JP2006202687A - Electrode catalyst for fuel cell of metal cluster - Google Patents

Electrode catalyst for fuel cell of metal cluster Download PDF

Info

Publication number
JP2006202687A
JP2006202687A JP2005015609A JP2005015609A JP2006202687A JP 2006202687 A JP2006202687 A JP 2006202687A JP 2005015609 A JP2005015609 A JP 2005015609A JP 2005015609 A JP2005015609 A JP 2005015609A JP 2006202687 A JP2006202687 A JP 2006202687A
Authority
JP
Japan
Prior art keywords
fuel cell
platinum
electrode catalyst
metal cluster
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015609A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2005015609A priority Critical patent/JP2006202687A/en
Publication of JP2006202687A publication Critical patent/JP2006202687A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-platinum group metal cluster carried by a micro meso-porous material for oxidation reduction reaction on an electrode surface as electrode catalyst for a fuel cell. <P>SOLUTION: The non-platinum group metal cluster carried by a micro meso-porous material is used as catalyst for carrying out oxidation reduction reaction on the electrode surface. The conductive micro meso-porous material has a specific porosity distribution (a porous diameter of 0.4 to 5 nm). Metal atoms of the non-platinum group are iron, cobalt, nickel, copper, zinc, lanthanum, yttrium, samarium, zirconium, molybdenum, and tungsten. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非白金系金属クラスターに関するものであり、白金族触媒に代わる燃料電池用電極触媒として使用することができる。   The present invention relates to a non-platinum-based metal cluster, and can be used as an electrode catalyst for a fuel cell instead of a platinum group catalyst.

従来、固体高分子型燃料電池、ダイレクトメタノール燃料電池、ジメチルエーテル燃料電池等の燃料電池用電極触媒として白金、パラジウム、ロジウム、ルテニウム、イリジウム等の白金族元素が使用されている。しかし、これらの白金族元素は希少資源であることから、上記燃料電池の普及が危ぶまれている。また、白金族触媒は水素、酸素、メタノール、ジメチルエーテル等の小分子に対する特異的な活性化能を有することから、従来、白金族触媒と代替可能な非白金族触媒に関する報告は非常に少なく、上記燃料電池用電極触媒としての遷移金属系化合物が非特許文献及び特許文献において数例報告されているにすぎない。例えば、非特許文献1では、カーボンに担持したポルフィリン金属錯体の熱処理物が酸性溶液中で高い酸素還元能を示すことが報告されている。非特許文献2では、μ-hydroxy遷移金属錯体の熱処理物がメタノール中で高い酸素還元能を示すことが報告されている。特許文献1では、カーボンに担持したN,N’-bis(salicylidene)ethylenediamine、N,N’-mono-8-quinolyl-o-phenylenediamine等の遷移金属錯体と白金化合物の混合物の熱処理物を白金の補助触媒として用いることが開示されている。(なお、以上の生成物は熱処理物であるので元の金属錯体の化学構造が熱分解し原形を留めていないので、金属錯体ではない。)また、以上の熱処理前の金属錯体は酸性条件で容易に分解するので、酸性条件でも使えるように熱処理を行っている。特許文献2では、dithiooxamideの複核銅錯体を水素極として用いることが開示されている。(なお、dithiooxamideは脂肪族分子であり、本発明の複素環式化合物とは化学分類上異なる物質である。)これらの遷移金属系触媒の発見は、希少資源である白金族元素に代わる豊富で安価な電極触媒材料の開発を行なう上で価値ある知見を与えている。
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001). 特開2002‐329500号公報 特開2004−31174号公報
Conventionally, platinum group elements such as platinum, palladium, rhodium, ruthenium, and iridium have been used as electrode catalysts for fuel cells such as polymer electrolyte fuel cells, direct methanol fuel cells, and dimethyl ether fuel cells. However, since these platinum group elements are rare resources, the spread of the fuel cell is in danger. In addition, since platinum group catalysts have specific activation ability for small molecules such as hydrogen, oxygen, methanol, dimethyl ether, etc., there are very few reports on non-platinum group catalysts that can replace platinum group catalysts. Only a few examples of transition metal compounds as fuel cell electrode catalysts have been reported in non-patent and patent documents. For example, Non-Patent Document 1 reports that a heat-treated product of a porphyrin metal complex supported on carbon exhibits a high oxygen reducing ability in an acidic solution. Non-Patent Document 2 reports that a heat-treated product of a μ-hydroxy transition metal complex exhibits high oxygen reducing ability in methanol. In Patent Document 1, a heat treatment product of a mixture of a transition metal complex such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine and a platinum compound supported on carbon is used as platinum. The use as an auxiliary catalyst is disclosed. (Note that the above product is a heat-treated product, so the chemical structure of the original metal complex is thermally decomposed and does not retain its original form, so it is not a metal complex.) The metal complex before the above heat treatment is under acidic conditions. Since it decomposes easily, it is heat-treated so that it can be used even under acidic conditions. Patent Document 2 discloses the use of a dithiooxamide dinuclear copper complex as a hydrogen electrode. (Dithiooxamide is an aliphatic molecule and is a substance that is chemically different from the heterocyclic compound of the present invention.) The discovery of these transition metal catalysts is abundant in place of the rare platinum group elements. It provides valuable knowledge for the development of inexpensive electrocatalyst materials.
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001). JP 2002-329500 A JP 2004-31174 A

本発明の目的は、上記の事情に鑑み、燃料電池用電極触媒として非白金系金属クラスターを提供することである。具体的には、電極表面での酸化還元反応を行うためにミクロ・メソポーラス材料に担持した非白金系金属クラスターを提供することである。   In view of the above circumstances, an object of the present invention is to provide a non-platinum-based metal cluster as an electrode catalyst for a fuel cell. Specifically, it is to provide a non-platinum-based metal cluster supported on a micro-mesoporous material in order to perform a redox reaction on the electrode surface.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、特定の細孔分布を持つ導電性のミクロ・メソポーラス材料に担持した非白金系金属クラスターが電極表面での酸化還元触媒反応に有効であることを見いだし、この知見に基づいて本発明を完成させるに至った。すなわち、本発明は、導電性のミクロ・メソポーラス材料に担持した非白金系金属クラスターを燃料電池用電極触媒として提供するものである。   As a result of intensive research to achieve the above object, the present inventors have found that a non-platinum metal cluster supported on a conductive micro mesoporous material having a specific pore distribution is oxidized / reduced on the electrode surface. Based on this finding, the present invention has been completed. That is, the present invention provides a non-platinum metal cluster supported on a conductive micro-mesoporous material as an electrode catalyst for a fuel cell.

本発明の導電性ミクロ・メソポーラス材料に担持した非白金系金属クラスターは、従来非白金系触媒では非常に困難であった水素の解離吸着とプロトン捕捉の両方を行うことができる。例えば、2nmの細孔径を有する導電性ミクロ・メソポーラスグラファイトに担持したニッケル−ジルコニウムクラスターは、室温で水素を解離吸着し生成プロトンを捕捉することができる。   The non-platinum-based metal cluster supported on the conductive micro-mesoporous material of the present invention can perform both hydrogen dissociation adsorption and proton trapping, which have been very difficult with conventional non-platinum-based catalysts. For example, a nickel-zirconium cluster supported on conductive micro-mesoporous graphite having a pore diameter of 2 nm can dissociate and adsorb hydrogen at room temperature to capture generated protons.

以下、本発明を詳細に説明する。
従来、燃料電池用白金族触媒の担体としては活性炭が用いられている。その理由は、種々の多孔性材料の中で活性炭は比表面積が1600m/gにも及ぶ非常に大きな表面積をもつ材料であるからである。また、活性炭の細孔分布は2nm以下のミクロ領域、2〜50nmのメソ領域、50nm以上のマクロ領域というすべての領域をカバーしているので、担体としてはオールマイティーである。しかし、燃料電池用電極触媒の側からみるとバルク状態の金属粒子は活性が非常に低いので、活性炭に担持されたミクロ領域とミクロ近傍にあるメソ領域の細孔のみが効いており、それ以外の大きな細孔は無駄に存在している。したがって、燃料電池用電極触媒の担体としてナノ領域にある特定の細孔分布だけをもつ材料を用いることができれば非常に効率的であるといえる。
Hereinafter, the present invention will be described in detail.
Conventionally, activated carbon has been used as a carrier for platinum group catalysts for fuel cells. This is because, among various porous materials, activated carbon is a material having a very large surface area with a specific surface area as high as 1600 m 2 / g. Moreover, since the pore distribution of activated carbon covers all the regions of a micro region of 2 nm or less, a meso region of 2 to 50 nm, and a macro region of 50 nm or more, the carrier is almighty. However, when viewed from the fuel cell electrode catalyst side, the metal particles in the bulk state are very low in activity, so only the pores in the micro region supported by activated carbon and the meso region in the vicinity of the micro are effective. The large pores exist in vain. Therefore, it can be said that it is very efficient if a material having only a specific pore distribution in the nano region can be used as a support for an electrode catalyst for a fuel cell.

本発明の第1の特徴は、金属クラスターを坦持するための担体として、導電性のミクロ・メソポーラス材料を用いたことである。該材料は、細孔径が2nm以下のミクロ細孔と細孔径が2〜50nmのメソ細孔との境界領域であるサブナノメートルから数ナノメートルの空間、すなわち原子及び小分子がちょうど収まる程度のナノスペースを有するので、電極表面における触媒反応を精密制御するための重要な要素材料である。特に、本発明の目的である燃料電池用電極表面での触媒反応では、0.4〜5nmの細孔が有効である。このような微小空間に担持できる触媒粒子は、数10個から最大1000個程度の原子に制約され、従来使用されているサブミクロンサイズの触媒粒子と比べると1000倍〜10000倍の比表面積を有する。したがって、非常に高い触媒活性が期待できる。また、金属をナノサイズのレベルまで細かくすると従来不活性な金属と考えられていた金属でも活性を示すことが報告されているが、本発明でも従来、水素、酸素にそれほどの活性を示さなかった非白金系の触媒材料が上記担体に担持することによって活性を示すことがわかった。また、本発明のミクロ・メソポーラス材料が導電性を有するのは、燃料電池に供給される原料が水素ガスである場合、電極材料に、水素極の触媒によって発生した電子を伝導する機能を与えるためである。このような材料としては、導電性薄膜をコートしたシリカ、アルミナ、ジルコニア、チタニア、等のセラミックス材料及び炭素材料を挙げることができるが、これらの中で、ミクロ・メソポーラスグラファイトは導電性が比較的高くまたプロトン伝導性も有するので特に好ましい。   The first feature of the present invention is that a conductive micro mesoporous material is used as a support for supporting a metal cluster. The material is a sub-nanometer to several nanometer space that is a boundary region between micropores having a pore diameter of 2 nm or less and mesopores having a pore diameter of 2 to 50 nm, that is, nanometers that can accommodate atoms and small molecules. Since it has a space, it is an important element material for precisely controlling the catalytic reaction on the electrode surface. Particularly, in the catalytic reaction on the surface of the fuel cell electrode, which is the object of the present invention, pores of 0.4 to 5 nm are effective. The catalyst particles that can be supported in such a minute space are limited to several tens to a maximum of about 1000 atoms, and have a specific surface area that is 1000 times to 10000 times that of conventionally used submicron size catalyst particles. . Therefore, very high catalytic activity can be expected. In addition, it has been reported that when a metal is made fine to a nano-size level, even a metal that has been considered to be an inactive metal has been reported to be active, but in the present invention, too much activity has not been shown to hydrogen and oxygen. It was found that the non-platinum-based catalyst material showed activity when supported on the carrier. In addition, the micro-mesoporous material of the present invention is conductive because when the raw material supplied to the fuel cell is hydrogen gas, the electrode material has a function of conducting electrons generated by the hydrogen electrode catalyst. It is. Examples of such materials include ceramic materials such as silica, alumina, zirconia, and titania coated with a conductive thin film, and carbon materials. Among these materials, micro mesoporous graphite has a relatively high conductivity. It is particularly preferable because it has high proton conductivity.

本発明の第2の特徴は、非白金系金属クラスターを用いることである。従来使用されている白金触媒は水素のプロトン化能及びプロトンの酸素酸化能が高いのは当然のことであるが、反面、一酸化炭素による触媒被毒を受けやすく、また、酸素極において水和プロトンから過酸化水素及びヒドロキシラジカルを発生するという問題がある。これに対して本発明の非白金系金属クラスターはこのような問題がみられないので、固体高分子型燃料電池用電極材料として好ましい。本発明の非白金系金属クラスターとは、金属原子どうしの結合によって一定の構造単位を作っている金属原子の集合体、それを含む化合物の集合体(クラスター化合物)、及び橋かけ配位子によって集められた金属原子の集合体(金属クラスター錯体)のことをいう。金属原子としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ケイ素、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ニオブ、モリブデン、タングステン、銀、インジウム、スズ、ビスマス、ランタン、サマリウム、及びセリウムを挙げることができる。これらの中で、鉄、コバルト、ニッケル、銅、亜鉛、ランタン、イットリウム、サマリウム、ジルコニウム、モリブデン、及びタングステンは一般的に触媒活性が高く、安定な金属クラスターを生成するので好ましい。   The second feature of the present invention is to use a non-platinum metal cluster. The platinum catalyst used in the past is naturally high in proton protonation ability and oxygen oxidation ability of protons, but on the other hand, it is susceptible to catalyst poisoning by carbon monoxide and is hydrated at the oxygen electrode. There is a problem of generating hydrogen peroxide and hydroxy radicals from protons. On the other hand, the non-platinum-based metal cluster of the present invention is preferable as an electrode material for a polymer electrolyte fuel cell because such a problem is not observed. The non-platinum-based metal cluster of the present invention is an aggregate of metal atoms that form a certain structural unit by bonding of metal atoms, an aggregate of compounds containing the same (cluster compound), and a bridging ligand. An aggregate of metal atoms (metal cluster complex). As metal atoms, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, silicon, gallium, germanium, yttrium, zirconium, niobium, molybdenum, tungsten, silver, indium, tin, bismuth , Lanthanum, samarium, and cerium. Among these, iron, cobalt, nickel, copper, zinc, lanthanum, yttrium, samarium, zirconium, molybdenum, and tungsten are generally preferable because they have high catalytic activity and generate stable metal clusters.

燃料電池の電極表面に供給される物質は水素、酸素、メタノール、ジメチルエーテル等であるが、以下では、代表的な水素の場合について触媒反応を説明する。白金触媒の場合、白金は金属であるので導電性は有するがプロトン伝導性は持たないので、通常、導電性の活性炭に担持した状態で用いられる。水素分子を白金触媒に接触させると、水素分子は活性点を持つ白金格子面上でラジカル解離した後、プロトンと電子に分離すると考えられている。発生したプロトンは活性炭の塩基点に捕捉され、電子は活性炭によって運ばれる。本発明の金属クラスターを水素に接触させると、上記白金触媒と同様に水素分子はラジカル解離した後にプロトンと電子に分離する。また、白金触媒の担体である活性炭と同様に、発生したプロトンは導電性ミクロ・メソポーラスグラファイトに効率よく捕捉される。金属クラスターが銅、亜鉛、ニッケル、コバルト、アルミニウム、銀、モリブデン、タングステンである場合には、これらの金属は白金よりも電気抵抗率が小さいので比較的高い導電率を与えることができる。   Substances supplied to the electrode surface of the fuel cell are hydrogen, oxygen, methanol, dimethyl ether, and the like. In the following, the catalytic reaction will be described in the case of typical hydrogen. In the case of a platinum catalyst, since platinum is a metal, it has conductivity but does not have proton conductivity. Therefore, it is usually used in a state of being supported on conductive activated carbon. When hydrogen molecules are brought into contact with a platinum catalyst, the hydrogen molecules are considered to separate into protons and electrons after radical dissociation on the platinum lattice plane having active sites. Generated protons are captured at the base point of the activated carbon, and electrons are carried by the activated carbon. When the metal cluster of the present invention is brought into contact with hydrogen, hydrogen molecules are separated into protons and electrons after radical dissociation in the same manner as the platinum catalyst. In addition, the generated protons are efficiently trapped by the conductive micro-mesoporous graphite, similar to the activated carbon that is the carrier of the platinum catalyst. In the case where the metal cluster is copper, zinc, nickel, cobalt, aluminum, silver, molybdenum, or tungsten, these metals have a lower electrical resistivity than platinum, and therefore can provide a relatively high conductivity.

本発明の導電性ミクロ・メソポーラス材料に担持した非白金系金属クラスターの製造方法は、特に限定するものではなく従来の方法を応用することができる。例えば、ゼオライト、メソポーラスシリカ等のミクロ、メソポーラス材料に揮発性の金属化合物を流通させ化学蒸着法(CVD法)によって金属薄膜をコートする方法によって製造することができる。導電性のミクロ−メソポーラスグラファイトは、上記ゼオライト、メソポーラスシリカ等のミクロ、メソポーラス材料に炭素前駆物質の溶液又は気体を流通させ熱あるいは化学蒸着法(CVD法)によって細孔内にグラファイト状の炭素を析出させた後、フッ化水素あるいはアルカリエッチングによってゼオライト、メソポーラスシリカ等を溶出除去することで製造することができる。また、このような方法によって作成されたミクロ−メソポーラス材料への非白金系金属クラスターの担持は、例えば、水溶性の金属化合物を含浸後、還元処理による金属化によって行なうことができる。   The method for producing the non-platinum-based metal cluster supported on the conductive micro-mesoporous material of the present invention is not particularly limited, and conventional methods can be applied. For example, it can be produced by a method of coating a metal thin film by chemical vapor deposition (CVD method) by circulating a volatile metal compound in micro and mesoporous materials such as zeolite and mesoporous silica. Conductive micro-mesoporous graphite is obtained by passing a carbon precursor solution or gas through micro and mesoporous materials such as zeolite and mesoporous silica, and then adding graphite-like carbon into the pores by heat or chemical vapor deposition (CVD). After the precipitation, it can be produced by eluting and removing zeolite, mesoporous silica and the like by hydrogen fluoride or alkali etching. In addition, the support of the non-platinum-based metal cluster on the micro-mesoporous material prepared by such a method can be performed by, for example, impregnating a water-soluble metal compound and then metallizing by a reduction treatment.

以下に実施例などを挙げて本発明を具体的に説明する。
[実施例1]
ミクロ−メソポーラスグラファイトに担持した金属クラスターの合成
細孔径0.54nmの合成ゼオライト(ZSM−5)20gに1%の塩化第二鉄水溶液200mlを加え1昼夜放置、濾過、120℃−2時間真空乾燥することによって、鉄イオンを吸着したZSM−5を調整した。これを石英管に入れ1000℃に加熱し、ベンゼン蒸気を流通することによって、細孔内にグラファイトを析出させた。粉末をとりだしテフロン容器に入れこれにフッ化水素酸を加えZSM−5を溶解除去し、残ったグラファイト微粉末を水洗、アルカリ中和、水洗、120℃1昼夜真空乾燥した。細孔分布及び比表面積測定の結果、細孔の細孔径が約2.0nm、比表面積が950m/g、細孔容積が1.36cm/gであった。得られたグラファイトに硝酸ニッケルと硫酸ジルコニウムの混合水溶液(等モル混合)を含浸させ、乾燥後、800℃で水素還元し、ニッケル−ジルコニウム(等モル比)を担持したグラファイト粉末を得た。得られた材料のニッケル−ジルコニウム担持量は約5重量%であった。細孔径から見積もられたニッケル−ジルコニウムの金属原子数は約500個であった。
The present invention will be specifically described below with reference to examples.
[Example 1]
Synthetic metal clusters supported on micro-mesoporous graphite Synthetic zeolite (ZSM-5) with a pore size of 0.54 nm (20 g) was added with 200 ml of 1% ferric chloride aqueous solution, allowed to stand overnight, filtered, and vacuum dried at 120 ° C. for 2 hours. As a result, ZSM-5 adsorbing iron ions was prepared. This was put in a quartz tube and heated to 1000 ° C., and benzene vapor was circulated to precipitate graphite in the pores. The powder was taken out and placed in a Teflon container to which hydrofluoric acid was added to dissolve and remove ZSM-5, and the remaining fine graphite powder was washed with water, neutralized with water, washed with water, and vacuum-dried at 120 ° C. for one day and night. As a result of pore distribution and specific surface area measurement, the pore diameter was about 2.0 nm, the specific surface area was 950 m 2 / g, and the pore volume was 1.36 cm 3 / g. The obtained graphite was impregnated with a mixed aqueous solution (equal molar mixture) of nickel nitrate and zirconium sulfate, dried, and then hydrogen-reduced at 800 ° C. to obtain a graphite powder carrying nickel-zirconium (equal molar ratio). The amount of nickel-zirconium supported on the obtained material was about 5% by weight. The number of metal atoms of nickel-zirconium estimated from the pore diameter was about 500.

[実施例2]
ミクロ−メソポーラス材料に担持した金属クラスターの水素吸脱着試験
実施例1で得たニッケル−ジルコニウムを担持したグラファイト微粉末を昇温脱着装置(日本ベル社製TPD装置)の試料台に設置し、水素ガスを導入、10分放置、排気後、室温から毎分5℃の速度で昇温した。その結果、サンプルの水素吸着量は室温で約3重量%であり、約60℃から吸着水素の脱着が始まることがわかった。
[Example 2]
Hydrogen adsorption / desorption test of metal cluster supported on micro-mesoporous material The graphite fine powder supporting nickel-zirconium obtained in Example 1 was placed on a sample stage of a temperature rising desorption apparatus (TPD apparatus manufactured by Nippon Bell Co., Ltd.), and hydrogen The gas was introduced, allowed to stand for 10 minutes, exhausted, and then heated from room temperature at a rate of 5 ° C. per minute. As a result, the hydrogen adsorption amount of the sample was about 3% by weight at room temperature, and it was found that desorption of the adsorbed hydrogen started at about 60 ° C.

[実施例3]
ミクロ−メソポーラス材料に担持した金属クラスターのプロトン吸脱着試験
実施例1の材料を室温で相対湿度100%の雰囲気中に1時間放置した後、これを赤外拡散反射スペクトル測定用セルの試料台に設置し、水素ガスを導入、排気後、赤外スペクトル測定装置(JASCO FT-IR 460)によって、サンプルに吸着した水素の吸着状態を調べた。その結果、水和プロトンの吸収スペクトルが現われた。また、スペクトル強度から担持金属クラスター1モルあたり約3モルのプロトンが生成していることがわかった。また、試料台を毎分10℃の昇温速度で加熱して脱着挙動を調べると、約60℃からプロトンの脱離が開始することがわかった。これらの結果から、水素分子は金属クラスターに解離吸着し、生成したプロトンはグラファイトに効率よく捕捉され、捕捉されたプロトンは温和な加熱によって脱離することがわかった。したがって、本発明の金属クラスターは、燃料電池用水素極の電極触媒として利用可能であることがわかる。
[Example 3]
Proton adsorption / desorption test of metal cluster supported on micro-mesoporous material The material of Example 1 was allowed to stand in an atmosphere of 100% relative humidity at room temperature for 1 hour, and then used as a sample stage for a cell for measuring infrared diffuse reflectance spectra. After installation, introduction of hydrogen gas, and exhaustion, the adsorption state of hydrogen adsorbed on the sample was examined with an infrared spectrum measurement device (JASCO FT-IR 460). As a result, an absorption spectrum of hydrated protons appeared. Further, from the spectral intensity, it was found that about 3 moles of protons were generated per mole of the supported metal cluster. Further, when the desorption behavior was examined by heating the sample stage at a temperature rising rate of 10 ° C. per minute, it was found that proton desorption started from about 60 ° C. From these results, it was found that hydrogen molecules were dissociated and adsorbed on metal clusters, the generated protons were efficiently captured by graphite, and the captured protons were desorbed by gentle heating. Therefore, it turns out that the metal cluster of this invention can be utilized as an electrode catalyst of the hydrogen electrode for fuel cells.

本発明の金属クラスターは燃料電池用電極触媒として有用である。   The metal cluster of the present invention is useful as a fuel cell electrode catalyst.

Claims (3)

導電性のミクロ・メソポーラス材料に担持した非白金系金属クラスターを用いることを特徴とする燃料電池用電極触媒。 A fuel cell electrode catalyst comprising a non-platinum metal cluster supported on a conductive micro-mesoporous material. 導電性のミクロ・メソポーラス材料が0.4〜5nmの細孔径を有するミクロポーラスグラファイトであり、非白金系金属クラスターの金属原子が鉄、コバルト、ニッケル、銅、亜鉛、ランタン、イットリウム、サマリウム、ジルコニウム、モリブデン、及びタングステンであることを特徴とする請求項1記載の燃料電池用電極触媒。 Conductive micro mesoporous material is microporous graphite having a pore diameter of 0.4 to 5 nm, and metal atoms of non-platinum metal clusters are iron, cobalt, nickel, copper, zinc, lanthanum, yttrium, samarium, zirconium 2. The fuel cell electrode catalyst according to claim 1, wherein the electrode catalyst is made of molybdenum, molybdenum, and tungsten. 請求項1及び2記載の燃料電池用電極触媒を水素極に用いることを特徴とする燃料電池用電極触媒。 A fuel cell electrode catalyst according to claim 1 or 2, wherein the fuel cell electrode catalyst is used for a hydrogen electrode.
JP2005015609A 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal cluster Pending JP2006202687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015609A JP2006202687A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal cluster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015609A JP2006202687A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal cluster

Publications (1)

Publication Number Publication Date
JP2006202687A true JP2006202687A (en) 2006-08-03

Family

ID=36960488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015609A Pending JP2006202687A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal cluster

Country Status (1)

Country Link
JP (1) JP2006202687A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008311055A (en) * 2007-06-14 2008-12-25 Asahi Kasei Corp Platinum free electrode for fuel cell and fuel cell
JP2010032438A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Catalytic activity evaluation method and cluster catalyst
JP2013152861A (en) * 2012-01-25 2013-08-08 Fuji Silysia Chemical Ltd Composition and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522122A (en) * 1997-09-29 2001-11-13 レイマン、コンサルタンシィ、リミテッド Gold catalyst for fuel cells
JP2003117398A (en) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc carrying catalyst and production method thereof
WO2004009673A1 (en) * 2002-07-22 2004-01-29 Aspen Aerogels, Inc. Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004082007A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Catalyst particle and alcohol dehydrogenation catalyst particle
JP2004178859A (en) * 2002-11-25 2004-06-24 Aisin Seiki Co Ltd Method for manufacturing catalyst and fuel cell
JP2004342337A (en) * 2003-05-13 2004-12-02 Toyota Central Res & Dev Lab Inc Electrode catalyst and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522122A (en) * 1997-09-29 2001-11-13 レイマン、コンサルタンシィ、リミテッド Gold catalyst for fuel cells
JP2003117398A (en) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc carrying catalyst and production method thereof
WO2004009673A1 (en) * 2002-07-22 2004-01-29 Aspen Aerogels, Inc. Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004082007A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Catalyst particle and alcohol dehydrogenation catalyst particle
JP2004178859A (en) * 2002-11-25 2004-06-24 Aisin Seiki Co Ltd Method for manufacturing catalyst and fuel cell
JP2004342337A (en) * 2003-05-13 2004-12-02 Toyota Central Res & Dev Lab Inc Electrode catalyst and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008311055A (en) * 2007-06-14 2008-12-25 Asahi Kasei Corp Platinum free electrode for fuel cell and fuel cell
JP2010032438A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Catalytic activity evaluation method and cluster catalyst
JP2013152861A (en) * 2012-01-25 2013-08-08 Fuji Silysia Chemical Ltd Composition and secondary battery

Similar Documents

Publication Publication Date Title
Li et al. Amorphous TiO 2@ NH 2-MIL-125 (Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity
Osmieri et al. Performance of a Fe-NC catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability
Hu et al. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts
Li et al. Improved oxygen activation over a carbon/Co3O4 nanocomposite for efficient catalytic oxidation of formaldehyde at room temperature
Bhadra et al. MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis
Pang et al. Electrochemical oxygen reduction for H 2 O 2 production: catalysts, pH effects and mechanisms
JP6198810B2 (en) Carbon material for catalyst support
Kong et al. Graphitic carbon nitride nanostructures: Catalysis
US6518217B2 (en) Method of preparing of nanometer electrocatalyst for proton exchange membrane fuel cell
Ye et al. Visible-light driven efficient overall H2O2 production on modified graphitic carbon nitride under ambient conditions
Maina et al. Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors
Zhang et al. TiO2 nanorods loaded with AuPt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol
Esfahani et al. Stable and methanol tolerant Pt/TiOx-C electrocatalysts for the oxygen reduction reaction
KR102249922B1 (en) Electrocatalysts and manufacturing method for the same
Khani et al. Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO2 (x= La, Zn, Sm, Ce) nanocatalysts
Wen et al. Strong metal–support interaction in Pd/CeO2 promotes the catalytic activity of ethyl acetate oxidation
Chung et al. Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts
Meng et al. SnO2/CeO2 nanoparticle-decorated mesoporous ZSM-5 as bifunctional electrocatalyst for HOR and ORR
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
JP2006202687A (en) Electrode catalyst for fuel cell of metal cluster
Sui et al. A rapid synthesis of TiO 2 nanotubes in an ethylene glycol system by anodization as a Pt-based catalyst support for methanol electrooxidation
Yang et al. Modulable Cu (0)/Cu (I)/Cu (II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons
Wu et al. Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@ Cu-MOF-74 thin film
JP5072200B2 (en) Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same
Wu et al. Oxygen reduction reaction performance of Fe-N/C catalysts from ligand-iron coordinative supramolecular precursors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207