JP2006209960A - Magnetic recording-and-reproducing device - Google Patents

Magnetic recording-and-reproducing device Download PDF

Info

Publication number
JP2006209960A
JP2006209960A JP2006068092A JP2006068092A JP2006209960A JP 2006209960 A JP2006209960 A JP 2006209960A JP 2006068092 A JP2006068092 A JP 2006068092A JP 2006068092 A JP2006068092 A JP 2006068092A JP 2006209960 A JP2006209960 A JP 2006209960A
Authority
JP
Japan
Prior art keywords
magnetic recording
electron beam
strip
recording
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006068092A
Other languages
Japanese (ja)
Inventor
Katsuyuki Naito
勝之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006068092A priority Critical patent/JP2006209960A/en
Publication of JP2006209960A publication Critical patent/JP2006209960A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording-and-reproducing device which can highly precisely perform tracking even if a pitch between tracks is narrowed. <P>SOLUTION: The magnetic recording-and-reproducing device is provided with; a magnetic recording medium 2 comprising a substrate 21, beltlike magnetic recording parts 22 which are provided on the one main face of the substrate and are arranged in parallel to one another, and a beltlike nonmagnetic parts 23 which exist between the beltlike magnetic recording parts; a recording-and-reproducing head 7 comprising an electron beam radiation part 18 which is located facing one of the beltlike magnetic recording parts 22 and radiates the beltlike magnetic recording part 22 with the electron beam, a magnetic field generation part 14 which is located facing the beltlike magnetic recording part 22 that faces the electron beam radiation part 18, a magnetism detection part 15 which is located facing the beltlike magnetic recording part 22 that faces the electron beam radiation part 18; an ammeter 19 which is connected to the electron beam radiation part 18 and detects an amount of currents flowing from the electron beam radiation part 18 to the beltlike magnetic recording part 22 facing the electron beam radiation part 18; and a driving mechanism which relatively moves the magnetic recording medium 2 and the recording-and-reproducing head 7 along the beltlike magnetic recording part 22 facing the electron beam radiation part 18. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気記録再生装置に係り、特には、熱アシスト磁気記録技術を利用した磁気記録再生装置に関する。   The present invention relates to a magnetic recording / reproducing apparatus, and more particularly, to a magnetic recording / reproducing apparatus using a heat-assisted magnetic recording technique.

パーソナルコンピュータなどの情報機器の機能は飛躍的に向上しており、そのため、ユーザが扱う情報量も著しく増大している。それゆえ、従来に比べて飛躍的に記録密度の高い情報記録再生装置に対する期待は高まる一方である。   The functions of information devices such as personal computers have been dramatically improved, and the amount of information handled by users has also increased significantly. Therefore, expectation for an information recording / reproducing apparatus having a remarkably higher recording density than ever is increasing.

情報記録媒体への記録密度を高めるためには、記録マークのサイズを縮小化することが必要である。しかしながら、現在、記録マークのサイズを縮小する上で大きな困難に直面している。以下、ハードディスク装置のような磁気記録再生装置を例に説明する。   In order to increase the recording density on the information recording medium, it is necessary to reduce the size of the recording mark. However, at present, a great difficulty is encountered in reducing the size of the recording mark. Hereinafter, a magnetic recording / reproducing apparatus such as a hard disk apparatus will be described as an example.

一般に、磁気記録再生装置に搭載される磁気記録媒体は、記録層に粒度分布の広い多結晶体を使用している。すなわち、一般的な磁気記録媒体の記録層は、粒径の大きなものから粒径の小さなものまで様々な粒径の多結晶体を含んでいる。   In general, a magnetic recording medium mounted on a magnetic recording / reproducing apparatus uses a polycrystalline body having a wide particle size distribution in a recording layer. That is, the recording layer of a general magnetic recording medium contains polycrystals having various particle diameters ranging from those having a large particle diameter to those having a small particle diameter.

しかしながら、サイズが過剰に小さな多結晶体は熱揺らぎが大きい。そのため、記録マークを小さくした場合には、1つの記録マークに含まれる多結晶体の数が少なくなり且つ記録マーク間での相互作用が相対的に大きくなるため、記録の安定性が低下するのに加えノイズの増大を生ずる。   However, a polycrystalline body having an excessively small size has a large thermal fluctuation. Therefore, when the recording mark is made smaller, the number of polycrystals contained in one recording mark is reduced and the interaction between the recording marks is relatively increased, so that the recording stability is lowered. In addition, noise increases.

このような問題は、記録層を構成する多結晶体を熱揺らぎを抑制するに十分な程度のサイズに揃えることによって防止することができる。しかしながら、その場合、情報の書き込みに非常に強い磁場が必要となり、その結果、記録層への情報の書き込みが不可能となるという問題を生ずる。   Such a problem can be prevented by aligning the polycrystals constituting the recording layer to a size sufficient to suppress thermal fluctuation. However, in that case, a very strong magnetic field is required for writing information, and as a result, writing information to the recording layer becomes impossible.

そのような記録層に比較的弱い磁場で情報を書き込み可能とする技術として、磁気記録層の保磁力は加熱することにより低下することを利用した熱アシスト磁気記録技術が知られている。この熱アシスト磁気記録技術で高密度記録を実現するには加熱スポットを小さくすることが有利であり、その手段としては近接場光照射や電子線照射が考えられている。   As a technique that enables information to be written in such a recording layer with a relatively weak magnetic field, a heat-assisted magnetic recording technique that utilizes the fact that the coercive force of a magnetic recording layer is reduced by heating is known. In order to realize high-density recording with this heat-assisted magnetic recording technique, it is advantageous to reduce the heating spot, and means for irradiating near-field light and electron beam are considered as the means.

しかしながら、熱アシスト磁気記録技術では厳密な熱設計が必要である。しかも、熱アシスト磁気記録技術で記録密度を高めるためには、トラック間のピッチを狭めることも必要であるが、その場合、隣接トラック間での熱伝導の影響が大きくなり、特に、加熱によるクロスイレースが顕著となる。また、トラック間のピッチを狭めた場合、トラッキングが困難となるため、サーボライタによるサーボ信号の書き込み並びに磁気ヘッドによるサーボ信号の読み出しが不可能となることがある。   However, heat-assisted magnetic recording technology requires strict thermal design. In addition, in order to increase the recording density with the heat-assisted magnetic recording technology, it is also necessary to reduce the pitch between tracks. In this case, the influence of heat conduction between adjacent tracks increases, and in particular, the crossing due to heating increases. Erase becomes prominent. In addition, when the pitch between tracks is narrowed, tracking becomes difficult, and it may be impossible to write servo signals by a servo writer and read servo signals by a magnetic head.

このような問題に対し、特許文献1は、磁気記録層をトラックに対応して帯状にパターニングすることにより帯状磁気記録部を形成するのとともに隣接トラック同士をそれらの間に介在する帯状非磁性部で磁気的に分離したディスクリート媒体を開示している。このような媒体によると、各隣接トラック間に帯状非磁性部が介在しているため、加熱によるクロスイレースを抑制することができる。   In order to solve such a problem, Patent Document 1 discloses a belt-like nonmagnetic portion in which a magnetic recording layer is patterned into a belt shape corresponding to a track to form a belt-like magnetic recording portion and adjacent tracks are interposed therebetween. Discloses a magnetically separated discrete medium. According to such a medium, the cross-erase due to heating can be suppressed because the belt-like nonmagnetic portion is interposed between the adjacent tracks.

また、特許文献1が開示する構造を採用すれば、帯状磁気記録部と帯状非磁性部との配列をトラッキングに利用することが可能であるため、上記のサーボライタによるサーボ信号の書き込みが不要となる。すなわち、記録再生ヘッドに、情報を書き込むべき帯状磁気記録部とその両側に隣接する2つの帯状非磁性部との境界部にそれぞれ対向するように2つの光センサを設ければ、熱アシスト磁気記録を行うべく帯状磁気記録部に照射した近接場光の反射光をそれら光センサで検出することによりトラッキングを行うことができる。   Further, if the structure disclosed in Patent Document 1 is adopted, the arrangement of the band-shaped magnetic recording portion and the band-shaped nonmagnetic portion can be used for tracking, so that the servo signal writing by the servo writer is unnecessary. Become. In other words, if two optical sensors are provided in the recording / reproducing head so as to face the boundary between the belt-like magnetic recording portion to which information is to be written and the two belt-like nonmagnetic portions adjacent to both sides thereof, heat-assisted magnetic recording Tracking can be performed by detecting the reflected light of the near-field light irradiated to the belt-shaped magnetic recording unit with these optical sensors.

しかしながら、そのような構造では、受光可能な反射光量が不十分であるため、トラック間のピッチを狭めた場合などに高いトラッキング精度を実現することができない。また、上記の記録再生ヘッドは、製造自体が困難である。
特開2000−195002号公報
However, in such a structure, since the amount of reflected light that can be received is insufficient, high tracking accuracy cannot be realized when the pitch between tracks is narrowed. Further, the recording / reproducing head described above is difficult to manufacture.
JP 2000-195002 A

本発明は、上記問題点に鑑みてなされたものであり、トラック間のピッチを狭めた場合においてもトラッキングを高精度に行うことが可能な磁気記録再生装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a magnetic recording / reproducing apparatus capable of performing tracking with high accuracy even when the pitch between tracks is narrowed.

また、本発明は、熱設計が容易な磁気記録再生装置を提供することを目的とする。
さらに、本発明は、トラック間のピッチを狭めた場合においてもクロスイレースの発生を防止し得る磁気記録再生装置を提供することを目的とする。
It is another object of the present invention to provide a magnetic recording / reproducing apparatus that can be easily designed.
It is another object of the present invention to provide a magnetic recording / reproducing apparatus capable of preventing the occurrence of cross erase even when the pitch between tracks is narrowed.

本発明の一側面によると、基板と、前記基板の一主面に設けられ互いに平行に配列した複数の帯状磁気記録部と、それぞれ前記複数の帯状磁気記録部間に介在する複数の帯状非磁性部とを備えた磁気記録媒体、前記複数の帯状磁気記録部の1つに対向しその帯状磁気記録部に向けて電子線を出射する電子線出射部と、前記電子線出射部が対向する帯状磁気記録部に対向した磁場発生部と、前記電子線出射部が対向する帯状磁気記録部に対向した磁気検出部とを備えた記録再生ヘッド、前記電子線出射部に接続され前記電子線出射部から前記電子線出射部が対向する帯状磁気記録部に向けて流れた電流量を検出する電流計、及び前記電子線出射部が対向した帯状磁気記録部に沿って前記磁気記録媒体と前記記録再生ヘッドとを相対移動させる駆動機構を具備することを特徴とする磁気記録再生装置が提供される。   According to one aspect of the present invention, a substrate, a plurality of strip-shaped magnetic recording units provided on one main surface of the substrate and arranged in parallel to each other, and a plurality of strip-shaped nonmagnetic members interposed between the plurality of strip-shaped magnetic recording units, respectively. A magnetic recording medium, an electron beam emitting unit that emits an electron beam toward one of the plurality of band-shaped magnetic recording units and emits an electron beam toward the band-shaped magnetic recording unit, and a band shape that the electron beam emitting unit faces A recording / reproducing head comprising a magnetic field generating unit facing the magnetic recording unit and a magnetic detection unit facing the strip-shaped magnetic recording unit facing the electron beam emitting unit, and the electron beam emitting unit connected to the electron beam emitting unit An ammeter for detecting the amount of current flowing from the electron beam emitting unit to the band-shaped magnetic recording unit opposed to the electron beam emitting unit, and the magnetic recording medium and the recording / reproducing along the band-shaped magnetic recording unit opposed to the electron beam emitting unit Drive that moves relative to the head Magnetic recording and reproducing apparatus characterized by comprising a mechanism is provided.

また、本発明の参考例によると、基板と、前記基板の一主面に設けられ互いに平行に配列した複数の帯状磁気記録部と、それぞれ前記複数の帯状磁気記録部間に介在する複数の帯状非磁性部とを備えた磁気記録媒体、前記複数の帯状磁気記録部の1つに対向しその帯状磁気記録部に向けて近接場光を出射する近接場光出射部と、前記近接場光出射部が対向する帯状磁気記録部に対向した磁場発生部と、前記近接場光出射部が対向する帯状磁気記録部に対向した磁気検出部と、前記複数の帯状磁気記録部のうち前記近接場光出射部が対向する帯状磁気記録部に対して一方の側に位置するものと対向した受光部を有する第1の光センサと、前記複数の帯状磁気記録部のうち前記近接場光出射部が対向する帯状磁気記録部に対して他方の側に位置するものと対向した受光部を有する第2の光センサとを備えた記録再生ヘッド、及び前記近接場光出射部が対向する帯状磁気記録部に沿って前記磁気記録媒体と前記記録再生ヘッドとを相対移動させる駆動機構を具備することを特徴とする磁気記録再生装置が提供される。   Further, according to the reference example of the present invention, a substrate, a plurality of strip-shaped magnetic recording units provided on one main surface of the substrate and arranged in parallel with each other, and a plurality of strip-shaped media interposed between the plurality of strip-shaped magnetic recording units, respectively. A magnetic recording medium including a non-magnetic portion; a near-field light emitting portion that faces one of the plurality of strip-shaped magnetic recording portions and emits near-field light toward the strip-shaped magnetic recording portion; and the near-field light emission A magnetic field generating unit opposed to the band-shaped magnetic recording unit opposed to the band, a magnetic detection unit opposed to the band-shaped magnetic recording unit opposed to the near-field light emitting unit, and the near-field light among the plurality of band-shaped magnetic recording units A first optical sensor having a light receiving portion opposed to one located on one side with respect to a strip-shaped magnetic recording portion opposed to the emitting portion, and the near-field light emitting portion of the plurality of strip-shaped magnetic recording portions opposed to each other Located on the other side of the belt-shaped magnetic recording section A recording / reproducing head comprising a second optical sensor having a light-receiving part facing the object, and the magnetic recording medium and the recording / reproducing head relative to each other along a belt-like magnetic recording part opposed to the near-field light emitting part. Provided is a magnetic recording / reproducing apparatus including a drive mechanism for movement.

本発明の参考例に係る磁気記録再生装置は、第1の光センサと第2の光センサと駆動機構とに接続された制御部をさらに具備することができる。このような制御部を設けた場合、第1の光センサからの第1の信号と第2の光センサからの第2の信号とに基づいて、磁気記録媒体に対する記録再生ヘッドの相対位置を複数の帯状磁気記録部の配列方向に変化させるように駆動機構の動作を制御することができる。この制御は、例えば、第1の光センサからの第1の信号と第2の光センサからの第2の信号とを比較し且つ第1の信号の大きさと第2の信号の大きさとの差がより小さくなるように行うことができる。   The magnetic recording / reproducing apparatus according to the reference example of the present invention can further include a control unit connected to the first optical sensor, the second optical sensor, and the driving mechanism. When such a control unit is provided, a plurality of relative positions of the recording / reproducing head with respect to the magnetic recording medium are set based on the first signal from the first optical sensor and the second signal from the second optical sensor. The operation of the drive mechanism can be controlled so as to change in the direction of arrangement of the belt-like magnetic recording portions. This control is performed, for example, by comparing the first signal from the first photosensor with the second signal from the second photosensor and the difference between the magnitude of the first signal and the magnitude of the second signal. Can be made smaller.

本発明の一側面に係る磁気記録再生装置は、電流計と駆動機構とに接続された制御部をさらに具備することができる。このような制御部を設けた場合、電流計からの信号に基づいて、磁気記録媒体に対する記録再生ヘッドの相対位置を複数の帯状磁気記録部の配列方向に変化させるように駆動機構の動作を制御することができる。この制御は、例えば、電流計からの信号の大きさの変動が抑制されるように行うことができる。   The magnetic recording / reproducing apparatus according to one aspect of the present invention can further include a control unit connected to the ammeter and the drive mechanism. When such a control unit is provided, the operation of the drive mechanism is controlled based on the signal from the ammeter so that the relative position of the recording / reproducing head with respect to the magnetic recording medium is changed in the arrangement direction of the plurality of strip-shaped magnetic recording units. can do. This control can be performed, for example, such that fluctuations in the magnitude of the signal from the ammeter are suppressed.

本発明では、隣り合う帯状磁気記録部を帯状非磁性部で分離した構造を有する磁気記録媒体を使用するため、トラック間のピッチを狭めた場合においてもクロスイレースを十分に防止することができ、しかも、熱設計が容易である。さらに、本発明では、電流計を設けて熱アシスト磁気記録に使用する電子線をトラッキングに利用可能とすることにより、トラック間のピッチを狭めた場合においてもトラッキングを高精度に行うことが可能となる。   In the present invention, since a magnetic recording medium having a structure in which adjacent strip-shaped magnetic recording portions are separated by strip-shaped nonmagnetic portions can be used, cross-erase can be sufficiently prevented even when the pitch between tracks is narrowed, Moreover, the thermal design is easy. Furthermore, in the present invention, an ammeter is provided so that an electron beam used for heat-assisted magnetic recording can be used for tracking, so that tracking can be performed with high accuracy even when the pitch between tracks is narrowed. Become.

すなわち、本発明によると、トラック間のピッチを狭めた場合においてもトラッキングを高精度に行うことが可能な磁気記録再生装置を提供される。また、本発明によると、熱設計が容易な磁気記録再生装置が提供される。さらに、本発明によると、トラック間のピッチを狭めた場合においてもクロスイレースの発生を防止し得る磁気記録再生装置が提供される。   That is, according to the present invention, a magnetic recording / reproducing apparatus capable of performing tracking with high precision even when the pitch between tracks is narrowed is provided. In addition, according to the present invention, a magnetic recording / reproducing apparatus with easy thermal design is provided. Furthermore, according to the present invention, there is provided a magnetic recording / reproducing apparatus capable of preventing the occurrence of cross erase even when the pitch between tracks is narrowed.

以下、本発明について、図面を参照しながらより詳細に説明する。なお、各図において、同様または類似する構成要素には同一の参照符号を付し、重複する説明は省略する。   Hereinafter, the present invention will be described in more detail with reference to the drawings. In addition, in each figure, the same referential mark is attached | subjected to the same or similar component, and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態及び参考例に係る磁気記録再生装置を概略的に示す斜視図である。図1に示す磁気記録再生装置1において、磁気記録媒体として磁気ディスク2を有している。この磁気記録再生装置1は、磁気ディスク2への情報の書き込みに熱アシスト磁気記録技術を利用するものであり、磁気ディスク2としては、後述するディスクリート磁気記録媒体(ディスクリート磁気ディスク)を使用している。   FIG. 1 is a perspective view schematically showing a magnetic recording / reproducing apparatus according to an embodiment and a reference example of the present invention. The magnetic recording / reproducing apparatus 1 shown in FIG. 1 has a magnetic disk 2 as a magnetic recording medium. The magnetic recording / reproducing apparatus 1 uses a heat-assisted magnetic recording technique for writing information on a magnetic disk 2. As the magnetic disk 2, a discrete magnetic recording medium (discrete magnetic disk) described later is used. Yes.

磁気ディスク2はスピンドル3に回転可能に支持されており、スピンドル3には制御回路(図示せず)からの制御信号に応じて動作するモータ(図示せず)が接続されている。図1に示す磁気記録再生装置1では、これにより、磁気ディスク2の回転などを制御可能としている。   The magnetic disk 2 is rotatably supported by a spindle 3, and a motor (not shown) that operates in response to a control signal from a control circuit (not shown) is connected to the spindle 3. In the magnetic recording / reproducing apparatus 1 shown in FIG. 1, this makes it possible to control the rotation of the magnetic disk 2 and the like.

磁気ディスク2の円周部近傍には固定軸4が配置されており、この固定軸4は、その上下2ヶ所に配置されたボールベアリング(図示せず)を介して磁気ヘッドアセンブリ5を揺動可能に支持している。磁気ヘッドアセンブリ5のボビン部にはコイル(図示せず)が巻きつけられており、このコイルとそれを挟んで対向して配置された永久磁石と対向ヨークとは磁気回路を形成するのとともにボイスコイルモータ6を構成している。このボイスコイルモータ6も制御回路に接続されており、それにより、磁気ヘッドアセンブリ5の先端のヘッドスライダ7を、磁気ディスク2の所望のトラック上へと位置させることを可能としている。   A fixed shaft 4 is disposed in the vicinity of the circumferential portion of the magnetic disk 2, and the fixed shaft 4 swings the magnetic head assembly 5 via ball bearings (not shown) disposed at two locations above and below the fixed shaft 4. I support it as possible. A coil (not shown) is wound around the bobbin portion of the magnetic head assembly 5, and this coil, a permanent magnet disposed opposite to the coil, and a counter yoke form a magnetic circuit and a voice. A coil motor 6 is configured. This voice coil motor 6 is also connected to the control circuit, so that the head slider 7 at the tip of the magnetic head assembly 5 can be positioned on a desired track of the magnetic disk 2.

磁気ヘッドアセンブリ5は、例えば、駆動コイルを保持するボビン部などを備えたアクチュエータアーム8を有している。このアクチュエータアーム8にはサスペンション9の一端が取り付けられており、サスペンション9の他端にはヘッドスライダ7が取り付けられている。このヘッドスライダ7には、後述する記録再生ヘッドが組み込まれている。   The magnetic head assembly 5 includes, for example, an actuator arm 8 including a bobbin portion that holds a drive coil. One end of a suspension 9 is attached to the actuator arm 8, and a head slider 7 is attached to the other end of the suspension 9. The head slider 7 incorporates a recording / reproducing head described later.

サスペンション9上には信号の書き込み及び読み取り用などのリード線(図示せず)が形成されており、これらリード線はヘッドスライダ7に組み込まれた記録再生ヘッドの電極にそれぞれ電気的に接続されている。なお、この磁気記録再生装置1において、情報の記録及び再生は、磁気ディスク2を回転させて、ヘッドスライダ7を磁気ディスク2から浮上させた状態で行う。また、図1に示す磁気記録再生装置1において、制御回路などは制御部を構成しており、スピンドル3に接続されたモータ及びボイスコイルモータ6などは駆動機構を構成している。   Lead wires (not shown) for signal writing and reading are formed on the suspension 9, and these lead wires are electrically connected to the electrodes of the recording / reproducing head incorporated in the head slider 7, respectively. Yes. In the magnetic recording / reproducing apparatus 1, information is recorded and reproduced while the magnetic disk 2 is rotated and the head slider 7 is floated from the magnetic disk 2. In the magnetic recording / reproducing apparatus 1 shown in FIG. 1, the control circuit and the like constitute a control unit, and the motor connected to the spindle 3 and the voice coil motor 6 constitute a drive mechanism.

本発明の実施形態と参考例とでは、主としてヘッドスライダ7の構造が異なっている。以下、実施形態と参考例との相違点について主に説明する。   The structure of the head slider 7 is mainly different between the embodiment of the present invention and the reference example. Hereinafter, differences between the embodiment and the reference example will be mainly described.

図2は、本発明の参考例に係る磁気記録再生装置1で使用するヘッドスライダ7を概略的に示す平面図である。図2に示すヘッドスライダ7は支持体11を有しており、支持体11の一端部はスライダ部12を構成している。支持体11の他端部の一主面には、微細な孔などの近接場光出射部13と磁場発生部14と磁気センサの磁気検出部15とが一直線上に配列するように設けられ、さらに、その直線に対して対称な位置に及び近接場光出射部13を挟むように1対の光センサの受光部16a,16bが設けられている。このように構成されるヘッドスライダ7は磁気ディスク2に対して、例えば、図3及び図4に示すように配置される。   FIG. 2 is a plan view schematically showing the head slider 7 used in the magnetic recording / reproducing apparatus 1 according to the reference example of the present invention. The head slider 7 shown in FIG. 2 has a support body 11, and one end portion of the support body 11 constitutes a slider section 12. On one main surface of the other end of the support 11, a near-field light emitting unit 13 such as a fine hole, a magnetic field generating unit 14, and a magnetic detection unit 15 of a magnetic sensor are provided so as to be arranged in a straight line. Furthermore, light receiving portions 16a and 16b of a pair of photosensors are provided at positions symmetrical to the straight line so as to sandwich the near-field light emitting portion 13 therebetween. The head slider 7 configured as described above is arranged with respect to the magnetic disk 2 as shown in FIGS. 3 and 4, for example.

図3は、本発明の参考例に係る磁気記録再生装置1を概略的に示す断面図である。なお、図3では、ヘッドスライダ7と磁気ディスク2との相対位置の理解を容易にするためにその理解に不要な構成部材は省略されており、ヘッドスライダ7の断面構造を説明するためにヘッドスライダ7の向きを90°回転させて描いている。また、図3において、参照番号17は面発光レーザのような光源を示しており、この光源17からの光は近接場光出射部13を通過することにより近接場光として磁気ディスク2に向けて出射される。本参考例では、この近接場光は、熱アシスト磁気記録を行う際に後述する帯状磁気記録部を加熱するのに利用されるのに加え、記録時や再生時に行うトラッキング制御に利用される。   FIG. 3 is a sectional view schematically showing a magnetic recording / reproducing apparatus 1 according to a reference example of the present invention. In FIG. 3, components unnecessary for understanding are omitted in order to facilitate understanding of the relative positions of the head slider 7 and the magnetic disk 2, and the head is used to explain the cross-sectional structure of the head slider 7. The slider 7 is drawn by rotating the direction by 90 °. In FIG. 3, reference numeral 17 denotes a light source such as a surface emitting laser. Light from the light source 17 passes through the near-field light emitting unit 13 and is directed toward the magnetic disk 2 as near-field light. Emitted. In this reference example, this near-field light is used for tracking control performed at the time of recording and reproduction, in addition to being used for heating a band-shaped magnetic recording unit described later when performing heat-assisted magnetic recording.

図3に示すように、ヘッドスライダ7は、その近接場光出射部13などが設けられた面が磁気ディスク2と対向するように配置される。ヘッドスライダ7をこのように配置すると、モータ10を駆動してスピンドル3に支持された磁気ディスク2を回転させることにより生ずる気流によってヘッドスライダ7を磁気ディスク2から浮上させることができる。   As shown in FIG. 3, the head slider 7 is arranged so that the surface on which the near-field light emitting portion 13 and the like are provided faces the magnetic disk 2. When the head slider 7 is arranged in this manner, the head slider 7 can be floated from the magnetic disk 2 by an air flow generated by driving the motor 10 and rotating the magnetic disk 2 supported by the spindle 3.

図4は、本発明の参考例に係る磁気記録再生装置1を概略的に示す平面図である。なお、図4では、ヘッドスライダ7と磁気ディスク2との相対位置の理解を容易にするためにその理解に不要な構成部材は省略されており、ヘッドスライダ7は透視図として描かれている。   FIG. 4 is a plan view schematically showing a magnetic recording / reproducing apparatus 1 according to a reference example of the present invention. In FIG. 4, in order to facilitate understanding of the relative position between the head slider 7 and the magnetic disk 2, components unnecessary for understanding are omitted, and the head slider 7 is depicted as a perspective view.

図4に示すように、磁気ディスク2は、基板21の一主面上で複数の帯状磁気記録部22と複数の帯状非磁性部23とを交互に配列した構造を有している。このような磁気ディスク2は、ディスクリート磁気記録媒体と呼ばれる。   As shown in FIG. 4, the magnetic disk 2 has a structure in which a plurality of strip-shaped magnetic recording portions 22 and a plurality of strip-shaped nonmagnetic portions 23 are alternately arranged on one main surface of a substrate 21. Such a magnetic disk 2 is called a discrete magnetic recording medium.

帯状磁気記録部22のそれぞれは磁気記録膜で構成されており、隣り合う帯状磁気記録部22間の距離は一定である。この磁気記録膜は、通常の磁気記録膜で使用されるのと同様の磁気記録材料で構成され得る。   Each of the strip-shaped magnetic recording units 22 is formed of a magnetic recording film, and the distance between adjacent strip-shaped magnetic recording units 22 is constant. This magnetic recording film can be made of a magnetic recording material similar to that used for ordinary magnetic recording films.

帯状磁気記録部22は、基板21の主面に垂直な方向から見た場合に、渦巻線状或いは同心円状の形状を有している。なお、帯状磁気記録部22が同心円状の形状を有している場合、それら帯状磁気記録部22は相互に離間された複数個の円を形成する。一方、帯状磁気記録部22が渦巻線状の形状を有している場合、それら帯状磁気記録部22は相互に接続されて1本の帯を形成する。   The band-shaped magnetic recording unit 22 has a spiral shape or a concentric shape when viewed from a direction perpendicular to the main surface of the substrate 21. In addition, when the strip | belt-shaped magnetic recording part 22 has a concentric circular shape, these strip | belt-shaped magnetic recording parts 22 form several circles mutually spaced apart. On the other hand, when the strip-shaped magnetic recording unit 22 has a spiral shape, the strip-shaped magnetic recording units 22 are connected to each other to form one strip.

帯状非磁性部23は、帯状磁気記録部22間に介在するように設けられている。したがって、帯状磁気記録部22が基板21の主面に垂直な方向から見て同心円状の形状を有している場合、帯状非磁性部23は相互に離間された複数個の円を形成する。また、帯状磁気記録部22が渦巻線状の形状を有している場合、帯状非磁性部23は相互に接続されて1本の帯を形成する。   The strip-shaped nonmagnetic portion 23 is provided so as to be interposed between the strip-shaped magnetic recording portions 22. Accordingly, when the belt-like magnetic recording portion 22 has a concentric shape when viewed from the direction perpendicular to the main surface of the substrate 21, the belt-like nonmagnetic portion 23 forms a plurality of circles separated from each other. When the strip-shaped magnetic recording portion 22 has a spiral shape, the strip-shaped nonmagnetic portions 23 are connected to each other to form one strip.

帯状非磁性部23は、帯状磁気記録部22の図中縦方向に隣り合うもの同士を磁気的に分離する役割を担っている。また、帯状非磁性部23は、それを構成する材料を適宜選択することにより、クロスイレースを防止し且つ熱設計を容易とし得る。   The strip-shaped nonmagnetic portion 23 plays a role of magnetically separating the strip-shaped magnetic recording portions 22 adjacent to each other in the vertical direction in the figure. Moreover, the strip | belt-shaped nonmagnetic part 23 can prevent a cross erase and can make thermal design easy by selecting the material which comprises it suitably.

帯状非磁性部23は、通常、非磁性薄膜で構成されるか或いは溝である。帯状非磁性部23が非磁性薄膜で構成される場合、その材料は非磁性材料であれば特に制限はなく、例えば、金などの非磁性金属やSiO2及びAl23などの誘電体を使用することができる。また、帯状非磁性部23が溝である場合、その溝の内側に磁気記録膜は存在していなくてもよく、その溝が完全に埋め込まれなければ溝の底面及び側壁は磁気記録膜で覆われていてもよい。 The belt-like nonmagnetic portion 23 is usually made of a nonmagnetic thin film or a groove. If the strip the non-magnetic portion 23 is composed of a non-magnetic thin film, the material is not particularly limited as long as the non-magnetic material, for example, a dielectric such as non-magnetic metal or SiO 2 and Al 2 O 3 such as gold Can be used. Further, when the belt-like nonmagnetic portion 23 is a groove, the magnetic recording film does not have to exist inside the groove. If the groove is not completely embedded, the bottom surface and the side wall of the groove are covered with the magnetic recording film. It may be broken.

以上のように構成される磁気記録再生装置1で情報の書き込み及び書き込んだ情報の読み出しを行う場合、近接場光出射部13と磁場発生部14と磁気検出部15とがいずれかの帯状磁気記録部22(或いは、トラック)上に位置するようにヘッドスライダ7を両矢印26に示す方向に位置合わせしつつ、磁気ディスク2を回転させることにより、帯状磁気記録部22及び帯状非磁性部23を矢印25で示す方向に移動させる。本参考例では、そのような位置合わせ,すなわちトラッキング,に、1対の光センサ16a,16bを利用する。   When the magnetic recording / reproducing apparatus 1 configured as described above writes information and reads the written information, the near-field light emitting unit 13, the magnetic field generating unit 14, and the magnetic detection unit 15 are any of the strip-shaped magnetic recordings. By rotating the magnetic disk 2 while aligning the head slider 7 in the direction indicated by the double arrow 26 so as to be positioned on the portion 22 (or track), the belt-like magnetic recording portion 22 and the belt-like nonmagnetic portion 23 are moved. Move in the direction indicated by arrow 25. In this reference example, a pair of optical sensors 16a and 16b are used for such alignment, that is, tracking.

すなわち、近接場光出射部13から磁気ディスク2に照射した近接場光の反射光を受光部16a,16bで受光して、それら受光部16a,16bを有する1対の光センサで検出する。通常、帯状磁気記録部22と帯状非磁性部23とでは反射率が異なっているので、近接場光出射部13の中心位置とそれに対向する帯状磁気記録部22の中心位置とがずれている場合、それら光センサからの信号が同一となることはない。換言すれば、それら中心位置が一致している場合にのみ、受光部16aを有する光センサからの信号と受光部16bを有する光センサからの信号とは同一となる。したがって、それら光センサからの信号が同一となるようにヘッドスライダ7を両矢印26で示す方向に適宜移動させることにより、トラッキング制御が可能となる。   That is, the reflected light of the near-field light irradiated to the magnetic disk 2 from the near-field light emitting unit 13 is received by the light receiving units 16a and 16b, and detected by a pair of optical sensors having the light receiving units 16a and 16b. Usually, since the reflectance is different between the strip-shaped magnetic recording portion 22 and the strip-shaped non-magnetic portion 23, the center position of the near-field light emitting portion 13 and the center position of the strip-shaped magnetic recording portion 22 opposite to the center position are shifted. The signals from these optical sensors are not the same. In other words, the signal from the optical sensor having the light receiving unit 16a and the signal from the optical sensor having the light receiving unit 16b are the same only when the center positions match. Therefore, tracking control can be performed by appropriately moving the head slider 7 in the direction indicated by the double arrow 26 so that the signals from these optical sensors are the same.

ところで、一般に、磁気ディスク2と記録再生ヘッド7との間の距離は10〜30nm程度である。これは、熱アシスト磁気記録に利用する光の波長と比較しても遥かに短い。そのため、記録再生ヘッド7の近接場光出射部13から或る帯状磁気記録部22に照射された近接場光は、その帯状磁気記録部22で反射されても伝搬光とはならずに近接場光として磁気ディスク2と記録再生ヘッド7との間を満たすこととなる。特に、支持体11の磁気ディスク2との対向面や帯状非磁性部23が金属材料で構成される場合には、表面プラズモンのため反射光は近接場光としてヘッド7の端部にまで及ぶようになる。このように、ヘッド7の端部にまで到達した反射光も上記のトラッキング制御に利用可能である。   In general, the distance between the magnetic disk 2 and the recording / reproducing head 7 is about 10 to 30 nm. This is much shorter than the wavelength of light used for thermally assisted magnetic recording. For this reason, the near-field light emitted from the near-field light emitting unit 13 of the recording / reproducing head 7 to the band-shaped magnetic recording unit 22 does not become propagating light even if reflected by the band-shaped magnetic recording unit 22, and is not near-field. The space between the magnetic disk 2 and the recording / reproducing head 7 is filled with light. In particular, when the surface of the support 11 facing the magnetic disk 2 or the belt-like nonmagnetic portion 23 is made of a metal material, the reflected light reaches the end of the head 7 as near-field light due to surface plasmon. become. Thus, the reflected light reaching the end of the head 7 can also be used for the tracking control.

本参考例に係る磁気記録再生装置1では、トラッキング制御が為されている状態において、1対の光センサの受光部16a,16bは、近接場光出射部13が対向する帯状磁気記録部22の両側に位置する帯状磁気記録部22にそれぞれ対向している。そのため、近接場光出射部13が対向する帯状磁気記録部22の両境界部に受光部16a,16bを対向させる場合とは異なり、受光部16a,16bのサイズや配置の自由度が大きい。そのため、図4に示すように、トラッキング制御が為されている状態において、1対の光センサの受光部16a,16bをそれぞれ複数の帯状磁気記録部22と対向させることができる。   In the magnetic recording / reproducing apparatus 1 according to the present reference example, the light receiving portions 16a and 16b of the pair of optical sensors in the state where the tracking control is performed are the same as the band-shaped magnetic recording portion 22 that the near-field light emitting portion 13 faces. Opposite to the strip-shaped magnetic recording portions 22 located on both sides. Therefore, unlike the case where the light receiving portions 16a and 16b are opposed to both boundary portions of the strip-shaped magnetic recording portion 22 opposed to the near-field light emitting portion 13, the size and arrangement flexibility of the light receiving portions 16a and 16b are large. Therefore, as shown in FIG. 4, the light receiving portions 16 a and 16 b of the pair of optical sensors can be opposed to the plurality of strip-shaped magnetic recording portions 22 in a state where tracking control is performed.

この場合、それら光センサのそれぞれの受光部16a,16bのサイズは少なくとも帯状磁気記録部22の幅と帯状非磁性部23の幅との和よりも大きい。換言すれば、図4に示す磁気記録再生装置1において、光センサのそれぞれの受光部16a,16bは、上記の反射光を効率よく集光可能とするのに十分なサイズを有している。そのため、本参考例に係る磁気記録再生装置1によると、トラック間のピッチを狭めた場合においても記録再生ヘッド7の磁気ディスク2に対する両矢印26に示す方向の相対位置のずれを速やかに正すことができる。すなわち、本参考例に係る磁気記録再生装置1では、トラック間のピッチを狭めた場合においてもトラッキングを高精度に行うことができ、したがって、高いCNR(Carrier to Noise Ratio)を実現することが可能である。   In this case, the size of each of the light receiving portions 16a and 16b of these optical sensors is at least larger than the sum of the width of the belt-like magnetic recording portion 22 and the width of the belt-like nonmagnetic portion 23. In other words, in the magnetic recording / reproducing apparatus 1 shown in FIG. 4, each of the light receiving portions 16a and 16b of the optical sensor has a size sufficient to efficiently collect the reflected light. Therefore, according to the magnetic recording / reproducing apparatus 1 according to the present reference example, even when the pitch between tracks is narrowed, the deviation of the relative position of the recording / reproducing head 7 in the direction indicated by the double-headed arrow 26 with respect to the magnetic disk 2 is quickly corrected. Can do. That is, in the magnetic recording / reproducing apparatus 1 according to this reference example, even when the pitch between tracks is narrowed, tracking can be performed with high accuracy, and therefore, a high CNR (Carrier to Noise Ratio) can be realized. It is.

また、従来技術では、上記のように、記録再生ヘッドに、近接場光出射部と対向する帯状磁気記録部とその両側に隣接する2つの帯状非磁性部との境界部にそれぞれ対向するように2つの光センサを設ける必要があった。すなわち、従来技術では、2つの光センサのそれぞれの受光部を極めて小さなサイズに形成し且つそれら受光部の距離を極めて短くする必要があった。そのため、従来技術では、記録再生ヘッドの製造自体が困難であった。   In the prior art, as described above, the recording / reproducing head is opposed to the boundary between the strip-shaped magnetic recording section facing the near-field light emitting section and the two strip-shaped nonmagnetic sections adjacent to both sides thereof. Two optical sensors had to be provided. That is, in the prior art, it is necessary to form the respective light receiving portions of the two photosensors in a very small size and extremely shorten the distance between the light receiving portions. For this reason, it has been difficult to manufacture the recording / reproducing head with the prior art.

それに対し、本参考例に係る磁気記録再生装置1において、光センサの受光部16a,16bのサイズを大きくすることができ、しかも、それら受光部16a,16b同士を従来技術ほど近づける必要はない。そのため、本参考例に係る記録再生ヘッド7は容易に製造することができる。   On the other hand, in the magnetic recording / reproducing apparatus 1 according to the reference example, the size of the light receiving portions 16a and 16b of the optical sensor can be increased, and the light receiving portions 16a and 16b do not need to be as close as those of the prior art. Therefore, the recording / reproducing head 7 according to this reference example can be easily manufactured.

本参考例において、帯状非磁性部23が溝である場合、帯状磁気記録部22の光反射率と帯状非磁性部23の光反射率との差が十分に大きくなるように溝の深さを設定することが好ましい。また、本参考例において、帯状非磁性部23が非磁性薄膜で構成される場合、帯状磁気記録部22の光反射率と帯状非磁性部23の光反射率との差が十分に大きくなるように帯状磁気記録部22の材料及び帯状非磁性部23の材料を選択することが好ましい。それらの光反射率の差が大きいほど、トラッキング制御をより容易に実施可能とすることやトラッキング精度を向上させることができる。なお、通常、帯状磁気記録部22の材料は反射率の低いものに制限される傾向にある。帯状非磁性部23には反射率の高いものから低いものまで様々な材料を使用可能であるので、帯状非磁性部23の材料として反射率の高い材料を選択すれば、上記の反射率差を容易に実現することができる。   In this reference example, when the belt-like nonmagnetic portion 23 is a groove, the groove depth is set so that the difference between the light reflectance of the belt-like magnetic recording portion 22 and the light reflectance of the belt-like nonmagnetic portion 23 is sufficiently large. It is preferable to set. In this reference example, when the belt-like nonmagnetic portion 23 is formed of a nonmagnetic thin film, the difference between the light reflectance of the belt-like magnetic recording portion 22 and the light reflectance of the belt-like nonmagnetic portion 23 is sufficiently large. It is preferable to select the material for the strip-shaped magnetic recording portion 22 and the material for the strip-shaped nonmagnetic portion 23. As the difference in light reflectance is larger, tracking control can be more easily performed and tracking accuracy can be improved. Normally, the material of the strip-shaped magnetic recording unit 22 tends to be limited to a material having a low reflectance. Since various materials can be used for the strip-shaped nonmagnetic portion 23 from a high reflectance to a low reflectance, if a material having a high reflectance is selected as the material of the strip-shaped nonmagnetic portion 23, the above-described reflectance difference is reduced. It can be easily realized.

以上説明した参考例では、図4に示すように、光センサの受光部16a,16bを、近接場光出射部13と対向する帯状磁気記録部22に隣り合う2つの帯状磁気記録部22と対向するように支持体11に設けたが、光センサの受光部16a,16bの配置はこれに限られるものではない。例えば、近接場光出射部13に対向する帯状磁気記録部22と受光部16aに対向する複数の帯状磁気記録部22との間、及び、近接場光出射部13に対向する帯状磁気記録部22と受光部16bに対向する複数の帯状磁気記録部22との間に、それぞれ1つ以上の帯状磁気記録部22が介在していてもよい。この場合、受光部16a,16bでの集光効率は僅かに低下するが、それら光センサの受光部16a,16bと熱源である近接場光出射部13との距離を広げることができるため、熱揺らぎの影響が低減される。したがって、トラッキング精度をさらに向上させること、すなわち、より高いCNRを実現することが可能となる。   In the reference example described above, as shown in FIG. 4, the light receiving portions 16 a and 16 b of the optical sensor are opposed to the two strip-shaped magnetic recording portions 22 adjacent to the strip-shaped magnetic recording portion 22 facing the near-field light emitting portion 13. However, the arrangement of the light receiving portions 16a and 16b of the optical sensor is not limited to this. For example, between the strip-shaped magnetic recording unit 22 facing the near-field light emitting unit 13 and the plurality of strip-shaped magnetic recording units 22 facing the light-receiving unit 16 a and the strip-shaped magnetic recording unit 22 facing the near-field light emitting unit 13. And one or more strip-shaped magnetic recording units 22 may be interposed between the strip-shaped magnetic recording units 22 facing the light receiving unit 16b. In this case, although the light collection efficiency at the light receiving portions 16a and 16b is slightly reduced, the distance between the light receiving portions 16a and 16b of the optical sensors and the near-field light emitting portion 13 as a heat source can be increased. The influence of fluctuation is reduced. Therefore, the tracking accuracy can be further improved, that is, a higher CNR can be realized.

また、図4では、簡略化のため、光センサのそれぞれの受光部16a,16bは2つの帯状磁気記録部22と対向可能なサイズで描かれているが、それら受光部16a,16bはより多くの帯状磁気記録部22と対向可能なサイズを有していることが望ましい。一般に、光センサのそれぞれの受光部16a,16bは、2〜1000個の帯状磁気記録部22と対向可能なサイズを有していることが好ましく、10〜200個の帯状磁気記録部22と対向可能なサイズを有していることがより好ましい。   In FIG. 4, for the sake of simplification, each of the light receiving portions 16a and 16b of the optical sensor is depicted in a size that can be opposed to the two strip-shaped magnetic recording portions 22, but there are more light receiving portions 16a and 16b. It is desirable to have a size that can be opposed to the belt-like magnetic recording unit 22. In general, each of the light receiving portions 16a and 16b of the optical sensor preferably has a size that can be opposed to 2 to 1000 strip-shaped magnetic recording portions 22, and 10 to 200 strip-shaped magnetic recording portions 22 are opposed to each other. More preferably, it has a possible size.

次に、本発明の実施形態について説明する。
図5は、本発明の一実施形態に係る磁気記録再生装置1で使用するヘッドスライダ7を概略的に示す平面図である。図5に示すヘッドスライダ7は支持体11を有しており、支持体11の一端部はスライダ部12を構成している。支持体11の他端部の一主面には、電子線出射部18と磁場発生部14と磁気センサの磁気検出部15とが一直線上に配列するように設けられている。このように構成されるヘッドスライダ7は磁気ディスク2に対して、例えば、図6及び図7に示すように配置される。
Next, an embodiment of the present invention will be described.
FIG. 5 is a plan view schematically showing the head slider 7 used in the magnetic recording / reproducing apparatus 1 according to the embodiment of the present invention. The head slider 7 shown in FIG. 5 has a support 11, and one end of the support 11 constitutes a slider portion 12. On one main surface of the other end portion of the support 11, an electron beam emitting unit 18, a magnetic field generating unit 14, and a magnetic detection unit 15 of a magnetic sensor are provided so as to be arranged in a straight line. The head slider 7 configured as described above is arranged with respect to the magnetic disk 2 as shown in FIGS. 6 and 7, for example.

図6は、本発明の一実施形態に係る磁気記録再生装置1を概略的に示す断面図である。また、図7は、本発明の一実施形態に係る磁気記録再生装置1を概略的に示す平面図である。なお、図6及び図7では、ヘッドスライダ7と磁気ディスク2との相対位置の理解を容易にするためにその理解に不要な構成部材は省略されており、図6では、ヘッドスライダ7はその断面構造を説明するために向きを90°回転させて描かれており、図7では、ヘッドスライダ7は透視図として描かれている。また、図6において、参照番号19は電子線出射部18から磁気ディスク2に照射される電子線の量を測定する電流計を示している。本実施形態では、この電子線は、熱アシスト磁気記録を行う際に帯状磁気記録部22を加熱するのに利用されるのに加え、記録時や再生時に行うトラッキング制御に利用される。   FIG. 6 is a cross-sectional view schematically showing the magnetic recording / reproducing apparatus 1 according to one embodiment of the present invention. FIG. 7 is a plan view schematically showing the magnetic recording / reproducing apparatus 1 according to one embodiment of the present invention. In FIGS. 6 and 7, components that are not necessary for understanding are omitted in order to facilitate understanding of the relative positions of the head slider 7 and the magnetic disk 2, and in FIG. In order to explain the cross-sectional structure, the head slider 7 is depicted as a perspective view in FIG. In FIG. 6, reference numeral 19 indicates an ammeter that measures the amount of electron beam irradiated from the electron beam emitting portion 18 onto the magnetic disk 2. In the present embodiment, this electron beam is used for tracking control performed during recording and reproduction, in addition to being used for heating the band-shaped magnetic recording unit 22 when performing heat-assisted magnetic recording.

以上のように構成される磁気記録再生装置1では、トラッキング制御を行うために電流計19を利用する。すなわち、本実施形態では、電子線出射部18から磁気ディスク2に照射された電子線の量を電流計19で検出する。通常、帯状磁気記録部22と帯状非磁性部23とでは電気抵抗が異なっているので、電流計19からの信号は、電子線出射部18の中心位置とそれに対向する帯状磁気記録部22の中心位置とのずれの程度に応じて変化する。したがって、電流計19からの信号の変化に基づいてヘッドスライダ7を両矢印26で示す方向に適宜移動させることにより、トラッキングを高精度に行うこと,すなわち、高いCNRを実現すること,ができる。   In the magnetic recording / reproducing apparatus 1 configured as described above, an ammeter 19 is used to perform tracking control. That is, in this embodiment, the amount of the electron beam irradiated to the magnetic disk 2 from the electron beam emitting unit 18 is detected by the ammeter 19. Usually, since the electric resistance is different between the band-shaped magnetic recording unit 22 and the band-shaped nonmagnetic unit 23, the signal from the ammeter 19 is sent to the center position of the electron beam emitting unit 18 and the center of the band-shaped magnetic recording unit 22 facing it. It changes according to the degree of deviation from the position. Therefore, by appropriately moving the head slider 7 in the direction indicated by the double arrow 26 based on the change in the signal from the ammeter 19, tracking can be performed with high accuracy, that is, high CNR can be realized.

また、本実施形態に係る磁気記録再生装置1においては、電子線出射部18からの電子線を熱アシスト磁気記録及びトラッキング制御の双方に利用している。そのため、本実施形態に係る記録再生ヘッド7は、構造が簡略化されており、したがって、容易に製造することができる。   In the magnetic recording / reproducing apparatus 1 according to the present embodiment, the electron beam from the electron beam emitting unit 18 is used for both heat-assisted magnetic recording and tracking control. Therefore, the structure of the recording / reproducing head 7 according to the present embodiment is simplified, and therefore can be easily manufactured.

本実施形態において、帯状非磁性部23の電気抵抗は帯状磁気記録部22の電気抵抗よりも大きいことが好ましい。この場合、トラッキングをより高精度に行うこと,すなわち、より高いCNRを実現すること,ができる。   In the present embodiment, it is preferable that the electrical resistance of the strip-shaped nonmagnetic portion 23 is larger than the electrical resistance of the strip-shaped magnetic recording portion 22. In this case, tracking can be performed with higher accuracy, that is, higher CNR can be realized.

以上説明した実施形態及び参考例に係る磁気記録再生装置1において、磁気検出部15を有する磁気センサは、プレーナ型のGMR素子であることが好ましい。プレーナ型GMR素子を上記磁気センサとして利用する場合、ウエハのプレーナ型GMR素子を形成した面を磁気ディスク2に対向させることとなる。そのため、記録再生ヘッド7に近接場光出射部13や受光部16a,16bを有する光センサなどを設ける場合には、磁気センサを形成したウエハにそれらも形成することができ、また、ヘッド実装が容易になる。   In the magnetic recording / reproducing apparatus 1 according to the embodiment and the reference example described above, the magnetic sensor having the magnetic detection unit 15 is preferably a planar type GMR element. When a planar GMR element is used as the magnetic sensor, the surface of the wafer on which the planar GMR element is formed is opposed to the magnetic disk 2. Therefore, when the recording / reproducing head 7 is provided with an optical sensor having the near-field light emitting portion 13 and the light receiving portions 16a and 16b, they can also be formed on the wafer on which the magnetic sensor is formed. It becomes easy.

上述した実施形態及び参考例で使用する磁気ディスク2は、例えば、以下の方法で製造することができる。
まず、光ディスクの製造で利用されているように、金型を用いたポリマーの射出成形などにより表面にランド・グルーブのような凹凸構造を有する基板21を形成する。或いは、平坦な表面を有する基板21を用いる場合は、その平坦面上にレジスト膜のような樹脂薄膜を成膜し、この薄膜に金型を押し付けて凹凸構造を転写することにより基板21の表面にランド・グルーブのような凹凸構造を形成する。次いで、基板21の凹凸構造が設けられた面に、スパッタリング法のような通常の気相堆積法などを用いて磁気記録膜を成膜する。このような方法によると、磁気記録膜は基板表面の凸部上だけでなく凹部の底面及び側壁をも覆うように形成される。しかしながら、通常、基板表面の凹凸構造は磁気記録膜にも転写されるため、このような方法により、基板21上に帯状磁気記録部22と帯状非磁性部23とが設けられた磁気ディスク2を得ることができる。
The magnetic disk 2 used in the embodiment and the reference example described above can be manufactured, for example, by the following method.
First, as used in the manufacture of an optical disk, a substrate 21 having a concavo-convex structure such as a land / groove is formed on the surface by polymer injection molding using a mold. Alternatively, when the substrate 21 having a flat surface is used, a resin thin film such as a resist film is formed on the flat surface, and the mold is pressed against the thin film to transfer the concavo-convex structure, whereby the surface of the substrate 21 is transferred. A concavo-convex structure like a land / groove is formed. Next, a magnetic recording film is formed on the surface of the substrate 21 provided with the concavo-convex structure by using a normal vapor deposition method such as a sputtering method. According to such a method, the magnetic recording film is formed so as to cover not only the convex portion of the substrate surface but also the bottom and side walls of the concave portion. However, since the concavo-convex structure on the surface of the substrate is usually transferred also to the magnetic recording film, the magnetic disk 2 in which the strip-shaped magnetic recording portion 22 and the strip-shaped nonmagnetic portion 23 are provided on the substrate 21 by such a method is used. Obtainable.

また、上記磁気ディスク2は、他の方法で製造することもできる。すなわち、まず、平坦な表面を有する基板21を準備する。次に、基板21の平坦面全体に磁気記録膜を成膜する。次いで、磁気記録膜上にレジスト膜などを成膜し、このレジスト膜に金型を押し当てて凹凸構造を転写する。すなわち、レジストパターンを形成する。その後、このレジストパターンをマスクとして用いて磁気記録膜をエッチングすることにより、基板21上に帯状磁気記録部22と帯状非磁性部23とが設けられた磁気ディスク2を得ることができる。   The magnetic disk 2 can be manufactured by other methods. That is, first, a substrate 21 having a flat surface is prepared. Next, a magnetic recording film is formed on the entire flat surface of the substrate 21. Next, a resist film or the like is formed on the magnetic recording film, and a mold is pressed against the resist film to transfer the concavo-convex structure. That is, a resist pattern is formed. Thereafter, the magnetic recording film is etched using the resist pattern as a mask, whereby the magnetic disk 2 in which the belt-like magnetic recording portion 22 and the belt-like nonmagnetic portion 23 are provided on the substrate 21 can be obtained.

上述した磁気ディスク2の製造方法は、いずれも大量生産に適しており、しかも、帯状磁気記録部22の幅を狭くすることができる。また、上記磁気ディスク2は、これら以外の方法で製造することも可能である。例えば、光リソグラフィや電子線リソグラフィなどを用いた方法や、操作型トンネル顕微鏡や近接場光顕微鏡などの走査型プローブを用いた方法を利用することもできる。光リソグラフィを用いた方法によると、帯状磁気記録部22の幅を狭めることは比較的困難であるが、高い生産性を実現することができる。また、電子線リソグラフィや走査型プローブを用いた方法によると、高い生産性を実現することは困難であるが、帯状磁気記録部22の幅を狭めることができる。なお、これら技術は、上記金型,すなわち原盤,の製造にも利用可能である。   All of the above-described methods for manufacturing the magnetic disk 2 are suitable for mass production, and the width of the belt-like magnetic recording unit 22 can be reduced. The magnetic disk 2 can also be manufactured by methods other than these. For example, a method using optical lithography, electron beam lithography, or a method using a scanning probe such as an operation tunnel microscope or a near-field light microscope can be used. According to the method using optical lithography, it is relatively difficult to reduce the width of the belt-like magnetic recording unit 22, but high productivity can be realized. Further, according to the method using electron beam lithography or a scanning probe, it is difficult to achieve high productivity, but the width of the strip-shaped magnetic recording unit 22 can be reduced. These techniques can also be used for manufacturing the above-described mold, that is, the master.

以上説明した実施形態及び参考例では、トラッキング制御を行うに当たり、記録再生ヘッド7を両矢印26の方向に移動させたが、記録再生ヘッド7の移動方向は両矢印26で示す方向に限られるものではない。すなわち、記録再生ヘッド7の移動方向は、矢印25と交差する方向であれば特に制限はない。   In the embodiment and the reference example described above, the recording / reproducing head 7 is moved in the direction of the double arrow 26 when performing the tracking control. However, the moving direction of the recording / reproducing head 7 is limited to the direction indicated by the double arrow 26. is not. That is, the moving direction of the recording / reproducing head 7 is not particularly limited as long as it is a direction intersecting the arrow 25.

また、上記実施形態及び参考例では、記録や再生の際に、帯状磁気記録部22を矢印25に示す方向に移動させたが、記録再生ヘッド7に対して帯状磁気記録部22を矢印25に示す方向に相対移動させることができれば、帯状磁気記録部22のみを移動させてもよく、記録再生ヘッド7のみを移動させてもよく、或いは、帯状磁気記録部22及び記録再生ヘッド7の双方を移動させてもよい。同様に、上記実施形態及び参考例では、トラッキング制御を行う際に、記録再生ヘッド7を両矢印26の方向に移動させたが、帯状磁気記録部22に対して記録再生ヘッド7を両矢印26に示す方向に相対移動させることができれば、記録再生ヘッド7のみを移動させてもよく、帯状磁気記録部22のみを移動させてもよく、或いは、帯状磁気記録部22及び記録再生ヘッド7の双方を移動させてもよい。   In the embodiment and the reference example, the band-shaped magnetic recording unit 22 is moved in the direction indicated by the arrow 25 during recording and reproduction. However, the band-shaped magnetic recording unit 22 is moved to the arrow 25 with respect to the recording / reproducing head 7. If it can be moved relative to the direction shown, only the band-shaped magnetic recording unit 22 may be moved, only the recording / reproducing head 7 may be moved, or both the band-shaped magnetic recording unit 22 and the recording / reproducing head 7 may be moved. It may be moved. Similarly, in the embodiment and the reference example, when performing the tracking control, the recording / reproducing head 7 is moved in the direction of the double arrow 26, but the recording / reproducing head 7 is moved with respect to the belt-like magnetic recording unit 22 by the double arrow 26. If only the recording / reproducing head 7 can be moved, only the band-shaped magnetic recording unit 22 may be moved, or both the band-shaped magnetic recording unit 22 and the recording / reproducing head 7 may be moved. May be moved.

さらに、上記実施形態及び参考例では、磁気記録媒体2を磁気ディスクとし、帯状磁気記録部22及び帯状非磁性部23を渦巻線状或いは同心円状とした場合について説明したが、磁気記録媒体2は他の形態であっても良い。例えば、磁気記録媒体2はカードであっても良い。この場合、帯状磁気記録部22及び帯状非磁性部23は直線状とすることが好ましい。   Further, in the above embodiment and the reference example, the case where the magnetic recording medium 2 is a magnetic disk and the belt-like magnetic recording portion 22 and the belt-like nonmagnetic portion 23 are spiral or concentric has been described. Other forms may be used. For example, the magnetic recording medium 2 may be a card. In this case, the belt-like magnetic recording portion 22 and the belt-like nonmagnetic portion 23 are preferably linear.

以下、本発明の実施例について説明する。
(参考例)
本例では、以下に詳述するように図3及び図4に示す磁気記録再生装置1を作製し、そのトラッキング精度を調べた。
Examples of the present invention will be described below.
(Reference example)
In this example, as will be described in detail below, the magnetic recording / reproducing apparatus 1 shown in FIGS. 3 and 4 was manufactured, and the tracking accuracy was examined.

すなわち、本例では、波長650nmの面発光レーザ17を使用し、近接場光出射部13のサイズを縦70nm×幅100nm、単磁極書き込み部14のサイズを縦80nm×幅20nmとした。また、プレーナ型GMR素子の読み出し部15のサイズは縦80nm×幅20nmとし、C−MOS光センサの受光部16a,16bのサイズはそれぞれ直径10μmとした。近接場光出射部13と書き込み部14との間の距離は100nmとし、書き込み部14と読み出し部15との間の距離は200nmとした。また、近接場光出射部13と受光部16a,16bのそれぞれとの間の距離は400nmとした。なお、ここで「縦」は帯状磁気記録部22の長手方向に沿った方向を意味し、「横」はそれに垂直な方向を意味している。本例では、以上のように構成されるヘッドスライダ7を、圧電素子を有する2段アクチュエータで支持した。   That is, in this example, the surface emitting laser 17 having a wavelength of 650 nm was used, the size of the near-field light emitting unit 13 was 70 nm long × 100 nm wide, and the size of the single pole writing unit 14 was 80 nm long × 20 nm wide. The size of the readout unit 15 of the planar GMR element is 80 nm in length × 20 nm in width, and the size of the light receiving units 16a and 16b of the C-MOS photosensor is 10 μm in diameter. The distance between the near-field light emitting unit 13 and the writing unit 14 was 100 nm, and the distance between the writing unit 14 and the reading unit 15 was 200 nm. The distance between the near-field light emitting part 13 and each of the light receiving parts 16a and 16b was 400 nm. Here, “longitudinal” means a direction along the longitudinal direction of the strip-shaped magnetic recording unit 22, and “horizontal” means a direction perpendicular thereto. In this example, the head slider 7 configured as described above is supported by a two-stage actuator having a piezoelectric element.

また、本例では、以下の方法で作製した磁気ディスク2を使用した。すなわち、まず、直径2.5インチ(=6.35cm)のガラス基板上に、厚さ30nmのPd下地層(図示せず)、厚さ50nmのTbFeCo膜、及び厚さ50nmのSiO2膜を順次成膜した。なお、TbFeCoは熱アシスト記録用の垂直磁気記録材料である。 In this example, a magnetic disk 2 produced by the following method was used. That is, first, a Pd underlayer (not shown) having a thickness of 30 nm, a TbFeCo film having a thickness of 50 nm, and a SiO 2 film having a thickness of 50 nm are formed on a glass substrate having a diameter of 2.5 inches (= 6.35 cm). Films were sequentially formed. TbFeCo is a perpendicular magnetic recording material for thermally assisted recording.

次に、SiO2膜上にレジストをスピンコートしてレジスト膜を形成した。次いで、金型をレジスト膜に押し当てて、そのレジスト膜に凹凸パターンを転写した。すなわち、レジストパターンを形成した。なお、ここで使用した金型は、電子線リソグラフィ技術及びメッキ法を用いて作製したNi金型であり、そのレジスト膜との接触面には、幅40nm、高さ50nm、間隔70nmの渦巻線状の凸部が設けられている。 Next, a resist was spin-coated on the SiO 2 film to form a resist film. Next, the mold was pressed against the resist film, and the uneven pattern was transferred to the resist film. That is, a resist pattern was formed. Note that the mold used here is a Ni mold manufactured by using an electron beam lithography technique and a plating method, and the contact surface with the resist film has a spiral of 40 nm in width, 50 nm in height, and 70 nm in spacing. A convex portion is provided.

次いで、そのレジストパターンをエッチングマスクとして用いた反応性イオンエッチング(RIE)によりSiO2膜の露出部を除去して、底面がTbFeCo膜で構成された渦巻線状の凹部を形成した。さらに、SiO2膜をマスクとして用いてArイオンミリングを行うことにより、TbFeCo膜の露出部及びSiO2膜を除去した。以上のようにして、渦巻線状のTbFeCo膜で構成された帯状磁気記録部22を得た。 Next, the exposed portion of the SiO 2 film was removed by reactive ion etching (RIE) using the resist pattern as an etching mask to form a spiral recess having a bottom surface made of a TbFeCo film. Further, the exposed portion of the TbFeCo film and the SiO 2 film were removed by performing Ar ion milling using the SiO 2 film as a mask. As described above, a belt-like magnetic recording unit 22 composed of a spiral TbFeCo film was obtained.

その後、基板21の帯状磁気記録部22を形成した面全体に厚さ50nmのAl膜を成膜して、帯状磁気記録部22によって形成された渦巻線状の凹部をAlで埋め込んだ。次に、このAl膜を、帯状磁気記録部22の上面が露出するまで化学的機械研磨法(CMP法)によって研磨した。これにより、渦巻線状のAl膜で構成された帯状非磁性部23を得た。さらに、帯状磁気記録部22及び帯状非磁性部23上にダイアモンドライクカーボン保護膜を成膜した。以上のようにして、磁気ディスク2を得た。   Thereafter, an Al film having a thickness of 50 nm was formed on the entire surface of the substrate 21 on which the strip-shaped magnetic recording portion 22 was formed, and the spiral recess formed by the strip-shaped magnetic recording portion 22 was filled with Al. Next, this Al film was polished by a chemical mechanical polishing method (CMP method) until the upper surface of the strip-shaped magnetic recording portion 22 was exposed. As a result, a strip-like nonmagnetic portion 23 composed of a spiral Al film was obtained. Further, a diamond-like carbon protective film was formed on the strip-shaped magnetic recording portion 22 and the strip-shaped nonmagnetic portion 23. As described above, the magnetic disk 2 was obtained.

このようにして得られた磁気ディスク2を磁気力顕微鏡で観察した。その結果、幅70nmの帯状磁気記録部22の幅方向に隣り合う部分が幅40nmの帯状非磁性部23で分離された構造を確認することができた。   The magnetic disk 2 thus obtained was observed with a magnetic force microscope. As a result, it was possible to confirm a structure in which a portion adjacent to the width direction of the strip-shaped magnetic recording portion 22 having a width of 70 nm was separated by the strip-shaped nonmagnetic portion 23 having a width of 40 nm.

以上のように構成される磁気記録再生装置1について、面発光レーザ17の照射パワーを1mWとして読み出し時におけるトラッキング精度を調べた。その結果、400Mbpsの読み出し速度でも十分に高精度にトラッキングを行うことができた。また、上記磁気記録再生装置1について、面発光レーザ17の照射パワーを5mWとして書き込み時におけるトラッキング精度を調べた。その結果、100Mbpsの書き込み速度でも十分に高精度にトラッキングを行うことができた。また、クロスイレースの頻度も0.001%以下と十分に抑制されていた。   With respect to the magnetic recording / reproducing apparatus 1 configured as described above, the tracking accuracy at the time of reading was examined by setting the irradiation power of the surface emitting laser 17 to 1 mW. As a result, tracking could be performed with sufficiently high accuracy even at a reading speed of 400 Mbps. Further, with respect to the magnetic recording / reproducing apparatus 1, the tracking accuracy at the time of writing was examined with the irradiation power of the surface emitting laser 17 set to 5 mW. As a result, tracking could be performed with sufficiently high accuracy even at a writing speed of 100 Mbps. Also, the frequency of cross erase was sufficiently suppressed to 0.001% or less.

(比較例)
以下に説明する方法で作製した磁気ディスクを使用したこと以外は参考例で説明したのとほぼ同様の構成の磁気記録再生装置を作製した。すなわち、本比較例では、直径2.5インチ(=6.35cm)のガラス基板上に厚さ30nmのPd下地層及び厚さ50nmのTbFeCo膜を順次成膜してなる磁気ディスクを使用した。なお、このようにして得られた磁気ディスクはディスクリート媒体ではないので、参考例で利用したのと同様の方法でトラッキングを行うことは不可能である。そこで、本比較例では、サーボライタを用いて磁気記録膜にサーボ信号を記録し、GMR読み出しヘッドを用いてトラッキングを行った。
(Comparative example)
A magnetic recording / reproducing apparatus having substantially the same configuration as that described in the reference example was manufactured except that a magnetic disk manufactured by the method described below was used. That is, in this comparative example, a magnetic disk was used in which a Pd underlayer having a thickness of 30 nm and a TbFeCo film having a thickness of 50 nm were sequentially formed on a glass substrate having a diameter of 2.5 inches (= 6.35 cm). Since the magnetic disk thus obtained is not a discrete medium, it is impossible to perform tracking by the same method as used in the reference example. Therefore, in this comparative example, a servo signal was recorded on the magnetic recording film using a servo writer, and tracking was performed using a GMR read head.

しかしながら、本比較例に係る磁気記録再生装置では、読み出し速度は150Mbpsが限度であった。また、書き込み速度を100Mbpsとした場合、クロスイレースが0.3%の頻度で観測された。   However, in the magnetic recording / reproducing apparatus according to this comparative example, the reading speed is limited to 150 Mbps. When the writing speed was 100 Mbps, cross erase was observed at a frequency of 0.3%.

(実施例)
本実施例では、以下に詳述するように図6及び図7に示す磁気記録再生装置1を作製し、そのトラッキング精度を調べた。
(Example)
In this embodiment, as will be described in detail below, the magnetic recording / reproducing apparatus 1 shown in FIGS. 6 and 7 was manufactured, and the tracking accuracy was examined.

すなわち、本実施例では、電子線出射部18のサイズを直径50nm、単磁極書き込み部14のサイズを縦80nm×幅20nmとした。また、プレーナ型GMR素子の読み出し部15のサイズは縦80nm×幅20nmとした。電子線出射部18と書き込み部14との間の距離は80nmとし、書き込み部14と読み出し部15との間の距離は200nmとした。なお、ここで「縦」は帯状磁気記録部22の長手方向に沿った方向を意味し、「横」はそれに垂直な方向を意味している。本実施例では、以上のように構成されるヘッドスライダ7を、圧電素子を有する2段アクチュエータで支持した。   That is, in this embodiment, the electron beam emitting portion 18 has a diameter of 50 nm, and the single magnetic pole writing portion 14 has a length of 80 nm × width of 20 nm. The size of the readout portion 15 of the planar type GMR element was 80 nm long × 20 nm wide. The distance between the electron beam emitting unit 18 and the writing unit 14 was 80 nm, and the distance between the writing unit 14 and the reading unit 15 was 200 nm. Here, “longitudinal” means a direction along the longitudinal direction of the strip-shaped magnetic recording unit 22, and “horizontal” means a direction perpendicular thereto. In this embodiment, the head slider 7 configured as described above is supported by a two-stage actuator having a piezoelectric element.

また、本実施例では、以下の方法で作製した磁気ディスク2を使用した。すなわち、まず、直径2.5インチ(=6.35cm)のガラス基板上に、厚さ30nmのPd下地層(図示せず)、厚さ50nmのTbFeCo膜、及び厚さ50nmのSiO2膜を順次成膜した。なお、TbFeCoは熱アシスト記録用の垂直磁気記録材料である。 In this example, the magnetic disk 2 produced by the following method was used. That is, first, a Pd underlayer (not shown) having a thickness of 30 nm, a TbFeCo film having a thickness of 50 nm, and a SiO 2 film having a thickness of 50 nm are formed on a glass substrate having a diameter of 2.5 inches (= 6.35 cm). Films were sequentially formed. TbFeCo is a perpendicular magnetic recording material for thermally assisted recording.

次に、TbFeCo膜上にレジストをスピンコートしてレジスト膜を形成した。次いで、金型をレジスト膜に押し当てて、そのレジスト膜に凹凸パターンを転写した。すなわち、レジストパターンを形成した。なお、ここで使用した金型は、電子線リソグラフィ技術及びメッキ法を用いて作製したNi金型であり、そのレジスト膜との接触面には、幅40nm、高さ50nm、間隔70nmの渦巻線状の凸部が設けられている。   Next, a resist was spin-coated on the TbFeCo film to form a resist film. Next, the mold was pressed against the resist film, and the uneven pattern was transferred to the resist film. That is, a resist pattern was formed. Note that the mold used here is a Ni mold manufactured by using an electron beam lithography technique and a plating method, and the contact surface with the resist film has a spiral of 40 nm in width, 50 nm in height, and 70 nm in spacing. A convex portion is provided.

次いで、そのレジストパターンをエッチングマスクとして用いた反応性イオンエッチング(RIE)によりSiO2膜の露出部を除去して、底面がTbFeCo膜で構成された渦巻線状の凹部を形成した。さらに、SiO2膜をマスクとして用いてArイオンミリングを行うことにより、TbFeCo膜の露出部及びSiO2膜を除去した。以上のようにして、渦巻線状のTbFeCo膜で構成された導電性の帯状磁気記録部22を得た。 Next, the exposed portion of the SiO 2 film was removed by reactive ion etching (RIE) using the resist pattern as an etching mask to form a spiral recess having a bottom surface made of a TbFeCo film. Further, the exposed portion of the TbFeCo film and the SiO 2 film were removed by performing Ar ion milling using the SiO 2 film as a mask. As described above, a conductive belt-like magnetic recording unit 22 composed of a spiral TbFeCo film was obtained.

その後、基板21の帯状磁気記録部22を形成した面全体に厚さ50nmの電気絶縁性SiO2膜を成膜して、帯状磁気記録部22によって形成された渦巻線状の凹部をSiO2で埋め込んだ。次に、このSiO2膜を、帯状磁気記録部22の上面が露出するまで化学的機械研磨法(CMP法)によって研磨した。これにより、渦巻線状のSiO2膜で構成された電気的に絶縁性の帯状非磁性部23を得た。さらに、帯状磁気記録部22及び帯状非磁性部23上にダイアモンドライクカーボン保護膜を成膜した。以上のようにして、磁気ディスク2を得た。 Thereafter, an electrically insulating SiO 2 film having a thickness of 50 nm is formed on the entire surface of the substrate 21 on which the band-shaped magnetic recording portion 22 is formed, and the spiral recess formed by the band-shaped magnetic recording portion 22 is made of SiO 2 . Embedded. Next, this SiO 2 film was polished by a chemical mechanical polishing method (CMP method) until the upper surface of the strip-shaped magnetic recording portion 22 was exposed. As a result, an electrically insulating strip-like nonmagnetic portion 23 formed of a spiral SiO 2 film was obtained. Further, a diamond-like carbon protective film was formed on the strip-shaped magnetic recording portion 22 and the strip-shaped nonmagnetic portion 23. As described above, the magnetic disk 2 was obtained.

このようにして得られた磁気ディスク2を磁気力顕微鏡で観察した。その結果、幅70nmの帯状磁気記録部22の幅方向に隣り合う部分が幅40nmの帯状非磁性部23で分離された構造を確認することができた。   The magnetic disk 2 thus obtained was observed with a magnetic force microscope. As a result, it was possible to confirm a structure in which a portion adjacent to the width direction of the strip-shaped magnetic recording portion 22 having a width of 70 nm was separated by the strip-shaped nonmagnetic portion 23 having a width of 40 nm.

以上のように構成される磁気記録再生装置1について、読み出し時におけるトラッキング精度を調べた。なお、読み出し時におけるトラッキングは、電流計19で検出される電流量が1μAでほぼ一定となるように記録再生ヘッド7の位置を制御することにより行った。その結果、500Mbpsの読み出し速度でも十分に高精度にトラッキングを行うことができた。   Regarding the magnetic recording / reproducing apparatus 1 configured as described above, the tracking accuracy at the time of reading was examined. Note that the tracking at the time of reading was performed by controlling the position of the recording / reproducing head 7 so that the amount of current detected by the ammeter 19 was substantially constant at 1 μA. As a result, tracking could be performed with sufficiently high accuracy even at a reading speed of 500 Mbps.

また、上記磁気記録再生装置1について、書き込み時におけるトラッキング精度を調べた。なお、書き込み時には、電子線の照射量を高め、電流計19で検出される電流量が30μAでほぼ一定となるように記録再生ヘッド7の位置を制御することによりトラッキングを行った。その結果、200Mbpsの書き込み速度でも十分に高精度にトラッキングを行うことができた。また、クロスイレースの頻度も0.001%以下と十分に抑制されていた。   Further, with respect to the magnetic recording / reproducing apparatus 1, the tracking accuracy during writing was examined. At the time of writing, tracking was performed by increasing the irradiation amount of the electron beam and controlling the position of the recording / reproducing head 7 so that the amount of current detected by the ammeter 19 was substantially constant at 30 μA. As a result, tracking could be performed with sufficiently high accuracy even at a writing speed of 200 Mbps. Also, the frequency of cross erase was sufficiently suppressed to 0.001% or less.

本発明の一実施形態及び参考例に係る磁気記録再生装置を概略的に示す斜視図。1 is a perspective view schematically showing a magnetic recording / reproducing apparatus according to an embodiment and a reference example of the present invention. 本発明の参考例に係る磁気記録再生装置で使用するヘッドスライダを概略的に示す平面図。The top view which shows schematically the head slider used with the magnetic recording / reproducing apparatus which concerns on the reference example of this invention. 本発明の参考例に係る磁気記録再生装置を概略的に示す断面図。Sectional drawing which shows schematically the magnetic recording / reproducing apparatus which concerns on the reference example of this invention. 本発明の参考例に係る磁気記録再生装置を概略的に示す平面図。1 is a plan view schematically showing a magnetic recording / reproducing apparatus according to a reference example of the present invention. 本発明の一実施形態に係る磁気記録再生装置で使用するヘッドスライダを概略的に示す平面図。1 is a plan view schematically showing a head slider used in a magnetic recording / reproducing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る表示装置の製造装置を概略的に示す図。The figure which shows schematically the manufacturing apparatus of the display apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁気記録再生装置を概略的に示す平面図。1 is a plan view schematically showing a magnetic recording / reproducing apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…磁気記録再生装置、2…磁気ディスク、3…スピンドル、4…固定軸、5…磁気ヘッドアセンブリ、6…ボイスコイルモータ、7…ヘッドスライダ、8…アクチュエータアーム、9…サスペンション、10…モータ、11…支持体、12…スライダ部、13…近接場光出射部、14…磁場発生部、15…磁気検出部、16a…受光部、16b…受光部、17…光源、18…電子線出射部、19…電流計、21…基板、22…帯状磁気記録部、23…帯状非磁性部、25…矢印、26…両矢印。   DESCRIPTION OF SYMBOLS 1 ... Magnetic recording / reproducing apparatus, 2 ... Magnetic disk, 3 ... Spindle, 4 ... Fixed shaft, 5 ... Magnetic head assembly, 6 ... Voice coil motor, 7 ... Head slider, 8 ... Actuator arm, 9 ... Suspension, 10 ... Motor DESCRIPTION OF SYMBOLS 11 ... Support body 12 ... Slider part 13 ... Near field light emission part 14 ... Magnetic field generation part 15 ... Magnetic detection part 16a ... Light reception part 16b ... Light reception part 17 ... Light source 18 ... Electron beam emission , 19 ... ammeter, 21 ... substrate, 22 ... strip-shaped magnetic recording section, 23 ... strip-shaped nonmagnetic section, 25 ... arrow, 26 ... double arrow.

Claims (3)

基板と、前記基板の一主面に設けられ互いに平行に配列した複数の帯状磁気記録部と、それぞれ前記複数の帯状磁気記録部間に介在する複数の帯状非磁性部とを備えた磁気記録媒体、
前記複数の帯状磁気記録部の1つに対向しその帯状磁気記録部に向けて電子線を出射する電子線出射部と、前記電子線出射部が対向する帯状磁気記録部に対向した磁場発生部と、前記電子線出射部が対向する帯状磁気記録部に対向した磁気検出部とを備えた記録再生ヘッド、
前記電子線出射部に接続され前記電子線出射部から前記電子線出射部が対向する帯状磁気記録部に向けて流れた電流量を検出する電流計、及び
前記電子線出射部が対向した帯状磁気記録部に沿って前記磁気記録媒体と前記記録再生ヘッドとを相対移動させる駆動機構を具備することを特徴とする磁気記録再生装置。
A magnetic recording medium comprising a substrate, a plurality of strip-shaped magnetic recording portions provided on one main surface of the substrate and arranged in parallel with each other, and a plurality of strip-shaped nonmagnetic portions interposed between the plurality of strip-shaped magnetic recording portions, respectively ,
An electron beam emitting portion that emits an electron beam toward one of the plurality of band-shaped magnetic recording portions and emits an electron beam toward the band-shaped magnetic recording portion, and a magnetic field generating portion that faces the band-shaped magnetic recording portion that faces the electron beam emitting portion A recording / reproducing head comprising: a magnetic detecting unit opposed to the belt-shaped magnetic recording unit opposed to the electron beam emitting unit;
An ammeter that detects the amount of current that is connected to the electron beam emitting unit and flows from the electron beam emitting unit toward the band-shaped magnetic recording unit that is opposed to the electron beam emitting unit, and the band-shaped magnet that is opposed to the electron beam emitting unit. A magnetic recording / reproducing apparatus comprising a drive mechanism for moving the magnetic recording medium and the recording / reproducing head relative to each other along a recording unit.
前記電流計と前記駆動機構とに接続された制御部をさらに具備し、この制御部は前記磁気記録媒体に対する前記記録再生ヘッドの相対位置を前記複数の帯状磁気記録部の配列方向に変化させるように前記駆動機構の動作を制御し、この制御は前記電流計からの信号に基づいて行われることを特徴とする請求項1に記載の磁気記録再生装置。   The controller further includes a control unit connected to the ammeter and the drive mechanism, and the control unit changes a relative position of the recording / reproducing head with respect to the magnetic recording medium in an arrangement direction of the plurality of strip-shaped magnetic recording units. The magnetic recording / reproducing apparatus according to claim 1, wherein the operation of the drive mechanism is controlled by the control based on a signal from the ammeter. 前記制御部は前記電流計からの信号の大きさの変動が抑制されるように前記駆動機構の動作を制御することを特徴とする請求項2に記載の磁気記録再生装置。   The magnetic recording / reproducing apparatus according to claim 2, wherein the control unit controls the operation of the drive mechanism so that a variation in the magnitude of a signal from the ammeter is suppressed.
JP2006068092A 2006-03-13 2006-03-13 Magnetic recording-and-reproducing device Withdrawn JP2006209960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068092A JP2006209960A (en) 2006-03-13 2006-03-13 Magnetic recording-and-reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068092A JP2006209960A (en) 2006-03-13 2006-03-13 Magnetic recording-and-reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001087471A Division JP2002288801A (en) 2001-03-26 2001-03-26 Magnetic recording reproducing device

Publications (1)

Publication Number Publication Date
JP2006209960A true JP2006209960A (en) 2006-08-10

Family

ID=36966582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068092A Withdrawn JP2006209960A (en) 2006-03-13 2006-03-13 Magnetic recording-and-reproducing device

Country Status (1)

Country Link
JP (1) JP2006209960A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305486A (en) * 2007-06-07 2008-12-18 Toshiba Corp Magnetic recording head and magnetic recorder
JP2009064487A (en) * 2007-09-04 2009-03-26 Toshiba Corp Magnetic recording head and magnetic recording system
JP2009070439A (en) * 2007-09-11 2009-04-02 Toshiba Corp Magnetic recording head and magnetic recording device
JP2009099248A (en) * 2007-09-27 2009-05-07 Toshiba Corp Magnetic recording head and magnetic recording device
US8154825B2 (en) 2007-09-25 2012-04-10 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording device
US8164854B2 (en) 2007-06-07 2012-04-24 Kabushiki Kaisha Toshiba Magnetic recording head with spin oscillation device and magnetic recording apparatus including the magnetic recording head
US8238058B2 (en) 2008-08-06 2012-08-07 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8238060B2 (en) 2007-08-22 2012-08-07 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US8264799B2 (en) 2007-04-27 2012-09-11 Kabushiki Kaisha Toshiba Magnetic recording head
US8295009B2 (en) 2007-08-22 2012-10-23 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US8320079B2 (en) 2008-06-19 2012-11-27 Kabushiki Kaisha Toshiba Magnetic head assembly and magnetic recording/reproducing apparatus
US8325442B2 (en) 2008-11-06 2012-12-04 Kabushiki Kaisha Toshiba Spin torque oscillator, magnetic recording head, magnetic head assembly and magnetic recording apparatus
US8654480B2 (en) 2007-09-25 2014-02-18 Kabushiki Kaisha Toshiba Magnetic head with spin torque oscillator and magnetic recording head
US8687321B2 (en) 2008-06-19 2014-04-01 Kabushiki Kaisha Toshiba Magnetic head assembly
US8767346B2 (en) 2008-11-28 2014-07-01 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US9196268B2 (en) 2012-03-26 2015-11-24 Kabushiki Kaisha Toshiba Magnetic head manufacturing method forming sensor side wall film by over-etching magnetic shield

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264799B2 (en) 2007-04-27 2012-09-11 Kabushiki Kaisha Toshiba Magnetic recording head
JP2008305486A (en) * 2007-06-07 2008-12-18 Toshiba Corp Magnetic recording head and magnetic recorder
US8164854B2 (en) 2007-06-07 2012-04-24 Kabushiki Kaisha Toshiba Magnetic recording head with spin oscillation device and magnetic recording apparatus including the magnetic recording head
US8295009B2 (en) 2007-08-22 2012-10-23 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US8547662B2 (en) 2007-08-22 2013-10-01 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US8400734B2 (en) 2007-08-22 2013-03-19 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US8238060B2 (en) 2007-08-22 2012-08-07 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
JP2009064487A (en) * 2007-09-04 2009-03-26 Toshiba Corp Magnetic recording head and magnetic recording system
US8139322B2 (en) 2007-09-04 2012-03-20 Kabushiki Kaisha Toshiba Magnetic recording head with protruding spin torque oscillator
JP2009070439A (en) * 2007-09-11 2009-04-02 Toshiba Corp Magnetic recording head and magnetic recording device
US8154825B2 (en) 2007-09-25 2012-04-10 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording device
US8654480B2 (en) 2007-09-25 2014-02-18 Kabushiki Kaisha Toshiba Magnetic head with spin torque oscillator and magnetic recording head
JP2009099248A (en) * 2007-09-27 2009-05-07 Toshiba Corp Magnetic recording head and magnetic recording device
US8320079B2 (en) 2008-06-19 2012-11-27 Kabushiki Kaisha Toshiba Magnetic head assembly and magnetic recording/reproducing apparatus
US8687321B2 (en) 2008-06-19 2014-04-01 Kabushiki Kaisha Toshiba Magnetic head assembly
US8238058B2 (en) 2008-08-06 2012-08-07 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8325442B2 (en) 2008-11-06 2012-12-04 Kabushiki Kaisha Toshiba Spin torque oscillator, magnetic recording head, magnetic head assembly and magnetic recording apparatus
US8767346B2 (en) 2008-11-28 2014-07-01 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US8995085B2 (en) 2008-11-28 2015-03-31 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US9129617B2 (en) 2008-11-28 2015-09-08 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US9378756B2 (en) 2008-11-28 2016-06-28 Kabushiki Kaisha Toshiba Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
US9196268B2 (en) 2012-03-26 2015-11-24 Kabushiki Kaisha Toshiba Magnetic head manufacturing method forming sensor side wall film by over-etching magnetic shield

Similar Documents

Publication Publication Date Title
JP2006209960A (en) Magnetic recording-and-reproducing device
JP5278887B2 (en) Near-field optical head and information recording / reproducing apparatus
US8116034B2 (en) Thermally assisted magnetic head having main pole arranged between near-field light-generating portions and manufacturing method of same
US8243558B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk apparatus
JP5201571B2 (en) Recording head and information recording / reproducing apparatus
US8164987B2 (en) Thermally assisted magnetic head
JP5841313B2 (en) Near-field optical head and information recording / reproducing apparatus
US8233359B2 (en) Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method
JP2009087508A (en) Near field light head and information recording and reproducing device
JP2006244550A (en) Recording medium driving device, head position detecting method and clock signal generating method
JP2010118099A (en) Magnetic head, slider, and method of manufacturing magnetic head and slider
KR100373672B1 (en) Magnetic head, magnetic head manufacturing method and vertical magnetic recording apparatus
JP4569966B2 (en) Near-field optical recording element, near-field optical head, and information recording / reproducing apparatus
US20130148231A1 (en) Suspension assembly formed with a protective structure
US7796359B2 (en) Magnetic head for perpendicular magnetic recording and method of manufacturing the same, the magnetic head including pole layer and two shields sandwiching the pole layer
US11562766B1 (en) Thermally assisted magnetic head, head gimbal assembly and hard disk drive
JP2009140538A (en) Recording head and information recording/reproduction device
JP2009004024A (en) Near-field light head and information recording and reproducing apparatus
JP3704105B2 (en) Reproducing apparatus and recording / reproducing apparatus
JP4674817B2 (en) Near-field optical head and information recording / reproducing apparatus
JP3702192B2 (en) Information playback device
US9165582B1 (en) Thermal assisted magnetic recording head utilizing uncoupled light
JP2002288801A (en) Magnetic recording reproducing device
JP4576719B2 (en) Flying optical recording / reproducing head and method for controlling the flying height thereof
JP2002298322A (en) Magnetic recording/reproducing device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061127