JP2006204081A - Supply and demand adjusting method, system and service by distributed power source - Google Patents

Supply and demand adjusting method, system and service by distributed power source Download PDF

Info

Publication number
JP2006204081A
JP2006204081A JP2005277033A JP2005277033A JP2006204081A JP 2006204081 A JP2006204081 A JP 2006204081A JP 2005277033 A JP2005277033 A JP 2005277033A JP 2005277033 A JP2005277033 A JP 2005277033A JP 2006204081 A JP2006204081 A JP 2006204081A
Authority
JP
Japan
Prior art keywords
power
supply
demand
adjustment
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277033A
Other languages
Japanese (ja)
Inventor
Yasunori Ono
康則 大野
Tomoyuki Uchiyama
倫行 内山
Shinichi Kondo
真一 近藤
Masaru Tatemi
優 楯身
Yasunobu Fujita
康信 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005277033A priority Critical patent/JP2006204081A/en
Publication of JP2006204081A publication Critical patent/JP2006204081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system by which natural fluctuating electric power supply like wind power generation is interconnected to a commercial system, and economical operation is attained, without depending on the ability to adjust the supply and demand of an electric power company. <P>SOLUTION: The system includes a means 62 to collect information on demand of a customer 6, and a means 42 to collect information on generated energy (output) of an electric power enterprise having the natural fluctuating electric power supply 4, and the information is collected at a supply and demand adjusting center 3 via a communications network 2. A monitor controller 31 computes and sets an output of a power system 5 for adjustment from such information so as to keep the balance of demand and supply, including the naturally fluctuating electric power supply 4. Its control value is transmitted to the power system 5 for adjustment via the communication network 2, and the generated energy is controlled by a control unit 53. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は分散型電源による需給調整方法,システムおよびサービスに係り、特に、自然エネルギー電源を含む分散型電源により、需要に対して電力を供給するものに好適な分散型電源による需給調整方法,システムおよびサービスに関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supply and demand adjustment method, system, and service using a distributed power source, and more particularly, a supply and demand adjustment method and system using a distributed power source suitable for supplying power to demand by a distributed power source including a natural energy power source. And services.

CO2 排出削減等、地球環境への関心の高まりから、風力発電や太陽光発電などの分散型電源の導入が望まれている。特に、大容量化が比較的容易な風力発電は、環境に優しいエネルギー源として期待されている。また、2003年4月から、RPS法(電気事業者による新エネルギー等の利用に関する特別措置法)が施行され、政策の点からも、新エネルギーを導入する環境が整備されてきている。 Due to growing interest in the global environment, such as reducing CO 2 emissions, the introduction of distributed power sources such as wind power generation and solar power generation is desired. In particular, wind power generation with relatively large capacity is expected as an environmentally friendly energy source. Also, since April 2003, the RPS Act (Special Measures Law on the Use of New Energy by Electric Power Companies) has been enforced, and the environment for introducing new energy has been improved in terms of policy.

しかし、風力発電は風の強弱により発電出力が変化すること、太陽光発電は雲の動きなどにより発電出力が大きく変化することが知られている。風力発電や太陽光発電のように、自然条件により発電出力が変動する発電装置を、自然変動電源と呼ぶことがある。   However, it is known that the power generation output of wind power generation changes depending on the strength of the wind, and the power generation output of solar power generation changes greatly due to the movement of clouds. A power generation device whose power generation output fluctuates depending on natural conditions, such as wind power generation or solar power generation, may be referred to as a natural power supply.

自然変動電源を系統に連系して運用する場合、自然変動電源を含めた、需給調整や系統の電圧等の管理を行う必要があり、連系系統への影響が懸念される。非特許文献1に記載のように、自然変動電源を系統に連系する場合の電力安定化(発電出力変動を補償する)のため、2次電池,フライホイール,キャパシターの利用などが検討されている。   When a natural variable power supply is connected to the grid, it is necessary to perform supply and demand adjustment and system voltage management including the natural variable power supply, and there is a concern about the influence on the grid. As described in Non-Patent Document 1, the use of secondary batteries, flywheels, capacitors, etc. has been studied for power stabilization (compensating for power generation output fluctuations) when a naturally varying power supply is connected to the system. Yes.

また、特許文献1には、自然変動電源(自然エネルギー電源)を積極的に利用して需要家に電力を供給するための工夫がなされており、需要の変動と自然変動電源の出力変動に対して、気象予測情報を利用し、発電業者(電力会社)からの買電量を決定する電力供給システムが提案されている。   In addition, Patent Document 1 devises a method for actively using a natural power source (natural energy power source) to supply power to consumers, and responds to fluctuations in demand and output fluctuations of the natural power source. Thus, there has been proposed a power supply system that determines the amount of power purchased from a power generator (electric power company) using weather forecast information.

また、特定規模電気事業者と呼ばれる、分散型電源から電力を提供できる事業者が、予め契約した需要家に対して、一般電気事業者(電力会社)の所有する送配電系統を経由して送電することも行われている。この場合、一般電気事業者は接続供給約款に従い、分散型電源を有する事業者に対し接続供給サービスを行う。   In addition, a company that can supply power from a distributed power source, called a specific-scale electric power company, transmits power to consumers who have contracted in advance via a transmission and distribution system owned by a general electric power company (electric power company). It has also been done. In this case, a general electric power company provides a connection supply service to a business having a distributed power source in accordance with the connection supply provisions.

特開2002−262458号公報JP 2002-262458 A 「風力発電システムの導入促進に関する提言」((財)新エネルギー財団、新エネルギー会議、平成14年)"Proposal for promoting the introduction of wind power generation systems" (New Energy Foundation, New Energy Conference, 2002)

例えば、風力発電は風の強弱により発電出力が変化する。需給のバランスをとるためには、需要の変動に加え、出力制御がほとんどできない風力発電の出力変動に対して、制御可能な電源の確保が必要となる。電力会社が発電事業者を対象として、入札等を行い、予め購入量を決めておく。この購入量に起因する変動に対し、電力会社の発電出力が制御可能な電源を用意し、最終的な需給調整(周波数調整)を行っている。   For example, in wind power generation, the power generation output varies depending on the strength of the wind. In order to balance supply and demand, it is necessary to secure a controllable power source for fluctuations in output of wind power generation, in which output control is hardly possible, in addition to fluctuations in demand. An electric power company makes a bid for a power generation company and decides a purchase amount in advance. A power supply that can control the power generation output of the electric power company is prepared for fluctuations caused by the purchase amount, and final supply and demand adjustment (frequency adjustment) is performed.

系統に連系される風力発電の容量を大幅に増やすためには、需給調整(周波数調整)の調整力を維持する必要があり、現行の形態では、電力会社の調整設備を増強する必要があるが、電力会社の経営の観点からは増強には限界がある。   In order to greatly increase the capacity of wind power generation connected to the grid, it is necessary to maintain the adjustment capability of supply and demand adjustment (frequency adjustment), and in the current form, it is necessary to increase the adjustment facilities of the electric power company However, there is a limit to the enhancement from the viewpoint of management of electric power companies.

自然変動電源(自然エネルギー電源)を利用する際、需要の変動と自然変動電源の出力変動を、電力会社からの買電量で調整したのでは、自然変動電源導入に伴い、電力会社の調整設備の負担が増大する問題を本質的に解決することはできない。   When using a natural power source (natural power source), fluctuations in demand and output fluctuations from the natural power source are adjusted by the amount of power purchased from the power company. The problem of increasing the burden cannot be essentially solved.

本発明の目的は、上記従来技術の問題点に鑑み、電力会社の需給調整の調整力に依存することなく、風力発電のような自然変動電源を商用系統に連系し、経済的に運転できる分散電源の需給調整方法及びシステムを提供することにある。さらに、本発明を運用する際のサービスと課金に係るビジネスモデルを提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to connect a natural fluctuation power source such as wind power generation to a commercial system and operate economically without depending on the power supply adjustment power of an electric power company. An object of the present invention is to provide a method and system for adjusting the supply and demand of distributed power sources. It is another object of the present invention to provide a business model related to service and billing when operating the present invention.

本発明は、前記課題を解決するために、予め契約した需要家に対し電力を供給し、需給バランスをとるための調整力を有する電気事業者(特定規模電気事業者)と、風力発電等の自然変動電源を有する発電事業者を組合せる分散型電源による需給調整システムを構築する。   In order to solve the above-mentioned problems, the present invention supplies an electric power to a customer who has contracted in advance and has an adjusting power for balancing supply and demand (specific electric power company), wind power generation and the like. Establish a supply and demand adjustment system using distributed power sources that combine power generation companies with natural power sources.

本発明は、複数の需要家の負荷と、自然変動電源と、調整用発電装置を電力系統で結び、その需要と供給を調整する分散電源の需給調整システムにおいて、前記需要家の需要に関する情報を収集する手段と、前記自然変動電源の発電量に関する情報を収集する手段と、これらの収集された情報から、前記需要と前記自然変動電源を含めた供給との需給バランスをとるように、前記調整用発電装置の出力を設定する需給調整手段と、その出力制御値を前記調整用発電装置に送信する通信手段を備えることを特徴とする。   The present invention relates to a demand and supply adjustment system for a distributed power source that connects a plurality of consumer loads, a natural power source, and a power generator for adjustment with a power system, and adjusts the demand and supply. The means for collecting, the means for collecting information on the power generation amount of the natural variable power source, and the adjustment so as to balance the supply and demand between the demand and the supply including the natural variable power source from the collected information Supply and demand adjustment means for setting the output of the power generator for power generation, and communication means for transmitting the output control value to the power generator for adjustment.

前記需給調整手段は、制御対象となる時刻における需要の予測と前記自然変動電源による発電電力予測値から、前記調整用発電装置での最適な発電量を算出し、その指令値を前記調整用発電装置の制御装置に送り、前記調整用発電装置の出力を制御してなることを特徴とする。   The supply and demand adjustment means calculates an optimum power generation amount in the adjustment power generation device from a prediction of demand at a time to be controlled and a predicted power generation value by the natural variable power source, and uses the command value as the power generation for adjustment It is sent to the control device of the apparatus, and the output of the power generator for adjustment is controlled.

本発明は、複数の需要家の負荷と、自然変動電源および調整用発電装置を有する分散電源を電力系統に接続すると共に、これらの負荷や電源と需給調整センタを通信ネットワークで結び、需給の調整を行う分散電源の需給調整サービスにおいて、前記需給調整センタは、前記自然変動電源による電力量と前記調整用発電装置による電力量の対価として各需要家の電力料金を課金し、前記自然変動電源は前記需給調整センタに対し、需要家に供給した電力量料金から前記需給調整センタのサービス料を差し引いた料金を課金し、前記調整用発電装置は前記需給調整センタに対し、前記調整用発電装置が需要家に供給した電力量料金と前記調整用発電装置の機会損失額の和から、前記需給センタによる前記調整用発電装置の需給調整サービス料を差し引いて課金することを特徴とする。   The present invention connects a load of a plurality of consumers and a distributed power source having a natural power source and a power generator for adjustment to an electric power system, and connects the load and power source to a supply and demand adjustment center through a communication network, thereby adjusting supply and demand. In the distributed power supply / demand adjustment service, the supply / demand adjustment center charges each customer's power fee as a consideration of the amount of power by the natural variable power supply and the amount of power by the power generator for adjustment, The supply / demand adjustment center is charged with a charge obtained by subtracting the service charge of the supply / demand adjustment center from the amount of electric power supplied to the customer, and the adjustment power generation device is connected to the supply / demand adjustment center. From the sum of the electricity charge supplied to the customer and the opportunity loss amount of the power generator for adjustment, the supply and demand adjustment service fee of the power generator for adjustment by the power supply and demand center is calculated. Characterized in that it charges pulling to.

ここで、分散型電源による需給調整システムを運用するに際しては、分散型電源による需給調整システムを管理するサービス提供業者と、契約需要家、および自然変動電源を有する発電事業者,制御可能な発電装置を有する発電事業者との間で契約を締結し、契約に従って運用することができる。   Here, when operating a supply and demand adjustment system using a distributed power source, a service provider that manages the supply and demand adjustment system using a distributed power source, a contract consumer, a power generation company having a naturally variable power source, and a controllable power generator You can sign a contract with a power generation company that has

この場合、契約需要家を契約者A,自然変動電源を有する発電事業者を契約者B,制御可能な発電装置を有する発電事業者を契約者C,サービス提供業者を契約者Dとすると、契約者Aは、契約者B,契約者Cと分散型電源による需給調整サービスに関する契約を締結する。契約者Aについては、最大受電電力,料金等を、契約者Bおよび契約者C,需給調整サービス側の最大購入電力,料金,附帯条件等を予め定めておく。一方、契約者Dは、送配電系統を有する一般電気事業者(電力会社)と接続供給約款に基づく契約を締結し、所定の料金を支払う。   In this case, if the contract consumer is the contractor A, the power generation company having a naturally variable power source is the contractor B, the power generation company having a controllable power generation device is the contractor C, and the service provider is the contractor D, the contract is established. The contractor A concludes a contract with the contractor B and the contractor C regarding a supply and demand adjustment service using a distributed power source. For the contractor A, the maximum received power, the charge, etc., and the maximum purchase power, the charge, the incidental conditions, etc. for the contractor B and the contractor C, the supply and demand adjustment service side are determined in advance. On the other hand, the contractor D concludes a contract based on the connection supply agreement with a general electric power company (electric power company) having a transmission and distribution system, and pays a predetermined fee.

一方、契約者Dは、契約者Aに電力を供給し、この対価として、契約者Aは契約者Dに電気料金を支払う。契約者Bは電力を供給する対価として、契約者Dから電力代金を得るが、契約者Dの需給調整サービスにより始めて可能になるものであり、需給調整サービス料金を差し引いた電力代金を得ることになる。なお、契約者Bは、RPS法のクレジット
(売買可能証書)を提供することが可能で、これに相当する対価も契約者Dから得ることができる。契約者Cは、制御可能な発電装置により、電力を供給することの対価として、契約者Dから電力代金を得る。この電力代金には、供給電力量に相当する金額に加え、需給調整に伴う対価(機会損失など)が含まれる。
On the other hand, the contractor D supplies power to the contractor A, and the contractor A pays the contractor D with electricity as the compensation. The contractor B obtains the power price from the contractor D as a consideration for supplying the power. However, the contractor B can obtain the power price by subtracting the supply and demand adjustment service charge, which is possible only by the contractor D's supply and demand adjustment service. Become. The contractor B can provide a credit (tradeable certificate) of the RPS method, and the corresponding price can be obtained from the contractor D. The contractor C obtains a power price from the contractor D as a price for supplying power by a controllable power generation device. This electricity price includes consideration (such as opportunity loss) associated with supply and demand adjustment in addition to the amount corresponding to the amount of power supplied.

このサービスを実施する際、契約者Dは、契約者A,契約者B,契約者Cから情報を集めるための情報収集装置,通信装置,制御装置,需給調整センタにおける情報処理装置などを、サービス事業者自身の資産を用いるか、第3者の資産をリースすることにより運用するかを選択できる。また、情報収集装置,通信装置,制御装置などの一部が、契約者A,契約者B、あるいは契約者Cの資産であり、それをリースすることにより運用することも可能である。   When performing this service, the contractor D provides information collection devices, communication devices, control devices, information processing devices in the supply and demand adjustment center, etc. for collecting information from the contractors A, B, and C. It is possible to select whether to use the assets of the operator itself or to operate by leasing the assets of a third party. Some of the information collection device, communication device, control device, etc. are assets of the contractor A, the contractor B, or the contractor C, and can be operated by leasing them.

分散型電源による需給調整サービスにより、需給調整システムを具体的に運用するに際しては、契約者Bにおいて、自然変動電源の計測値に基づき、系統側への電力潮流を予測し、契約者Dが所有する需給制御センタにその情報を送る。契約者Aは、定期的に電力需要の情報を需給制御センタに送る。契約者Cは定期的に設備稼働状況や運転上の制約等についての情報を需給制御センタに送る。   When operating the supply and demand adjustment system with a distributed power supply and demand adjustment service, the contractor B predicts the power flow to the grid side based on the measured value of the natural variable power supply, and the contractor D owns it. The information is sent to the supply and demand control center. The contractor A periodically sends power demand information to the supply and demand control center. The contractor C periodically sends information on the equipment operation status and operational restrictions to the supply and demand control center.

需給制御センタでは、各契約者から集まる情報に基づき、至近の需要を予測するとともに、契約者Cが所有する制御可能な発電装置の出力を決定し、それを契約者Cに発電指令値として送る。契約者Cは前記発電指令に基づき、発電を行う。   The supply and demand control center predicts the nearest demand based on information gathered from each contractor, determines the output of the controllable power generator owned by the contractor C, and sends it to the contractor C as a power generation command value. . The contractor C generates power based on the power generation command.

本発明の分散型電源による需給調整方法およびシステムによれば、発電出力の変動が大きい自然変動電源を、電力会社の需給調整力に依存することなく、商用系統に連系して運用することができ、需要家には必要な電力が供給される。また、制御可能な発電装置については、燃料を節約でき、コストの削減が可能となる。なお、自然変動電源により発電した電力量については、RPS法のクレジットを得ることができるため、余剰時のクレジットの売却も含め、経済的メリットが得られる。   According to the supply and demand adjustment method and system using a distributed power supply according to the present invention, a naturally fluctuating power supply with a large fluctuation in power generation output can be operated in conjunction with a commercial system without depending on the supply and demand adjustment capability of an electric power company. The necessary power is supplied to the consumer. In addition, the controllable power generator can save fuel and reduce costs. In addition, since the credit of the RPS method can be obtained for the amount of power generated by the natural fluctuation power source, an economic merit can be obtained including the sale of the surplus credit.

自然変動電源を商用系統に連系し、経済的に運転できる分散電源の需給調整を簡単な構成で実現した。   The supply and demand adjustment of a distributed power source that can be operated economically by linking a naturally variable power source to a commercial system has been realized with a simple configuration.

図1は本発明の一実施例を示し、分散型電源による需給調整システムの構成図である。契約者Aの需要家構内6には、負荷装置63があり開閉装置60を経て、送配電系統1に接続されている。該当する需要家が受電した電力は、電力計測装置61で計測され、その情報は需要家端末62から通信網2を経て、需給調整センタ3にある監視制御装置31に送られる。   FIG. 1 shows an embodiment of the present invention, and is a configuration diagram of a supply and demand adjustment system using a distributed power source. In the customer premises 6 of the contractor A, there is a load device 63, which is connected to the power transmission / distribution system 1 via the switchgear 60. The power received by the corresponding customer is measured by the power measuring device 61, and the information is sent from the customer terminal 62 to the monitoring control device 31 in the supply and demand adjustment center 3 through the communication network 2.

契約者Bの発電事業者構内(発電サイト)4には、自然変動電源(風力発電等)45,変換装置44,逆変換装置43,2次電池装置46が設置され、送配電系統1,11に接続されている。発電サイトI,III は自然変動電源で発電され、送配電系統11側に送られる電力は、電力計測装置41で計測され、発電装置端末42から通信網2を経て、需給調整センタ3にある監視制御装置31に送られる。なお、発電装置端末42では、収集された情報を基に送配電系統1,11との連系点での電力変動を低減するために、2次電池装置46の制御指令値を算出し、2次電池装置46に指令値を送る。これと共に、至近の制御タイミングにおける送配電系統側に送られる電力の予測値を算出し、需給調整センタ3にある監視制御装置31に送る。   On the power generation company premises (power generation site) 4 of the contractor B, a naturally variable power source (wind power generation, etc.) 45, a conversion device 44, an inverse conversion device 43, and a secondary battery device 46 are installed. It is connected to the. The power generation sites I and III are generated by a natural power source, and the power sent to the power transmission / distribution system 11 is measured by the power measuring device 41 and monitored by the power supply terminal 42 via the communication network 2 and the supply / demand adjustment center 3. It is sent to the control device 31. The power generation device terminal 42 calculates a control command value for the secondary battery device 46 in order to reduce the power fluctuation at the connection point with the transmission and distribution systems 1 and 11 based on the collected information. A command value is sent to the next battery device 46. At the same time, a predicted value of the power sent to the power transmission and distribution system side at the nearest control timing is calculated and sent to the monitoring control device 31 in the supply and demand adjustment center 3.

本実施例では、発電サイトII,III は隣接して立地し、発電サイトIIは2次電池装置の設置を行わず、隣接する発電サイトIII の2次電池装置46で、電力変動の補償をするようにしている。   In the present embodiment, the power generation sites II and III are located adjacent to each other, and the power generation site II does not install the secondary battery device, and the secondary battery device 46 at the adjacent power generation site III compensates for the power fluctuation. I am doing so.

契約者Cの発電事業者構内5には、制御可能な発電装置54が設けられ、系統連系・開閉装置50を経て送配電系統1に接続されている。送配電系統1側に送られる電力は、電力計測装置51で計測され、発電装置端末52から通信網2を経て、需給調整センタ3にある監視制御装置31に送られる。発電装置端末52では、需給調整センタ3にある監視制御装置31から送られる発電指令値に基づき、各発電装置の発電出力を決定し、それを制御装置53に送り発電出力を制御する。   The power generation company premises 5 of the contractor C is provided with a controllable power generation device 54, which is connected to the power transmission / distribution system 1 via the grid interconnection / switching device 50. The power sent to the power transmission / distribution system 1 side is measured by the power measuring device 51, and sent from the power generation device terminal 52 to the monitoring control device 31 in the supply and demand adjustment center 3 through the communication network 2. The power generation device terminal 52 determines the power generation output of each power generation device based on the power generation command value sent from the monitoring control device 31 in the supply and demand adjustment center 3, and sends it to the control device 53 to control the power generation output.

契約者Dの需給調整センタ3は、契約者A,契約者B,契約者Cから送られた需要と供給に関する情報から、制御可能な発電装置の発電量を決定すると共に、料金の課金(契約者A)と、発電事業者(契約者B,C)への支払を行う。   The supply and demand adjustment center 3 of the contractor D determines the power generation amount of the controllable power generator from the information on the supply and demand sent from the contractor A, the contractor B, and the contractor C, and charges a fee (contract To the power generation company (contractors B and C).

本需給調整サービスは、契約者Dと一般電気事業者との契約に基づき行われるものである。通常は、契約者Dによる契約者A,B,C間のサービスであるが、契約者C等の事故時などに、一般電気事業者からの支援サービスが必要になる。すなわち、最終的な需給調整は、一般電気事業者の所有する発電所7の発電機73により、需要の変動に合わせ発電所7から変電設備77を経て送配電系統1に送られる電力を調整することにより実現される。この場合、契約者Dから一般電気事業者への支払いが行われる。   This supply and demand adjustment service is performed based on a contract between the contractor D and a general electric utility. Usually, it is a service between the contractors A, B, and C by the contractor D, but in the event of an accident of the contractor C or the like, a support service from a general electric utility is required. That is, the final supply and demand adjustment is performed by adjusting the power sent from the power plant 7 to the power transmission / distribution system 1 through the substation 77 according to the fluctuation in demand by the generator 73 of the power plant 7 owned by the general electric utility. Is realized. In this case, the contractor D pays the general electric utility.

次に、図2,図3を用いて、契約者Dが所有する需給調整センタ3の働きについて説明する。   Next, the function of the supply and demand adjustment center 3 owned by the contractor D will be described with reference to FIGS.

図2は、需給調整センタ3に設置される監視制御装置のブロック構成図である。該図において、監視制御装置31は、演算処理装置232,各需要家や発電事業者との情報の授受を行う通信装置231,表示装置234,オペレータが条件設定等を行うための入力装置233を有している。さらに、需要予測や制御可能発電設備の発電出力指令値を算出するために、必要な情報を一定期間保存しておく一時保存用記憶装置271,需要データベース(DB)272,気象情報データベース273,運転状態データベース274,メンテナンス情報データベース275,コスト情報データベース276を有している。   FIG. 2 is a block diagram of a monitoring control device installed in the supply and demand adjustment center 3. In the figure, the monitoring control device 31 includes an arithmetic processing device 232, a communication device 231, a display device 234, and an input device 233 for an operator to set conditions, etc. for exchanging information with each consumer and power generation company. Have. Furthermore, in order to calculate the demand output and the power generation output command value of the controllable power generation facility, the temporary storage device 271, the demand database (DB) 272, the weather information database 273, which store necessary information for a certain period of time. It has a status database 274, a maintenance information database 275, and a cost information database 276.

図3は、表示装置234で表示される監視制御画面の例である。表示装置234は発電装置稼動状況や需要予測,機器異常表示などを行う。   FIG. 3 is an example of a monitoring control screen displayed on the display device 234. The display device 234 performs power generation device operation status, demand prediction, device abnormality display, and the like.

需要については、需要家351毎に、現在の需要352,制御対象となる直近の時刻における需要の予測値353が表示される。   For the demand, for each consumer 351, the current demand 352 and the predicted demand value 353 at the most recent time to be controlled are displayed.

自然変動電源については、発電装置354毎に、現在の発電電力355,制御対象となる直近の時刻における発電電力の予測値356が表示される。制御可能な発電装置については、発電装置357の現在の発電電力358,制御対象となる直近の時刻における発電電力指令値359が表示される。   For the naturally varying power supply, the current generated power 355 and the predicted value 356 of the generated power at the most recent time to be controlled are displayed for each power generator 354. For the controllable power generator, the current generated power 358 of the power generator 357 and the generated power command value 359 at the most recent time to be controlled are displayed.

グラフ361は、需要と供給のバランスをとるために必要な制御可能な発電装置の発電電力量目標(細い実線)と実際の発電電力(太い実線)を表示している。その他、需要と供給の偏差362,発電電力量の計画値からの偏差363,全購入電力量が表示される。さらに、メッセージ欄365には、機器異常情報,メンテナンス情報等が表示される。   The graph 361 displays the target of the generated power amount (thin solid line) and the actual generated power (thick solid line) of the controllable power generation apparatus necessary for balancing supply and demand. In addition, the deviation 362 between the demand and supply, the deviation 363 from the planned value of the generated electric energy, and the total purchased electric energy are displayed. Further, in the message column 365, device abnormality information, maintenance information, and the like are displayed.

図4は、監視制御装置における処理フローである。このフローは、制御可能な発電装置54の制御周期の1周期分であり、実際の運転にあたっては、この処理が繰り返される。   FIG. 4 is a processing flow in the monitoring control apparatus. This flow corresponds to one control cycle of the controllable power generator 54, and this process is repeated in actual operation.

まず、各需要家から需要データを取得する(1201)。次に、制御可能な発電装置による制御時(X分後)の需要を予測する(1202)。また、自然変動電源における、制御時(X分後)の発電電力予測値を取得する(1203)。   First, demand data is acquired from each consumer (1201). Next, the demand at the time of control (after X minutes) by the controllable power generator is predicted (1202). In addition, a predicted power generation value at the time of control (after X minutes) in the naturally varying power source is acquired (1203).

これらの情報を基に、制御可能な電源装置の出力PGIを(1)式で求める(1204)。   Based on these pieces of information, the output PGI of the controllable power supply device is obtained by equation (1) (1204).

PGI=(PDI+PDII+PDIII)−(PWI+PWII+PWIII) …(1)
ここで、PDI,PDII,PDIIIは需要家I,II,IIIでの需要予測値、PWI,PWII,PWIIIは自然変動電源をもつ発電サイトI,II,IIIにおける発電電力予測値である。
PGI = (PDI + PDII + PDIII) − (PWI + PWII + PWIII) (1)
Here, PDI, PDII, and PDIII are predicted demand values at the consumers I, II, and III, and PWI, PWII, and PWIII are predicted generated power values at the power generation sites I, II, and III having a naturally varying power source.

次に、目標とする評価時間内の電力量偏差を0に近づける処理を行う(1205)場合、制御可能な発電装置の出力に補正(Δ)を加える(1206)。すなわち、(2)式で、PGIを求める。   Next, in the case of performing processing for bringing the power amount deviation within the target evaluation time closer to 0 (1205), correction (Δ) is added to the output of the controllable power generator (1206). That is, PGI is obtained by equation (2).

PGI=(PDI+PDII+PDIII)−(PWI+PWII+PWIII)+Δ…(2)
本実施例では、4台の発電装置54でPGIを供給する。最新のメンテナンス情報
(1208)に基づき、制御可能発電装置の運転制約(出力範囲,計画停止等)を更新し(1207)、それらを拘束条件として、最適化計算(1209)を行い、個々の発電装置の発電出力を決定し(1209)、指令値として制御装置に送信する(1210)。
PGI = (PDI + PDII + PDIII) − (PWI + PWII + PWIII) + Δ (2)
In this embodiment, PGI is supplied by four power generators 54. Based on the latest maintenance information (1208), the operation constraints (output range, planned shutdown, etc.) of the controllable power generator are updated (1207), and the optimization calculation (1209) is performed using them as constraint conditions, and the individual power generation The power generation output of the apparatus is determined (1209) and transmitted to the control apparatus as a command value (1210).

次に、自然変動電源用発電装置端末について説明する。ここでは、2次電池装置が設けられている自然変動電源のシステムを取り上げるが、2次電池装置を持たない自然変動電源のシステムでの運用も可能である。その場合は、充電/放電電力制御指令値作成機能,電池残量計測機能等は省略できる。   Next, a description will be given of a power generation apparatus terminal for a natural fluctuation power source. Here, a system of a naturally variable power source provided with a secondary battery device will be taken up, but operation in a system of a naturally variable power source not having a secondary battery device is also possible. In that case, the charge / discharge power control command value creation function, the remaining battery capacity measurement function, and the like can be omitted.

図5は、自然変動電源の発電装置端末のブロック構成図である。発電装置端末42は、表示装置631,演算処理装置633,オペレータによる設定を行うための入力装置632,計測データを演算処理に必要なデータにするための信号変換装置636,演算結果を制御装置637に送るための出力装置635を有している。さらに、サイト運転に係る情報を記録するサイト運転情報データベース(DB)634を備えている。   FIG. 5 is a block configuration diagram of a power generation apparatus terminal of a natural variation power source. The power generation device terminal 42 includes a display device 631, an arithmetic processing device 633, an input device 632 for setting by an operator, a signal conversion device 636 for making measurement data necessary for arithmetic processing, and an arithmetic result as a control device 637. Output device 635 for sending to. Furthermore, a site operation information database (DB) 634 that records information related to site operation is provided.

信号変換装置636には、逆変換装置45の出力電力,2次電池装置の充電/放電電力,電池残量等の計測値が入力される。制御装置637から、充電/放電電力を制御するための指令値が、2次電池装置46に送られる。   The signal converter 636 receives measurement values such as the output power of the inverse converter 45, the charge / discharge power of the secondary battery device, and the remaining battery level. A command value for controlling charging / discharging power is sent from the control device 637 to the secondary battery device 46.

図6は、自然変動電源の発電装置端末における処理フローである。このフローは、制御可能な発電装置の制御周期の1周期分であり、実際の運転にあたっては、この処理が繰り返される。   FIG. 6 is a processing flow in the power generation apparatus terminal of the natural fluctuation power source. This flow is one cycle of the control cycle of the controllable power generator, and this process is repeated in actual operation.

サイト運転情報データベース634のデータや監視制御装置31(需給調整センタ)内の一時保存用ファイル271に格納した最新の計測データから、自然変動電源の出力のトレンド、2次電池装置残量実測値を取得する(1201)。上記トレンドから、制御可能な電源について制御を行う時刻(X分後)における自然変動電源の出力予測処理を行う
(1202)。
From the data of the site operation information database 634 and the latest measurement data stored in the temporary storage file 271 in the monitoring and control device 31 (supply / demand adjustment center), the trend of the output of the natural variable power source and the actual measured value of the secondary battery device are obtained. Obtain (1201). From the above trend, output prediction processing of a naturally varying power source at a time (after X minutes) at which control is performed on a controllable power source is performed (1202).

2次電池残量の実測値が、予め定めた計画値と大幅に異なる場合(1203)、発電サイトの出力予測値に基づく出力目標値を、2次電池残量の実測値が計画値に近づくように補正する(1205)。実測値と計画値の差が許容の範囲であれば、出力予測値を出力目標値とする(1204)。   When the measured value of the secondary battery remaining amount is significantly different from the predetermined planned value (1203), the measured output value of the secondary battery approaches the planned value based on the output target value based on the predicted output value of the power generation site. (1205). If the difference between the measured value and the planned value is within an allowable range, the output predicted value is set as the output target value (1204).

次に、上記目標値に合わせて、2次電池装置を運転し(1206)、発電サイトの出力目標値を需給調整センタに送信する(1207)。さらに、発電サイトの出力,2次電池残量を計測し(1208)、一時保存用ファイル,サイト運転情報データベース634に格納する(1209)。   Next, the secondary battery device is operated in accordance with the target value (1206), and the output target value of the power generation site is transmitted to the supply and demand adjustment center (1207). Further, the output of the power generation site and the remaining amount of the secondary battery are measured (1208) and stored in the temporary storage file and the site operation information database 634 (1209).

図7は、自然変動電源用発電装置端末による制御の例を示す説明図である。この例は風力発電装置に適用したもので、同図(a)は、2次電池による出力調整を行わない場合、同図(b)は、2次電池により出力調整を行った場合である。図中、細い実線は出力の時間変動を、太い実線は単位時間(ここでは、1分)での平均出力を表わす。   FIG. 7 is an explanatory diagram illustrating an example of control by the power generator terminal for the natural variation power source. This example is applied to a wind power generator. FIG. 5A shows a case where output adjustment by a secondary battery is not performed, and FIG. 6B shows a case where output adjustment is made by a secondary battery. In the figure, the thin solid line represents the time variation of the output, and the thick solid line represents the average output per unit time (here, 1 minute).

(a)の場合は、2次電池装置を設けないため、設備コストが低くなるが、出力変動が大きく、制御可能発電装置による需給調整の負担が大きくなる。(b)の場合は、出力の変動幅を小さくすることができ、制御可能発電装置による需給調整の負担を軽減できる。反面、2次電池装置を設けることによる、設備コストの上昇は避けられない。   In the case of (a), since the secondary battery device is not provided, the equipment cost is reduced, but the output fluctuation is large, and the load of supply and demand adjustment by the controllable power generation device is increased. In the case of (b), the fluctuation range of the output can be reduced, and the burden of supply and demand adjustment by the controllable power generator can be reduced. On the other hand, an increase in equipment cost due to the provision of the secondary battery device is inevitable.

従って、需要変動や自然変動電源の出力変動の大きさや変動周期を考慮し、2次電池装置を設けないシステム、短時間の変動のみを補償する小容量の2次電池装置を設けるシステム、等々の中から、最適なシステム構成を選択するのが望ましい。   Therefore, taking into consideration the magnitude and cycle of fluctuations in demand and natural fluctuation power supply, a system that does not provide a secondary battery device, a system that provides a secondary battery device with a small capacity that compensates only for short-term fluctuations, etc. It is desirable to select an optimal system configuration from among them.

これまでは、制御可能な発電装置を有する発電サイトが1個所である場合を説明してきたが、制御可能な発電装置を有する発電サイトが2箇所以上でも同様である。各発電サイトが協調して、需給調整を行っても良い。すなわち、需給調整センタでは、各発電サイトの特徴(発電コスト,部分負荷効率等)を考慮して、各サイトの発電出力を配分することにより、経済的運用が可能になる。   So far, the case where there is one power generation site having a controllable power generation device has been described, but the same is true for two or more power generation sites having controllable power generation devices. Each power generation site may coordinate the supply and demand. That is, the supply and demand adjustment center allows economical operation by allocating the power generation output of each site in consideration of the characteristics (power generation cost, partial load efficiency, etc.) of each power generation site.

次に各契約者間のサービス提供と料金決済の方法について説明する。図8は各契約者間のサービス提供と課金の処理を示す説明図である。なお、図8のサービス及び課金は、図1に示した通信網2を介して行われるものである。したがって、以下では、図8における契約者Aは需要家端末62、契約者Bは発電装置端末42、契約者Cは発電装置端末52、契約者Dは需給調整センタ3の監視制御装置31の機能として読み代える。もちろん、各契約者がサービスと課金のために、それぞれ専用の端末を設けて処理するようにしてもよい。   Next, the service provision and fee settlement methods between each contractor will be described. FIG. 8 is an explanatory view showing service provision and billing processing between contractors. The service and billing in FIG. 8 are performed via the communication network 2 shown in FIG. Accordingly, in the following, the contractor A in FIG. 8 is the customer terminal 62, the contractor B is the power generation device terminal 42, the contractor C is the power generation device terminal 52, and the contractor D is the function of the monitoring control device 31 of the supply and demand adjustment center 3. As: Of course, each contractor may be provided with a dedicated terminal for service and billing.

契約者Dは、契約者Bに包括的需給調整サービス(a)を提供する(801)。すなわち、契約者Aに供給義務をもつ契約者Dは、電力供給可能な、契約者B,契約者Cの内、契約者Bの自然変動電源による電力を優先して契約者Aに供給する。   Contractor D provides comprehensive supply and demand adjustment service (a) to contractor B (801). That is, the contractor D who is obligated to supply the contractor A supplies the contractor A with priority from the contractor B and the contractor C who can supply power, using the natural power of the contractor B.

契約者Bにより発電された電力は、電力会社の接続供給サービス(b,c)により、契約者Aまで、電力託送がなされる(802,803)。すなわち、契約者Bから契約者Aに電力(d)が供給されることになる(804)。   The electric power generated by the contractor B is entrusted to the contractor A by the power company connection supply service (b, c) (802, 803). That is, power (d) is supplied from the contractor B to the contractor A (804).

また、契約者Dは、RPS法におけるクレジット(e)を得ることができる(805)。クレジットの一部は自らが電力事業を行うのに必要となるが、余剰が生じた場合は、相対取引あるいは市場を通じて売却(f)が可能であり、売却したクレジットに相当する代金を得ることができる(806,807)。   Further, the contractor D can obtain a credit (e) in the RPS method (805). Part of the credit is necessary for the power business itself, but if there is a surplus, it can be sold (f) through relative transactions or through the market, and you can get the price corresponding to the sold credit. Yes (806, 807).

契約者Dから契約者Bへは、電力量及びクレジットの代金から需給調整サービスの代金を差引いた金額を支払うことになる(808)。   From the contractor D to the contractor B, an amount of power and credit is subtracted from the price of the supply and demand adjustment service (808).

本電力供給形態における需給調整は、契約者Cの発電装置によりなされる。契約者Cにより発電された電力は、電力会社の接続供給サービス(g,h)により、契約者Aまで、電力託送がなされる(809,810)。契約者Dは、電力会社から提供される接続供給サービスに対して、接続供給料金を支払う(811)。接続供給料金は、電力会社の接続供給b,接続供給c,接続供給g,接続供給hに対する対価である。   Supply and demand adjustment in this power supply mode is performed by the power generation device of the contractor C. The electric power generated by the contractor C is consigned to the contractor A through the connection supply service (g, h) of the power company (809, 810). The contractor D pays a connection supply fee for the connection supply service provided by the power company (811). The connection supply fee is a consideration for the connection supply b, connection supply c, connection supply g, and connection supply h of the electric power company.

需要と供給のバランスを取るため、契約者Dの需給調整センタでは、各契約者のサイトから収集した計測値等に基づき、制御可能な発電装置による発電量を決定し、契約者Cに、出力指令(i)を送る(812)。この指令iに従い、発電された電力(j)が契約者Cから契約者Aに供給されることになる(813)。   In order to balance supply and demand, the supply and demand adjustment center of contractor D determines the amount of power generated by a controllable power generator based on the measured values collected from each contractor's site, and outputs it to contractor C. Command (i) is sent (812). In accordance with the command i, the generated power (j) is supplied from the contractor C to the contractor A (813).

契約者Bによる発電が優先されるため、契約者Cは、出力指令に基づく発電を行うことにより、機会損失(k)となる場合がある(814)。つまり、契約者Aの需要に対し、契約者Bと契約者Cが電力を供給できる場合、契約者Bによる電力供給が優先されるため、契約者Cから契約者Aの電力供給は、契約者Cの能力を下回る、すなわち、電力供給の機会を失い、損失となる。ただし、その場合は、契約者Cの燃料費は低減できるので、その差額が、機会損失評価額になる。   Since power generation by the contractor B is given priority, the contractor C may generate an opportunity loss (k) by performing power generation based on the output command (814). That is, when the contractor B and the contractor C can supply power with respect to the demand of the contractor A, the power supply by the contractor B has priority. It is less than the capacity of C, that is, it loses the opportunity for power supply and becomes a loss. However, in that case, since the fuel cost of the contractor C can be reduced, the difference becomes the opportunity loss evaluation amount.

従って、契約者Dから契約者Cへは、電力量代金及び機会損失評価額から出力指令値提供サービス(需給調整サービス)の代金を差引いた金額(j+k−i)を支払うことになる(815)。   Accordingly, the contractor D to the contractor C pays an amount (j + ki) that is obtained by subtracting the price of the output command value providing service (supply / demand adjustment service) from the power amount price and the opportunity loss evaluation value (815). .

契約者Aから契約者Dへは、契約者Bからの電力(d)および契約者Cからの電力(j)に相当する電力料金を支払うことになる(816)。   From the contractor A to the contractor D, a power charge corresponding to the power (d) from the contractor B and the power (j) from the contractor C is paid (816).

図9は、本発明のその他の実施例を示すシステム構成図である。本実施例は、図1の実施例とほぼ同様であるが、発電サイトIIが連系されている送配電系統11から電圧変換装置91で降圧した低圧配電線15に、個人需要家である複数の個人住宅93が接続されており、電気自動車95が接続されている。さらに、需要家IIの駐車場に停止している複数の電気自動車95が構内低圧配電線16に接続されている。電気自動車95は、通信網2を介して需給調整センタ3に接続される。   FIG. 9 is a system configuration diagram showing another embodiment of the present invention. This embodiment is substantially the same as the embodiment of FIG. 1, but a plurality of individuals who are individual consumers are connected to the low voltage distribution line 15 stepped down by the voltage converter 91 from the transmission / distribution system 11 to which the power generation site II is connected. Personal houses 93 are connected, and an electric vehicle 95 is connected. Further, a plurality of electric vehicles 95 that are stopped at the parking lot of the customer II are connected to the local low-voltage distribution line 16. The electric vehicle 95 is connected to the supply and demand adjustment center 3 via the communication network 2.

契約者Dは、電気自動車95を所有する個人住宅93,駐車場に電気自動車を駐車できる需要家IIに対して、電気自動車の2次電池の利用について予め契約を結んでおき、需給調整センタ3の指令により2次電池の充放電を行う。実際には、契約を結んだ需要家の全ての電気自動車95が、常に、需給調整に使用できるとは限らない。従って、需給調整センタ3では、契約を結んだ需要家の中から、その時点で2次電池の充放電が可能な電気自動車95に対し充放電の出力を設定する。   The contractor D makes a contract in advance with respect to the use of the secondary battery of the electric vehicle with respect to the consumer II who owns the electric vehicle 95 and the customer II who can park the electric vehicle in the parking lot. The secondary battery is charged and discharged according to the command. In practice, not all electric vehicles 95 of the contracted customers are always available for supply and demand adjustment. Accordingly, the supply and demand adjustment center 3 sets the charge / discharge output for the electric vehicle 95 capable of charging / discharging the secondary battery at that time from among the customers who have contracted.

契約者Dは、前記充放電量に基づき、個人住宅93および需要家IIと需要家IIの駐車場で充放電に協力した電気自動車95の所有者に実績補償を行う。   Based on the amount of charge / discharge, the contractor D performs performance compensation on the owner of the electric vehicle 95 that cooperates with charge / discharge in the private house 93 and the parking lot of the customer II and the customer II.

図10は、ハイブリッド形電気自動車(以下、HEVと呼ぶ)の構成の一例を示す模式図である。駆動部分は、エンジン2030,燃料タンク2033,発電機2031,2次電池2032,モータ2034などから構成される。発電機2031で発生した電気は整流器2036で直流にし、2次電池2032に蓄えられる。出力が必要になれば、2次電池2032の電気を、インバータ2037により交流に変換し、電動機2034に供給し、車輪2035の駆動力を得る。制御に必要な情報は、通信線2040により、コントローラ2038に集められる。   FIG. 10 is a schematic diagram showing an example of the configuration of a hybrid electric vehicle (hereinafter referred to as HEV). The drive portion is composed of an engine 2030, a fuel tank 2033, a generator 2031, a secondary battery 2032, a motor 2034, and the like. The electricity generated by the generator 2031 is converted into a direct current by the rectifier 2036 and stored in the secondary battery 2032. When output is necessary, the electricity of the secondary battery 2032 is converted into alternating current by the inverter 2037 and supplied to the electric motor 2034 to obtain the driving force of the wheels 2035. Information necessary for control is collected by the controller 2038 through the communication line 2040.

需要家IIの構内において、負荷装置65に電力を供給するため、接続部2041と構内低圧配電線16を連結するためのフレキシブル電力線2042が設けられている。また、HEVの状態情報を需給調整センタ3に送り、同センタ3からの運転指令をコントローラ2038に伝えるための、送受信装置2043が設けられ、その間は無線によって通信が行われる。なお、通信に関しては、有線を用いる通信でも、電力線搬送を用いた通信でも良い。   In the premises of the customer II, a flexible power line 2042 for connecting the connecting portion 2041 and the premises low-voltage distribution line 16 is provided to supply power to the load device 65. In addition, a transmission / reception device 2043 is provided to send HEV status information to the supply and demand adjustment center 3 and to transmit an operation command from the center 3 to the controller 2038, and wireless communication is performed therebetween. The communication may be communication using wired communication or communication using power line carrier.

需給調整センタ3からの運転指令がコントローラ2038に送信される。HEVから構内低圧配電線16に送電される場合は、構内低圧配電線16の電気的特性(電圧の大きさ,位相など)に関する計測が行われ、コントローラ2038に伝達される。コントローラ2038では、インバータ2037で発生させる電力の出力を制御するための制御信号とともに、電圧の大きさと位相とを、構内低圧配電線16に合わせる(同期)ことにより、複数のHEVから構内低圧配電線16への送電が可能になる。また、個人住宅93に停車している電気自動車95からも、上記と同様に、低圧配電線15への送電が可能になる。なお、ここでは、HEVを例に取って説明したが、2次電池に充電された電力のみで走る電気自動車や燃料電池車などでも同様である。   An operation command from the supply and demand adjustment center 3 is transmitted to the controller 2038. In the case where power is transmitted from the HEV to the local low-voltage distribution line 16, the electrical characteristics (voltage magnitude, phase, etc.) of the local low-voltage distribution line 16 are measured and transmitted to the controller 2038. The controller 2038 adjusts (synchronizes) the magnitude and phase of the voltage with the control signal for controlling the output of the electric power generated by the inverter 2037 to the local low-voltage distribution line 16, so that the plurality of HEVs can convert the local low-voltage distribution line Power transmission to 16 is possible. In addition, power transmission to the low-voltage distribution line 15 is also possible from the electric vehicle 95 stopped in the private house 93 as described above. Here, the HEV has been described as an example, but the same applies to an electric vehicle or a fuel cell vehicle that runs only with electric power charged in the secondary battery.

多数の電気自動車の2次電池を利用することにより、風力発電電力の変動に伴う、需要と供給のバランスを取ることが可能になる。一般に2次電池は設備コストが高いため、短周期(例えば秒程度)の負荷や発電電力の変動のみを吸収するのに用いられることが多いが、本実施例によれば、数時間程度の需給アンバランスを2次電池で吸収することも可能である。   By using secondary batteries of a large number of electric vehicles, it becomes possible to balance supply and demand accompanying fluctuations in wind power generation. In general, the secondary battery has a high equipment cost, so it is often used to absorb only a short cycle load (for example, about a second) and fluctuations in generated power. It is also possible to absorb the imbalance with the secondary battery.

以上説明したように、本実施形態によれば、契約者Aは、低コストの電力を得るとともに、環境貢献に対する満足が得られる。契約者Bは、電力会社による入札枠(少なくなっている)に制約されずに自然変動電源による発電事業を行い、売電とRPS法クレジット売却によるメリットが得られる。契約者Cは、発電した電力を、需給調整に伴う評価分だけ高く売ることができる。契約者Dは、自然変動電源による相対的に安い電力を使って、電力供給事業を行うことができる。   As described above, according to this embodiment, the contractor A can obtain low-cost electric power and satisfy the environmental contribution. Contractor B performs a power generation business using a naturally variable power source without being restricted by the tender frame (which has been reduced) by the electric power company, and can obtain merits by selling power and selling RPS credits. The contractor C can sell the generated power as high as the evaluation associated with the supply and demand adjustment. The contractor D can carry out an electric power supply business using relatively cheap electric power from the natural fluctuation power source.

これにより、事業継続に必要なRPS法クレジットの取得が容易になるので、社会全体としては、自然変動電源を促進し、化石燃料消費量やCO2 排出量の削減が可能となるといったメリットがある。 This facilitates the acquisition of RPS credits necessary for business continuity, and the society as a whole has the advantage of promoting naturally fluctuating power sources and reducing fossil fuel consumption and CO 2 emissions. .

なお、上記の実施例では、人為的には制御ができない自然変動電源について述べてきた。しかし、燃料供給の点から、制御が困難な発電装置についても、発電装置の出力変動を発電サイトによる補償を行い、比較的周期が長い負荷および発電装置の変動に対しては、制御可能な発電装置で追従することにより、需給調整が可能となる。   In the above-described embodiment, the natural fluctuation power source that cannot be artificially controlled has been described. However, even for power generators that are difficult to control in terms of fuel supply, the power generation site compensates for fluctuations in the output of the power generator, and controllable power generation is possible for relatively long periods of load and power generator fluctuations. Supply and demand can be adjusted by following the apparatus.

本発明の分散電源の需給調整システムの一実施例を示す構成図。The block diagram which shows one Example of the supply-and-demand adjustment system of the distributed power supply of this invention. 本発明の一実施例に採用される監視制御装置のブロック構成図。The block block diagram of the monitoring control apparatus employ | adopted as one Example of this invention. 監視制御装置における監視画面の説明図。Explanatory drawing of the monitoring screen in a monitoring control apparatus. 本発明の一実施例による需給調整システムの処理フロー図。The processing flow figure of the supply-and-demand adjustment system by one Example of this invention. 本発明の一実施例による自然変動電源用発電装置端末のブロック構成図。The block block diagram of the generator apparatus for natural fluctuation power supplies by one Example of this invention. 本発明の一実施例による自然変動電源用発電装置端末の処理フロー図。The processing flow figure of the generator apparatus for natural fluctuation power supplies by one Example of this invention. 自然変動電源用発電装置の制御の効果を示す説明図。Explanatory drawing which shows the effect of control of the power generator for natural fluctuation power supplies. 各契約者間のサービス提供と課金の方法を示す説明図。Explanatory drawing which shows the service provision between each contractor, and the method of charging. 本発明の分散電源の需給調整システムの他の実施例を示す構成図。The block diagram which shows the other Example of the supply-and-demand adjustment system of the distributed power supply of this invention. 図9に示す実施例における電力貯蔵に利用する電気自動車の構成図。The block diagram of the electric vehicle utilized for the electric power storage in the Example shown in FIG.

符号の説明Explanation of symbols

1,11…送配電系統、2…通信網、3…需給調整センタ、4,5…発電事業者構内、6…需要家構内、7…発電所、15…低圧配電線、16…構内低圧配電線、31…監視制御装置、41,51…電力計測装置、42,52…発電装置端末、46…2次電池装置、53…制御装置、54…発電装置、61…電力計測装置、62…需要家端末、63…負荷装置、73…発電機、77…変電設備、93…個人住宅、95…電気自動車。
DESCRIPTION OF SYMBOLS 1,11 ... Power transmission / distribution system, 2 ... Communication network, 3 ... Supply and demand adjustment center, 4, 5 ... Power generation company premises, 6 ... Consumer premises, 7 ... Power plant, 15 ... Low voltage distribution line, 16 ... On-site low voltage distribution Electric wire, 31 ... monitoring control device, 41,51 ... power measurement device, 42,52 ... power generation device terminal, 46 ... secondary battery device, 53 ... control device, 54 ... power generation device, 61 ... power measurement device, 62 ... demand House terminal, 63 ... load device, 73 ... generator, 77 ... transformer, 93 ... private house, 95 ... electric car.

Claims (9)

複数の需要家の負荷と、自然変動電源と、調整用発電装置を電力系統で結び、その需要と供給を調整する分散電源の需給調整システムにおいて、
前記需要家の需要に関する情報を収集する手段と、前記自然変動電源の発電量に関する情報を収集する手段と、これらの収集された情報から、前記需要と前記自然変動電源を含めた供給との需給バランスをとるように、前記調整用発電装置の出力を設定する需給調整手段と、その出力制御値を前記調整用発電装置に送信する通信手段とを備えることを特徴とする分散型電源の需給調整システム。
In a supply and demand adjustment system for distributed power sources that connects the load of multiple consumers, a naturally variable power source, and a power generator for adjustment with a power system, and adjusts the demand and supply,
Means for collecting information on the demand of the consumer, means for collecting information on the power generation amount of the natural variable power source, and supply and demand of the demand and the supply including the natural variable power source from these collected information Supply / demand adjustment of a distributed power source, comprising: a supply / demand adjustment means for setting the output of the power generator for adjustment so as to balance, and a communication means for transmitting the output control value to the power generator for adjustment system.
複数の需要家の負荷と、自然変動電源と、調整用発電装置を電力系統で結び、その需要と供給を調整する分散電源の需給調整システムにおいて、
前記需要家の需要に関する情報を収集する手段と、前記自然変動電源の発電量に関する情報を収集する手段と、これらの収集された情報から、前記需要と前記自然変動電源を含めた供給との需給バランスをとるように、前記調整用発電装置の出力を設定する需給調整手段と、その出力制御値を前記調整用発電装置に送信する通信手段と、該通信手段を介して前記需給調整手段に接続される電力貯蔵装置とを備えていることを特徴とする分散型電源の需給調整システム。
In a supply and demand adjustment system for distributed power sources that connects the load of multiple consumers, a naturally variable power source, and a power generator for adjustment with a power system, and adjusts the demand and supply,
Means for collecting information on the demand of the consumer, means for collecting information on the power generation amount of the natural variable power source, and supply and demand of the demand and the supply including the natural variable power source from these collected information Supply / demand adjustment means for setting the output of the adjustment power generator so as to balance, communication means for transmitting the output control value to the adjustment power generator, and connection to the supply / demand adjustment means via the communication means A power supply and demand adjustment system for a distributed power source, comprising:
請求項1又は2において、前記需給調整手段は制御対象となる時刻における需要の予測と前記自然変動電源による発電電力予測値から、前記調整用発電装置での最適な発電量を算出し、その指令値を前記調整用発電装置の制御装置に送り、前記調整用発電装置の出力を制御してなることを特徴とする分散型電源の需給調整システム。   3. The supply and demand adjustment means according to claim 1, wherein the supply and demand adjustment means calculates an optimal power generation amount in the adjustment power generation device from a prediction of demand at a time to be controlled and a predicted power generation value by the natural fluctuation power source, and the command A supply / demand adjustment system for a distributed power source, wherein a value is sent to a control device of the power generator for adjustment and an output of the power generator for adjustment is controlled. 前記電力貯蔵装置は、電気自動車又は燃料電池車であることを特徴とする分散型電源の需給調整システム。   The power storage device is an electric vehicle or a fuel cell vehicle. 複数の需要家の負荷と、自然変動電源と、調整用発電装置を電力系統で結び、その需要と供給を調整する分散電源の需給調整方法において、
前記需要家の需要に関する情報と、前記自然変動電源の発電量に関する情報を収集し、これらの収集された情報から、前記需要と優先する前記自然変動電源を含めた供給との需給バランスをとるように前記調整用発電装置の発電量を設定し、その出力制御値を前記調整用発電装置の制御装置に送信し、前記調整用発電装置の出力を制御することを特徴とする分散型電源の需給調整方法。
In a method for adjusting the supply and demand of a distributed power source, which connects a load of a plurality of consumers, a naturally variable power source, and a power generation device for adjustment with a power system, and adjusts the demand and supply,
Collect information related to the demand of the consumer and information related to the amount of power generated by the natural variable power source, and balance the demand and supply between the collected information and the supply including the natural variable power source. The power generation amount of the adjustment power generator is set, the output control value is transmitted to the control device of the adjustment power generator, and the output of the adjustment power generator is controlled. Adjustment method.
請求項5において、前記調整用発電装置の発電量は制御対象となる時刻における需要の予測と前記自然変動電源による発電電力予測値に基づいて算出することを特徴とする分散型電源の需給調整方法。   6. The supply and demand adjustment method for a distributed power source according to claim 5, wherein the power generation amount of the power generator for adjustment is calculated based on a prediction of demand at a time to be controlled and a predicted power generation value by the natural power source. . 請求項5において、前記自然変動電源の発電電力の変動に応じて、前記電力系統に接続されている電力貯蔵装置から電力を供給することを特徴とする分散型電源の需給調整方法。   6. The supply and demand adjustment method for a distributed power source according to claim 5, wherein electric power is supplied from an electric power storage device connected to the electric power system in accordance with fluctuations in power generated by the natural fluctuation power source. 複数の需要家の負荷と、自然変動電源および調整用発電装置を有する分散電源を電力系統に接続すると共に、これらの負荷や電源と需給調整センタを通信ネットワークで結び、需給の調整を行う分散電源の需給調整サービスにおいて、
前記需給調整センタは、前記自然変動電源による電力量と前記調整用発電装置による電力量の対価として各需要家の電力料金を課金し、
前記自然変動電源は前記需給調整センタに対し、需要家に供給した電力量料金から前記需給調整センタのサービス料を差し引いた料金を課金し、前記調整用発電装置は前記需給調整センタに対し、前記調整用発電装置が需要家に供給した電力量料金と前記調整用発電装置の機会損失額の和から、前記需給調整センタによる前記調整用発電装置の需給調整サービス料を差し引いて課金することを特徴とする分散電源の需給調整サービス。
A distributed power source that adjusts the supply and demand by connecting a load of multiple customers and a distributed power source having a natural power source and a power generator for adjustment to a power system, and connecting the load and power source to a supply and demand adjustment center through a communication network. In the supply and demand adjustment service of
The supply and demand adjustment center charges the electricity charge of each consumer as a consideration of the amount of power by the natural fluctuation power source and the amount of power by the power generator for adjustment,
The natural variable power source charges the supply / demand adjustment center with a charge obtained by subtracting the service charge of the supply / demand adjustment center from the amount of electricity supplied to a consumer, and the power generation device for adjustment supplies the supply / demand adjustment center with the supply / demand adjustment center. Charging is performed by subtracting the supply and demand adjustment service fee of the power generation device for adjustment by the power supply and demand adjustment center from the sum of the electricity charge supplied to the consumer by the power generation device for adjustment and the opportunity loss amount of the power generation device for adjustment. Supply and demand adjustment service for distributed power supplies.
請求項8において、前記需給調整センタは前記電力系統に接続されている一般電力会社に対し、前記需要家,前記自然変動電源及び前記調整用発電装置の接続供給料を支払うことを特徴とする分散電源の需給調整サービス。
9. The distribution according to claim 8, wherein the supply and demand adjustment center pays a connection supply fee for the consumer, the natural fluctuation power source, and the power generation device for adjustment to a general electric power company connected to the power system. Power supply / demand adjustment service.
JP2005277033A 2004-12-24 2005-09-26 Supply and demand adjusting method, system and service by distributed power source Pending JP2006204081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277033A JP2006204081A (en) 2004-12-24 2005-09-26 Supply and demand adjusting method, system and service by distributed power source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004373468 2004-12-24
JP2005277033A JP2006204081A (en) 2004-12-24 2005-09-26 Supply and demand adjusting method, system and service by distributed power source

Publications (1)

Publication Number Publication Date
JP2006204081A true JP2006204081A (en) 2006-08-03

Family

ID=36961576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277033A Pending JP2006204081A (en) 2004-12-24 2005-09-26 Supply and demand adjusting method, system and service by distributed power source

Country Status (1)

Country Link
JP (1) JP2006204081A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151371A (en) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> System cooperation-type variation suppressing system and output variation suppression method
JP2008043040A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Power system and method for managing charging state in the power system
JP2008054439A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power system
JP2008113523A (en) * 2006-10-31 2008-05-15 Nippon Telegr & Teleph Corp <Ntt> Power supply system, consumer group facility, and mehod of monitoring and controlling them
JP2008141926A (en) * 2006-12-05 2008-06-19 Hitachi Ltd Home power storage device, on-vehicle power storage device, power supply/storage system and power storage control method
JP2008245374A (en) * 2007-03-26 2008-10-09 Chugoku Electric Power Co Inc:The Generator output amount determination system, method and program
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
JP2009148098A (en) * 2007-12-14 2009-07-02 Toshiba Corp System, method, and program for performing distribution line automatic control
JP2010512727A (en) * 2006-12-11 2010-04-22 ブイ2グリーン・インコーポレーテッド Power consolidation system for distributed electricity resources
JP2010130762A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP2011509648A (en) * 2008-01-07 2011-03-24 クーロン テクノロジーズ インコーポレイテッド Network controlled charging system for electric vehicles
WO2011096429A1 (en) * 2010-02-04 2011-08-11 オムロン株式会社 Power demand-supply system
WO2011161758A1 (en) * 2010-06-22 2011-12-29 日立オートモティブシステムズ株式会社 Power supplying system
CN102315667A (en) * 2010-06-30 2012-01-11 株式会社日立制作所 The control method and the specification thereof of accumulator control device, storage battery are confirmed method
WO2011014773A3 (en) * 2009-07-31 2012-04-26 Deka Products Limited Partnership Systems, methods and apparatus for vehicle to vehicle battery charging
JP2012517207A (en) * 2009-02-03 2012-07-26 ドン・エナジー・パワー・エ/エス Distributed power production system and control method thereof
CN102891496A (en) * 2011-07-22 2013-01-23 株式会社东芝 Electrical quantity adjusting apparatus, electrical quantity adjusting method, electrical quantity adjusting program and power supply system
JP2013143901A (en) * 2012-01-12 2013-07-22 Chugoku Electric Power Co Inc:The Distributed power supply controlling device, system and method
WO2014014259A1 (en) * 2012-07-18 2014-01-23 한국전자통신연구원 Energy management method and energy management system using same
JPWO2012114372A1 (en) * 2011-02-23 2014-07-07 株式会社日立製作所 Power demand management system and power demand management method
EP2704283A4 (en) * 2011-04-26 2015-07-01 Hitachi Ltd Power management device, power management system, power management method, and power management program
US9415699B2 (en) 2009-08-04 2016-08-16 Nec Corporation Energy system
US9431835B2 (en) 2008-01-07 2016-08-30 Chargepoint, Inc. Street light mounted network-controlled charge transfer device for electric vehicles
US9597974B2 (en) 2008-01-07 2017-03-21 Chargepoint, Inc. Network-controlled charging system for electric vehicles
US9870593B2 (en) 2011-12-05 2018-01-16 Hatch Ltd. System, method and controller for managing and controlling a micro-grid
JPWO2021125287A1 (en) * 2019-12-20 2021-06-24
CN115303206A (en) * 2022-06-30 2022-11-08 中国第一汽车股份有限公司 Power management system, vehicle and power management method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation
JP2002262458A (en) * 2001-03-02 2002-09-13 Toshiba Eng Co Ltd Electric power supply system utilizing weather forecast information
JP2003250221A (en) * 2002-02-21 2003-09-05 Sumitomo Electric Ind Ltd Feeding method and feeding system
JP2003259696A (en) * 2002-02-28 2003-09-12 Jfe Engineering Kk Generation control method and program thereof
JP2004015882A (en) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd Distributed power supply system and method and operation program
JP2004056996A (en) * 2002-05-31 2004-02-19 Hitachi Ltd Local electric power intelligence supervisory system and its operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation
JP2002262458A (en) * 2001-03-02 2002-09-13 Toshiba Eng Co Ltd Electric power supply system utilizing weather forecast information
JP2003250221A (en) * 2002-02-21 2003-09-05 Sumitomo Electric Ind Ltd Feeding method and feeding system
JP2003259696A (en) * 2002-02-28 2003-09-12 Jfe Engineering Kk Generation control method and program thereof
JP2004056996A (en) * 2002-05-31 2004-02-19 Hitachi Ltd Local electric power intelligence supervisory system and its operation method
JP2004015882A (en) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd Distributed power supply system and method and operation program

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151371A (en) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> System cooperation-type variation suppressing system and output variation suppression method
JP4546389B2 (en) * 2005-11-30 2010-09-15 日本電信電話株式会社 System coordination type fluctuation suppression system and output fluctuation suppression method
JP2008043040A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Power system and method for managing charging state in the power system
KR101042381B1 (en) * 2006-08-04 2011-06-17 도요타 지도샤(주) Power system and method for managing charging state in that power system
US7847518B2 (en) 2006-08-04 2010-12-07 Toyota Jidosha Kabushiki Kaisha Power system and method for managing charging state in that power system
JP2008054439A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power system
US8103386B2 (en) 2006-08-25 2012-01-24 Toyota Jidosha Kabushiki Kaisha Power system
JP2008113523A (en) * 2006-10-31 2008-05-15 Nippon Telegr & Teleph Corp <Ntt> Power supply system, consumer group facility, and mehod of monitoring and controlling them
JP2008141926A (en) * 2006-12-05 2008-06-19 Hitachi Ltd Home power storage device, on-vehicle power storage device, power supply/storage system and power storage control method
JP2010512727A (en) * 2006-12-11 2010-04-22 ブイ2グリーン・インコーポレーテッド Power consolidation system for distributed electricity resources
JP2008245374A (en) * 2007-03-26 2008-10-09 Chugoku Electric Power Co Inc:The Generator output amount determination system, method and program
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
JP2009148098A (en) * 2007-12-14 2009-07-02 Toshiba Corp System, method, and program for performing distribution line automatic control
JP2011509648A (en) * 2008-01-07 2011-03-24 クーロン テクノロジーズ インコーポレイテッド Network controlled charging system for electric vehicles
US9889761B2 (en) 2008-01-07 2018-02-13 Chargepoint, Inc. Network-controlled charging system for electric vehicles
US10879733B2 (en) 2008-01-07 2020-12-29 Chargepoint, Inc. Network-controlled charging system for electric vehicles
US10873210B2 (en) 2008-01-07 2020-12-22 Chargepoint, Inc. Network-controlled charging system for electric vehicles
US10850625B2 (en) 2008-01-07 2020-12-01 Chargepoint, Inc. Transferring charge between a local power grid and electric vehicles
US10150381B2 (en) 2008-01-07 2018-12-11 Chargepoint, Inc. Street light mounted network-controlled charge transfer device for electric vehicles
US9431835B2 (en) 2008-01-07 2016-08-30 Chargepoint, Inc. Street light mounted network-controlled charge transfer device for electric vehicles
US9597974B2 (en) 2008-01-07 2017-03-21 Chargepoint, Inc. Network-controlled charging system for electric vehicles
US9610856B2 (en) 2008-01-07 2017-04-04 Chargepoint, Inc. Network-controlled charging system for electric vehicles
JP2010130762A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP2012517207A (en) * 2009-02-03 2012-07-26 ドン・エナジー・パワー・エ/エス Distributed power production system and control method thereof
US11660972B2 (en) 2009-07-31 2023-05-30 Deka Products Limited Partnership Systems, methods and apparatus for vehicle battery charging
WO2011014773A3 (en) * 2009-07-31 2012-04-26 Deka Products Limited Partnership Systems, methods and apparatus for vehicle to vehicle battery charging
US8860362B2 (en) 2009-07-31 2014-10-14 Deka Products Limited Partnership System for vehicle battery charging
US9849803B2 (en) 2009-08-04 2017-12-26 Nec Corporation Energy system
US9415699B2 (en) 2009-08-04 2016-08-16 Nec Corporation Energy system
WO2011096429A1 (en) * 2010-02-04 2011-08-11 オムロン株式会社 Power demand-supply system
JP2011164700A (en) * 2010-02-04 2011-08-25 Omron Corp Power demand/supply system, power supply control device, power receipt control device, green power supply control device, green power receipt control device, green power demand/supply certification device, power blending control device, green power demand/supply fare adjustment device, moving body, building, green power demand/supply system, green power transmission/reception method, green power demand/supply certification method, power blending method, fare adjustment method, and power blending program
JP5422741B2 (en) * 2010-06-22 2014-02-19 日立オートモティブシステムズ株式会社 Power supply system
WO2011161758A1 (en) * 2010-06-22 2011-12-29 日立オートモティブシステムズ株式会社 Power supplying system
JP2012016103A (en) * 2010-06-30 2012-01-19 Hitachi Ltd Storage battery control device, control method for storage battery, and specification determination method for storage battery
CN102315667A (en) * 2010-06-30 2012-01-11 株式会社日立制作所 The control method and the specification thereof of accumulator control device, storage battery are confirmed method
US8831790B2 (en) 2010-06-30 2014-09-09 Hitachi, Ltd. Method and apparatus for control battery and specification determining method of battery
JP5622924B2 (en) * 2011-02-23 2014-11-12 株式会社日立製作所 Power demand management system and power demand management method
JPWO2012114372A1 (en) * 2011-02-23 2014-07-07 株式会社日立製作所 Power demand management system and power demand management method
EP2704283A4 (en) * 2011-04-26 2015-07-01 Hitachi Ltd Power management device, power management system, power management method, and power management program
CN102891496A (en) * 2011-07-22 2013-01-23 株式会社东芝 Electrical quantity adjusting apparatus, electrical quantity adjusting method, electrical quantity adjusting program and power supply system
CN102891496B (en) * 2011-07-22 2016-01-20 株式会社东芝 Electricity adjusting device and method, electricity adjustment programme and electric power supply system
US9870593B2 (en) 2011-12-05 2018-01-16 Hatch Ltd. System, method and controller for managing and controlling a micro-grid
JP2013143901A (en) * 2012-01-12 2013-07-22 Chugoku Electric Power Co Inc:The Distributed power supply controlling device, system and method
WO2014014259A1 (en) * 2012-07-18 2014-01-23 한국전자통신연구원 Energy management method and energy management system using same
JPWO2021125287A1 (en) * 2019-12-20 2021-06-24
JP7263555B2 (en) 2019-12-20 2023-04-24 株式会社東芝 POWER CONTROL SYSTEM, POWER CONTROL DEVICE, POWER CONTROL COMPUTER PROGRAM, AND POWER CONTROL METHOD
CN115303206A (en) * 2022-06-30 2022-11-08 中国第一汽车股份有限公司 Power management system, vehicle and power management method
CN115303206B (en) * 2022-06-30 2024-03-19 中国第一汽车股份有限公司 Power management system, vehicle and power management method

Similar Documents

Publication Publication Date Title
JP2006204081A (en) Supply and demand adjusting method, system and service by distributed power source
Zakariazadeh et al. Integrated operation of electric vehicles and renewable generation in a smart distribution system
Awad et al. Impact of energy storage systems on electricity market equilibrium
US20200023747A1 (en) Method and Apparatus for Charging a Battery From an Isolatable Electric Power Grid
US8718850B2 (en) Systems and methods for using electric vehicles as mobile energy storage
US20110276194A1 (en) System and method for energy management
US9367052B2 (en) Managing energy assets associated with transport operations
US8319358B2 (en) Electric vehicle charging methods, battery charging methods, electric vehicle charging systems, energy device control apparatuses, and electric vehicles
US9514428B2 (en) Managing energy assets associated with transport operations
JP2012075224A (en) Power storage system for renewable energy
JP4426504B2 (en) Secondary battery supply control device and power supply system for hybrid electric vehicle
JP5380413B2 (en) Electric energy calculation device, electric energy calculation server, electric energy calculation system, and electric energy calculation method
JP2004056996A (en) Local electric power intelligence supervisory system and its operation method
JP2007006574A (en) Power supply system
WO2003071656A1 (en) Power supply method and power supply system
Brenna et al. The integration of electric vehicles in smart distribution grids with other distributed resources
JP2017027586A (en) Incentive calculation system and incentive calculation system control method
Guidara et al. Novel configuration and optimum energy flow management of a grid-connected photovoltaic battery installation
Pansota et al. An optimal scheduling and planning of campus microgrid based on demand response and battery lifetime
Tasnim et al. A critical review of the effect of light duty electric vehicle charging on the power grid
JP7240295B2 (en) Local energy management device and local energy management method
Ghofrani et al. V2G services for renewable integration
KR20210121064A (en) Power Managed Electric Vehicle Charging Station
Chandio et al. Gridpeaks: Employing distributed energy storage for grid peak reduction
Strezoski et al. Enabling mass integration of electric vehicles through distributed energy resource management systems

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130