない。
そこで、少なくとも、ボンディングを行う部分に、表面層としてAu層を設けることが好ましい。その場合、AlやAl合金からなる層とAu層との間には、ハンダ接合時その他、高温に曝されるプロセスでAlとAuが相互拡散して合金化(Alのオーミック性、Auの耐酸化性がいずれも低下する)することを抑制するために、Auよりも高融点の金属からなるバリア層を設けることが好ましい。
An oxide film is easily formed on the surface of the n electrode made of Al or Al alloy. Therefore, although the chemical stability is high, on the other hand, the bonding property with the metal material is not so good at the time of wire bonding or when bonding to the electrode with a metal material such as solder.
Therefore, it is preferable to provide an Au layer as a surface layer at least in a portion to be bonded. In that case, between the layer made of Al or Al alloy and the Au layer, Al and Au are mutually diffused and alloyed by solder bonding and other processes exposed to high temperature (Al ohmic property and Au acid resistance). It is preferable to provide a barrier layer made of a metal having a melting point higher than that of Au.

n電極の材料にAlやAl合金を用いると、NiやPd等のオーミック性p電極材料よりも反射性が高いために、発光効率を向上させ得る。
従って、積層体内から発せられた光をp電極自体で反射させるよりも、p電極をそれ自体光透過性の膜とし、あるいは光が透過し得る開口部(窓部)を有する開口電極とし、その上を高い反射性のn電極で覆って、該n電極で反射させた方か好ましい場合がある。
When Al or an Al alloy is used as the material for the n-electrode, the luminous efficiency can be improved because it is more reflective than the ohmic p-electrode material such as Ni or Pd.
Therefore, rather than reflecting light emitted from the laminated body by the p electrode itself, the p electrode itself is a light-transmitting film, or an opening electrode having an opening (window) through which light can be transmitted. It may be preferable to cover the top with a highly reflective n-electrode and reflect it with the n-electrode.

ワイヤボンディングを行う場合には、ワイヤとの接合の際にp電極やその下の発光素子構造に及ぶダメージを軽減するために、p電極上にボンディング用電極(パッド電極)を設けることが好ましい。あるいは、p電極と電気的に接続されたボンディング用の電極を別途、発光領域上以外に設けるようにしてもよい。   When wire bonding is performed, it is preferable to provide a bonding electrode (pad electrode) on the p electrode in order to reduce damage to the p electrode and the light emitting element structure below the p electrode when bonded to the wire. Alternatively, a bonding electrode electrically connected to the p electrode may be separately provided outside the light emitting region.

積層体を越えて凹部内同士を結ぶ導体層は、接続専用の良導体であっても、n電極自体が延伸した層であってもよい。上記のように、n電極には、GaN系結晶層とのオーミックコンタクトをとるために好ましい金属材料(Alなど)が選択され、一方、積層体を越えて凹部内同士を結ぶ導体層は、できるだけ良導体であることが好ましい。また、両者を同じ材料として1つの工程で一度に形成すれば、製造効率の点では好ましい。これらの点を考慮し、更に、共晶はんだやAuバンプでの実装を考慮すると、〔Al(最下層)/Ti(中層)/Au(表層)〕、〔Al(最下層)/Pd(中層)/Au(表層)〕、〔Al(最下層)/TiW(中層)/Au(表層)〕等の積層構造が挙げられる。   The conductor layer that connects the insides of the recesses beyond the laminated body may be a good conductor dedicated for connection or a layer in which the n-electrode itself is extended. As described above, a preferable metal material (Al or the like) is selected for the n-electrode for making ohmic contact with the GaN-based crystal layer, and on the other hand, the conductor layer that connects the recesses beyond the laminate can be formed as much as possible. A good conductor is preferred. Moreover, it is preferable in terms of manufacturing efficiency if both are formed at the same time in one process using the same material. Considering these points, and further considering mounting with eutectic solder and Au bumps, [Al (lowermost layer) / Ti (middle layer) / Au (surface layer)], [Al (lowermost layer) / Pd (middle layer) ) / Au (surface layer)], [Al (lowermost layer) / TiW (middle layer) / Au (surface layer)] and the like.

当該発光素子を製造するための手順は限定されないが、好ましい工程として次のものが例示される。
(i)基板上に積層体を形成し、凹部(n電極形成面)を形成する。次に、n電極の下層を形成し、n型層とのオーミックコンタクトをとる。次に、絶縁体層によって所定部分を覆い、n電極の上層を形成し、各凹部内のn電極同士を互いに接続する。
(ii)基板上に積層体を形成し、凹部(n電極形成面)を形成する。次に、絶縁体層によって所定部分を覆い、n電極(単層または多層)を形成する。
上記(i)、(ii)において、p電極をどの段階で形成するかは任意であるが、n電極をp電極の上まで延在させる場合は、透明絶縁膜形成の前にp電極を形成し、透明絶縁膜をp電極の端面・上面を覆うように形成するのが効率的である。
Although the procedure for manufacturing the light emitting element is not limited, examples of preferable steps include the following.
(I) A laminate is formed on the substrate to form a recess (n-electrode forming surface). Next, a lower layer of the n-electrode is formed and ohmic contact is made with the n-type layer. Next, a predetermined portion is covered with an insulator layer, an upper layer of the n electrode is formed, and the n electrodes in each recess are connected to each other.
(Ii) A laminate is formed on the substrate to form a recess (n-electrode forming surface). Next, a predetermined part is covered with an insulator layer, and an n-electrode (single layer or multilayer) is formed.
In (i) and (ii) above, the stage at which the p-electrode is formed is arbitrary, but when the n-electrode extends over the p-electrode, the p-electrode is formed before forming the transparent insulating film. Then, it is efficient to form the transparent insulating film so as to cover the end face and the upper face of the p-electrode.

以上のように、本発明による発光素子は、従来には無かった網目状に広がる発光パターンとすることも可能であり、n電極を形成すべき凹部は点状に分散しているので、エッチング加工性が改善されている。   As described above, the light-emitting element according to the present invention can be formed into a light-emitting pattern that spreads in a mesh shape that has not been heretofore, and the recesses in which the n-electrodes are to be formed are dispersed in a dot-like manner. Sex has been improved.

本発明による発光素子の素子構造を模式的に示す断面図である。It is sectional drawing which shows typically the element structure of the light emitting element by this invention. 本発明による発光素子の素子構造およびその発光パターンを概略的に示す部分断面斜視図である。説明のために、電極や絶縁体層などは省略している。1 is a partial cross-sectional perspective view schematically showing an element structure and a light emission pattern of a light emitting element according to the present invention. For the sake of explanation, electrodes and insulator layers are omitted. 本発明による発光素子の、凹部内でのn型層の露出の態様を概略的に例示する図である。It is a figure which illustrates roughly the aspect of exposure of the n-type layer in the recessed part of the light emitting element by this invention. 本発明における、積層体上面への凹部の好ましい配置パターンを概略的に例示する図である。It is a figure which illustrates schematically the desirable arrangement pattern of the crevice to the upper surface of a layered product in the present invention. 本発明における、積層体上面への凹部の好ましい配置パターンを概略的に例示する図である。It is a figure which illustrates schematically the desirable arrangement pattern of the crevice to the upper surface of a layered product in the present invention. 本発明における、積層体上面への凹部の好ましい配置パターンを概略的に例示する図である。It is a figure which illustrates schematically the desirable arrangement pattern of the crevice to the upper surface of a layered product in the present invention. 本発明における、積層体上面への凹部の好ましい開口形状および配置パターンを概略的に例示する図である。It is a figure which illustrates schematically the desirable opening shape and arrangement pattern of the crevice to the layered product upper surface in the present invention. 本発明において、積層体の上面を、絶縁体層とその上の導体層とで覆う際の、p電極の局所的な露出を説明する断面図である。In this invention, it is sectional drawing explaining the local exposure of the p electrode at the time of covering the upper surface of a laminated body with an insulator layer and the conductor layer on it. 従来公知のGaN系発光素子の素子構造を示した模式図である。It is the schematic diagram which showed the element structure of a conventionally well-known GaN-type light emitting element. 特許文献2に開示されたラージチップの素子構造およびその発光パターンを概略的に示す図である。It is a figure which shows roughly the element structure of the large chip | tip disclosed by patent document 2, and its light emission pattern.

符号の説明Explanation of symbols

1 基板
2 第一伝導型層
3 発光層
4 第二伝導型層
P1 第一電極
P2 第二電極
m 絶縁体層
h 凹部
1 Substrate 2 First Conductive Layer 3 Light-Emitting Layer 4 Second Conductive Layer P1 First Electrode P2 Second Electrode m Insulator Layer h Recess

Claims (7)

基板上に窒化物半導体からなる積層体が形成され、該積層体中には、下側から順に、第一伝導型層、発光層、第二伝導型層が含まれている窒化物半導体発光素子であって、
該積層体の上面には凹部が複数形成され、各凹部内には第一伝導型層が露出しており、各凹部内の第一伝導型層の露出面には第一電極が接続され、
積層体の上面の残された領域には第二電極が設けられ、第二電極は、絶縁体層によって覆われており、
前記絶縁体層上を越えて凹部内同士を連絡する導体層によって、第一電極同士が互いに接続されている、窒化物半導体発光素子。
A nitride semiconductor light emitting device in which a laminate made of a nitride semiconductor is formed on a substrate, and the laminate includes a first conduction type layer, a light emitting layer, and a second conduction type layer in that order from the bottom. Because
A plurality of recesses are formed on the upper surface of the laminate, the first conductivity type layer is exposed in each recess, the first electrode is connected to the exposed surface of the first conductivity type layer in each recess,
A second electrode is provided in the remaining region of the upper surface of the laminate, and the second electrode is covered with an insulator layer,
A nitride semiconductor light-emitting element in which first electrodes are connected to each other by a conductor layer that communicates with each other in the recesses over the insulator layer.
当該窒化物半導体発光素子が、実装用基板に積層体が向くように姿勢を上下反転させて実装するフリップチップ型の素子である、請求項1記載の窒化物半導体発光素子。   The nitride semiconductor light-emitting device according to claim 1, wherein the nitride semiconductor light-emitting device is a flip-chip device that is mounted upside down so that the stacked body faces the mounting substrate. 上記の絶縁体層を越えて凹部内同士を結ぶ導体層が、第一電極自体が延伸し絶縁体層を越えて広がった第一電極層であって、
第二電極と外部との接続に用いられる端子部分を除いて、凹部の内面を含んだ積層体の上面全体が第一電極層によって覆われており、第一電極層と接触すべきでない部分は絶縁体層によって保護されている、請求項1または2記載の窒化物半導体発光素子。
The conductor layer that connects the insides of the recesses beyond the insulator layer is a first electrode layer in which the first electrode itself extends and extends beyond the insulator layer,
Except for the terminal portion used for connection between the second electrode and the outside, the entire top surface of the laminate including the inner surface of the recess is covered with the first electrode layer, and the portion that should not be in contact with the first electrode layer is The nitride semiconductor light emitting device according to claim 1, wherein the nitride semiconductor light emitting device is protected by an insulator layer.
第一伝導型層がn型層、第一電極がn電極であり、第二伝導型層がp型層、第二電極がp電極である、請求項1〜3のいずれかに記載の窒化物半導体発光素子。   The nitriding according to claim 1, wherein the first conductivity type layer is an n-type layer, the first electrode is an n-electrode, the second conductivity-type layer is a p-type layer, and the second electrode is a p-electrode. Semiconductor light emitting device. 基板の上面が凹凸面として加工され、窒化物半導体が該凹凸面を覆う層として成長し、積層体の最下層となっている、請求項1記載の窒化物半導体発光素子。   The nitride semiconductor light-emitting element according to claim 1, wherein the upper surface of the substrate is processed as an uneven surface, and the nitride semiconductor grows as a layer covering the uneven surface to become the lowermost layer of the laminate. 上記積層体の上面への凹部の配置パターンが、正三角形を最小構成単位とする細密の網状パターンの各正三角形の頂点に、凹部が形成された配置パターンである、請求項1記載の窒化物半導体発光素子。   2. The nitride according to claim 1, wherein the arrangement pattern of the recesses on the upper surface of the laminate is an arrangement pattern in which a recess is formed at the apex of each equilateral triangle of a fine mesh pattern having an equilateral triangle as a minimum structural unit. Semiconductor light emitting device. 凹部の開口形状が正六角形であって、その正六角形を構成する辺と、配置パターンとしての細密の網状パターンの最小構成単位である正三角形の辺とが、互いに直交するように、凹部の開口形状の正六角形の向きが決定されている、請求項6記載の窒化物半導体発光素子。   The opening of the recess is such that the shape of the opening of the recess is a regular hexagon, and the sides that form the regular hexagon and the sides of the equilateral triangle that is the minimum constituent unit of the fine mesh pattern as the arrangement pattern are orthogonal to each other. The nitride semiconductor light emitting device according to claim 6, wherein the direction of the regular hexagonal shape is determined.
JP2005023897A 2005-01-31 2005-01-31 Nitride semiconductor light emitting device Expired - Fee Related JP5255745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023897A JP5255745B2 (en) 2005-01-31 2005-01-31 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023897A JP5255745B2 (en) 2005-01-31 2005-01-31 Nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012070547A Division JP5440640B2 (en) 2012-03-27 2012-03-27 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006210824A true JP2006210824A (en) 2006-08-10
JP5255745B2 JP5255745B2 (en) 2013-08-07

Family

ID=36967282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023897A Expired - Fee Related JP5255745B2 (en) 2005-01-31 2005-01-31 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5255745B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871614B1 (en) * 2006-12-21 2008-12-02 전북대학교산학협력단 Light emitting device and method of manufacturing the same
KR101092079B1 (en) 2008-04-24 2011-12-12 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP5377725B1 (en) * 2012-08-21 2013-12-25 株式会社東芝 Semiconductor light emitting device
US8816367B2 (en) 2012-06-11 2014-08-26 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2014187397A (en) * 2006-11-15 2014-10-02 Regents Of The Univ Of California Light emitting diode with textured phosphor conversion layer
US8981396B2 (en) 2012-02-17 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor light emitting device, light emitting module, and illumination apparatus
KR20150142739A (en) * 2014-06-11 2015-12-23 엘지이노텍 주식회사 Light emitting device and lighting system
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
JP2018107371A (en) * 2016-12-28 2018-07-05 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2018529230A (en) * 2015-08-25 2018-10-04 エルジー イノテック カンパニー リミテッド Light emitting device and light emitting device package including the same
JP2018206817A (en) * 2017-05-30 2018-12-27 豊田合成株式会社 Light-emitting element
JP2018206818A (en) * 2017-05-30 2018-12-27 豊田合成株式会社 Light-emitting element and method of manufacturing the same
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US11094847B2 (en) 2018-06-08 2021-08-17 Nichia Corporation Light-emitting device having gap portion between portion of insulating film and side surface of light-emitting layer
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150298A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting element and light-receiving element
JP2001085738A (en) * 1999-09-10 2001-03-30 Sony Corp Self-emitting element and manufacturing method of the same and illuminating device and two-dimensional display device
JP2003243709A (en) * 2002-02-15 2003-08-29 Matsushita Electric Works Ltd Semiconductor light emitting element
JP2003318441A (en) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2004047988A (en) * 2002-06-13 2004-02-12 Lumileds Lighting Us Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150298A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting element and light-receiving element
JP2001085738A (en) * 1999-09-10 2001-03-30 Sony Corp Self-emitting element and manufacturing method of the same and illuminating device and two-dimensional display device
JP2003318441A (en) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2003243709A (en) * 2002-02-15 2003-08-29 Matsushita Electric Works Ltd Semiconductor light emitting element
JP2004047988A (en) * 2002-06-13 2004-02-12 Lumileds Lighting Us Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240529B2 (en) 2004-07-06 2016-01-19 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
US9859464B2 (en) 2004-07-06 2018-01-02 The Regents Of The University Of California Lighting emitting diode with light extracted from front and back sides of a lead frame
JP2014187397A (en) * 2006-11-15 2014-10-02 Regents Of The Univ Of California Light emitting diode with textured phosphor conversion layer
US10454010B1 (en) 2006-12-11 2019-10-22 The Regents Of The University Of California Transparent light emitting diodes
US10658557B1 (en) 2006-12-11 2020-05-19 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
US10644213B1 (en) 2006-12-11 2020-05-05 The Regents Of The University Of California Filament LED light bulb
US10593854B1 (en) 2006-12-11 2020-03-17 The Regents Of The University Of California Transparent light emitting device with light emitting diodes
KR100871614B1 (en) * 2006-12-21 2008-12-02 전북대학교산학협력단 Light emitting device and method of manufacturing the same
US8648355B2 (en) 2008-04-24 2014-02-11 Lg Innotek Co., Ltd. Semiconductor light emitting device having one or more recesses on a layer
KR101092079B1 (en) 2008-04-24 2011-12-12 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US8263985B2 (en) 2008-04-24 2012-09-11 Lg Innotek Co., Ltd. Semiconductor light emitting device having one or more recesses on a layer
US8981396B2 (en) 2012-02-17 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor light emitting device, light emitting module, and illumination apparatus
US8816367B2 (en) 2012-06-11 2014-08-26 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
US9214595B2 (en) 2012-08-21 2015-12-15 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US9293657B2 (en) 2012-08-21 2016-03-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US8847271B2 (en) 2012-08-21 2014-09-30 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP5377725B1 (en) * 2012-08-21 2013-12-25 株式会社東芝 Semiconductor light emitting device
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
JP2019179927A (en) * 2013-07-18 2019-10-17 ルミレッズ ホールディング ベーフェー High reflection flip chip LED die
KR102181398B1 (en) 2014-06-11 2020-11-23 엘지이노텍 주식회사 Light emitting device and lighting system
KR20150142739A (en) * 2014-06-11 2015-12-23 엘지이노텍 주식회사 Light emitting device and lighting system
JP7148131B2 (en) 2015-08-25 2022-10-05 スージョウ レキン セミコンダクター カンパニー リミテッド Light emitting device and light emitting device package including the same
JP2018529230A (en) * 2015-08-25 2018-10-04 エルジー イノテック カンパニー リミテッド Light emitting device and light emitting device package including the same
JP2018107371A (en) * 2016-12-28 2018-07-05 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2018206818A (en) * 2017-05-30 2018-12-27 豊田合成株式会社 Light-emitting element and method of manufacturing the same
JP2018206817A (en) * 2017-05-30 2018-12-27 豊田合成株式会社 Light-emitting element
US11094847B2 (en) 2018-06-08 2021-08-17 Nichia Corporation Light-emitting device having gap portion between portion of insulating film and side surface of light-emitting layer
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Also Published As

Publication number Publication date
JP5255745B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5255745B2 (en) Nitride semiconductor light emitting device
KR101978968B1 (en) Semiconductor light emitting device and light emitting apparatus
US7154123B2 (en) Nitride-based semiconductor light-emitting device
JP4813282B2 (en) Vertical structure gallium nitride based light emitting diode device
JP3659201B2 (en) Semiconductor light emitting device, image display device, lighting device, and method for manufacturing semiconductor light emitting device
KR101677770B1 (en) Contact for a semiconductor light emitting device
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP4687109B2 (en) Manufacturing method of integrated light emitting diode
JP6934812B2 (en) Light emitting element and light emitting element array including it
JP5334601B2 (en) Semiconductor light emitting diode element and semiconductor light emitting device
US20060001035A1 (en) Light emitting element and method of making same
JP4239508B2 (en) Light emitting element
JP2012114184A (en) Light-emitting diode
JP2005217406A (en) Semiconductor light emitting device including current diffusion layer
JPWO2006082687A1 (en) GaN-based light emitting diode and light emitting device
KR101047720B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package using the light emitting device
JP2009510730A (en) Semiconductor light emitting device and manufacturing method thereof
JP2021521644A (en) Micron size light emitting diode design
JP2006066449A (en) Semiconductor light emitting device
US6936864B2 (en) Semiconductor light emitting element
US11329204B2 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
JP2007235122A (en) Semiconductor light-emitting apparatus, and its manufacturing method
JP5440640B2 (en) Nitride semiconductor light emitting device
KR101209026B1 (en) Method of manufacturing LED having vertical structure
JP2005150664A (en) Light-emitting element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120425

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees