JP2006200800A - Flow rate or flow-measuring device - Google Patents

Flow rate or flow-measuring device Download PDF

Info

Publication number
JP2006200800A
JP2006200800A JP2005012285A JP2005012285A JP2006200800A JP 2006200800 A JP2006200800 A JP 2006200800A JP 2005012285 A JP2005012285 A JP 2005012285A JP 2005012285 A JP2005012285 A JP 2005012285A JP 2006200800 A JP2006200800 A JP 2006200800A
Authority
JP
Japan
Prior art keywords
flow rate
information
flow
communication
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005012285A
Other languages
Japanese (ja)
Other versions
JP4293134B2 (en
Inventor
Bunichi Shiba
文一 芝
Daisuke Betsusou
大介 別荘
Koichi Takemura
晃一 竹村
Yasuhiro Umekage
康裕 梅景
Hajime Miyata
肇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005012285A priority Critical patent/JP4293134B2/en
Publication of JP2006200800A publication Critical patent/JP2006200800A/en
Application granted granted Critical
Publication of JP4293134B2 publication Critical patent/JP4293134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the accuracy in discriminating an appliance by implementing calculation at a place having no influence on a capacity of electric power while reducing communication frequency by temporarily storing the data on flow rate or flow in a storing means to some extent, and to reduce the load on ordinary flow measurement. <P>SOLUTION: This flow rate or flow-measuring device measures flow rate or flow of fluid flowing in a flow channel by the fluid-measuring means 41, and the information is temporarily stored in the storing means 12, and then transmitted to the outside by a first communication means 13 as a whole. An instrument-discriminating means 15 implements the calculation and reference of database in an external environment of good electric power condition, and the operating instrument is determined on the basis of the transmitted information. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流速または流量計測装置に関し、またその流路に接続されている使用している器具の判別を行う方法に関する。   The present invention relates to a flow velocity or flow rate measuring device that measures a flow rate of gas, liquid, etc. using an ultrasonic wave using a vibrator, etc., and discriminates a used instrument connected to the flow path. Regarding the method.

従来の判別装置としてガスメータに内蔵されたものがあり、各種演算を行うことにより器具の推定をおこなっている(例えば、特許文献1参照)。   As a conventional discriminating device, there is one built in a gas meter, and an instrument is estimated by performing various calculations (for example, see Patent Document 1).

図8は一般的なガス配管の構成を示すブロック図である図8において1はガス器具判別装置、2はガスメータ、3はガス配管,4はガス器具である。ガス器具判別装置のブロック図を図9に示す。   FIG. 8 is a block diagram showing the configuration of a general gas pipe. In FIG. 8, 1 is a gas appliance discriminating device, 2 is a gas meter, 3 is a gas pipe, and 4 is a gas appliance. A block diagram of the gas appliance discriminating apparatus is shown in FIG.

図9において5はガスメータの通過ガス量に応じて信号を発生する流量測定装置、6は流量測定装置から送られてくる流量信号でガスメータ通過ガス量の変化流量を算出し、個別ガス器具ごとのガス量に分離する個別ガス器具流量演算手段、8は変化流量以外の入力信号を得るセンサ手段である。例えば81、82,83,84,85の5種類の検出手段から構成される。81はガスメータの本体に取り付けられ現在の外気温度を常時検出する気温検出手段である。82は現在の季節情報を常時得ることのできる計時機構を備えたカレンダー検出手段である。83,84,85は個別ガス器具流量演算手段6とも接続されている。83は各ガス器具が使用され始めた時刻情報を計時・記憶する機構を備えた使用開始時刻検知手段である。84は各ガス器具の最大ガス流量の継続時間を計時する最大流量継続時間検出手段であり、最大ガス量を使用し続ける(ピークホールド)時間を測定・記憶する。85は個別ガス器具ごとの点火時または燃焼時の流量パターンの時間変化をサンプリングする流量変化認識手段であり、各器具特有の流量消費パターンの過渡現象を捕らえるものである。9は個別ガス器具流量演算手段6およびセンサ手段8から得られる情報を複合化して使用されているガス器具の判別を行う複合演算手段である。   In FIG. 9, 5 is a flow rate measuring device that generates a signal according to the amount of gas passing through the gas meter, and 6 is a flow rate signal sent from the flow rate measuring device to calculate the change flow rate of the gas meter passing gas amount. Individual gas appliance flow rate calculation means 8 for separating into gas amounts, 8 is a sensor means for obtaining an input signal other than the change flow rate. For example, it comprises five types of detection means 81, 82, 83, 84 and 85. Reference numeral 81 denotes an air temperature detecting means which is attached to the main body of the gas meter and constantly detects the current outside air temperature. 82 is a calendar detection means equipped with a time measuring mechanism that can always obtain current season information. 83, 84, 85 are also connected to the individual gas appliance flow rate calculation means 6. Reference numeral 83 denotes a use start time detecting means having a mechanism for measuring and storing time information when each gas appliance starts to be used. Reference numeral 84 denotes maximum flow rate duration detection means for measuring the duration of the maximum gas flow rate of each gas appliance, and measures and stores the time during which the maximum gas amount is used (peak hold). 85 is a flow rate change recognizing means for sampling the time change of the flow rate pattern at the time of ignition or combustion for each individual gas appliance, and captures the transient phenomenon of the flow rate consumption pattern unique to each appliance. Reference numeral 9 denotes composite calculation means for discriminating the gas appliance used by combining the information obtained from the individual gas appliance flow rate calculation means 6 and the sensor means 8.

このガス器具判別装置はガスメータ2に内蔵され、ガス配管3を介してのみ各ガス器具4と接続されている。   This gas appliance discriminating device is built in the gas meter 2 and connected to each gas appliance 4 only through the gas pipe 3.

この構成で複合演算手段9は個別ガス器具流量演算手段6、気温検出手段81、カレンダー検出手段82、使用開始時刻検出手段83、最大流量継続時間検出手段84、流量変化認識手段85から得られる情報を複合化してガス器具の種類を判別するのにファジー推論を採用している。そして各検出手段から得られる情報をもとに前件部で用いるメンバーシップ関数を作成し、同様に後件部で用いるメンバーシップ関数も作成する。それらの関数を元に推論するルールを複数組み立てて器具を判別する。例えば、演算結果から暖房機らしさないし調理器らしさが非常に高ければ、該当するガス器具は暖房機ないし調理器具とみなして良いと言える。メンバーシップ関数やルールの組み立て方については詳しい説明を省略する。
特開平3−236513号公報(第2頁、第1図)
With this configuration, the composite calculation means 9 is information obtained from the individual gas appliance flow rate calculation means 6, the temperature detection means 81, the calendar detection means 82, the use start time detection means 83, the maximum flow rate duration detection means 84, and the flow rate change recognition means 85. Fuzzy reasoning is adopted to discriminate the types of gas appliances by combining them. Then, a membership function used in the antecedent part is created based on information obtained from each detecting means, and a membership function used in the consequent part is also created. A tool is discriminated by assembling a plurality of rules inferred based on these functions. For example, if the result of the calculation does not make it look like a heater or if it looks like a cooker, it can be said that the corresponding gas appliance can be regarded as a heater or a cooker. Detailed explanation of how to assemble membership functions and rules is omitted.
JP-A-3-236513 (Page 2, Fig. 1)

しかしながら従来のガス器具判別装置では複数のセンサ類が必要で、さらに複雑な推論計算をメータ内部で行う必要がある。また、複雑な演算を用いても推論までである。それにメータ内部には電源容量が限られているため大規模で長時間の演算は難しい。   However, the conventional gas appliance discriminating apparatus requires a plurality of sensors, and more complicated inference calculation needs to be performed inside the meter. In addition, even complex calculations can be used for inference. In addition, since the power supply capacity is limited inside the meter, large-scale and long-time calculations are difficult.

本発明は上記の課題を解決するもので、流量データを一旦ある程度記憶手段に蓄積し、その情報をまとめて流体計測装置から外部に通信し、通信頻度を少なくしつつ、電力容量の問題にならない場所で演算を行うことで器具判別の精度を高めるとともに、通常の流量計測への負荷を軽減することを目的としている。   The present invention solves the above-mentioned problem, and once the flow rate data is accumulated in the storage means to some extent, the information is collected and communicated from the fluid measuring device to the outside, so that the communication frequency is reduced and the power capacity is not a problem. The purpose is to increase the accuracy of appliance discrimination by performing calculations at the place and to reduce the load on normal flow measurement.

前記従来の課題を解決するために、本発明の流速または流量計測装置は、流体計測手段で流路を流れる流体の流速または流量を計測し、その情報を記憶手段に一旦ため込み、予め定めた情報量になってからまとめて、通信頻度を少なくしつつ流体計測装置から外部に通信手段を介して送る。外部の電力事情の良い環境で演算やデータベースなどの参照を行い、送られてきた情報を基に動作している器具を判定する。   In order to solve the above-described conventional problems, the flow velocity or flow rate measuring device of the present invention measures the flow velocity or flow rate of the fluid flowing through the flow path by the fluid measurement means, and temporarily stores the information in the storage means, and determines the predetermined flow rate or flow rate. After the amount of information is reached, the information is sent from the fluid measuring device to the outside via communication means while reducing the communication frequency. Reference is made to computations and databases in an environment with good external power conditions, and a device that is operating is determined based on the information sent.

判定した器具データは再度通信手段を用いて流速または流量計測装置に返送する動作を行うことも可能である。   It is also possible to perform the operation of returning the determined instrument data to the flow velocity or flow rate measuring device again using the communication means.

本発明の、流速または流量計測装置は、流速または流量の情報を記憶手段に一旦ため込み、予め定めた情報量になってからまとめて外部に通信し、そこで演算やデータベースなどの参照を行い、送られてきた情報を基に動作している器具を判定するものである。   The flow velocity or flow rate measuring device of the present invention temporarily stores information on the flow velocity or flow rate in the storage means, communicates to the outside collectively after reaching a predetermined amount of information, and refers to calculations and databases there, The device that is operating is determined based on the information that has been sent.

これによって、計測装置内部に器具判別に必要な高性能の演算手段や、それを動作するために大規模な電源を設置する必要が無くなり、小型で計測を優先した装置の実現と、外部での精度の高い器具判別を実現することができるとともに、外部との通信頻度を少なくすることで電源の負担を軽くして省電力を図り長期間の動作を行うことが可能になる。   This eliminates the need for high-performance computing means necessary for instrument discrimination inside the measuring device and the need to install a large-scale power source to operate it. It is possible to realize highly accurate appliance discrimination, and reduce the frequency of communication with the outside, thereby reducing the load on the power source, saving power, and performing a long-term operation.

第1の発明は被測定流体の流れる流路に配置した流速または流量を計測する流体計測手段と、前記流体計測手段の信号を蓄積する記憶手段と、外部と通信を行う第1の通信手段と、前記流体計測手段と前記第1の通信手段を制御する制御手段と、第1の通信手段と信号のやりとりする外部に設けた第2の通信手段と前記第2の通信手段に接続し前記流路に配置された流体を使用している器具を判別する情報を有する器具判別手段を備えた流速または流量計測装置である。   According to a first aspect of the present invention, there is provided a fluid measuring means for measuring a flow velocity or a flow rate arranged in a flow path through which a fluid to be measured flows, a storage means for storing a signal of the fluid measuring means, and a first communication means for communicating with the outside. A control means for controlling the fluid measuring means and the first communication means; a second communication means provided externally for exchanging signals with the first communication means; and a second communication means connected to the second communication means. It is a flow velocity or flow rate measuring device provided with the instrument discriminating means which has the information which discriminates the instrument which is using the fluid arrange | positioned at the path | route.

そして、流速または流量の情報を記憶手段に一旦ため込み、予め定めた情報量になってからまとめて外部に通信し、そこで演算やデータベースなどの参照を行い、送られてきた情報を基に動作している器具を判定することにより、計測装置内部に器具判別に必要な高性能の演算手段や、それを動作するために大規模な電源を設置する必要が無くなり、小型で計測を優先した装置の実現と、外部での精度の高い器具判別を実現することができるとともに、外部との通信頻度を少なくすることで電源の負担を軽くして省電力を図り長期間の動作を行うことが可能になる。   The flow rate or flow rate information is temporarily stored in the storage means, and after reaching a predetermined amount of information, the information is collectively communicated to the outside, where calculations and databases are referenced, and operations are performed based on the sent information. By determining which instrument is in use, there is no need to install a high-performance computing means necessary for instrument discrimination inside the measuring device or a large-scale power supply to operate it. Realization and high-accuracy external instrument discrimination, and by reducing the frequency of communication with the outside, it is possible to lighten the power load and save power and perform long-term operation become.

第2の発明は、特に第1の発明の流体計測手段の信号を蓄積する記憶手段の情報量が予め定めた量にならなくても予め定めた時間が経過すると記憶手段の信号を第1の通信手段から外部に設けた第2の通信手段に通信するタイマ手段を備えることにより、流体の使用頻度が少なくてもある時間が経過すると通信を行うこと流体計測手段の動作と通信手段の動作を確認することができ、信頼性の向上を図ることが可能になる。   According to the second aspect of the invention, in particular, the signal of the storage means is transmitted when the predetermined time elapses even if the information amount of the storage means for accumulating the signal of the fluid measurement means of the first invention does not reach the predetermined amount. By providing a timer means that communicates with the second communication means provided outside from the communication means, communication is performed after a certain period of time even if the frequency of fluid use is low. It can be confirmed, and it becomes possible to improve the reliability.

第3の発明は、特に第1の発明で時間情報を出力する計時手段を備え、記憶手段には流体計測手段と前記計時手段の情報を蓄積することで、外部に通信する情報に器具を使用した時間などの項目を追加することができ、器具判別の方法を組み立てる際に判定確度の向上を図ることが可能になる。   The third invention is provided with a time measuring means for outputting time information, particularly in the first invention, and the storage means stores the information of the fluid measuring means and the time measuring means, thereby using an instrument for information communicated to the outside. Thus, it is possible to add items such as time, and to improve the accuracy of determination when assembling the device determination method.

第4の発明は、特に第1の発明で積算流量を演算する積算手段を備え、記憶手段には流体計測手段と前記積算手段の情報を蓄積することで、外部に通信する情報に器具の使用積算情報を追加でき、器具固有の使用の判定情報として用いることで判定確度の向上を図ることが可能になる。   According to a fourth aspect of the invention, there is provided an integrating means for calculating the integrated flow rate in the first invention, and the storage means stores the information of the fluid measuring means and the integrating means, thereby using the instrument for information communicated to the outside. Accumulation information can be added, and it becomes possible to improve the determination accuracy by using it as determination information specific to the appliance.

第5の発明は、特に第1の発明で流速の変化点を検出する変化点検出手段を備え、記憶手段には流体計測手段と前記変化点検出手段の情報を蓄積することで、外部に通信する情報に器具の使用流量変化情報を追加でき、器具判定の確度の向上を図ることが可能になる。   According to a fifth aspect of the invention, there is provided a changing point detecting means for detecting a changing point of the flow velocity in the first invention, and the storage means stores information on the fluid measuring means and the changing point detecting means to communicate with the outside. It is possible to add appliance usage flow rate change information to the information to be performed, and to improve the accuracy of appliance determination.

第6の発明は、特に第1の発明から第5の発明のいずれか1つにおける制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、これにより測定方法や通信手段の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上や器具判別の判定率向上を行うことができる。   The sixth aspect of the invention has a configuration having a program for causing a computer to function as the control means in any one of the first to fifth aspects of the invention. Therefore, the change can be easily made and the change over time can be flexibly dealt with, so that the measurement accuracy can be improved more flexibly and the judgment rate of the instrument discrimination can be improved.

(実施の形態1)
実施の形態1に関する本発明の流速または流量計測装置について説明する。流速または流量計測装置の説明としては超音波を用いた計測方法を用いるが別にこの方式に限ったものでない。
(Embodiment 1)
The flow velocity or flow rate measuring device of the present invention relating to Embodiment 1 will be described. The explanation of the flow velocity or flow rate measuring apparatus uses a measuring method using ultrasonic waves, but is not limited to this method.

図1は本実施の形態1の構成を示す流速または流量計測装置のブロック図である。図1おいて、2はガスメータ、3はガス配管、4はガス器具である。ガスメータ2の内部には流体の速度または流量を計測する流体計測手段11と、前記流体計測手段11の情報を一旦記憶する記憶手段12と、記憶手段の情報を外部に通信する第1の通信手段13と、前記流体計測手段11と前記第1の通信手段13を制御する制御手段14を備えている。またガスメータ2外部には第2の通信手段15と前記第2の通信手段に接続されてガス配管につながって使用している器具を判定する器具判定手段16を備えている。   FIG. 1 is a block diagram of a flow velocity or flow rate measuring apparatus showing the configuration of the first embodiment. In FIG. 1, 2 is a gas meter, 3 is a gas pipe, and 4 is a gas appliance. Inside the gas meter 2, a fluid measuring means 11 for measuring the velocity or flow rate of the fluid, a storage means 12 for temporarily storing information of the fluid measuring means 11, and a first communication means for communicating the information of the storage means to the outside. 13 and control means 14 for controlling the fluid measurement means 11 and the first communication means 13. The gas meter 2 includes a second communication unit 15 and an instrument determination unit 16 connected to the second communication unit and connected to the gas pipe to determine the instrument used.

図2は流体計測手段11の動作を示すブロック図である。被測定流体、ここではガスの流れる流路3と、前記流路3に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、前記第1の振動子32を駆動する送信手段34と、前記第2の振動子33の受信信号を受け受信タイミングを決定する受信手段35と、前記送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段36を設け、超音波の送受信を第1の振動子32と第2の振動子33の間で交互に行うようにしている。   FIG. 2 is a block diagram showing the operation of the fluid measuring means 11. A flow path 3 through which a fluid to be measured, here a gas flows, and a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 3 are installed, and the first vibrator Transmission means 34 for driving 32, reception means 35 for receiving a reception signal of the second vibrator 33 and determining reception timing, the transmission means 34, the first vibrator 32, and the second vibrator 33. Switching means 36 is provided between the first vibrator 32 and the second vibrator 33 so as to alternately transmit and receive ultrasonic waves.

そして流量演算手段41は受信手段35の出力を受け送信手段34を介して再度超音波の送受信を繰り返すという動作回数を計測し所定の回数で動作を停止する繰返し手段37と、前記繰返し手段37の信号を受け所定の遅延時間遅れて前記送信手段34のトリガ信号として出力する遅延手段38と、少なくとも送信手段34による第1の振動子32の駆動開始から前記繰返し手段37の動作停止までの超音波の伝搬時間を測定する計時手段39と、前記計時手段39の値から前記一対の振動子間の流速を演算し、それから流量を求める演算手段40とを有するものである。さらに計測制御手段42を設け、前記送信手段34を動作する計測スタート信号を出力する。さらに電力の供給を行う電源43と、電源より高電圧の負荷を駆動するための昇圧手段44と、前記電源43と前記昇圧手段44を制御する電源制御手段45を備えている。   The flow rate calculating means 41 receives the output of the receiving means 35, measures the number of operations of repeating the transmission / reception of the ultrasonic wave again through the transmitting means 34, and repeats the means 37 for stopping the operation at a predetermined number of times. A delay means 38 that receives a signal and outputs it as a trigger signal of the transmission means 34 with a delay of a predetermined delay time, and at least ultrasonic waves from the start of driving of the first vibrator 32 by the transmission means 34 to the stop of the operation of the repetition means 37. The time measuring means 39 for measuring the propagation time of the first time and the calculating means 40 for calculating the flow velocity between the pair of vibrators from the value of the time measuring means 39 and determining the flow rate therefrom. Further, a measurement control means 42 is provided, and a measurement start signal for operating the transmission means 34 is output. Furthermore, a power supply 43 for supplying power, a booster 44 for driving a load having a higher voltage than the power supply, and a power supply controller 45 for controlling the power supply 43 and the booster 44 are provided.

また送信手段34、受信手段35、切換手段36、流量演算手段41の設定値を記憶している記憶手段46と、電源43を投入後に記憶手段46の設定値を各手段に送出する制御手段47を備えている。   Also, a storage means 46 that stores the set values of the transmission means 34, the reception means 35, the switching means 36, and the flow rate calculation means 41, and a control means 47 that sends the set values of the storage means 46 to each means after the power source 43 is turned on. It has.

通常の流速または流量計測の動作を説明する。計測制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は計測制御手段41からの信号によって時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。繰返し動作を行わない場合はこの超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。   A normal flow rate or flow rate measurement operation will be described. Upon receiving the start signal from the measurement control means 42, the transmission means 34 pulse-drives the first vibrator 32 for a certain period of time, and at the same time, the time measurement means 39 starts measuring time by the signal from the measurement control means 41. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing. When the repeated operation is not performed, the operation of the time measuring means 39 is stopped when the reception of the ultrasonic wave is determined, and the flow velocity is obtained from the time information t by (Equation 1).

(計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。)
v=(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
(The measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.)
v = (L / t) -c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

繰返し手段37を用いる今回の動作は受信手段35の判定結果を遅延手段38で一定時間遅延させた後に送信手段34に返し、再度送信を行う。繰返し動作を決められた回数行い、その時間を計時手段39で測定し、計時手段39の測定時間を元に(式2)の計算によって流速を求める。   In the current operation using the repeating unit 37, the determination result of the receiving unit 35 is delayed by a delay unit 38 for a certain period of time, then returned to the transmitting unit 34 and transmitted again. The repetitive operation is performed a predetermined number of times, the time is measured by the time measuring means 39, and the flow velocity is obtained by the calculation of (Equation 2) based on the measurement time of the time measuring means 39.

(遅延手段の遅延時間をTd、繰返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。)
v=L/(ts/n−Td)−c ・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
(The delay time of the delay means is Td, the number of repetitions is n, the measurement time is ts, the effective distance in the flow direction between the ultrasonic transducers is L, the speed of sound is c, and the flow velocity of the fluid to be measured is v.)
v = L / (ts / n-Td) -c (Formula 2)
According to this method, it is possible to measure with higher accuracy than the method of (Equation 1).

また、第1の超音波振動子32と第2の超音波振動子33とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める。
(上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする)
v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路1の断面積を乗ずることにより流量を導くことができる。
Further, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. Find v.
(Measurement time from upstream to downstream is t1, and measurement time from downstream to upstream is t2.)
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 1.

通常の動作は図3に示すタイミング図のようになる。すなわち、計測制御手段42による時刻t0における開始信号から計測を開始し、t1で送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t2で第2の超音波振動子33に到達し、受信手段35で受信点を検知すると繰返し手段37は設定回数に達していない場合、遅延手段38に信号を送出する。そして時刻t3から遅延手段38が動作し、予め定めた時間だけ動作した後時刻t4で送信手段34に信号を送出し、再び第1の超音波振動子32を駆動する。以下、この繰返しを行っている。   Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t0 by the measurement control means 42, and the first ultrasonic transducer 32 is driven via the transmission means 34 at t1. The ultrasonic signal generated there propagates in the flow path, reaches the second ultrasonic transducer 33 at time t2, and when the reception means detects the reception point, the repeat means 37 does not reach the set number of times. A signal is sent to the means 38. Then, the delay means 38 starts operating from time t3, operates for a predetermined time, and then sends a signal to the transmitting means 34 at time t4 to drive the first ultrasonic transducer 32 again. This is repeated below.

繰返し手段37で決められた回数動作すると図2時刻t5で送受信動作は停止し、その時間は図に示すTとなる。その後、切換え手段36が送受信を切換える。すなわち第1の超音波振動子32が受信側、第2の超音波振動子33が送信側になる。そして同様な繰返し動作を行う。   When the number of times determined by the repeating means 37 is operated, the transmission / reception operation stops at time t5 in FIG. 2, and the time is T shown in the figure. Thereafter, the switching means 36 switches between transmission and reception. That is, the first ultrasonic transducer 32 is the reception side, and the second ultrasonic transducer 33 is the transmission side. Then, the same repeated operation is performed.

このようにして流速や流量を求めることはできるが、下流側で使用されている器具が何であるかは流体計測手段11の出力信号だけではわからない。また、通信を頻発していると電力消費が大きくなり、長期の連続使用が難しくなる。   Although the flow velocity and the flow rate can be obtained in this way, it is not possible to know what the instrument is used on the downstream side from the output signal of the fluid measuring means 11 alone. In addition, frequent communication increases power consumption and makes long-term continuous use difficult.

そこで、器具判別を行うデータを通信しつつ、電源に負担のかけない方法を説明する。流量が流れると流量演算手段41から制御手段14に信号が入り、制御手段14はその流量情報を記憶手段12に保存する。サンプリング毎もしくは一定時間毎に記憶した情報が一定量に達すると制御手段14は第1の通信手段13を介して外部に流量データを通信する。第1の通信手段13からの信号をうけた外部に設置されている第2の通信手段15は送られてきた流量データを器具判別手段16に渡す。このデータは流速の立ち上がり変化、積算流量、最大流量などいろいろと設定は可能である。   Therefore, a method of not burdening the power supply while communicating data for appliance discrimination will be described. When the flow rate flows, a signal is input from the flow rate calculation unit 41 to the control unit 14, and the control unit 14 stores the flow rate information in the storage unit 12. When the information stored every sampling or every certain time reaches a certain amount, the control means 14 communicates the flow rate data to the outside via the first communication means 13. The second communication means 15 installed outside receiving the signal from the first communication means 13 passes the sent flow rate data to the appliance discrimination means 16. This data can be set in various ways, such as the rise of flow velocity, integrated flow rate, and maximum flow rate.

また、本実施の形態で説明している超音波を用いた流速または流量計測装置では従来の膜式計測のような体積を測定しているのでは無く、瞬時流速を検出できているために流速の変化をサンプリング時間で規定する時間で計測できる。サンプリング時間はメータ内部に設置している電力容量を使用時間により秒単位に設定されるのが標準であるが、場合によっては秒以下でのサンプリングも原理的には可能である。この方式により流速の変化や流量の立ち上がりなどの見極めが容易になっている。   In addition, the flow velocity or flow rate measurement device using ultrasonic waves described in this embodiment does not measure the volume as in the conventional membrane measurement, but detects the instantaneous flow velocity, so the flow velocity Can be measured in the time specified by the sampling time. In general, the sampling time is set in units of seconds depending on the usage time of the power capacity installed in the meter. However, in some cases, sampling in seconds or less is also possible in principle. This method makes it easy to identify changes in flow velocity and rise in flow rate.

さらに、流路内部を流れる流体の流速または流量の情報を一旦記憶手段12に保存し、一括して第1の通信手段13を介して外部に通信し、そこで演算やデータベースなどの参照を行い、送られてきた情報を基にメータ1の下流側で使用されている器具4を判定することにより、計測装置内部に器具判別に必要な高性能の演算手段や、それを動作するために大規模な電源を設置する必要が無くなり、小型で計測を優先した装置の実現と、外部での精度の高い器具判別を実現することができる。   Furthermore, information on the flow velocity or flow rate of the fluid flowing inside the flow path is temporarily stored in the storage means 12, and communicated to the outside through the first communication means 13 at once, where calculations and databases are referred to, By determining the instrument 4 used on the downstream side of the meter 1 based on the sent information, high-performance computing means required for instrument discrimination inside the measuring device and a large scale for operating it It is not necessary to install a new power supply, and it is possible to realize a small-sized apparatus that prioritizes measurement and to perform highly accurate external instrument discrimination.

第2の通信手段15を有する器具判定手段16はガス供給元の大型通信センタのようなものでも良い。その場合は供給している地域の種々のデータ、例えば気温や風速、天候から各家庭の年間を通してのガス使用パターン、設置器具、器具毎の流量消費変化データなど大規模なデータベースを有することもあり、それらのデータと各第1の通信手段13から送られてきた流量情報を用い、大型の演算装置を用いて器具の判定を行うことができる。   The appliance determination means 16 having the second communication means 15 may be a large communication center of a gas supply source. In that case, you may have a large database of various data of the area you are supplying, such as temperature, wind speed, weather, gas usage pattern throughout the year of each household, installation equipment, flow consumption change data for each equipment, etc. Using the data and the flow rate information sent from each first communication means 13, it is possible to determine the instrument using a large arithmetic device.

その場合、演算時の電力の問題はなくなるし、高速のシミュレーションやその係数の変更も容易にできる。また演算結果は瞬時に出す必要も無く、数分の遅れはもちろん、次の検針時までにわかれば良い場合もある。そのような場合は高価な高速演算装置の空き時間を有効に利用して精度の高い器具判別を行うことが可能になる。   In that case, the problem of power at the time of calculation is eliminated, and high-speed simulation and its coefficient can be easily changed. In addition, it is not necessary to output the calculation result instantaneously, and there may be a case where it can be known until the next meter reading as well as a delay of several minutes. In such a case, it becomes possible to perform highly accurate appliance discrimination by effectively utilizing the idle time of an expensive high-speed arithmetic device.

図4に流量が流れてから第1の通信手段12が動作するタイミング例を示す。図4(a)のように流量が発生すると、通常流量計測は(b)のようにサンプリング間隔をもって動作している。時刻t0で流量のあることを流量演算手段41の結果より制御手段14が認識すると(c)のように記憶手段12にその情報を記憶していく。例えば一つ目はM(0)=(0、Q0)という具合に時間と流量をセットで記憶する。第n個目の情報はM(n)=(n,Qn)となる。そして記憶手段12に記憶された情報数が予め定めた個数、例えばn個たまると制御手段14は図4(d)のように、このM(0)からM(n)の情報をまとめて第1の通信手段13から外部に設けた第の通信手段15に送信する。   FIG. 4 shows an example of timing at which the first communication means 12 operates after the flow rate has flowed. When a flow rate is generated as shown in FIG. 4A, the normal flow rate measurement is performed with a sampling interval as shown in FIG. 4B. When the control unit 14 recognizes that there is a flow rate at time t0 from the result of the flow rate calculation unit 41, the information is stored in the storage unit 12 as shown in (c). For example, the first stores time and flow rate as a set, such as M (0) = (0, Q0). The nth information is M (n) = (n, Qn). When the number of pieces of information stored in the storage unit 12 is accumulated, for example, n, the control unit 14 collects the information from M (0) to M (n) as shown in FIG. The data is transmitted from the first communication means 13 to the first communication means 15 provided outside.

流速が発生している時に常時通信する場合に比べ、流量情報を蓄積してから通信手段を動作するため、通信にかかる電力が低減でき、さらに第2の通信手段の受信負荷としても通信頻度が減っているために大幅に低減でき、大量通信による輻輳などの状態によるシステムの不安定さを回避でき、安定した通信品質を実現できる。   Compared to the case of constant communication when the flow rate is generated, the communication means is operated after accumulating the flow rate information, so that the power required for communication can be reduced, and the communication load is also the reception load of the second communication means. Since it is reduced, it can be greatly reduced, and instability of the system due to congestion such as mass communication can be avoided, and stable communication quality can be realized.

また、記憶手段12の容量が決められた量になるまで通信を待機すると、ほとんど使用しないような状態の系や、長期間の停止状態が続くような場合、例えば長期外出などではなかなか情報が蓄積されないため、通信条件が成立しないことが起こる。例えば1ヶ月に一度も通信が成立しないとガス流量計測の場合には器具別の情報が受けられず、特定のサービスが受けられないことが発生することも考えられる。また、情報が蓄積されていないのか通信系に問題が生じているのかの判定がつきにくく不便である。   In addition, when communication is waited until the capacity of the storage means 12 reaches a predetermined amount, if the system is hardly used or if it is stopped for a long period of time, for example, it is easy to accumulate information when going out for a long time. As a result, the communication condition may not be satisfied. For example, if communication is not established once a month, it is possible that information for each instrument cannot be received in the case of gas flow rate measurement, and a specific service cannot be received. Also, it is inconvenient that it is difficult to determine whether information has been accumulated or whether a problem has occurred in the communication system.

このような場合は、例えばタイマ手段17を設けることにより、計測の動作開始もしくは最初の通信成立時からタイマ手段17を動作し、このタイマ手段17の値が予め定めた時間になると記憶手段12に情報が蓄積されていなくても、制御手段14はタイマ手段17の信号を受け、第1の通信手段13で記憶手段12の情報を第2の通信手段15に通信する。   In such a case, for example, by providing the timer means 17, the timer means 17 is operated from the start of the measurement operation or when the first communication is established. When the value of the timer means 17 reaches a predetermined time, the storage means 12 is operated. Even if the information is not accumulated, the control means 14 receives the signal from the timer means 17 and communicates the information in the storage means 12 to the second communication means 15 by the first communication means 13.

図5に動作するタイミング例を示す。図5(a)のように流量が発生すると、通常流量計測は(b)のようにサンプリング間隔をもって動作している。時刻t0で流量のあることを流量演算手段41の結果より制御手段14が認識すると(c)のように記憶手段12にその情報を記憶していく。例えば一つ目はM(0)=(0、Q0)という具合に時間と流量をセットで記憶する。第n個目の情報はM(n)=(n,Qn)となる。タイマ手段17はこの場合t0で動作を開始し、t1で流量が無くなってその後、器具は動作しない場合でも、タイマ手段17が予め定めた時間T経過するとt2にて信号を出す。制御手段14はこの信号を入力することで、記憶手段12の情報が十分蓄積されていなくても図5(d)のように、記憶手段12の情報をまとめて第1の通信手段13から外部に設けた第の通信手段15に送信する。   FIG. 5 shows an example of operation timing. When a flow rate is generated as shown in FIG. 5A, the normal flow rate measurement is performed with a sampling interval as shown in FIG. 5B. When the control unit 14 recognizes that there is a flow rate at time t0 from the result of the flow rate calculation unit 41, the information is stored in the storage unit 12 as shown in (c). For example, the first stores time and flow rate as a set, such as M (0) = (0, Q0). The nth information is M (n) = (n, Qn). In this case, the timer means 17 starts operating at t0, and even when the flow rate is lost at t1 and the instrument does not operate thereafter, the timer means 17 outputs a signal at t2 when a predetermined time T elapses. By inputting this signal, the control unit 14 collects the information in the storage unit 12 from the first communication unit 13 as shown in FIG. 5D even if the information in the storage unit 12 is not sufficiently accumulated. It transmits to the 1st communication means 15 provided in.

頻繁に使用することのない器具が配管3に接続されている場合でも、一定時間毎に通信が成立するため流量が無いということを確実に判断できるともに、通信系の状態確認も兼ねることでシステムの信頼性向上を図ることが可能になる。   Even when an instrument that is not used frequently is connected to the pipe 3, it is possible to reliably determine that there is no flow rate because communication is established at regular intervals, and also to check the status of the communication system. It is possible to improve the reliability.

説明ではタイマ手段を制御手段14に接続しているが、第2の通信手段を有する外部にタイマ手段14を設けて定期的に通信開始を外部から行うようにしても良い。   In the description, the timer means is connected to the control means 14, but the timer means 14 may be provided outside the second communication means to periodically start communication from the outside.

(実施の形態2)
実施の形態2に関する本発明の流速または流量計測装置について説明する。実施の形態1と異なるところは記憶手段12への情報蓄積方法である。
(Embodiment 2)
The flow velocity or flow rate measuring apparatus of the present invention relating to the second embodiment will be described. What is different from the first embodiment is an information storage method in the storage unit 12.

これは器具を使用する場所や使用する利用者によって、より器具判別に有用な情報を少ない量で蓄積し、通信することによって、器具判別の精度を高めるためである。   This is for increasing the accuracy of appliance discrimination by accumulating a small amount of information useful for appliance discrimination and communicating with the place where the appliance is used and the user using the appliance.

図1、図2、図4と図6を用いて説明する。図6で18は時刻をはかる計時手段である。   This will be described with reference to FIGS. 1, 2, 4 and 6. FIG. In FIG. 6, reference numeral 18 denotes time measuring means for measuring time.

実施の形態1で示したように流速または流量計測装置はガス配管や水道配管、その他種々の流体配管の上流に接続され、下流側の器具を判別するように通信を行っている。通常このような計測装置の下流側に設置されている器具は常に動作しているということは珍しく、動作と停止をくりかえしているものである。また家庭用の器具では停止していることの方が多いものもある。これらの動作時間の短い器具を的確に判別するためにはできるだけ情報を多く収集する必要ある。一方通信時間を考えるとあまり無意味な情報を長時間にわたって通信回線を占有して伝送するのは電力の問題だけで無く、通信資源の無駄使いにもなる。   As shown in the first embodiment, the flow velocity or flow rate measuring device is connected upstream of a gas pipe, a water pipe, and other various fluid pipes, and performs communication so as to discriminate a downstream instrument. Usually, it is rare that an instrument installed on the downstream side of such a measuring device is always in operation, and the operation and the stop are repeated. Some home appliances are often stopped. It is necessary to collect as much information as possible in order to accurately discriminate these instruments having a short operation time. On the other hand, considering the communication time, it is not only a problem of electric power but also a waste of communication resources that occupies a communication line for a long time and transmits it.

そこで、最適な情報をできるだけ短い情報量で伝送する方法を説明する。例えば、器具が使用されて流量が発生すると、通常流量計測は図4(b)のようにサンプリング間隔をもって動作している。時刻t0で流量のあることを流量演算手段41の結果より制御手段14が認識すると(c)のように記憶手段12にその情報を記憶していく。   Therefore, a method for transmitting optimum information with as short an information amount as possible will be described. For example, when an instrument is used and a flow rate is generated, the normal flow rate measurement is operated with a sampling interval as shown in FIG. When the control unit 14 recognizes that there is a flow rate at time t0 from the result of the flow rate calculation unit 41, the information is stored in the storage unit 12 as shown in (c).

その場合、時刻情報を計時手段18から入手し、例えば一つ目はM(0)=(t0、Q0)という具合に時刻と流量をセットで記憶する。第n個目の情報はM(n)=(tn,Qn)となる。そして記憶手段12に記憶された情報数が予め定めた個数、例えばn個たまると制御手段14は図4(d)のように、このM(0)からM(n)の情報をまとめて第1の通信手段13から外部に設けた第の通信手段15に送信する。   In that case, time information is obtained from the time measuring means 18, for example, the first stores the time and flow rate as a set such that M (0) = (t0, Q0). The nth information is M (n) = (tn, Qn). When the number of pieces of information stored in the storage unit 12 is accumulated, for example, n, the control unit 14 collects the information from M (0) to M (n) as shown in FIG. The data is transmitted from the first communication means 13 to the first communication means 15 provided outside.

使用時間を記憶するのでは無く、使用している時刻を情報として記憶しておくことで通信されてきた情報をもとに器具判別手段16は利用されている器具の推定が絞られ、さらに流量を見ることで器具判別の確度を高めることが可能になる。   Rather than memorize the usage time, the appliance discriminating means 16 narrows down the estimation of the appliance being used based on the information communicated by storing the time of use as information, and further the flow rate. By looking at, it becomes possible to improve the accuracy of appliance discrimination.

また、流量が発生すると流量演算手段41の結果を制御手段14は記憶手段12に記憶していくだけでなく、積算演算手段19で流れた流量の積算を行う。そして積算値を記憶手段12に記憶しておく。   When the flow rate is generated, the control unit 14 not only stores the result of the flow rate calculation unit 41 in the storage unit 12, but also integrates the flow rate flowing in the integration calculation unit 19. The integrated value is stored in the storage means 12.

積算流量が多く、流量が少ない場合と、同様に積算流量が多く、流量も多い場合では使用されている器具は別の可能性がある。給湯器などでは使用する流量は多いが、洗面で使用する場合などでは利用時間は短い。積算流量と利用時間を合わせて記憶し、これを第1の通信手段13におくり、外部の第2の通信手段15を介して器具判別手段16に伝送する。器具判別をする際に積算値があると使用時間だけでなく使用している途中経過も推定できるためより確度の高い器具判別が可能になる。   If the integrated flow rate is high and the flow rate is low, and if the integrated flow rate is high and the flow rate is high as well, there is another possibility that the instrument used is different. In hot water heaters and the like, the flow rate used is large, but the usage time is short when used in the bathroom. The integrated flow rate and the usage time are stored together, sent to the first communication means 13, and transmitted to the appliance discrimination means 16 via the external second communication means 15. If there is an integrated value when determining the appliance, it is possible to estimate not only the usage time but also the progress in use, so that the appliance can be determined with higher accuracy.

また、図7(a)のように流量が発生すると流量演算手段41の結果を制御手段14は記憶手段12に記憶していくが、通常流量計測は図7(b)のようにサンプリング間隔をもって動作している。時刻t0で流量のあることを流量演算手段41の結果より制御手段14が認識すると、サンプリング毎やもしくは一定サンプリング時間毎に記憶手段12へ図(c)のように情報を記憶していくと、一定流量で長時間流れている場合に非常に冗長な記憶となり、電力の無駄使いになる。そこで、図7(d)のように流量の変化幅がある範囲異常発生した場合にその時間もしくは時刻と流量を記憶手段12に送るようにする。   When the flow rate is generated as shown in FIG. 7A, the control unit 14 stores the result of the flow rate calculation unit 41 in the storage unit 12, but the normal flow rate measurement has a sampling interval as shown in FIG. 7B. It is working. When the control unit 14 recognizes that there is a flow rate at the time t0 from the result of the flow rate calculation unit 41, when information is stored in the storage unit 12 as shown in FIG. When it is flowing for a long time at a constant flow rate, it becomes a very redundant memory, which wastes power. Therefore, as shown in FIG. 7 (d), when an abnormality occurs in a certain range, the time or time and the flow rate are sent to the storage means 12.

例えば図7のt0で一つ目の情報としてはM(0)=(t0、Q0)、t1ではM(1)=(t1、Q1)、t2ではM(2)=(t2、Q2)という具合に時間または時刻と流量をセットで記憶する。第n個目の情報はM(n)=(tn,Qn)となる。そして記憶手段12に記憶された情報数が予め定めた個数、例えばn個たまると制御手段14はM(0)からM(n)の情報をまとめて第1の通信手段13から外部に設けた第の通信手段15に送信する。   For example, the first information at t0 in FIG. 7 is M (0) = (t0, Q0), at t1, M (1) = (t1, Q1), and at t2, M (2) = (t2, Q2). The time or time and flow rate are memorized as a set. The nth information is M (n) = (tn, Qn). When the number of information stored in the storage unit 12 is a predetermined number, for example, n, the control unit 14 collects information from M (0) to M (n) and provides the information from the first communication unit 13 to the outside. Transmit to the first communication means 15.

流量の変化した時だけ情報が記憶されるため伝送する情報量を少なくすることができ、その上的確な情報に絞り込めることが可能になる。   Since information is stored only when the flow rate changes, the amount of information to be transmitted can be reduced, and more accurate information can be narrowed down.

(実施の形態3)
実施の形態3に関する本発明の流速または流量計測装置について説明する。実施の形態1と異なるところは、第1の通信手段や計測をまとめる制御手段13の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体50を用いていることである。
(Embodiment 3)
A flow velocity or flow rate measuring apparatus of the present invention relating to Embodiment 3 will be described. The difference from the first embodiment is that a storage medium 50 having a program for causing a computer to function to ensure the operation of the first communication means and the control means 13 for collecting measurements is used.

図2において実施の形態1と実施の形態2で示した制御手段13の動作を行うには、予め実験等により通信状態を確立するまでの時間や、伝送のの出力変化、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求め、ソフトをプログラムとして記憶媒体50に格納しておく。   In order to perform the operation of the control means 13 shown in FIG. 2 according to the first and second embodiments, the time until the communication state is established in advance through experiments, the transmission output change, the secular change, the temperature change, etc. Correlation such as operation timing is obtained with respect to the stability of the system, and the software is stored in the storage medium 50 as a program.

また、記憶手段への記憶するタイミングなども柔軟に対応できるようなソフトとして記憶媒体50に格納しておくことができる。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。制御手段13の動作をプログラムで行うことができるようになると通信において送信受信の条件設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに器具判別用の通信内容品質の精度向上を行うことができる。なお本実施例において制御手段13以外の動作もマイコン等によりプログラムで行ってもよい。   Further, the timing of storing in the storage means can be stored in the storage medium 50 as software that can flexibly cope with it. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory. When the operation of the control means 13 can be carried out by a program, it is possible to easily set and change transmission / reception conditions in communication, and it is possible to flexibly cope with secular changes, etc., so that the communication content quality for instrument discrimination is more flexible The accuracy can be improved. In the present embodiment, operations other than the control means 13 may be performed by a program using a microcomputer or the like.

このように制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、これにより測定方法や通信手段の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上や器具判別の判定率向上を行うことができる。   In this way, it is configured to have a program for causing the computer to function as a control means, which makes it easy to set and change the operation of the measurement method and communication means, and to flexibly cope with aging etc. It is possible to improve the accuracy of measurement and improve the determination rate of instrument discrimination flexibly.

本発明の流速または流量計測装置は流量情報を一旦記憶手段に蓄積した後、その情報を間欠的に計測装置に設置した第1の通信手段と、外部に設置した第2の通信手段の間で流量情報を伝達し、外部の電力や演算装置を利用して器具判別を行うものである。   The flow velocity or flow rate measuring device according to the present invention temporarily stores the flow rate information in the storage unit, and then intermittently stores the information between the first communication unit installed in the measurement unit and the second communication unit installed outside. Flow rate information is transmitted, and appliance discrimination is performed using external power or a calculation device.

これによって、流路内部を流れる流体の流速または流量の情報を一旦記憶手段12に保存し、一括して第1の通信手段13を介して外部に通信し、そこで演算やデータベースなどの参照を行い、送られてきた情報を基にメータ1の下流側で使用されている器具4を判定することにより、計測装置内部に器具判別に必要な高性能の演算手段や、それを動作するために大規模な電源を設置する必要が無くなり、小型で計測を優先した装置の実現と、外部での精度の高い器具判別を実現することができる。   As a result, information on the flow velocity or flow rate of the fluid flowing in the flow path is temporarily stored in the storage means 12, and communicated to the outside via the first communication means 13 at once, where calculations and databases are referenced. By determining the instrument 4 used on the downstream side of the meter 1 based on the sent information, a high-performance computing means necessary for instrument discrimination inside the measuring device and a large amount of operation for operating it There is no need to install a large-scale power supply, and it is possible to realize a small-sized apparatus that prioritizes measurement and to perform highly accurate external instrument discrimination.

そして、流量情報を蓄積してから通信手段を動作するため、通信にかかる電力が低減でき、さらに第2の通信手段の受信負荷としても通信頻度が減っているために大幅に低減でき、大量通信による輻輳などの状態によるシステムの不安定さを回避でき、安定した通信品質を実現できる。   Since the communication means is operated after accumulating the flow rate information, the power required for communication can be reduced, and since the communication frequency is reduced as the reception load of the second communication means, it can be greatly reduced, and mass communication System instability due to congestion and other conditions can be avoided, and stable communication quality can be realized.

本発明の流速または流量計測装置の全体ブロック図Overall block diagram of the flow velocity or flow rate measuring device of the present invention 同流速または流量計測装置のブロック図Block diagram of the same flow rate or flow rate measuring device (a)同計測装置における計測制御手段の動作を示すタイミング図(b)同計測装置における送信波の動作を示すタイミング図(c)同計測装置における受信波の動作を示すタイミング図(d)同計測装置における遅延手段の動作を示すタイミング図(A) Timing diagram showing the operation of the measurement control means in the measuring device (b) Timing diagram showing the operation of the transmitted wave in the measuring device (c) Timing diagram showing the operation of the received wave in the measuring device (d) Timing chart showing operation of delay means in measuring device (a)本発明の実施の形態1における流量変化を示すタイミング図(b)同計測サンプリングを示すタイミング図(c)同記憶手段の動作を示すタイミング図(d)同第1の通信手段の動作を示すタイミング図(A) Timing diagram showing flow rate change in Embodiment 1 of the present invention (b) Timing diagram showing the measurement sampling (c) Timing diagram showing the operation of the storage means (d) Operation of the first communication means Timing diagram showing (a)同計測装置の流量変化を示すタイミング図(b)同計測サンプリングを示すタイミング図(c)同タイマ手段の動作を示すタイミング図(d)同第1の通信手段の動作を示すタイミング図(A) Timing diagram showing flow rate change of the measuring device (b) Timing diagram showing the measurement sampling (c) Timing diagram showing operation of the timer means (d) Timing diagram showing operation of the first communication means 同制御手段周辺の接続を示すブロック図Block diagram showing connections around the control means (a)本発明の実施の形態2における流量変化を示すタイミング図(b)同計測サンプリングを示すタイミング図(c)同記憶手段の動作を示すタイミング図(d)同記憶手段の動作を示すタイミング図(A) Timing diagram showing flow rate change in Embodiment 2 of the present invention (b) Timing diagram showing the measurement sampling (c) Timing diagram showing the operation of the storage means (d) Timing showing the operation of the storage means Figure 従来の器具判別装置の全体ブロック図Overall block diagram of a conventional instrument discrimination device 従来の器具判別装置のブロック図Block diagram of a conventional instrument discrimination device

符号の説明Explanation of symbols

2 ガスメータ
3 流路
4 器具
11 流体制御手段
12 記憶手段
13 第1の通信手段
14 制御手段
15 第2の通信手段
16 器具判別手段
17 タイマ手段
18 計時手段
19 積算演算手段
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
41 流量演算手段
43 電源
44 昇圧手段
45 電源制御手段
48 開閉手段
50 記憶媒体
Reference Signs List 2 Gas meter 3 Flow path 4 Instrument 11 Fluid control means 12 Storage means 13 First communication means 14 Control means 15 Second communication means 16 Instrument discrimination means 17 Timer means 18 Timing means 19 Accumulation calculation means 32 First vibrator 33 Second vibrator 34 Transmitting means 35 Receiving means 41 Flow rate calculating means 43 Power supply 44 Boosting means 45 Power supply control means 48 Opening / closing means 50 Storage medium

Claims (6)

被測定流体の流れる流路に配置した流速または流量を計測する流体計測手段と、前記流体計測手段の信号を蓄積する記憶手段と、外部と通信を行う第1の通信手段と、前記流体計測手段と前記第1の通信手段を制御する制御手段と、第1の通信手段と信号のやりとりする外部に設けた第2の通信手段と、前記第2の通信手段に接続し前記流路に配置された流体を使用している器具を判別する情報を有する器具判別手段を備えた流速または流量計測装置。 Fluid measuring means for measuring the flow velocity or flow rate arranged in the flow path of the fluid to be measured, storage means for storing signals of the fluid measuring means, first communication means for communicating with the outside, and the fluid measuring means And a control means for controlling the first communication means, a second communication means provided externally for exchanging signals with the first communication means, and connected to the second communication means and disposed in the flow path. A flow velocity or flow rate measuring device provided with appliance discriminating means having information for discriminating an appliance using a fluid. 予め定めた時間が経過すると記憶手段の信号を第1の通信手段から外部に設けた第2の通信手段に通信するタイマ手段を備えた請求項1記載の流速または流量計測装置。 2. The flow velocity or flow rate measuring device according to claim 1, further comprising timer means for communicating a signal of the storage means from the first communication means to a second communication means provided outside when a predetermined time has elapsed. 時間情報を出力する計時手段を備え、記憶手段には流体計測手段と前記計時手段の情報を蓄積する請求項1記載の流速または流量計測装置。 2. The flow velocity or flow rate measuring device according to claim 1, further comprising a time measuring unit for outputting time information, wherein the storage unit stores information on the fluid measuring unit and the time measuring unit. 積算流量を演算する積算手段を備え、記憶手段には流体計測手段と前記積算手段の情報を蓄積する請求項1記載の流速または流量計測装置。 The flow velocity or flow rate measuring device according to claim 1, further comprising an integrating unit for calculating the integrated flow rate, wherein the storage unit stores information on the fluid measuring unit and the integrating unit. 流速の変化点を検出する変化点検出手段を備え、記憶手段には流体計測手段と前記変化点検出手段の情報を蓄積する請求項1記載の流速または流量計測装置。 2. The flow velocity or flow rate measuring device according to claim 1, further comprising a change point detection means for detecting a change point of the flow velocity, wherein the storage means stores information on the fluid measurement means and the change point detection means. 請求項1から請求項5のいずれか1項記載の制御手段としてコンピュータを機能させるためのプログラム。 The program for functioning a computer as a control means of any one of Claims 1-5.
JP2005012285A 2005-01-20 2005-01-20 Instrument discrimination device Expired - Fee Related JP4293134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012285A JP4293134B2 (en) 2005-01-20 2005-01-20 Instrument discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012285A JP4293134B2 (en) 2005-01-20 2005-01-20 Instrument discrimination device

Publications (2)

Publication Number Publication Date
JP2006200800A true JP2006200800A (en) 2006-08-03
JP4293134B2 JP4293134B2 (en) 2009-07-08

Family

ID=36958963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012285A Expired - Fee Related JP4293134B2 (en) 2005-01-20 2005-01-20 Instrument discrimination device

Country Status (1)

Country Link
JP (1) JP4293134B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117846A (en) * 2009-12-03 2011-06-16 Yazaki Corp Gas usage status determining system and gas usage status determination method
WO2023286734A1 (en) * 2021-07-16 2023-01-19 パナソニックIpマネジメント株式会社 Gas meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117846A (en) * 2009-12-03 2011-06-16 Yazaki Corp Gas usage status determining system and gas usage status determination method
WO2023286734A1 (en) * 2021-07-16 2023-01-19 パナソニックIpマネジメント株式会社 Gas meter

Also Published As

Publication number Publication date
JP4293134B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5402620B2 (en) Flow measuring device
JP4591249B2 (en) Flowmeter
CN101529217B (en) Flow rate measuring device and gas supply system employing it, method for specifying gas appliance
KR100937076B1 (en) Flow rate measurement device
EP2074387B1 (en) Flow rate measurement device
KR100440759B1 (en) Flow rate measuring device
JP4241630B2 (en) Gas meter having gas appliance discrimination function and gas appliance
JPWO2005083372A1 (en) Ultrasonic flowmeter compatible with both pulse Doppler method and propagation time difference method, method and program for automatically selecting measurement method in the flowmeter, and electronic device for the flowmeter
JP2007187506A (en) Ultrasonic flowmeter
JP4293134B2 (en) Instrument discrimination device
JP2006292377A (en) Ultrasonic type gas meter
JP2007024811A (en) Instrument for measuring flow velocity or flow rate, and measuring program therefor
JP2007024812A (en) Instrument for measuring flow velocity or flow rate, and measuring program therefor
JP4581879B2 (en) Flow velocity or flow rate measuring device
JP2000146662A (en) Device for measuring quantity of flow
JP4306618B2 (en) Instrument discrimination device
JP4266117B2 (en) Ultrasonic flow meter
JP3666725B2 (en) Flow rate measuring method and apparatus, and electronic gas meter
CN113155323A (en) Energy meter and method for detecting heat or cold
JP2008275465A (en) Flow measuring apparatus, program of the same, flow measuring method, and fluid supply system
JP2001281031A (en) Multifunctional type ultrasonic gas meter
JP2007024752A (en) Gas meter unit
JP2007080753A (en) Fluid density detection device and fluid density detection method
JP2010160005A (en) Flow rate measurement apparatus
JP4689278B2 (en) Flow velocity or flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees