JP2006203087A - Micro roughness evaluating method of thin film soi wafer - Google Patents

Micro roughness evaluating method of thin film soi wafer Download PDF

Info

Publication number
JP2006203087A
JP2006203087A JP2005014928A JP2005014928A JP2006203087A JP 2006203087 A JP2006203087 A JP 2006203087A JP 2005014928 A JP2005014928 A JP 2005014928A JP 2005014928 A JP2005014928 A JP 2005014928A JP 2006203087 A JP2006203087 A JP 2006203087A
Authority
JP
Japan
Prior art keywords
microroughness
haze value
thin film
layer thickness
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005014928A
Other languages
Japanese (ja)
Inventor
Takehiro Tsunemori
丈弘 常森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005014928A priority Critical patent/JP2006203087A/en
Publication of JP2006203087A publication Critical patent/JP2006203087A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating, quickly and easily, micro roughness on the surface of a thin film SOI wafer using Haze value. <P>SOLUTION: Haze value and SOI layer thickness of a thin film SOI wafer for evaluation are measured. With a correlation curve between the Haze value and the SOI layer thickness acquired by measuring the Haze value of thin-film SOI wafers of different SOI layer thickness with constant microroughness as reference, microroughness of the wafer is evaluated. By evaluating microroughness with the deviation amount of the Haze value of the thin-film SOI wafer from the correlation curve as an index, a more appropriate evaluation is available. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄膜SOI(Silicon On Insulator)ウェーハの検査方法、詳しくは薄膜SOIウェーハ表面のマイクロラフネスを相対的に評価するマイクロラフネス評価方法に関する。   The present invention relates to an inspection method for a thin film SOI (Silicon On Insulator) wafer, and more particularly to a microroughness evaluation method for relatively evaluating the microroughness of the surface of a thin film SOI wafer.

半導体デバイスの高集積化、微細化に伴い、ウェーハ表面の評価の重要性がますます増大している。特にウェーハ表面の微粒子その他による汚染はデバイス特性に大きな影響を及ぼすが、ウェーハ表面のマイクロラフネスがデバイスの電気特性に影響を与えることが知られるようになり、マイクロラフネスの評価とその改善(粗さの減少)が重要視されている。   With the high integration and miniaturization of semiconductor devices, the importance of wafer surface evaluation is increasing. In particular, contamination by fine particles on the wafer surface has a large effect on device characteristics. However, it has become known that the microroughness of the wafer surface affects the electrical characteristics of the device. Microroughness evaluation and improvement (roughness) Reduction).

マイクロラフネスはウェーハ表面の微視的な粗さで、一般に、原子間力顕微鏡(AFM)を使用する方法で測定、評価される。この方法によれば、例えば1μm×1μm、10μm×10μmなどのような微小な領域内においてAFMのプローブで走査することにより、マイクロラフネスを正確に測定することができる。しかし、走査領域がウェーハ全体の広さに比べて非常に小さいので、ウェーハ全体のマイクロラフネスを正確に測定することは困難であり、また測定に時間がかかるという問題がある。   Microroughness is a microscopic roughness of the wafer surface, and is generally measured and evaluated by a method using an atomic force microscope (AFM). According to this method, microroughness can be accurately measured by scanning with an AFM probe in a minute region such as 1 μm × 1 μm, 10 μm × 10 μm, and the like. However, since the scanning area is very small compared to the entire width of the wafer, it is difficult to accurately measure the microroughness of the entire wafer, and the measurement takes time.

一方、パーティクルカウンター等の面検機で測定されるHaze(ヘイズ)値を利用してマイクロラフネスを評価することができる。Haze値はウェーハ表面に照射した光(主にレーザ光が用いられる)の該表面での散乱光を測定することにより入射光に対する全散乱光の割合(ppm)として求められるが、このHaze値とウェーハ表面のマイクロラフネスとの間に相関性があることによるものである。この方法によれば、ウェーハ表面を広範囲に走査して、広い領域のマイクロラフネスを光学的方法により間接的に測定することが可能で、マイクロラフネスの相対的な評価を迅速かつ容易に行うことができる。   On the other hand, microroughness can be evaluated using a Haze value measured by a surface detector such as a particle counter. The haze value is obtained as a ratio (ppm) of the total scattered light to the incident light by measuring the scattered light on the surface of the light irradiated to the wafer surface (mainly laser light is used). This is because there is a correlation with the microroughness of the wafer surface. According to this method, the wafer surface can be scanned over a wide area, and the microroughness of a wide area can be indirectly measured by an optical method, and relative evaluation of microroughness can be performed quickly and easily. it can.

例えば、特許文献1には、材料(基板)内への化学種の打ち込みにより脆化した表面に沿って二層に剥離するに際し、剥離によって得られる表面の粗さを減少させ得るアニーリングを含む剥離方法が記載されているが、同文献の図1に、SOIウェーハ表面のHaze値と粗さ(マイクロラフネス)の相関関係が例示されている。Haze値が大きいほどマイクロラフネスも大きくなる。   For example, Patent Document 1 discloses peeling including annealing that can reduce surface roughness obtained by peeling when peeling into two layers along a surface embrittled by implantation of chemical species into a material (substrate). Although the method is described, FIG. 1 of the same document illustrates the correlation between the haze value of the SOI wafer surface and the roughness (microroughness). The microroughness increases as the Haze value increases.

通常の鏡面研磨ウェーハ、エピタキシャルウェーハでは、前記のパーティクルカウンターで測定されるHaze値はウェーハ表面のマイクロラフネスを反映したものになるので、Haze値を測定することによりウェーハ表面のマイクロラフネスを容易に評価することが可能である。   For normal mirror polished wafers and epitaxial wafers, the Haze value measured by the particle counter reflects the microroughness of the wafer surface, so the microroughness of the wafer surface can be easily evaluated by measuring the Haze value. Is possible.

しかし、SOI層の厚さが100nm以下の薄膜SOIウェーハにおいては、通常の面検機(例えば、KLA−Tecor社製パーティクルカウンター)でHaze値を測定しようとすると、SOI層厚さに依存してHaze値が大きく変化する。これは、パーティクルカウンターで使用されているレーザ光の波長が488nmと比較的長いため、ウェーハ表面からの散乱光だけではなく、SOI層とその下層の埋込み酸化物層(BOX)との界面からの散乱光も検出されるからで、前記のパーティクルカウンターで測定されるHaze値を利用してマイクロラフネスを評価することはできない。   However, in a thin-film SOI wafer having an SOI layer thickness of 100 nm or less, if an attempt is made to measure the Haze value with an ordinary surface inspection machine (for example, a particle counter manufactured by KLA-Tecor), it depends on the SOI layer thickness. The Haze value changes greatly. This is because the wavelength of the laser beam used in the particle counter is relatively long at 488 nm, so not only the scattered light from the wafer surface but also from the interface between the SOI layer and the buried oxide layer (BOX) below it. Since scattered light is also detected, microroughness cannot be evaluated using the Haze value measured by the particle counter.

特開2003−347526号公報JP 2003-347526 A

本発明は、前述した問題、すなわち、パーティクルカウンターで測定されるHaze値を利用して薄膜SOIウェーハ表面のマイクロラフネスを評価する際に、SOI層厚さに依存してHaze値が大きく変化するという問題を解決し、薄膜SOIウェーハ表面のマイクロラフネスを、Haze値を利用して迅速かつ容易に評価する方法の提供を目的としている。   According to the present invention, when the microroughness of the surface of the thin film SOI wafer is evaluated using the above-described problem, that is, the Haze value measured by the particle counter, the Haze value varies greatly depending on the SOI layer thickness. An object of the present invention is to solve the problem and to provide a method for quickly and easily evaluating the microroughness of the surface of a thin film SOI wafer by using the Haze value.

本発明者は、前記の課題を解決するために検討を重ねた結果、マイクロラフネスがほぼ一定の値を有し、SOI層の厚さが異なる複数の薄膜SOIウェーハのそれぞれについて、面検機としてパーティクルカウンターを用いてHaze値を測定し、あらかじめ求めたSOI層厚さとHaze値との相関曲線を基準として用いることにより、薄膜SOIウェーハ表面のマイクロラフネスを迅速かつ容易に評価できることを知見した。   As a result of repeated studies to solve the above-mentioned problems, the present inventor has used a micro-roughness as a surface detector for each of a plurality of thin film SOI wafers having a substantially constant value and different SOI layer thicknesses. It was found that the microroughness of the surface of the thin-film SOI wafer can be evaluated quickly and easily by measuring the Haze value using a particle counter and using the correlation curve between the SOI layer thickness and the Haze value obtained in advance as a reference.

すなわち、評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、そのHaze値が、あらかじめ求めておいたSOI層厚さとHaze値との相関曲線におけるHaze値と比較(つまり、同一SOI層厚さで比較)して、同程度であるか、高値、低値のいずれを示すかによって、薄膜SOIウェーハ表面のマイクロラフネスが前記相関曲線を求める際に使用した薄膜SOIウェーハのマイクロラフネスと同程度であるか、それよりも大きい(粗い)か、小さいかを評価することが可能となる。   That is, the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated are measured, and the Haze value is compared with the Haze value in the correlation curve between the SOI layer thickness and the Haze value obtained in advance (that is, the same SOI layer The microroughness on the surface of the thin film SOI wafer is the same as the microroughness of the thin film SOI wafer used to obtain the correlation curve, depending on whether the thickness is comparable or shows a high value or a low value. It is possible to evaluate whether it is a degree, larger (coarse) or smaller.

また、評価対象の薄膜SOIウェーハのHaze値が、前記相関曲線における評価対象SOI層厚さと同一のSOI層厚さでのHaze値からどの程度変位しているか(つまり、相関曲線からのズレ量およびズレの方向)により、マイクロラフネスをより的確に評価することができる。   In addition, how much the Haze value of the thin film SOI wafer to be evaluated is displaced from the Haze value at the same SOI layer thickness as the evaluation target SOI layer thickness in the correlation curve (that is, the amount of deviation from the correlation curve and The microroughness can be more accurately evaluated by the direction of deviation.

本発明はこのような知見に基づきなされたもので、その要旨は下記(1)、(2)の薄膜SOIウェーハのマイクロラフネス評価方法にある。   The present invention has been made on the basis of such knowledge, and the gist thereof lies in the following micro-roughness evaluation method for a thin film SOI wafer (1) and (2).

(1)評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、マイクロラフネスを大きく変えずにSOI層厚さを変えたそれぞれの薄膜SOIウェーハのHaze値を測定して得られるSOI層厚さとHaze値との相関曲線を基準として、前記評価対象ウェーハのマイクロラフネスを評価する薄膜SOIウェーハのマイクロラフネス評価方法。   (1) SOI layer obtained by measuring the SOI layer thickness and the Haze value of a thin film SOI wafer to be evaluated, and measuring the Haze value of each thin film SOI wafer with the SOI layer thickness changed without greatly changing the microroughness A method for evaluating the microroughness of a thin film SOI wafer, wherein the microroughness of the wafer to be evaluated is evaluated based on a correlation curve between a thickness and a haze value.

前記SOI層厚さの変更を犠牲酸化および/または繰り返し洗浄により行えば、マイクロラフネスを大きく変えずにSOI層厚さを変えた薄膜SOIウェーハを得ることが可能である。   If the change in the SOI layer thickness is performed by sacrificial oxidation and / or repeated cleaning, it is possible to obtain a thin film SOI wafer in which the SOI layer thickness is changed without greatly changing the microroughness.

(2)評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、そのHaze値の、前記(1)で得られる相関曲線におけるHaze値からの変位量に基づいてマイクロラフネスを評価する薄膜SOIウェーハのマイクロラフネス評価方法。   (2) A thin film that measures the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated, and evaluates the microroughness based on the displacement of the Haze value from the Haze value in the correlation curve obtained in (1) above. Micro-roughness evaluation method for SOI wafers.

前記(1)に記載のマイクロラフネスを「大きく変えず」とは、マイクロラフネスがほぼ一定であること、厳密に言えば、任意に定めた基準に対して±10%の範囲内であることを意味する。   The phrase “without greatly changing” the microroughness described in the above (1) means that the microroughness is almost constant, strictly speaking, within a range of ± 10% with respect to an arbitrarily defined standard. means.

また、(2)に記載の「(1)で得られる相関曲線におけるHaze値」とは、マイクロラフネスがほぼ一定の条件で得られるSOI層厚さとHaze値との相関曲線における前記評価対象SOI層厚さと同一のSOI層厚さでのHaze値である。   The “Haze value in the correlation curve obtained in (1)” described in (2) is the evaluation target SOI layer in the correlation curve between the SOI layer thickness and the Haze value obtained under a condition where the microroughness is substantially constant. Haze value at the same SOI layer thickness as the thickness.

本発明の薄膜SOIウェーハのマイクロラフネス評価方法によれば、SOI層厚さに依存してHaze値が大きく変化するという問題を解決し、薄膜SOIウェーハ表面のマイクロラフネスを、Haze値を利用して迅速かつ容易に評価することができる。また、この評価方法は非破壊で行えるという利点も有している。   According to the micro-roughness evaluation method for a thin film SOI wafer of the present invention, the problem that the haze value varies greatly depending on the thickness of the SOI layer is solved, and the micro-roughness of the surface of the thin film SOI wafer is calculated using the haze value. It can be evaluated quickly and easily. Further, this evaluation method has an advantage that it can be performed non-destructively.

以下に、本発明の薄膜SOIウェーハのマイクロラフネス評価方法(前記(1)、(2)に記載の方法)について詳細に説明する。   Hereinafter, the microroughness evaluation method for the thin film SOI wafer of the present invention (the method described in (1) and (2) above) will be described in detail.

前記(1)に記載のマイクロラフネス評価方法は、評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、マイクロラフネスを大きく変えずにSOI層厚さを変えたそれぞれの薄膜SOIウェーハのHaze値を測定して得られるSOI層厚さとHaze値との相関曲線を基準としてマイクロラフネスを評価する方法である。   In the microroughness evaluation method described in (1), the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated are measured, and each thin film SOI wafer having the SOI layer thickness changed without greatly changing the microroughness is measured. In this method, microroughness is evaluated based on a correlation curve between the SOI layer thickness obtained by measuring the Haze value and the Haze value.

図1は、マイクロラフネスについては特に調整を行わず、SOI層厚さを変化させた薄膜SOIウェーハのそれぞれについてのパーティクルカウンター(KLA−Tecor社製)によるHaze値の測定例を示す図である。照射光には波長が488nmのArレーザを用いている。   FIG. 1 is a diagram showing an example of measurement of the haze value by a particle counter (manufactured by KLA-Tecor) for each thin film SOI wafer in which the SOI layer thickness is changed without particularly adjusting the microroughness. Ar laser having a wavelength of 488 nm is used as the irradiation light.

同図に示すように、SOI層の厚さが100nm以下の薄膜SOIウェーハでは、SOI層の厚さの変化に伴いHaze値が大きくかつ不規則に変化していることがわかる。そのため、SOIウェーハ表面のHaze値と粗さ(マイクロラフネス)の相関関係を利用して薄膜SOIウェーハ表面のマイクロラフネスを評価しようとしても、SOI層の厚さの変化に伴うHaze値の変化が大きく、評価することはできない。   As shown in the figure, it can be seen that in a thin film SOI wafer having a SOI layer thickness of 100 nm or less, the Haze value is large and irregularly changed with the change in the thickness of the SOI layer. Therefore, even if an attempt is made to evaluate the microroughness of the surface of the thin film SOI wafer using the correlation between the haze value of the SOI wafer surface and the roughness (microroughness), the change of the haze value accompanying the change of the thickness of the SOI layer is large. , Can not be evaluated.

そこで、本発明のマイクロラフネス評価方法では、あらかじめ、マイクロラフネスを大きく変えずにSOI層厚さを変えたそれぞれの薄膜SOIウェーハのHaze値を測定してSOI層厚さとHaze値との相関曲線を求めておき、この相関曲線をマイクロラフネス評価の基準として用いるのである。   Therefore, in the microroughness evaluation method of the present invention, the haze value of each thin film SOI wafer with the SOI layer thickness changed without greatly changing the microroughness is measured in advance, and a correlation curve between the SOI layer thickness and the haze value is obtained. The correlation curve is obtained and used as a reference for microroughness evaluation.

すなわち、評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、このHaze値と、あらかじめ求めておいたSOI層厚さとHaze値との相関曲線における評価対象SOI層厚さと同一のSOI層厚さでのHaze値とを比較して、両者がほぼ同じ値であれば、評価しようとする薄膜SOIウェーハのマイクロラフネスは、前記相関曲線を求める際に使用した薄膜SOIウェーハのマイクロラフネス(これを、ここでは「標準値」と記す)とほぼ同じで、同程度の表面粗さを有していると評価することができる。   That is, the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated are measured, and the SOI layer having the same evaluation target SOI layer thickness in the correlation curve between the Haze value and the SOI layer thickness and Haze value obtained in advance. If the Haze value at the thickness is compared and if both values are substantially the same, the microroughness of the thin film SOI wafer to be evaluated is the microroughness of the thin film SOI wafer used to obtain the correlation curve (this Is described here as “standard value”) and can be evaluated as having the same surface roughness.

また、前者(評価対象の薄膜SOIウェーハのHaze値)が後者(相関曲線における評価対象SOI層厚さと同一のSOI層厚さでのHaze値)より大きければ、評価対象の薄膜SOIウェーハのマイクロラフネスは標準値より大きく、粗い表面状態を呈し、逆に前者が後者より小さければ、マイクロラフネスは標準値より小さく、表面粗さが小さいと評価することができる。   If the former (the haze value of the thin film SOI wafer to be evaluated) is larger than the latter (the haze value at the same SOI layer thickness as the evaluation target SOI layer thickness in the correlation curve), the microroughness of the thin film SOI wafer to be evaluated Is larger than the standard value and exhibits a rough surface state. Conversely, if the former is smaller than the latter, the microroughness is smaller than the standard value, and it can be evaluated that the surface roughness is small.

前記SOI層厚さの変更を犠牲酸化および/または繰り返し洗浄により行えば、ウェーハ表面のマイクロラフネスを大きく変えずに、SOI層厚さを変えたウェーハを比較的容易に得ることが可能である。   If the change of the SOI layer thickness is performed by sacrificial oxidation and / or repeated cleaning, it is possible to obtain a wafer with a changed SOI layer thickness relatively easily without greatly changing the microroughness of the wafer surface.

前記の犠牲酸化は、通常はLSI製造工程においてSi表面を汚染から保護したり、Si表面の汚染や欠陥を除去する目的で行われるが、この犠牲酸化の手法を適用してSOI層の表面に酸化膜を形成させ、これをエッチングで除去することにより、マイクロラフネスを大きく変えずにSOI層厚さを変えることができる。熱酸化条件等を適宜調整することによりSOI層厚さの調整も可能である。   The sacrificial oxidation is usually performed in the LSI manufacturing process for the purpose of protecting the Si surface from contamination or removing contamination and defects on the Si surface. By applying this sacrificial oxidation method, the surface of the SOI layer is applied. By forming an oxide film and removing it by etching, the SOI layer thickness can be changed without greatly changing the microroughness. The SOI layer thickness can be adjusted by appropriately adjusting thermal oxidation conditions and the like.

また、ウェーハ表面から微粒子その他による汚染を除去するために様々な化学的洗浄(湿式洗浄、乾式洗浄)法、機械的洗浄法が使用されているが、これらの方法を繰り返し適用することにより、表面の例えば自然酸化膜を僅かずつ除去し、マイクロラフネスを大きく変えずにSOI層厚さを変更することができる。マイクロラフネスの大きさやSOI層厚さの変更の程度に応じて洗浄法、洗浄条件、繰り返しの回数等を選定すればよい。   In addition, various chemical cleaning methods (wet cleaning, dry cleaning) and mechanical cleaning methods are used to remove contamination from fine particles and others from the wafer surface. By repeatedly applying these methods, the surface For example, the native oxide film is removed little by little, and the SOI layer thickness can be changed without greatly changing the microroughness. What is necessary is just to select the washing | cleaning method, washing | cleaning conditions, the frequency | count of repetition, etc. according to the magnitude | size of the change of the magnitude | size of a microroughness, and SOI layer thickness.

これら犠牲酸化、繰り返し洗浄は、いずれか一方を用いてもよいし、両者を適宜組み合わせ用いてもよい。なお、ウェーハ表面のマイクロラフネスを大きく変えずに、SOI層厚さを変える手段は、前記犠牲酸化、繰り返し洗浄に限定されない。   One of these sacrificial oxidation and repeated cleaning may be used, or a combination of both may be used as appropriate. The means for changing the SOI layer thickness without greatly changing the microroughness of the wafer surface is not limited to the sacrificial oxidation and repeated cleaning.

前記(2)に記載のマイクロラフネス評価方法は、評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、そのHaze値の、前記相関曲線におけるHaze値からの変位量、すなわち相関曲線における前記評価対象SOI層厚さと同一のSOI層厚さでのHaze値からの変位量、に基づいてマイクロラフネスを評価する方法である。   In the microroughness evaluation method described in (2), the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated are measured, and the displacement of the Haze value from the Haze value in the correlation curve, that is, in the correlation curve In this method, the microroughness is evaluated based on the amount of displacement from the haze value at the same SOI layer thickness as the evaluation target SOI layer thickness.

この(2)に記載の評価方法は、前記SOI層厚さとHaze値との相関曲線を基準として、評価対象薄膜SOIウェーハのHaze値の変位量に基づきマイクロラフネスを評価するので、前記(1)のマイクロラフネス評価方法の一実施態様である。この方法によれば、評価対象の薄膜SOIウェーハのHaze値が前記相関曲線における評価対象SOI層厚さと同一のSOI層厚さでのHaze値からどの程度変位しているか(つまり、相関曲線からのズレ量およびズレの方向)により、マイクロラフネスをより的確に評価することができる。   In the evaluation method described in (2), the microroughness is evaluated based on the displacement amount of the Haze value of the thin film SOI wafer to be evaluated with reference to the correlation curve between the SOI layer thickness and the Haze value. This is one embodiment of the microroughness evaluation method. According to this method, how much the Haze value of the thin film SOI wafer to be evaluated is displaced from the Haze value at the same SOI layer thickness as the evaluation target SOI layer thickness in the correlation curve (that is, from the correlation curve). The microroughness can be more accurately evaluated based on the amount of deviation and the direction of deviation.

図2は、マイクロラフネスをほぼ一定(標準値)とし、SOI層厚さを変化させたそれぞれの薄膜SOIウェーハについて、パーティクルカウンター(KLA−Tecor社製)によりHaze値を測定して得たSOI層厚さとHaze値との相関曲線と、種々のマイクロラフネスおよびSOI層厚さを有する薄膜SOIウェーハについてのHaze値の測定結果を例示する図である。照射光には波長が488nmのArレーザを用いた。   FIG. 2 shows an SOI layer obtained by measuring the Haze value with a particle counter (manufactured by KLA-Tecor) for each thin film SOI wafer with the microroughness substantially constant (standard value) and the SOI layer thickness changed. It is a figure which illustrates the measurement result of the Haze value about the correlation curve of thickness and Haze value, and the thin film SOI wafer which has various micro roughness and SOI layer thickness. Ar laser having a wavelength of 488 nm was used as irradiation light.

なお、同図中の実線は前記相関曲線を、■、◆、×および●印は、それぞれ、ウェーハ表面を処理してマイクロラフネスを標準値より小さくした場合、標準値と同程度に維持した場合、標準値より大きくした場合および標準値より小さくした場合(■印の場合よりもSOI層厚さを薄くした場合)を表す。   In the figure, the solid line is the correlation curve, and the ■, ◆, x, and ● marks are when the surface of the wafer is processed to reduce the microroughness below the standard value, or at the same level as the standard value. , The case where the thickness is larger than the standard value and the case where the thickness is smaller than the standard value (when the SOI layer thickness is made thinner than in the case of ■ mark).

この図2において、マイクロラフネスを標準値より小さくした場合(■印および●印)、そのHaze値は相関曲線よりも下方に表示され、しかも相関曲線におけるHaze値からの変位量Δh1およびΔh3の大きさから、マイクロラフネスの標準値に対する粗さの程度を推測することが可能である。この場合、前記の変位量の大きさとマイクロラフネスとの相関性をSOI層厚さ毎にあらかじめ把握しておけば、より的確な推測が可能になる。 In FIG. 2, when the microroughness is made smaller than the standard value (■ mark and ● mark), the Haze value is displayed below the correlation curve, and the displacement amounts Δh 1 and Δh 3 from the Haze value in the correlation curve. It is possible to estimate the degree of roughness with respect to the standard value of the microroughness from the size of. In this case, if the correlation between the magnitude of the displacement and the microroughness is grasped in advance for each SOI layer thickness, a more accurate estimation can be made.

マイクロラフネスを標準値より大きくした場合(×印)、そのHaze値は相関曲線よりも上方に表示される。この場合も、相関曲線におけるHaze値からの変位量Δh2の大きさから、同様に粗さ程度の推測が可能である。また、マイクロラフネスを標準値と同程度に維持した場合(◆印)は、相関曲線におけるHaze値からの変位はほとんど認められない。 When the microroughness is made larger than the standard value (x mark), the Haze value is displayed above the correlation curve. Also in this case, it is possible to similarly estimate the degree of roughness from the magnitude of the displacement amount Δh 2 from the Haze value in the correlation curve. In addition, when the microroughness is maintained at the same level as the standard value (♦ mark), the displacement from the Haze value in the correlation curve is hardly recognized.

すなわち、評価対象である薄膜SOIウェーハのSOI層厚さとHaze値を測定し、そのHaze値の前記相関曲線におけるHaze値からの変位量を指標としてマイクロラフネスを評価することができる。   That is, the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated can be measured, and the microroughness can be evaluated using the displacement amount of the Haze value from the Haze value in the correlation curve as an index.

前記(1)または(2)に記載の薄膜SOIウェーハのマイクロラフネス評価方法によれば、前記マイクロラフネスの標準値を例えば管理基準の上限または下限としておくことにより、薄膜SOIウェーハのマイクロラフネスを迅速かつ容易にしかも非破壊で評価することができ、製品管理のための検査法としてはもちろんのこと、製造工程管理のための検査法としても用いることができる。   According to the microroughness evaluation method for a thin film SOI wafer described in (1) or (2) above, the microroughness of the thin film SOI wafer can be rapidly increased by setting the standard value of the microroughness as an upper limit or a lower limit of a management standard, for example. It can be easily and non-destructively evaluated, and can be used not only as an inspection method for product management but also as an inspection method for manufacturing process management.

本発明の薄膜SOIウェーハのマイクロラフネス評価方法は、マイクロラフネスをほぼ一定とし、SOI層厚さを変化させて求めたSOI層厚さとHaze値との相関曲線をマイクロラフネス評価の基準として用いる評価方法で、薄膜SOIウェーハ表面のマイクロラフネスを、Haze値を利用して迅速かつ容易に、しかも非破壊で評価することができる。したがって、薄膜SOIウェーハの製品管理、製造工程管理のための検査法として好適に利用することができる。   The micro-roughness evaluation method for a thin-film SOI wafer according to the present invention is an evaluation method using a correlation curve between an SOI layer thickness and a Haze value obtained by changing the SOI layer thickness while making the micro-roughness substantially constant as a reference for micro-roughness evaluation. Thus, the microroughness of the surface of the thin film SOI wafer can be evaluated quickly, easily and non-destructively using the Haze value. Therefore, it can be suitably used as an inspection method for product management and manufacturing process management of a thin film SOI wafer.

SOI層厚さを変化させた薄膜SOIウェーハについてのHaze値の測定例を示す図である。It is a figure which shows the example of a measurement of the Haze value about the thin film SOI wafer which changed SOI layer thickness. マイクロラフネスを一定とし、SOI層厚さを変化させた薄膜SOIウェーハについてのSOI層厚さとHaze値との相関曲線と、種々のマイクロラフネスおよびSOI層厚さを有する薄膜SOIウェーハについてのHaze値の測定結果を例示する図である。The correlation curve between the SOI layer thickness and the Haze value for a thin film SOI wafer with a constant micro roughness and a changed SOI layer thickness, and the Haze value for a thin film SOI wafer having various micro roughness and SOI layer thicknesses. It is a figure which illustrates a measurement result.

Claims (3)

評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、マイクロラフネスを大きく変えずにSOI層厚さを変えたそれぞれの薄膜SOIウェーハのHaze値を測定して得られるSOI層厚さとHaze値との相関曲線を基準として、前記評価対象ウェーハのマイクロラフネスを評価することを特徴とする薄膜SOIウェーハのマイクロラフネス評価方法。   The SOI layer thickness and Haze value obtained by measuring the SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated, and measuring the Haze value of each thin film SOI wafer with the SOI layer thickness changed without greatly changing the microroughness. A microroughness evaluation method for a thin film SOI wafer, characterized in that the microroughness of the wafer to be evaluated is evaluated on the basis of a correlation curve with the value. 前記SOI層厚さの変更を犠牲酸化および/または繰り返し洗浄により行うことを特徴とする請求項1に記載の薄膜SOIウェーハのマイクロラフネス評価方法。   2. The method for evaluating microroughness of a thin film SOI wafer according to claim 1, wherein the change in thickness of the SOI layer is performed by sacrificial oxidation and / or repeated cleaning. 評価対象の薄膜SOIウェーハのSOI層厚さとHaze値を測定し、そのHaze値の、請求項1または2で得られる相関曲線におけるHaze値からの変位量に基づいてマイクロラフネスを評価することを特徴とする薄膜SOIウェーハのマイクロラフネス評価方法。
The SOI layer thickness and the Haze value of the thin film SOI wafer to be evaluated are measured, and the microroughness is evaluated based on the displacement of the Haze value from the Haze value in the correlation curve obtained in claim 1 or 2. A microroughness evaluation method for a thin film SOI wafer.
JP2005014928A 2005-01-24 2005-01-24 Micro roughness evaluating method of thin film soi wafer Pending JP2006203087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014928A JP2006203087A (en) 2005-01-24 2005-01-24 Micro roughness evaluating method of thin film soi wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014928A JP2006203087A (en) 2005-01-24 2005-01-24 Micro roughness evaluating method of thin film soi wafer

Publications (1)

Publication Number Publication Date
JP2006203087A true JP2006203087A (en) 2006-08-03

Family

ID=36960784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014928A Pending JP2006203087A (en) 2005-01-24 2005-01-24 Micro roughness evaluating method of thin film soi wafer

Country Status (1)

Country Link
JP (1) JP2006203087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118543A1 (en) * 2012-02-09 2013-08-15 株式会社 日立ハイテクノロジーズ Surface measurement device
CN104201586A (en) * 2014-08-26 2014-12-10 国家电网公司 Rapid recovery method of composite outer insulation running performance of electric transmission and transformation equipment in hazy weather

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
JPH0854346A (en) * 1994-08-17 1996-02-27 Hitachi Ltd Method and device for inspecting object for foreign matter
JPH11258175A (en) * 1998-03-13 1999-09-24 Shin Etsu Handotai Co Ltd Foreign matter inspection method
JP2000124092A (en) * 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd Manufacture of soi wafer by hydrogen-ion implantation stripping method and soi wafer manufactured thereby
JP2000150840A (en) * 1998-09-04 2000-05-30 Canon Inc Semiconductor substrate and production thereof
JP2001338959A (en) * 2000-05-30 2001-12-07 Toshiba Corp Method and equipment for evaluating semiconductor substrate
JP2003347374A (en) * 2002-05-27 2003-12-05 Sumitomo Mitsubishi Silicon Corp Hf defect evaluation method of soi substrate
JP2003347526A (en) * 2002-05-02 2003-12-05 Soi Tec Silicon On Insulator Technologies Method for peeling off two layers of material
JP2004524538A (en) * 2001-04-06 2004-08-12 ケーエルエー−テンカー コーポレイション Improvement of defect detection system
JP2006112871A (en) * 2004-10-13 2006-04-27 Sumco Corp Inspection method of semiconductor substrate, and its inspection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
JPH0854346A (en) * 1994-08-17 1996-02-27 Hitachi Ltd Method and device for inspecting object for foreign matter
JPH11258175A (en) * 1998-03-13 1999-09-24 Shin Etsu Handotai Co Ltd Foreign matter inspection method
JP2000150840A (en) * 1998-09-04 2000-05-30 Canon Inc Semiconductor substrate and production thereof
JP2000124092A (en) * 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd Manufacture of soi wafer by hydrogen-ion implantation stripping method and soi wafer manufactured thereby
JP2001338959A (en) * 2000-05-30 2001-12-07 Toshiba Corp Method and equipment for evaluating semiconductor substrate
JP2004524538A (en) * 2001-04-06 2004-08-12 ケーエルエー−テンカー コーポレイション Improvement of defect detection system
JP2003347526A (en) * 2002-05-02 2003-12-05 Soi Tec Silicon On Insulator Technologies Method for peeling off two layers of material
JP2003347374A (en) * 2002-05-27 2003-12-05 Sumitomo Mitsubishi Silicon Corp Hf defect evaluation method of soi substrate
JP2006112871A (en) * 2004-10-13 2006-04-27 Sumco Corp Inspection method of semiconductor substrate, and its inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118543A1 (en) * 2012-02-09 2013-08-15 株式会社 日立ハイテクノロジーズ Surface measurement device
CN104201586A (en) * 2014-08-26 2014-12-10 国家电网公司 Rapid recovery method of composite outer insulation running performance of electric transmission and transformation equipment in hazy weather
CN104201586B (en) * 2014-08-26 2016-02-10 国家电网公司 Power transmission and transforming equipment composite outer insulation runnability quick recovery method under haze weather

Similar Documents

Publication Publication Date Title
KR101656436B1 (en) Method for measuring film thickness distribution of wafer having thin film
TWI299536B (en) In-situ critical dimension measurnment
Fan et al. Strain and thermal conductivity in ultrathin suspended silicon nanowires
JP4385978B2 (en) Semiconductor wafer evaluation method and manufacturing method
JP3753382B2 (en) Method for measuring crystal defects in thin Si / SiGe bilayers
JP2006203087A (en) Micro roughness evaluating method of thin film soi wafer
US8058086B2 (en) Self-organized pin-type nanostructures, and production thereof on silicon
Acosta-Alba et al. Multi-scale thickness and roughness characterization of thin silicon-on-insulator films
KR102550487B1 (en) Systems and methods for manufacturing semiconductor wafer features with controlled dimensions
Bückle Nanomechanical systems based on tensile-stressed crystalline indium gallium phosphide
Huang et al. The study on the nanomachining property and cutting model of single‐crystal sapphire by atomic force microscopy
TWI390593B (en) Method for evaluation of bonded wafer
Yee et al. Application of atomic force microscopy in IC/discrete failure analysis
CN104617019B (en) A kind of GaAs substrates MHEMT grid recess corrosion monitoring process
JP2006278513A (en) Method for evaluating semiconductor wafer and process for producing semiconductor wafer
Olzick Deposition, characterization, and fabrication of a zinc oxide piezoelectric thin film microspeaker using dc reactive sputtering
Kim et al. Investigation of physical cleaning process window by atomic force microscope
KR102072027B1 (en) Method for measuring the thickness of ultrathin silicon nanomembranes
JP2006267048A (en) Method for preparing sample for cross-section observation
WO2023079919A1 (en) Method for evaluating film thickness of oxide film and method for producing silicon substrate with oxide film
Hussain et al. Atomic force microscope study of three-dimensional nanostructure sidewalls
US7817289B2 (en) Methods and apparatus for measuring thickness of etching residues on a substrate
Nolot et al. Laser scattering: A fast, sensitive, in‐line technique for advanced process development and monitoring
KR20240047383A (en) Cleaning method and manufacturing method of silicon wafer
Nayar et al. Oxidation Induced Changes in the Si Surface Microroughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213