JP2006201274A - Optical scanning device and image forming apparatus to which the same is applied - Google Patents

Optical scanning device and image forming apparatus to which the same is applied Download PDF

Info

Publication number
JP2006201274A
JP2006201274A JP2005010505A JP2005010505A JP2006201274A JP 2006201274 A JP2006201274 A JP 2006201274A JP 2005010505 A JP2005010505 A JP 2005010505A JP 2005010505 A JP2005010505 A JP 2005010505A JP 2006201274 A JP2006201274 A JP 2006201274A
Authority
JP
Japan
Prior art keywords
light beam
optical scanning
scanning direction
inclined surface
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005010505A
Other languages
Japanese (ja)
Inventor
Tetsuya Sakamoto
哲也 坂本
Kazuya Kitsugi
一哉 木次
Kazuhiro Sone
和博 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005010505A priority Critical patent/JP2006201274A/en
Publication of JP2006201274A publication Critical patent/JP2006201274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent with simple constitution the shift in a scanning position with respect to a sub scanning direction of an optical beam, due to the rise in the temperature of an optical scanning device. <P>SOLUTION: When a device chassis 12 is expanded by the rise in the temperature of the optical scanning device 10, the optical beam emitted toward a photoreceptor 22 is shifted upwardly with respect to the sub scanning direction, due to the distortion between a bottom plate 12A and a side plate 12B of the device chassis 12 or the variation in attachment alignment by the thermal expansion of an optical component. Because it is constituted so that a hemispherical protrusion 24 travels obliquely to the optical beam emission direction, along a slant surface 34 descending downwardly with respect to the sub scanning direction, by the stretch in the emission direction by the thermal expansion of the device chassis 12, the upward shift in the beam position with respect to the sub scanning direction can be downwardly corrected with respect to the sub scanning direction. Accordingly, only utilizing the slant surface 34 formed on a main body frame 32, the shift in the beam position with respect to the sub scanning direction is prevented with a simple mechanism. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温度上昇による光ビームの走査位置のズレを防止する光走査装置及びその光走査装置が適用される画像形成装置に関する。   The present invention relates to an optical scanning device that prevents deviation of a scanning position of a light beam due to a temperature rise, and an image forming apparatus to which the optical scanning device is applied.

画像形成装置に適用される一般的な光走査装置では、光源から照射された光ビームを回転多面鏡に入射し、入射した光ビームは感光体へ出射され、主走査方向に走査される。感光体へ出射される光ビームは、fθレンズによって感光体上に結像される。   In a general optical scanning device applied to an image forming apparatus, a light beam emitted from a light source is incident on a rotary polygon mirror, and the incident light beam is emitted to a photosensitive member and scanned in the main scanning direction. The light beam emitted to the photoconductor is imaged on the photoconductor by the fθ lens.

この際に、回転多面鏡を駆動させるためのスキャナモータや光源駆動回路等から発生する熱、その他の画像形成装置内で発生する熱により、徐々に画像形成装置内の温度が上昇し、光走査装置の温度も上昇する。   At this time, the temperature in the image forming apparatus gradually rises due to the heat generated from the scanner motor and the light source driving circuit for driving the rotary polygon mirror, and other heat generated in the image forming apparatus, and the optical scanning is performed. The temperature of the device also rises.

このとき、光走査装置のレンズなどの光学部品や装置筐体が熱膨張することにより、光ビームの走査位置が変動してしまい、画質劣化を生じたり、光ビームが他の構成部品に遮られて感光体に届かないなどの不具合が発生してしまう。   At this time, the optical components such as the lens of the optical scanning device and the device casing are thermally expanded, so that the scanning position of the optical beam fluctuates, resulting in image quality degradation, and the optical beam is blocked by other components. Cause problems such as failure to reach the photoconductor.

この問題を解決するために、特許文献1では、調整機構を設け、この調整機構の熱膨張により光走査装置を回転させ、光ビームの走査位置変動を防止している。   In order to solve this problem, in Patent Document 1, an adjustment mechanism is provided, and the optical scanning device is rotated by the thermal expansion of the adjustment mechanism to prevent fluctuations in the scanning position of the light beam.

しかし、この技術では新たに調整機構を設けることによって部品点数が多くなり、また光走査装置が大きくなり、コストも上がってしまうという問題点がある。   However, this technique has a problem in that the number of parts is increased by providing a new adjustment mechanism, the optical scanning device is increased, and the cost is increased.

また、特許文献2では、光走査装置の筐体の底板と周壁の突き合わせ部分を斜面とし、この斜面を利用して、装置筐体が熱膨張すると起きる周壁の外側への変形及び底板の内側への変形を抑制し、光ビームの走査位置のズレを防止している。   Further, in Patent Document 2, the abutting portion between the bottom plate and the peripheral wall of the casing of the optical scanning device is used as an inclined surface, and the inclined surface is used to deform the device casing to the outside and to the inside of the bottom plate when the apparatus casing is thermally expanded. This prevents the displacement of the scanning position of the light beam.

しかし、底板に設けられた穴やリブなどの影響により、装置筐体が局部的に変形して、筐体内の光学部品の取り付け精度を悪化させてしまうという問題点がある。   However, there is a problem in that the apparatus housing is locally deformed due to the influence of holes and ribs provided in the bottom plate, and the mounting accuracy of the optical components in the housing is deteriorated.

また、特許文献3では、走査方向の傾き調整を斜面により行っているが、この技術は走査方向の高さ調整が目的であり、温度上昇時の光ビーム副走査位置ズレを防止できない。また、光走査装置を4点で画像形成装置側のフレームで支持しており、光走査装置の筐体が局部的に熱膨張したときには3点支持になってしまい、不安定な姿勢になってしまうという問題点がある。
特開2000−267033号公報 特開2001−228426号公報 実開昭61−201011号公報
In Patent Document 3, the tilt adjustment in the scanning direction is performed by the slope, but this technique is intended to adjust the height in the scanning direction and cannot prevent the light beam sub-scanning position shift when the temperature rises. In addition, the optical scanning device is supported by the frame on the image forming apparatus side at four points, and when the optical scanning device casing is thermally expanded locally, it is supported at three points, resulting in an unstable posture. There is a problem that.
JP 2000-267033 A JP 2001-228426 A Japanese Utility Model Publication No. 61-201011

本発明は、上記事実を考慮し、光走査装置の温度上昇による光ビームの副走査方向の走査位置のズレを簡単な構成で防止することを課題とする。   In view of the above facts, an object of the present invention is to prevent the deviation of the scanning position of the light beam in the sub-scanning direction due to the temperature rise of the optical scanning device with a simple configuration.

本発明の請求項1に係る発明は、画像形成装置に設けられた本体フレームに、複数の支持部で支持される装置筐体と、前記装置筐体内に配置され、光ビームを照射する光源と、前記光源から照射された光ビームを入射し、入射した光ビームを感光体へ出射して、主走査方向に光ビームを走査させる回転多面鏡と、前記回転多面鏡から出射された光ビームを感光体上に結像させる光学素子と、を備えた光走査装置において、前記複数の支持部は、前記装置筐体の下部に設けられた1つの第1支持部と、前記装置筐体の下部に前記感光体の被走査面に沿って配列された2つの第2支持部と、で構成され、前記本体フレームには、前記第1支持部が斜行可能とされ、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面が形成され、前記装置筐体は、前記2つの第2支持部を結ぶ線を回転軸に回転可能とされ、前記第1支持部が前記傾斜面を斜行することにより、温度上昇による光ビームのズレ方向と反対方向に光ビーム出射方向前方側を傾けることを特徴とする。   According to a first aspect of the present invention, an apparatus housing supported by a plurality of support portions on a main body frame provided in the image forming apparatus, and a light source that is disposed in the apparatus housing and emits a light beam, A rotating polygon mirror that enters the light beam emitted from the light source, emits the incident light beam to the photosensitive member, and scans the light beam in the main scanning direction; and the light beam emitted from the rotating polygon mirror. An optical scanning device comprising an optical element that forms an image on a photosensitive member, wherein the plurality of support portions include a first support portion provided at a lower portion of the device casing and a lower portion of the device casing. And two second support portions arranged along the surface to be scanned of the photoconductor, and the first support portion can be skewed in the main body frame and directed in the light beam emitting direction. And an inclined surface having an angle in the sub-scanning direction is formed. The body is rotatable about a line connecting the two second support parts, and the first support part inclines the inclined surface in a direction opposite to the direction of deviation of the light beam due to temperature rise. The light beam emission direction front side is inclined.

この光走査装置では、光源から照射された光ビームを回転多面鏡に入射し、入射した光ビームは感光体へ出射され、主走査方向に走査される。また、感光体へ出射された光ビームは、光学素子によって感光体上に結像される。   In this optical scanning device, a light beam emitted from a light source is incident on a rotary polygon mirror, and the incident light beam is emitted to the photosensitive member and scanned in the main scanning direction. The light beam emitted to the photoconductor is imaged on the photoconductor by an optical element.

この光走査装置の装置筐体は、装置筐体の下部に設けられた1つの第1支持部と、装置筐体の下部に感光体の被走査面に沿って配列された2つの第2支持部との3点で、画像形成装置に設けられた本体フレームに支持されている。この本体フレームには、第1支持部が斜行可能とされ、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面が形成されている。   The apparatus housing of the optical scanning device has one first support portion provided at the lower portion of the apparatus housing and two second supports arranged at the lower portion of the apparatus housing along the surface to be scanned of the photosensitive member. The main body frame provided in the image forming apparatus is supported at three points. In the main body frame, the first support portion can be skewed, and an inclined surface having an angle in the sub-scanning direction toward the light beam emitting direction is formed.

また、装置筐体は、2つの第2支持部を結ぶ線を回転軸に回転可能とされ、第1支持部が傾斜面を斜行することにより、温度上昇による光ビームズレ方向と反対方向に光ビーム出射方向前方側を傾ける。   In addition, the apparatus housing is rotatable about a line connecting the two second support parts, and the first support part obliquely moves the inclined surface, so that the light beam is emitted in a direction opposite to the light beam shift direction due to temperature rise. Tilt the front side of the beam emission direction.

ここで、光走査装置の温度上昇により、装置筐体が膨張すると、装置筐体が変形すると共に、光学素子や回転多面鏡などの光学部品の取り付けアライメントが変化する。このため、感光体へ出射された光ビームは、副走査方向の一方にずれる。   Here, when the apparatus casing expands due to the temperature rise of the optical scanning apparatus, the apparatus casing is deformed and the mounting alignment of optical components such as an optical element and a rotary polygon mirror is changed. For this reason, the light beam emitted to the photosensitive member is shifted to one side in the sub-scanning direction.

しかし、上記構成では、装置筐体は2つの第2支持部を結ぶ線を回転軸に回転可能であるので、装置筐体の膨張による出射方向への伸びによって、光ビーム出射方向に向かって副走査方向に角度をもつ傾斜面を第1支持部が斜行することになる。第1支持部が傾斜面を斜行すると、装置筐体は、温度上昇による光ビームのズレ方向と反対方向に光ビーム出射方向前方側を傾けるので、副走査方向のビーム位置のズレを補正することができる。このように、本体フレームに形成された傾斜面を利用するだけなので、簡単な機構で副走査方向のビーム位置のズレを防止できる。   However, in the above configuration, the apparatus housing can rotate about the line connecting the two second support portions as the rotation axis. The first support portion skews the inclined surface having an angle in the scanning direction. When the first support section is inclined on the inclined surface, the apparatus housing tilts the front side of the light beam emission direction in the direction opposite to the direction of deviation of the light beam due to temperature rise, and thus corrects the deviation of the beam position in the sub-scanning direction. be able to. Thus, since only the inclined surface formed on the main body frame is used, deviation of the beam position in the sub-scanning direction can be prevented with a simple mechanism.

また、装置筐体は3点で支持されると共に、2つの第2支持部を結ぶ線を回転軸に回転可能であるので、装置筐体が局部的に変形しても、3点での支持が維持され、装置筐体の姿勢が安定する。   In addition, since the apparatus housing is supported at three points and can be rotated about the line connecting the two second support portions as the rotation axis, even if the device housing is locally deformed, it is supported at three points. Is maintained, and the posture of the apparatus housing is stabilized.

本発明の請求項2に係る発明では、請求項1の構成において、前記第1支持部は、前記装置筐体の光ビーム出射方向前方側に設けられ、前記第2支持部は、前記装置筐体の光ビーム出射方向後方側に設けられていることを特徴とする。   According to a second aspect of the present invention, in the configuration of the first aspect, the first support portion is provided on the front side of the device housing in the light beam emitting direction, and the second support portion is disposed on the device housing. It is provided on the rear side of the body in the light beam emitting direction.

この構成によれば、第2支持部は、装置筐体の光ビーム出射方向後方側に設けられているので、装置筐体は、光ビーム出射方向後方側を回転軸に回転することになる。   According to this configuration, since the second support portion is provided on the rear side in the light beam emitting direction of the apparatus casing, the apparatus casing is rotated about the rear side in the light beam emitting direction.

そして、装置筐体の光ビーム出射方向前方側に設けられた第1支持部が、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面を斜行することにより、装置筐体は、光走査装置の温度上昇による光ビームズレ方向と反対方向に光ビーム出射方向前方側を傾け、副走査方向のビーム位置のズレを補正することができる。   Then, the first support portion provided on the front side of the light emitting direction of the device casing obliquely moves the inclined surface having an angle in the sub-scanning direction toward the light beam emitting direction, so that the device housing is The front side of the light beam emission direction is tilted in the direction opposite to the light beam deviation direction due to the temperature rise of the optical scanning device, and the deviation of the beam position in the sub-scanning direction can be corrected.

本発明の請求項3に係る発明では、請求項2の構成において、前記傾斜面の傾斜角度をθ、前記装置筐体の温度上昇を△T、前記2つの第2支持部を結ぶ線から前記第1支持部までの最短距離をL1、前記第1支持部から感光体上被走査面までの最短距離をL2、温度上昇による感光体上被走査面でのビーム位置の副走査方向のズレ量をy、前記装置筐体の線膨張係数をα、とするとき、θ=atan(y/((L1+L2)*α*△T))となることを特徴とする。   In the invention according to claim 3 of the present invention, in the configuration of claim 2, the inclination angle of the inclined surface is θ, the temperature rise of the device housing is ΔT, and the line connecting the two second support portions is The shortest distance to the first support portion is L1, the shortest distance from the first support portion to the surface to be scanned on the photoconductor is L2, and the amount of deviation in the sub-scanning direction of the beam position on the surface to be scanned on the photoconductor due to temperature rise Is y, and the linear expansion coefficient of the device casing is α, θ = atan (y / ((L1 + L2) * α * ΔT)).

この構成によれば、光走査装置の温度上昇によるビーム位置の副走査方向のズレ量をもとに、傾斜面の傾斜度を決定しているので、確実に副走査方向のビーム位置のズレを防止することができる。   According to this configuration, since the inclination of the inclined surface is determined based on the amount of deviation of the beam position in the sub-scanning direction due to the temperature rise of the optical scanning device, the deviation of the beam position in the sub-scanning direction can be reliably performed. Can be prevented.

本発明の請求項4に係る発明では、請求項1の構成において、前記第1支持部は、前記装置筐体の光ビーム出射方向後方側に設けられ、前記第2支持部は、前記装置筐体の光ビーム出射方向前方側に設けられていることを特徴とする。   According to a fourth aspect of the present invention, in the configuration of the first aspect, the first support portion is provided on the rear side of the device housing in the light beam emitting direction, and the second support portion is disposed on the device housing. It is provided on the front side of the body in the light beam emitting direction.

この構成によれば、第2支持部は、装置筐体の光ビーム出射方向前方側に設けられているので、装置筐体は、光ビーム出射方向前方側を回転軸に回転することになる。   According to this configuration, since the second support portion is provided on the front side of the apparatus housing in the light beam emission direction, the apparatus housing rotates around the rotation axis on the front side of the light beam emission direction.

そして、装置筐体の光ビーム出射方向後方側に設けられた第1支持部が、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面を斜行することにより、装置筐体は、光走査装置の温度上昇による光ビームズレ方向と反対方向に光ビーム出射方向前方側を傾け、副走査方向のビーム位置のズレを補正することができる。   Then, the first support portion provided on the rear side of the device housing in the light beam emitting direction skews an inclined surface having an angle in the sub-scanning direction toward the light beam emitting direction. The front side of the light beam emission direction is tilted in the direction opposite to the light beam deviation direction due to the temperature rise of the optical scanning device, and the deviation of the beam position in the sub-scanning direction can be corrected.

本発明の請求項5に係る発明では、請求項4の構成において、前記傾斜面の傾斜角度をθ、前記装置筐体の温度上昇を△T、前記2つの第2支持部を結ぶ線から前記第1支持部までの最短距離をL1、前記第1支持部から感光体上被走査面までの最短距離をL2、温度上昇による感光体上被走査面でのビーム位置の副走査方向のズレ量をy、前記装置筐体の線膨張係数をα、とするとき、θ=atan(y/((L2−L1)*α*△T))となることを特徴とする。   In the invention according to claim 5 of the present invention, in the configuration of claim 4, the inclination angle of the inclined surface is θ, the temperature rise of the apparatus housing is ΔT, and the line connecting the two second support portions is The shortest distance to the first support portion is L1, the shortest distance from the first support portion to the surface to be scanned on the photoconductor is L2, and the amount of deviation in the sub-scanning direction of the beam position on the surface to be scanned on the photoconductor due to temperature rise Is y, and the linear expansion coefficient of the apparatus housing is α, θ = atan (y / ((L2−L1) * α * ΔT)).

この構成によれば、光走査装置の温度上昇によるビーム位置の副走査方向のズレ量をもとに、傾斜面の傾斜度を決定しているので、確実に副走査方向のビーム位置のズレを防止することができる。   According to this configuration, since the inclination of the inclined surface is determined based on the amount of deviation of the beam position in the sub-scanning direction due to the temperature rise of the optical scanning device, the deviation of the beam position in the sub-scanning direction can be reliably performed. Can be prevented.

本発明の請求項6に係る発明では、請求項1〜5のいずれか1項の構成において、前記傾斜面の傾斜角度の変化量を、温度上昇による感光体上被走査面での副走査方向のビーム位置ズレ量に合わせたことを特徴とする。   According to a sixth aspect of the present invention, in the configuration according to any one of the first to fifth aspects, the amount of change in the inclination angle of the inclined surface is determined in the sub-scanning direction on the surface to be scanned on the photosensitive member due to a temperature rise. It is characterized in that it is matched with the beam position deviation amount.

通常、光走査装置の温度上昇量と光ビームのビーム位置ズレ量との関係は一定ではなく、温度領域や筐体の構造、光学部品の配置などの要因により、光走査装置固有の「温度上昇量―ビーム位置ズレ量曲線」を描く。   Usually, the relationship between the temperature rise amount of the optical scanning device and the beam position deviation amount of the light beam is not constant, and the “temperature rise” inherent to the optical scanning device depends on factors such as the temperature region, the structure of the housing, and the arrangement of optical components. Draw an “amount-beam position deviation amount curve”.

上記構成では、傾斜面の傾斜角度の変化量を光走査装置の温度上昇による副走査方向のビーム位置ズレ量に合わせることにより、より確実に副走査方向のビーム位置のズレを防止することができる。   In the above configuration, by adjusting the amount of change in the inclination angle of the inclined surface to the amount of beam position deviation in the sub-scanning direction due to the temperature rise of the optical scanning device, it is possible to prevent the beam position deviation in the sub-scanning direction more reliably. .

本発明の請求項7に係る発明では、請求項1〜6のいずれか1項の構成において、前記2つの第2支持部は、半球状の突部とされ、その一方は、前記本体フレームに形成された凹部に係合し、他方は、主走査方向に沿って本体フレームに形成された溝を移動可能とされていることを特徴とする。   In the invention which concerns on Claim 7 of this invention, in the structure of any one of Claims 1-6, the said 2nd 2nd support part is a hemispherical protrusion, The one is the said main body flame | frame. The other is engaged with the formed recess, and the other is characterized in that a groove formed in the main body frame can be moved along the main scanning direction.

この構成によれば、2つの第2支持部の一方を主走査方向に沿って形成された溝を移動させることで、光走査装置の温度上昇による装置筐体の主走査方向への伸びを逃がすことができ、装置筐体の姿勢が安定する。   According to this configuration, by moving one of the two second support portions along the groove formed along the main scanning direction, the extension of the apparatus housing in the main scanning direction due to the temperature rise of the optical scanning apparatus is released. And the posture of the apparatus housing is stabilized.

本発明の請求項8に係る発明では、複数の光走査装置を備える画像形成装置において、前記複数の光走査装置のそれぞれに、請求項1〜7に記載の光走査装置のいずれかが適用されていることを特徴とする。   According to an eighth aspect of the present invention, in an image forming apparatus including a plurality of optical scanning devices, any one of the optical scanning devices according to the first to seventh aspects is applied to each of the plurality of optical scanning devices. It is characterized by.

画像形成装置内での温度分布不均一である場合は、各光走査装置の光ビームのビーム位置ズレ量がばらつく。上記構成では、複数の光走査装置のそれぞれに、請求項1〜7に記載の光走査装置のいずれかが適用されているので、画像形成装置内で温度分布不均一がある場合や各光走査装置の発熱量が異なっても、光ビームのビーム位置のズレを防止できる。   If the temperature distribution in the image forming apparatus is not uniform, the beam position deviation amount of the light beam of each optical scanning device varies. In the above configuration, since any one of the optical scanning devices according to claims 1 to 7 is applied to each of the plurality of optical scanning devices, there is a case where temperature distribution is uneven in the image forming apparatus or each optical scanning device. Even if the heat generation amount of the apparatus is different, it is possible to prevent the deviation of the beam position of the light beam.

本発明は、上記構成としたので、光走査装置の温度上昇による光ビームの副走査方向の走査位置のズレを簡単な構成で防止できる。   Since the present invention has the above-described configuration, it is possible to prevent the shift of the scanning position of the light beam in the sub-scanning direction due to the temperature rise of the optical scanning device with a simple configuration.

(第1実施形態)
本発明の光走査装置に係る第1実施形態を図1〜図7に基づき説明する。
(First embodiment)
1st Embodiment which concerns on the optical scanning device of this invention is described based on FIGS.

図1には、画像形成装置の内部に配置される光走査装置の概要が示されている。   FIG. 1 shows an outline of an optical scanning device arranged inside the image forming apparatus.

光走査装置10は装置筐体12を備え、装置筐体12内には光源14が配置されており、この光源14によって、光源14の同軸上に位置するコリメータレンズ16に向かって光ビームBが照射される。   The optical scanning device 10 includes an apparatus housing 12, and a light source 14 is disposed in the apparatus housing 12, and the light beam B is directed toward the collimator lens 16 positioned coaxially with the light source 14 by the light source 14. Irradiated.

光源14から照射された光ビームBは、コリメータレンズ16により平行光線となって、図示しないスキャナーモータによって高速回転するポリゴンミラー(回転多面鏡)18へ入射し、入射した光ビームBは、感光体22へ偏向走査される。ポリゴンミラー18から出射された光ビームBは、fθレンズ(光学素子)20によって走査速度補正が行われ、画像信号に応じた潜像が像担持体である感光体22上に形成される。   The light beam B emitted from the light source 14 is converted into parallel rays by the collimator lens 16 and is incident on a polygon mirror (rotating polygon mirror) 18 that is rotated at a high speed by a scanner motor (not shown). The incident light beam B is a photoconductor. 22 is deflected and scanned. The light beam B emitted from the polygon mirror 18 is subjected to scanning speed correction by an fθ lens (optical element) 20, and a latent image corresponding to an image signal is formed on a photoconductor 22 that is an image carrier.

光走査装置10の装置筐体12は、図2に示すように、底板12Aとその外周部に立設する側板12Bとでボックス状に形成され、底板(下部)12Aには、3個の半球状突起(半球状の突部)24、26、28が形成されている。   As shown in FIG. 2, the device housing 12 of the optical scanning device 10 is formed in a box shape with a bottom plate 12A and a side plate 12B erected on the outer periphery thereof, and the bottom plate (lower portion) 12A has three hemispheres. The protrusions (hemispherical protrusions) 24, 26, and 28 are formed.

半球状突起(第1支持部)24は、装置筐体12の光ビーム出射方向(図2においてC方向)前方側の中央部に設けられている。半球状突起(第2支持部)26は、装置筐体12の光ビーム出射方向後方側で横方向(図2においてD方向)に張り出したフランジ30の一方に形成され、半球状突起(第2支持部)28は、横方向に張り出したフランジ30の他方の底板12Aに形成されている。また、この半球状突起26及び半球状突起28は、感光体22の被走査面に沿って(被走査面に対して平行に)配列されている。   The hemispherical protrusion (first support portion) 24 is provided at the center of the apparatus housing 12 on the front side in the light beam emission direction (direction C in FIG. 2). The hemispherical protrusion (second support portion) 26 is formed on one of the flanges 30 protruding in the lateral direction (D direction in FIG. 2) on the rear side of the light beam emission direction of the apparatus housing 12, and the hemispherical protrusion (second The support portion 28 is formed on the other bottom plate 12A of the flange 30 projecting in the lateral direction. The hemispherical protrusions 26 and the hemispherical protrusions 28 are arranged along the surface to be scanned of the photosensitive member 22 (parallel to the surface to be scanned).

一方、画像形成装置側に設けられる本体フレーム32には、図3に示すように、傾斜面34が形成された支持台36と、半球状の凹部38が形成された支持台40と、溝42が走査方向に沿って形成された支持台44と、が設けられている。   On the other hand, in the main body frame 32 provided on the image forming apparatus side, as shown in FIG. 3, a support base 36 with an inclined surface 34, a support base 40 with a hemispherical recess 38, and a groove 42. And a support base 44 formed along the scanning direction.

支持台44及び支持台40の近傍には、装置筐体12を押圧するための板バネ46がブロック50にネジ止めされている。   A leaf spring 46 for pressing the device housing 12 is screwed to the block 50 in the vicinity of the support base 44 and the support base 40.

装置筐体12の半球状突起24は本体フレーム32の傾斜面34に当接して支持され、装置筐体12の半球状突起28は本体フレーム32の凹部38に係合して支持され、装置筐体12の半球状突起26は本体フレーム32の溝42に係合して支持される。   The hemispherical protrusion 24 of the apparatus housing 12 is supported by being in contact with the inclined surface 34 of the main body frame 32, and the hemispherical protrusion 28 of the apparatus housing 12 is supported by being engaged with the recess 38 of the main body frame 32. The hemispherical protrusion 26 of the body 12 is supported by being engaged with the groove 42 of the main body frame 32.

図4(A)、(B)に示すように、装置筐体12の光ビーム出射方向後方側は、フランジ30のそれぞれがブロック50の上部に固定された板バネ46によって、本体フレーム32側へ押圧されている。また、光ビーム出射方向前方側で前方に突出した板片47は、バネ48で本体フレーム32に連結され、装置筐体12の光ビーム出射方向前方側は、バネ48の弾性力によって本体フレーム32側へ付勢されている。   As shown in FIGS. 4A and 4B, the rear side of the device housing 12 in the light beam emitting direction is moved to the main body frame 32 side by a leaf spring 46 in which each of the flanges 30 is fixed to the upper portion of the block 50. It is pressed. Further, the plate piece 47 that protrudes forward on the front side in the light beam emitting direction is connected to the main body frame 32 by a spring 48, and the front side of the device housing 12 in the light beam emitting direction on the main body frame 32 by the elastic force of the spring 48. It is urged to the side.

これにより、半球状突起24は傾斜面34上を浮き上がることなく斜行することが可能となり、半球状突起26は溝42を走査方向(図4(B)においてD方向)に移動することが可能であり、半球状突起28は凹部38でとどまり、位置が変化しない。   Thereby, the hemispherical protrusion 24 can be skewed without floating on the inclined surface 34, and the hemispherical protrusion 26 can move the groove 42 in the scanning direction (D direction in FIG. 4B). The hemispherical projection 28 remains in the concave portion 38 and its position does not change.

また、半球状突起26及び半球状突起28を結ぶ線を回転軸に装置筐体12が回転可能とされる(図4(A)においてA方向に回転可能とされている)。すなわち、出射される光ビームBが感光体22の被走査面上を副走査方向(上下方向)に移動することが可能となっている。   Further, the apparatus housing 12 can be rotated about a line connecting the hemispherical protrusions 26 and the hemispherical protrusions 28 (in FIG. 4A, it can be rotated in the A direction). That is, the emitted light beam B can move in the sub-scanning direction (vertical direction) on the surface to be scanned of the photosensitive member 22.

また、傾斜面34は、光ビーム出射方向へ向かって副走査方向下方に下る傾斜面とされ、その傾斜角度θは、図5(A)、(B)に示すように、装置筐体12の温度上昇を△T、半球状突起26と半球状突起28を結ぶ線から半球状突起24までの最短距離をL1、半球状突起24から感光体22上被走査面までの最短距離をL2、光走査装置10の温度上昇による感光体22上被走査面でのビーム位置の副走査方向のズレ量をy、装置筐体12の線膨張係数をα、とするとき、θ=atan(y/((L1+L2)*α*△T))となるように形成されている。   In addition, the inclined surface 34 is an inclined surface that goes down in the sub-scanning direction toward the light beam emission direction, and the inclination angle θ is as shown in FIGS. 5 (A) and 5 (B). The temperature rise is ΔT, the shortest distance from the line connecting the hemispherical protrusion 26 and the hemispherical protrusion 28 to the hemispherical protrusion 24 is L1, the shortest distance from the hemispherical protrusion 24 to the scanned surface on the photoreceptor 22 is L2, and the light When the amount of deviation in the sub-scanning direction of the beam position on the surface to be scanned on the photosensitive member 22 due to the temperature rise of the scanning device 10 is y and the linear expansion coefficient of the device housing 12 is α, θ = atan (y / ( (L1 + L2) * α * ΔT)).

なお、ビーム位置ズレyは、例えば、装置筐体12の底板12Aの外周部に立設する側板12Bが外側に広がる方向に変形し、それに伴い底板12Aも湾曲変形すること(図5(A)の二点鎖線部分は、装置筐体12の変形後を示す)、及びfθレンズ20やポリゴンミラー18などの光学部品の取り付けアライメントが変化等によるものである。   The beam position deviation y is deformed, for example, in a direction in which the side plate 12B standing on the outer periphery of the bottom plate 12A of the apparatus housing 12 spreads outward, and the bottom plate 12A is also curved and deformed accordingly (FIG. 5A). The two-dot chain line portion shows the state after the device housing 12 is deformed), and the mounting alignment of optical components such as the fθ lens 20 and the polygon mirror 18 changes.

また、以下のように、傾斜面34が設けられた支持台36は、光ビーム出射方向前方側ではなく、光ビーム出射方向後方側に設ける構成も可能である。   In addition, as described below, the support base 36 provided with the inclined surface 34 may be provided not on the front side in the light beam emission direction but on the rear side in the light beam emission direction.

すなわち、図6(A)、(B)に示すように、半球状突起26及び半球状突起28は、装置筐体12の光ビーム出射方向前方側で横方向に張り出したフランジ30に設けられている。また、半球状突起24は、装置筐体12の光ビーム出射方向後方側の中央部に設けられている。   That is, as shown in FIGS. 6A and 6B, the hemispherical protrusion 26 and the hemispherical protrusion 28 are provided on a flange 30 that protrudes laterally on the front side of the light emitting direction of the device housing 12. Yes. Further, the hemispherical protrusion 24 is provided at the center of the apparatus housing 12 on the rear side in the light beam emitting direction.

それに対応して、溝42が走査方向に沿って形成された支持台44及び半球状の凹部38が形成された支持台40は、本体フレーム32の光ビーム出射方向前方側に設けられ、傾斜面34が形成された支持台36は、本体フレーム32の光ビーム出射方向後方側に設けられている。そして、装置筐体12の半球状突起24は、傾斜面34に当接して支持され、装置筐体12の半球状突起28は、凹部38に係合して支持され、装置筐体12の半球状突起26は、溝42に係合して支持される。   Correspondingly, the support base 44 in which the grooves 42 are formed along the scanning direction and the support base 40 in which the hemispherical recesses 38 are formed are provided on the front side of the main body frame 32 in the light beam emission direction, and are inclined surfaces. The support base 36 formed with 34 is provided on the rear side of the main body frame 32 in the light beam emitting direction. The hemispherical protrusion 24 of the device housing 12 is supported by being in contact with the inclined surface 34, and the hemispherical protrusion 28 of the device housing 12 is supported by being engaged with the recess 38, and the hemisphere of the device housing 12 is supported. The protrusion 26 is supported by being engaged with the groove 42.

装置筐体12の光ビーム出射方向前方側は、フランジ30のそれぞれがブロック50の上部に固定された板バネ46によって、本体フレーム32側へ押圧されている。また、光ビーム出射方向後方側で後方に突出した板片47は、バネ48で本体フレーム32に連結され、装置筐体12の光ビーム出射方向後方側は、バネ48の弾性力によって本体フレーム32側へ付勢されている。   The front side of the device housing 12 in the light beam emitting direction is pressed toward the main body frame 32 by a leaf spring 46 in which each of the flanges 30 is fixed to the upper portion of the block 50. Further, the plate piece 47 protruding rearward on the rear side in the light beam emitting direction is connected to the main body frame 32 by a spring 48, and the main body frame 32 is connected to the rear side in the light beam emitting direction of the apparatus housing 12 by the elastic force of the spring 48. It is urged to the side.

これにより、半球状突起24は傾斜面34上を浮き上がることなく斜行することが可能となり、半球状突起26は溝42を走査方向(図6(B)においてD方向)に移動することが可能であり、半球状突起28は凹部38でとどまり、位置が変化しない。   Accordingly, the hemispherical protrusion 24 can be inclined without floating on the inclined surface 34, and the hemispherical protrusion 26 can move the groove 42 in the scanning direction (D direction in FIG. 6B). The hemispherical projection 28 remains in the concave portion 38 and its position does not change.

また、半球状突起26及び半球状突起28を結ぶ線を回転軸に装置筐体12が回転可能とされる(図6(A)においてA方向に回転可能とされている)。すなわち、出射される光ビームBが感光体22の被走査面上を副走査方向(上下方向)に移動することが可能となっている。   Further, the apparatus housing 12 can be rotated about a line connecting the hemispherical protrusion 26 and the hemispherical protrusion 28 (in FIG. 6A, the apparatus housing 12 is rotatable in the A direction). That is, the emitted light beam B can move in the sub-scanning direction (vertical direction) on the surface to be scanned of the photosensitive member 22.

また、傾斜面34は、光ビーム出射方向へ向かって副走査方向下方に下る傾斜面とされ、その傾斜角度θは、図6(A)に示すように、装置筐体12の温度上昇を△T、半球状突起26と半球状突起28を結ぶ線から半球状突起24までの最短距離をL1、半球状突起24から感光体22上被走査面までの最短距離をL2、光走査装置10の温度上昇による感光体22上被走査面でのビーム位置の副走査方向のズレ量をy、装置筐体12の線膨張係数をα、とするとき、θ=atan(y/((L2−L1)*α*△T))となるように形成されている。   In addition, the inclined surface 34 is an inclined surface that descends downward in the sub-scanning direction toward the light beam emission direction, and the inclination angle θ causes the temperature rise of the apparatus housing 12 to be Δ as shown in FIG. T, the shortest distance from the line connecting the hemispherical protrusion 26 and the hemispherical protrusion 28 to the hemispherical protrusion 24 is L1, the shortest distance from the hemispherical protrusion 24 to the surface to be scanned on the photoconductor 22 is L2, and the optical scanning device 10 When y is the amount of deviation of the beam position in the sub-scanning direction on the surface to be scanned on the photoreceptor 22 due to temperature rise, and α is the linear expansion coefficient of the apparatus housing 12, θ = atan (y / ((L2-L1 ) * Α * ΔT)).

次に、上記の第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

光走査装置10を稼働させると、ポリゴンミラー18のスキャナモータや光源14の駆動回路から発生する熱などによって、光走査装置10の温度が上昇する。   When the optical scanning device 10 is operated, the temperature of the optical scanning device 10 rises due to heat generated from the scanner motor of the polygon mirror 18 and the drive circuit of the light source 14.

光走査装置10の温度が上昇すると、装置筐体12は熱膨張により出射方向へ伸びる。このとき、半球状突起26及び半球状突起28を結ぶ線を回転軸に装置筐体12は回転可能であるので、半球状突起24が傾斜面34を光ビーム出射方向前方へ斜行し、傾斜面34に沿って副走査方向下方に下る。また、光ビーム出射方向後方側に傾斜面34が形成されている構成では、半球状突起24が傾斜面34を光ビーム出射方向後方へ斜行し、傾斜面34に沿って副走査方向上方に上る。   When the temperature of the optical scanning device 10 rises, the device housing 12 extends in the emission direction due to thermal expansion. At this time, since the apparatus housing 12 can be rotated with a line connecting the hemispherical protrusion 26 and the hemispherical protrusion 28 as a rotation axis, the hemispherical protrusion 24 inclines the inclined surface 34 forward in the light beam emitting direction and inclines. It goes down along the surface 34 in the sub-scanning direction. Further, in the configuration in which the inclined surface 34 is formed on the rear side in the light beam emitting direction, the hemispherical protrusion 24 obliquely tilts the inclined surface 34 rearward in the light beam emitting direction and moves upward along the inclined surface 34 in the sub-scanning direction. climb.

このため、光走査装置10の光ビーム出射方向前方側が副走査方向下方に傾き、光走査装置10の出射端面が副走査方向下方に向けられるので、副走査方向上方へのビーム位置のズレを副走査方向下方へ補正することができる。このように、本体フレーム32に形成された傾斜面34を利用するだけなので、簡単な機構で副走査方向のビーム位置のズレを防止できる。   For this reason, the front side of the light beam emission direction of the optical scanning device 10 is inclined downward in the sub-scanning direction, and the emission end surface of the optical scanning device 10 is directed downward in the sub-scanning direction. Correction can be made downward in the scanning direction. As described above, since only the inclined surface 34 formed on the main body frame 32 is used, it is possible to prevent deviation of the beam position in the sub-scanning direction with a simple mechanism.

また、装置筐体12は半球状突起24、26、28の3点で支持されると共に、半球状突起26及び半球状突起28を結ぶ線を回転軸に回転可能であるので、装置筐体12が局部的に変形しても、3点での支持が維持され、装置筐体12の姿勢が安定する。   The apparatus housing 12 is supported at three points of the hemispherical protrusions 24, 26, and 28, and can rotate about a line connecting the hemispherical protrusion 26 and the hemispherical protrusion 28. Even if it is locally deformed, support at three points is maintained, and the posture of the apparatus housing 12 is stabilized.

さらに、半球状突起26が溝42を走査方向に移動することによって、装置筐体の熱膨張による走査方向への伸びも逃がすことができ、装置筐体の姿勢が安定する。   Furthermore, since the hemispherical protrusion 26 moves in the scanning direction in the groove 42, the expansion in the scanning direction due to the thermal expansion of the apparatus housing can be released, and the attitude of the apparatus housing is stabilized.

このように、本実施の形態では、装置筐体12の底板12Aと側板12Bとの間の歪み、光学部品の熱膨張による取付アライメントを含めた光走査装置10全体の温度上昇による光ビーム位置ズレを、ズレの方向とは逆方向に光走査装置10の装置筐体12を移動させることで感光体22上の光ビーム位置ズレを防止している。   As described above, in this embodiment, the light beam position shift due to the temperature rise of the entire optical scanning device 10 including the distortion between the bottom plate 12A and the side plate 12B of the apparatus housing 12 and the mounting alignment due to the thermal expansion of the optical components. Is displaced in the direction opposite to the direction of deviation, thereby preventing the deviation of the light beam position on the photosensitive member 22 by moving the apparatus housing 12 of the optical scanning device 10.

なお、上記第1実施形態では、光ビームが上方にずれることを前提に、傾斜面34を形成したものであり、傾斜面34を形成する際は、まず、傾斜面34ではなく水平面上に半球状突起24をのせて温度特性試験を行い、そのときに、装置ごと特有にずれる光ビームのビーム位置ズレのデータをとる。それに基づき、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面34の傾斜方向を決定し、光ビームのビーム位置ズレを防ぐ。   In the first embodiment, the inclined surface 34 is formed on the assumption that the light beam is shifted upward. When the inclined surface 34 is formed, first, the hemisphere is not on the inclined surface 34 but on the horizontal plane. A temperature characteristic test is performed with the projections 24 placed thereon, and at that time, data on the beam position deviation of the light beam that is peculiar to each apparatus is obtained. Based on this, the inclination direction of the inclined surface 34 having an angle in the sub-scanning direction toward the light beam emission direction is determined, and the beam position deviation of the light beam is prevented.

従って、温度特性試験によって、副走査方向上方ではなく、副走査方向下方にビーム位置のズレを起こすことが確認された装置においては、以下のように構成する。   Therefore, an apparatus that has been confirmed to cause a beam position shift not in the sub-scanning direction but in the sub-scanning direction lower than in the sub-scanning direction is configured as follows.

すなわち、図7(A)に示すように、傾斜面34が光ビーム出射方向前方に形成されているときは、傾斜面34を光ビーム出射方向に向かって副走査方向上方に上る傾斜面34を形成する。   That is, as shown in FIG. 7A, when the inclined surface 34 is formed in front of the light beam emitting direction, the inclined surface 34 that rises upward in the sub-scanning direction toward the light beam emitting direction. Form.

また、図7(B)に示すように、傾斜面34が光ビーム出射方向後方に形成されている場合も、傾斜面34を光ビーム出射方向に向かって副走査方向上方に上る傾斜面34を形成する。   Further, as shown in FIG. 7B, even when the inclined surface 34 is formed behind the light beam emitting direction, the inclined surface 34 that rises upward in the sub-scanning direction toward the light beam emitting direction. Form.

図7(A)に示すように、光ビーム出射方向後方側に傾斜面34が形成されている構成では、光走査装置10の温度が上昇し、装置筐体12が熱膨張により出射方向へ伸びると、半球状突起24が傾斜面34を光ビーム出射方向前方へ斜行し、傾斜面34に沿って副走査方向上方に上る。   As shown in FIG. 7A, in the configuration in which the inclined surface 34 is formed on the rear side in the light beam emission direction, the temperature of the optical scanning device 10 rises, and the device housing 12 extends in the emission direction due to thermal expansion. Then, the hemispherical protrusion 24 skews the inclined surface 34 forward in the light beam emitting direction and rises upward along the inclined surface 34 in the sub-scanning direction.

また、図7(B)に示すように、光ビーム出射方向後方側に傾斜面34が形成されている構成では、光走査装置10の温度が上昇し、装置筐体12が熱膨張により出射方向へ伸びると、半球状突起24は傾斜面34を光ビーム出射方向後方へ斜行し、傾斜面34に沿って副走査方向下方に下る。   Further, as shown in FIG. 7B, in the configuration in which the inclined surface 34 is formed on the rear side in the light beam emitting direction, the temperature of the optical scanning device 10 rises, and the device housing 12 emits in the emitting direction due to thermal expansion. The hemispherical protrusion 24 skews the inclined surface 34 backward in the light beam emission direction and descends downward along the inclined surface 34 in the sub-scanning direction.

このため、光走査装置10の光ビーム出射方向前方側が副走査方向上方に傾き、光走査装置10の出射端面が副走査方向上方に向けられるので、副走査方向下方へのビーム位置のズレを副走査方向上方へ補正することができる。
(第2実施形態)
次に、本発明の第2実施形態について図8に基づき説明する。なお、第1実施形態と同一の部分には同一の符号を付して説明を省略し、第1実施形態と異なる部分についてのみ説明する。
For this reason, the front side of the light beam emission direction of the optical scanning device 10 is inclined upward in the sub-scanning direction, and the emission end face of the optical scanning device 10 is directed upward in the sub-scanning direction. Correction can be made upward in the scanning direction.
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, description is abbreviate | omitted, and only a different part from 1st Embodiment is demonstrated.

上記の第1実施形態では、傾斜面34の傾斜角度は、θ=atan(y/((L1+L2)*α*△T))によって得られものであり、一定の角度となる。   In the first embodiment, the inclination angle of the inclined surface 34 is obtained by θ = atan (y / ((L1 + L2) * α * ΔT)) and is a constant angle.

すなわち、図8(A)に示すように、温度上昇量と光ビームのビーム位置ズレ量の関係は一定である場合には、図8(D)に示すように、一定の角度で傾斜する傾斜面34であっても、光ビームの位置ズレを補正することができる。   That is, as shown in FIG. 8A, when the relationship between the temperature rise amount and the beam position deviation amount of the light beam is constant, as shown in FIG. 8D, the inclination is inclined at a constant angle. Even on the surface 34, the positional deviation of the light beam can be corrected.

しかし、通常、温度上昇量と光ビーム位置ズレ量の関係は一定ではなく、温度領域や装置筐体12の構造、光学部品の配置などの要因により、例えば図8(B)、(C)に示すように、光走査装置固有の「温度上昇量―光ビーム位置ズレ量曲線」を描く。   However, the relationship between the amount of temperature rise and the amount of positional deviation of the light beam is usually not constant. For example, the relationship between the temperature region, the structure of the apparatus housing 12, the arrangement of optical components, and the like are shown in FIGS. As shown, a “temperature rise amount-light beam position deviation amount curve” unique to the optical scanning device is drawn.

図8(B)のように、温度変化に対してズレ量が少ない場合は、図8(E)に示すように、上方に膨らまして湾曲させた傾斜面52を形成できる角度変化量とし、図8(C)に示すように、温度変化に対してズレ量が多い場合は、図8(F)に示すように、下方に膨らまして湾曲させた傾斜面54を形成する角度変化量とする。   As shown in FIG. 8B, when the amount of deviation is small with respect to the temperature change, as shown in FIG. 8E, the angle change amount that can form an inclined surface 52 that is bulged upward and curved is shown. As shown in FIG. 8C, when the amount of deviation with respect to the temperature change is large, as shown in FIG. 8F, the angle change amount forms an inclined surface 54 that bulges downward and curves.

このように、光走査装置固有の「温度上昇量―光ビーム位置ズレ量曲線」に対応して、傾斜面34の傾斜度θを温度上昇による副走査方向のビーム位置ズレ量に合わせれば、より精密に副走査方向のビーム位置ズレを防止することができる。
(第3実施形態)
次に、上記の第1実施形態の光走査装置をカラー用画像形成装置に適用した第3実施形態を図9に基づき説明する。
As described above, if the inclination θ of the inclined surface 34 is matched with the beam position deviation amount in the sub-scanning direction due to the temperature rise, corresponding to the “temperature rise amount-light beam position deviation amount curve” inherent to the optical scanning device, It is possible to prevent the beam position deviation in the sub-scanning direction precisely.
(Third embodiment)
Next, a third embodiment in which the optical scanning device of the first embodiment is applied to a color image forming apparatus will be described with reference to FIG.

ここでは複数の独立した画像形成部を備え、形成された現像を単一の転写媒体に連続的に転写し、1サイクルでフルカラー画像を形成する、いわゆるタンデム方式の画像形成装置60に適用する。   Here, the present invention is applied to a so-called tandem type image forming apparatus 60 that includes a plurality of independent image forming units, continuously transfers the formed development onto a single transfer medium, and forms a full color image in one cycle.

本実施形態では、第1実施形態と同様に、Y,M,C,K各色用に4つの光走査装置61〜64のそれぞれの底板12Aに、3個の半球状突起(半球状の突部)24、26、28を形成し、半球状突起24は、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面34に当接して支持させ、半球状突起28は、凹部38に係合して支持させ、半球状突起26は、溝42に係合して支持させた。   In this embodiment, as in the first embodiment, three hemispherical protrusions (hemispherical protrusions) are formed on the bottom plate 12A of each of the four optical scanning devices 61 to 64 for each of the colors Y, M, C, and K. ) 24, 26, and 28, and the hemispherical protrusion 24 is in contact with and supported by an inclined surface 34 having an angle in the sub-scanning direction toward the light beam emitting direction, and the hemispherical protrusion 28 is engaged with the recess 38. The hemispherical protrusions 26 were engaged with and supported by the grooves 42.

タンデム方式の画像形成装置では、Y,M,C,Kの各色の露光源となる光走査装置61〜64から光ビームが独立の光学系を経て感光体71〜74に至るため、画像形成装置60内での温度分布不均一により各色での光ビーム位置ズレ量がばらつき、重ね合わされたカラー画像に色ズレが発生してしまうことが問題になるが、本実施形態では、Y,M,C,K各色用のそれぞれに第1実施形態の光走査装置61〜64を適用させているので、カラー用画像形成装置60内で温度分布不均一がある場合や各色で光走査装置61〜64の発熱量が異なっても光ビーム位置がずれないので特に効果的である。   In the tandem image forming apparatus, since the light beams reach the photoconductors 71 to 74 through independent optical systems from the light scanning devices 61 to 64 serving as exposure sources for the colors Y, M, C, and K, the image forming apparatus. In this embodiment, there is a problem that the amount of misalignment of the light beam in each color varies due to non-uniform temperature distribution in 60 and color misregistration occurs in the superimposed color image. In this embodiment, however, Y, M, C , K for each color, the optical scanning devices 61 to 64 of the first embodiment are applied. Therefore, when there is non-uniform temperature distribution in the color image forming device 60 or for each color, the optical scanning devices 61 to 64 are used. This is particularly effective because the light beam position does not shift even if the amount of heat generation is different.

本発明は、上記の実施の形態に限るものではなく、種々の形態が可能である。   The present invention is not limited to the embodiment described above, and various forms are possible.

図1は、本発明の第1実施形態に係る光走査装置の概略図である。FIG. 1 is a schematic diagram of an optical scanning device according to the first embodiment of the present invention. 図2は、第1実施形態に係る光走査装置を下方からみた図である。FIG. 2 is a diagram of the optical scanning device according to the first embodiment viewed from below. 図3は、第1実施形態に係る本体フレームを示す図である。FIG. 3 is a view showing the main body frame according to the first embodiment. 図4は、第1実施形態に係る光走査装置の平面図である。FIG. 4 is a plan view of the optical scanning device according to the first embodiment. 図5は、第1実施形態に係る光走査装置の平面図である。FIG. 5 is a plan view of the optical scanning device according to the first embodiment. 図6は、第1実施形態に係る光走査装置の変形例を示す平面図である。FIG. 6 is a plan view showing a modification of the optical scanning device according to the first embodiment. 図7は、第1実施形態に係る光走査装置の変形例を示す平面図である。FIG. 7 is a plan view showing a modification of the optical scanning device according to the first embodiment. 図8は、第2実施形態に係る傾斜面の傾斜度を示す図である。FIG. 8 is a diagram illustrating the inclination of the inclined surface according to the second embodiment. 図9は、第3実施形態に係る画像形成装置を示す図である。FIG. 9 is a diagram illustrating an image forming apparatus according to the third embodiment.

符号の説明Explanation of symbols

10 光走査装置
12 装置筐体
14 光源
18 ポリゴンミラー(回転多面鏡)
20 fθレンズ(光学素子)
24 半球状突起(第1支持部)
26 半球状突起(第2支持部)
28 半球状突起(第2支持部)
32 本体フレーム
34 傾斜面
38 凹部
42 溝
60 画像形成装置
DESCRIPTION OF SYMBOLS 10 Optical scanning device 12 Apparatus housing 14 Light source 18 Polygon mirror (rotating polygon mirror)
20 fθ lens (optical element)
24 Hemispherical protrusion (first support part)
26 Hemispherical protrusion (second support part)
28 Hemispherical protrusion (second support part)
32 body frame 34 inclined surface 38 recess 42 groove 60 image forming apparatus

Claims (8)

画像形成装置に設けられた本体フレームに、複数の支持部で支持される装置筐体と、
前記装置筐体内に配置され、光ビームを照射する光源と、
前記光源から照射された光ビームを入射し、入射した光ビームを感光体へ出射して、主走査方向に光ビームを走査させる回転多面鏡と、
前記回転多面鏡から出射された光ビームを感光体上に結像させる光学素子と、
を備えた光走査装置において、
前記複数の支持部は、前記装置筐体の下部に設けられた1つの第1支持部と、前記装置筐体の下部に前記感光体の被走査面に沿って配列された2つの第2支持部と、で構成され、
前記本体フレームには、前記第1支持部が斜行可能とされ、光ビーム出射方向へ向かって副走査方向に角度をもつ傾斜面が形成され、
前記装置筐体は、前記2つの第2支持部を結ぶ線を回転軸に回転可能とされ、前記第1支持部が前記傾斜面を斜行することにより、温度上昇による光ビームのズレ方向と反対方向に光ビーム出射方向前方側を傾けることを特徴とする光走査装置。
An apparatus housing supported by a plurality of support portions on a main body frame provided in the image forming apparatus;
A light source that is disposed within the device housing and that emits a light beam;
A rotating polygon mirror that enters the light beam emitted from the light source, emits the incident light beam to the photosensitive member, and scans the light beam in the main scanning direction;
An optical element that forms an image of the light beam emitted from the rotary polygon mirror on the photosensitive member;
In an optical scanning device comprising:
The plurality of support portions include one first support portion provided at a lower portion of the apparatus housing, and two second supports arranged at a lower portion of the apparatus housing along a scanned surface of the photoconductor. Part, and
In the main body frame, the first support portion can be skewed, and an inclined surface having an angle in the sub-scanning direction toward the light beam emission direction is formed.
The apparatus housing is rotatable about a line connecting the two second support parts, and the first support part skews the inclined surface, thereby causing a deviation direction of the light beam due to temperature rise. An optical scanning device characterized by tilting the front side of the light beam emitting direction in the opposite direction.
前記第1支持部は、前記装置筐体の光ビーム出射方向前方側に設けられ、
前記第2支持部は、前記装置筐体の光ビーム出射方向後方側に設けられていることを特徴とする請求項1に記載の光走査装置。
The first support portion is provided on the front side of the device housing in the light beam emitting direction,
The optical scanning device according to claim 1, wherein the second support portion is provided on the rear side of the device housing in the light beam emitting direction.
前記傾斜面の傾斜角度をθ、前記装置筐体の温度上昇を△T、前記2つの第2支持部を結ぶ線から前記第1支持部までの最短距離をL1、前記第1支持部から感光体上被走査面までの最短距離をL2、温度上昇による感光体上被走査面でのビーム位置の副走査方向のズレ量をy、前記装置筐体の線膨張係数をα、とするとき、θ=atan(y/((L1+L2)*α*△T))となることを特徴とする請求項2に記載の光走査装置。   The inclination angle of the inclined surface is θ, the temperature rise of the apparatus housing is ΔT, the shortest distance from the line connecting the two second support parts to the first support part is L1, and the first support part is exposed to light. When the shortest distance to the body scanning surface is L2, the deviation of the beam position on the photosensitive body scanning surface due to temperature rise in the sub-scanning direction is y, and the linear expansion coefficient of the apparatus housing is α, The optical scanning device according to claim 2, wherein θ = atan (y / ((L1 + L2) * α * ΔT)). 前記第1支持部は、前記装置筐体の光ビーム出射方向後方側に設けられ、
前記第2支持部は、前記装置筐体の光ビーム出射方向前方側に設けられていることを特徴とする請求項1に記載の光走査装置。
The first support portion is provided on the rear side of the device housing in the light beam emission direction,
The optical scanning device according to claim 1, wherein the second support portion is provided on the front side of the device housing in the light beam emitting direction.
前記傾斜面の傾斜角度をθ、前記装置筐体の温度上昇を△T、前記2つの第2支持部を結ぶ線から前記第1支持部までの最短距離をL1、前記第1支持部から感光体上被走査面までの最短距離をL2、温度上昇による感光体上被走査面でのビーム位置の副走査方向のズレ量をy、前記装置筐体の線膨張係数をα、とするとき、θ=atan(y/((L2−L1)*α*△T))となることを特徴とする請求項4に記載の光走査装置。   The inclination angle of the inclined surface is θ, the temperature rise of the apparatus housing is ΔT, the shortest distance from the line connecting the two second support parts to the first support part is L1, and the first support part is exposed to light. When the shortest distance to the body scanning surface is L2, the deviation of the beam position on the photosensitive body scanning surface due to temperature rise in the sub-scanning direction is y, and the linear expansion coefficient of the apparatus housing is α, The optical scanning device according to claim 4, wherein θ = atan (y / ((L2−L1) * α * ΔT)). 前記傾斜面の傾斜角度の変化量を、温度上昇による感光体上被走査面での副走査方向のビーム位置ズレ量に合わせたことを特徴とする請求項1〜5のいずれか1項に記載の光走査装置。   The amount of change in the inclination angle of the inclined surface is matched with the amount of beam position deviation in the sub-scanning direction on the surface to be scanned on the photosensitive member due to a temperature rise. Optical scanning device. 前記2つの第2支持部は、半球状の突部とされ、
その一方は、前記本体フレームに形成された凹部に係合し、他方は、主走査方向に沿って本体フレームに形成された溝を移動可能とされていることを特徴とする請求項1〜6のいずれか1項に記載の光走査装置。
The two second support parts are hemispherical protrusions,
7. One of them is engaged with a recess formed in the main body frame, and the other is movable in a groove formed in the main body frame along the main scanning direction. The optical scanning device according to any one of the above.
複数の光走査装置を備える画像形成装置において、
前記複数の光走査装置のそれぞれに、請求項1〜7に記載の光走査装置のいずれかが適用されていることを特徴とする画像形成装置。
In an image forming apparatus including a plurality of optical scanning devices,
An image forming apparatus, wherein one of the optical scanning devices according to claim 1 is applied to each of the plurality of optical scanning devices.
JP2005010505A 2005-01-18 2005-01-18 Optical scanning device and image forming apparatus to which the same is applied Pending JP2006201274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010505A JP2006201274A (en) 2005-01-18 2005-01-18 Optical scanning device and image forming apparatus to which the same is applied

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010505A JP2006201274A (en) 2005-01-18 2005-01-18 Optical scanning device and image forming apparatus to which the same is applied

Publications (1)

Publication Number Publication Date
JP2006201274A true JP2006201274A (en) 2006-08-03

Family

ID=36959362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010505A Pending JP2006201274A (en) 2005-01-18 2005-01-18 Optical scanning device and image forming apparatus to which the same is applied

Country Status (1)

Country Link
JP (1) JP2006201274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191018A (en) * 2009-02-17 2010-09-02 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2011107523A (en) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd Exposure unit housing mechanism and image forming apparatus
JP2012123353A (en) * 2010-12-07 2012-06-28 E-Pin Optical Industry Co Ltd Adjustment structure for detection mirror and laser scanner thereof
JP2012233936A (en) * 2011-04-28 2012-11-29 Konica Minolta Business Technologies Inc Laser scanning optical device
JP2013190570A (en) * 2012-03-13 2013-09-26 Sharp Corp Optical scanning device, and image forming apparatus including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191018A (en) * 2009-02-17 2010-09-02 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2011107523A (en) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd Exposure unit housing mechanism and image forming apparatus
JP2012123353A (en) * 2010-12-07 2012-06-28 E-Pin Optical Industry Co Ltd Adjustment structure for detection mirror and laser scanner thereof
JP2012233936A (en) * 2011-04-28 2012-11-29 Konica Minolta Business Technologies Inc Laser scanning optical device
JP2013190570A (en) * 2012-03-13 2013-09-26 Sharp Corp Optical scanning device, and image forming apparatus including the same

Similar Documents

Publication Publication Date Title
JP2008216908A (en) Optical scanner and image forming apparatus
JP2009192563A (en) Optical scanning device and image forming apparatus
JP2006201274A (en) Optical scanning device and image forming apparatus to which the same is applied
JP2018132646A (en) Housing of optical scanner and optical scanner
JP2010134434A (en) Scanning optical apparatus and image forming apparatus using the same
JP2007171626A (en) Optical scanner and image forming apparatus
JP4322703B2 (en) Optical scanning device and multicolor image forming apparatus
US7450142B2 (en) Scanning optical device with post-deflection diffraction element supported by an end-side swing member to suppress vibration
JP6056418B2 (en) Optical scanning apparatus and image forming apparatus
JP6102307B2 (en) Optical package lid, optical package, optical unit, multi-beam scanning device, image forming apparatus
JP2007233211A (en) Optical scanner and image forming apparatus
JP2001281587A (en) Holding structure of light source part for optical scanner
JP2006198896A (en) Multicolor image forming apparatus
JP2008058353A (en) Optical scanner and image forming apparatus
JP4523440B2 (en) Multicolor image forming apparatus
JP2010237432A (en) Optical scanner and image forming apparatus using the same
JP2000330046A (en) Optical scanner
JP2008145952A (en) Scanning optical apparatus
JP4903455B2 (en) Optical scanning apparatus and image forming apparatus
JP2005043890A (en) Multi-beam laser scanning unit and laser-beam deflection compensating method of multi-beam laser scanning unit and picture forming device
JP4313224B2 (en) Dot position correction method and image forming apparatus using the same
JP4340557B2 (en) Optical scanning apparatus and multicolor image forming apparatus
JP4596942B2 (en) Optical scanning apparatus and image forming apparatus
JP2009023176A (en) Scanning optical device and image forming apparatus
JP2008257194A (en) Optical scanner and image forming apparatus provided with optical scanner