JP2006196798A - Method of inspecting thin film solar cell - Google Patents

Method of inspecting thin film solar cell Download PDF

Info

Publication number
JP2006196798A
JP2006196798A JP2005008480A JP2005008480A JP2006196798A JP 2006196798 A JP2006196798 A JP 2006196798A JP 2005008480 A JP2005008480 A JP 2005008480A JP 2005008480 A JP2005008480 A JP 2005008480A JP 2006196798 A JP2006196798 A JP 2006196798A
Authority
JP
Japan
Prior art keywords
thin film
solar cell
semiconductor thin
film solar
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008480A
Other languages
Japanese (ja)
Inventor
Kimihiko Kitani
王彦 木谷
Hironobu Inoue
浩伸 井上
Shinichi Shimakawa
伸一 島川
Yasuhito Takahashi
康仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005008480A priority Critical patent/JP2006196798A/en
Publication of JP2006196798A publication Critical patent/JP2006196798A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting a thin film solar cell capable of executing total inspection on a p-type semiconductor thin film such as a CIS thin film and CIGS thin film. <P>SOLUTION: A conductive film, p-type compound semiconductor thin film as a light absorbing layer, n-type semiconductor thin film, and a transparent conductive film are sequentially formed on a substrate to manufacture a thin film solar. After forming the p-type compound semiconductor thin film in that process, the surface area along a surface contour of the arbitrary region is measured, which is compared to the area of a flat surface specified by the profile of the arbitrary region. The p-type compound semiconductor thin film is determined to be a good product when the area ratio of the surface area against the flat surface is larger than 1 while equal to or less than a specified value, for example ≤1.3. So, the p-type compound semiconductor thin film is evaluated in total number by nondestructive manner in a short time, to predict the solar cell characteristics of a thin-film solar cell formed like this. Whether a higher conversion efficiency is available or not is determined at high accuracy, for improved yield. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄膜太陽電池の検査方法に関し、特にカルコパイライト型化合物半導体薄膜を光吸収層に用いる薄膜太陽電池の検査方法に関するものである。   The present invention relates to a method for inspecting a thin film solar cell, and more particularly to a method for inspecting a thin film solar cell using a chalcopyrite type compound semiconductor thin film as a light absorption layer.

従来の薄膜太陽電池に、I族、III族、VI族元素からなるI−III−VI型のカルコパイライト型化合物半導体薄膜を光吸収層に用いた薄膜太陽電池、具体的にはCuInSe(CISと呼ばれる)またはCu(In,Ga)Se(CIGSと呼ばれる)を光吸収層に用いた薄膜太陽電池がある。 A thin-film solar cell using, as a light-absorbing layer, a conventional thin-film solar cell using an I-III-VI 2 type chalcopyrite compound semiconductor thin film composed of Group I, Group III, and Group VI elements, specifically CuInSe 2 ( There is a thin film solar cell using a light absorption layer of CIS) or Cu (In, Ga) Se 2 (referred to as CIGS).

図6はCuInSe(CIS)薄膜太陽電池の代表的な構造を形成する製造工程を示す。ガラス基板1上に導電膜2としてのMo電極膜が形成され、その上にp型化合物半導体薄膜(以下p型半導体薄膜と言う)3としてのCIS半導体薄膜(以下CIS薄膜と言う)と、n型半導体薄膜4としてのZnO/CdS膜と、透明導電膜5としてのITO透明導電膜とがこの順に形成される。この積層構造に透明導電膜5側から光が入射した時に、主にp型半導体薄膜3で吸収され、吸収された光のエネルギーによりキャリアが発生し、pn接合の電界によって光起電力が発生するので、この電力が導電膜2と透明導電膜5から取り出される。 FIG. 6 shows a manufacturing process for forming a typical structure of a CuInSe 2 (CIS) thin film solar cell. A Mo electrode film as a conductive film 2 is formed on a glass substrate 1, and a CIS semiconductor thin film (hereinafter referred to as a CIS thin film) 3 as a p-type compound semiconductor thin film (hereinafter referred to as a p-type semiconductor thin film) 3 is formed thereon, n A ZnO / CdS film as the type semiconductor thin film 4 and an ITO transparent conductive film as the transparent conductive film 5 are formed in this order. When light enters the laminated structure from the transparent conductive film 5 side, the light is absorbed mainly by the p-type semiconductor thin film 3, and carriers are generated by the energy of the absorbed light, and a photovoltaic power is generated by the electric field of the pn junction. Therefore, this electric power is taken out from the conductive film 2 and the transparent conductive film 5.

CIS薄膜太陽電池の製造方法を特許文献1に基づいて、図7のフローチャートをも参照しながら詳述する。
ガラス基板1を洗浄し(ステップS11)、その上に導電膜2としてのMo電極膜をスパッタリング法によって厚さ0.5μmとなるように形成する(ステップS12)。
A method for producing a CIS thin film solar cell will be described in detail with reference to Patent Document 1 with reference to the flowchart of FIG.
The glass substrate 1 is cleaned (step S11), and a Mo electrode film as the conductive film 2 is formed thereon by a sputtering method so as to have a thickness of 0.5 μm (step S12).

導電膜2上にp型半導体薄膜3としてのCIS薄膜を厚さ1〜4μmとなるように形成する(ステップS13)。このCIS薄膜は、たとえば非特許文献1に記載されているようにスパッタ法や多元同時蒸着法で形成するのであるが、いずれの方法を用いる場合も構成元素であるCu、In、Seの組成を制御することが重要であり、この組成が太陽電池特性を決定する要因となっていることが知られている。たとえば、Cu(I族元素)とIn(III族元素)との組成比Cu/Inが1以上である場合、CIS薄膜にCu−Se相が析出する。Cu−Se相は低抵抗であるため、シャントが起こり、太陽電池特性はほとんどの場合において変換効率が0.1%未満になってしまう。そのため、Cu/Inが1未満になるように成膜工程を制御する。   A CIS thin film as a p-type semiconductor thin film 3 is formed on the conductive film 2 so as to have a thickness of 1 to 4 μm (step S13). This CIS thin film is formed, for example, by sputtering or multi-source co-evaporation as described in Non-Patent Document 1, but the composition of Cu, In, and Se, which are constituent elements, is used in any method. It is known that control is important, and this composition is a factor determining solar cell characteristics. For example, when the composition ratio Cu / In between Cu (Group I element) and In (Group III element) is 1 or more, a Cu—Se phase is deposited on the CIS thin film. Since the Cu—Se phase has a low resistance, a shunt occurs, and in most cases, the conversion efficiency of the solar cell characteristics is less than 0.1%. Therefore, the film forming process is controlled so that Cu / In is less than 1.

成膜終了後にCIS薄膜の検査を行う(ステップS14)。一般にはCIS薄膜の組成測定を行うのであるが、特許文献1では、複数枚形成したCIS薄膜のうち1枚をテストピースとしてフォトルミネッセンス測定を行い、発光ピークの強度によって良品、不良品を判定している。   After the film formation is completed, the CIS thin film is inspected (step S14). Generally, the composition measurement of a CIS thin film is performed. However, in Patent Document 1, photoluminescence measurement is performed using one of a plurality of CIS thin films formed as a test piece, and a non-defective product or a defective product is determined based on the intensity of the emission peak. ing.

検査で良品と判定されたCIS薄膜の上に、n型半導体薄膜4としてのZnO/CdS膜を厚さ数百nmとなるように形成する(ステップS15)。その際には、CdS膜をCBD法で形成した後にZnO膜をスパッタ法で形成する。最後に、透明導電膜5としてのITO透明導電膜を厚さ500nmとなるようにスパッタリング法で形成する(ステップS16)。
特許第2984114号公報 小長井誠 編著、「薄膜太陽電池の基礎と応用−環境にやさしい太陽光発電の新しい展開」、オーム社、2001年3月20日(第5章p175−212)
A ZnO / CdS film as the n-type semiconductor thin film 4 is formed on the CIS thin film determined to be non-defective in the inspection so as to have a thickness of several hundred nm (step S15). In that case, after the CdS film is formed by the CBD method, the ZnO film is formed by the sputtering method. Finally, an ITO transparent conductive film as the transparent conductive film 5 is formed by sputtering so as to have a thickness of 500 nm (step S16).
Japanese Patent No. 2984114 Edited by Makoto Konagai, “Fundamentals and Applications of Thin-film Solar Cells: New Developments in Environmentally Friendly Solar Power Generation”, Ohmsha, March 20, 2001 (Chapter 5, p175-212)

特許文献1にも述べられていることであるが、CIS薄膜の検査工程で組成測定によって良品と判断されても、最終工程まで終えた太陽電池で変換効率が0.1%未満となるものがある。組成測定によってはCIS薄膜の太陽電池特性を十分に評価できないのである。特許文献1に提案されたフォトルミネッセンス測定により、CIS薄膜について、変換効率が約10%となるものと0.1%となるものとの区別が可能となった。   Although it is described also in patent document 1, even if it is judged that it is a non-defective product by the composition measurement in the inspection process of the CIS thin film, the conversion efficiency is less than 0.1% in the solar cell that has been completed up to the final process. is there. Depending on the composition measurement, the solar cell characteristics of the CIS thin film cannot be fully evaluated. According to the photoluminescence measurement proposed in Patent Document 1, it was possible to distinguish between a CIS thin film having a conversion efficiency of about 10% and a conversion efficiency of 0.1%.

しかし実際の量産工程で変換効率0.1%のCIS薄膜が形成されることはほとんど無く、フォトルミネッセンス測定による区別は、CIS薄膜太陽電池として良品となるか否かの予測には十分でない。さらに、光吸収層としてCIGS薄膜を用いたCIGS薄膜太陽電池ではCIS薄膜太陽電池よりも高い変換効率が得られ、その量産工程で変換効率は8%以上となり、変換効率が1%未満となることはほとんど無い。CIGS薄膜太陽電池の良品率を向上させるためには、CIGS薄膜の検査工程において変換効率が8%以上になるか否かを高い確率で予測することが必要である。その方法としてフォトルミネッセンス測定を適用することは適切ではない。   However, a CIS thin film with a conversion efficiency of 0.1% is rarely formed in an actual mass production process, and the distinction by photoluminescence measurement is not sufficient for predicting whether or not a CIS thin film solar cell is a good product. Furthermore, a CIGS thin film solar cell using a CIGS thin film as a light absorption layer has higher conversion efficiency than a CIS thin film solar cell, and the conversion efficiency is 8% or more in the mass production process, and the conversion efficiency is less than 1%. There is almost no. In order to improve the yield rate of CIGS thin film solar cells, it is necessary to predict with high probability whether or not the conversion efficiency will be 8% or more in the inspection process of the CIGS thin film. It is not appropriate to apply photoluminescence measurement as the method.

またフォトルミネッセンス測定による検査工程では、上述したように、複数枚形成されたCIS薄膜の内の1枚をテストピースとして検査を行っている。これは次のような理由による。バンドギャップ内の欠陥準位の状態をより正確に示すフォトルミネッセンススペクトルを得るためには、熱の影響を減らす目的で、被検体を液体窒素に浸漬して77Kに冷却するか、あるいは液体ヘリウムに浸漬して4.2Kに冷却する必要がある。被検体をこのような極低温に冷却した後に室温に戻すと収縮と膨張とによって内部破壊が起こり、その後の工程を行っても太陽電池として機能しないことがある。被検体が太陽電池パネルとして利用される10cm以上のものである場合には、極低温まで冷却することは現状では困難である。しかしこのようにテストピースによる検査であるため、つまり全数検査ではないため、この段階で良品と判断されても完成品としての薄膜太陽電池で十分な太陽電池特性が得られないことがあり、良品率の向上に十分でない。 Further, in the inspection process by photoluminescence measurement, as described above, one of the plurality of CIS thin films formed is inspected as a test piece. This is due to the following reason. In order to obtain a photoluminescence spectrum that more accurately shows the state of the defect level in the band gap, the object is immersed in liquid nitrogen and cooled to 77K or reduced to liquid helium for the purpose of reducing the influence of heat. It is necessary to immerse and cool to 4.2K. When the specimen is cooled to such an extremely low temperature and then returned to room temperature, internal destruction occurs due to shrinkage and expansion, and the subsequent process may not function as a solar cell. In the case where the subject is 10 cm 2 or more used as a solar cell panel, it is difficult to cool to a very low temperature. However, because it is an inspection with a test piece in this way, that is, it is not a total inspection, even if it is judged as a good product at this stage, sufficient solar cell characteristics may not be obtained with a thin film solar cell as a finished product. Not enough to improve the rate.

本発明は上記問題に鑑み、CIS薄膜などのp型半導体薄膜を全数検査して太陽電池特性を予測できる薄膜太陽電池の検査方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a thin-film solar cell inspection method capable of predicting solar cell characteristics by inspecting all p-type semiconductor thin films such as CIS thin films.

上記目的を達成するために、本発明の薄膜太陽電池の検査方法は、基板上に導電膜と光吸収層としてのp型化合物半導体薄膜とn型半導体薄膜と透明導電膜とを順次に形成して薄膜太陽電池を製造する際の検査方法であって、前記p型化合物半導体薄膜の形成後に、その任意領域の表面凹凸形状に沿う表面積を測定し、前記任意領域の外形で規定される平坦面の面積と比較し、前記平坦面に対する前記表面積の面積比が1より大きく所定値以下である時に前記p型化合物半導体薄膜を良品と判定することを特徴とする。これによれば、p型化合物半導体薄膜を短時間に、非破壊で、したがって検査対象品の全数を評価して、当該化合物半導体薄膜を用いて形成される薄膜太陽電池の太陽電池特性を高い確度で予測可能である。   In order to achieve the above object, a method for inspecting a thin film solar cell according to the present invention comprises sequentially forming a conductive film, a p-type compound semiconductor thin film as a light absorption layer, an n-type semiconductor thin film, and a transparent conductive film on a substrate. A flat surface defined by the outer shape of the arbitrary region by measuring the surface area along the surface irregularity shape of the arbitrary region after the formation of the p-type compound semiconductor thin film. When the area ratio of the surface area to the flat surface is greater than 1 and less than or equal to a predetermined value, the p-type compound semiconductor thin film is determined to be non-defective. According to this, the p-type compound semiconductor thin film is non-destructive in a short time, and therefore the total number of products to be inspected is evaluated, and the solar cell characteristics of the thin film solar cell formed using the compound semiconductor thin film are highly accurate. Is predictable.

所定値として1.3を用いることにより、変換効率が10%以上となる薄膜太陽電池を得ることが可能となる。
表面積の測定は原子間力顕微鏡により好適に行うことができる。原子間力顕微鏡の走査間隔は10−3μm以上、10−1μm以下とするのが好ましい。走査間隔が10−1μm以下であれば十分に精度よい表面積測定が可能であり、その一方で10−3μm未満であれば測定時間が長くなりすぎるためである。
By using 1.3 as the predetermined value, it is possible to obtain a thin film solar cell having a conversion efficiency of 10% or more.
The measurement of the surface area can be suitably performed with an atomic force microscope. The scanning interval of the atomic force microscope is preferably 10 −3 μm or more and 10 −1 μm or less. This is because sufficiently accurate surface area measurement is possible if the scanning interval is 10 −1 μm or less, and if the scanning interval is less than 10 −3 μm, the measurement time becomes too long.

任意領域の平坦面積は10μm以上、10μm以下とするのが好ましい。10μm以上であれば、その領域内にCIGS薄膜の結晶粒子(一般に数百nmから数μm)が少なくとも数個存在するためCIGS薄膜を十分に代表できるからであり、その一方で10μmを超えると測定時間が長くなりすぎるためである。 The flat area of the arbitrary region is preferably 10 μm 2 or more and 10 6 μm 2 or less. If it is 10 μm 2 or more, since there are at least several crystal particles (generally several hundred nm to several μm) of the CIGS thin film in the region, the CIGS thin film can be sufficiently represented, while 10 6 μm 2 This is because the measurement time becomes too long when the value exceeds.

本発明の薄膜太陽電池の検査方法によれば、光吸収層として用いるp型化合物半導体薄膜を製膜した後にその任意領域の表面積を測定することにより、それ以降の工程を行うことなく、薄膜太陽電池の変換効率を高い確度で予測することができる。表面積の測定は非破壊で行えるため全数検査が可能であり、不良品と判定された場合にはその段階で排除すればよいので、薄膜太陽電池の良品率を向上させることができる。   According to the method for inspecting a thin film solar cell of the present invention, after forming a p-type compound semiconductor thin film to be used as a light absorption layer, the surface area of the arbitrary region is measured, so that the thin film solar can be obtained without performing the subsequent steps. The conversion efficiency of the battery can be predicted with high accuracy. Since the surface area can be measured in a non-destructive manner, 100% inspection is possible. If it is determined that the product is defective, it can be eliminated at that stage, so that the yield rate of thin film solar cells can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明の検査方法を実施する薄膜太陽電池は、先に図6を用いて説明した従来のものと同様の構造を有するので、図6を援用して説明する。ただし光吸収層として機能するp型半導体薄膜3は、Cu(In,Ga)Se(CIGS)薄膜を形成するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Since the thin film solar cell for carrying out the inspection method of the present invention has the same structure as the conventional one described above with reference to FIG. 6, it will be described with reference to FIG. Where p-type semiconductor thin film 3 functioning as a light absorbing layer is intended to form the Cu (In, Ga) Se 2 (CIGS) thin film.

CIGS薄膜太陽電池においては、ガラス基板1上に導電膜2としてのMo電極膜が形成され、その上にp型半導体薄膜3としてのCIGS半導体薄膜(以下CIGS薄膜と言う)と、n型半導体薄膜4としてのZnO/CdS膜と、透明導電膜5としてのITO透明導電膜とがこの順に形成される。   In a CIGS thin film solar cell, a Mo electrode film as a conductive film 2 is formed on a glass substrate 1, and a CIGS semiconductor thin film (hereinafter referred to as a CIGS thin film) as a p-type semiconductor thin film 3 and an n-type semiconductor thin film are formed thereon. The ZnO / CdS film as 4 and the ITO transparent conductive film as the transparent conductive film 5 are formed in this order.

CIGS薄膜太陽電池の製造方法を図1のフローチャートをも参照しながら詳述する。
ガラス基板1を洗浄した後(ステップS1)、その上に導電膜2としてのMo電極膜をスパッタリング法によって厚さ0.5μmとなるように形成し(ステップS2)、さらにその上にp型半導体薄膜3としてのCIGS薄膜を多元同時蒸着法により膜厚約3μmとなるように形成する(ステップS3)。
The manufacturing method of a CIGS thin film solar cell will be described in detail with reference to the flowchart of FIG.
After cleaning the glass substrate 1 (step S1), a Mo electrode film as a conductive film 2 is formed thereon by a sputtering method so as to have a thickness of 0.5 μm (step S2), and a p-type semiconductor is further formed thereon. A CIGS thin film as the thin film 3 is formed to have a film thickness of about 3 μm by the multi-source simultaneous vapor deposition method (step S3).

形成したCIGS薄膜の検査を後述するようにして行う(ステップS4)。検査で良品と判定されたCIGS薄膜の上にのみ、n型半導体薄膜4としてのZnO/CdS膜を厚さ数百nmとなるように形成する(ステップS5)。その際には、CdS膜をCBD法で形成した後にZnO膜をスパッタ法で形成する。最後に、透明導電膜5としてのITO透明導電膜を厚さ500nmとなるようにスパッタリング法で形成する(ステップS6)。   The formed CIGS thin film is inspected as described later (step S4). A ZnO / CdS film as the n-type semiconductor thin film 4 is formed so as to have a thickness of several hundred nm only on the CIGS thin film determined to be non-defective by the inspection (step S5). In that case, after the CdS film is formed by the CBD method, the ZnO film is formed by the sputtering method. Finally, an ITO transparent conductive film as the transparent conductive film 5 is formed by sputtering so as to have a thickness of 500 nm (step S6).

CIGS薄膜の検査方法について説明する。
まず、CIGS薄膜の化学組成の測定を蛍光X線分析装置を用いて非破壊的に行う。
ここではCIGS薄膜について、I族元素のCuとIII族元素のInおよびGaとの組成比Cu/(In+Ga)=0.90〜0.98となり、1以下であることが確認された。この段階でCu/(In+Ga)が1より大きいと、CIGS相の他に異相としてCu−Se相が主にCIGS薄膜の表面に形成される。Cu−Se相は低抵抗であるためシャントの原因となり、Cu−Se相が存在するCu/(In+Ga)>1のCIGS薄膜を備えたCIGS薄膜太陽電池はほとんどの場合、変換効率0.1%未満となる。このため、Cu/(In+Ga)>1であるCIGS薄膜は不良品と判定し、それ以降の工程は行わない。
A method for inspecting a CIGS thin film will be described.
First, the chemical composition of the CIGS thin film is measured nondestructively using a fluorescent X-ray analyzer.
Here, for the CIGS thin film, the composition ratio Cu / (In + Ga) = 0.90 to 0.98 of the group I element Cu and the group III element In and Ga was confirmed to be 1 or less. If Cu / (In + Ga) is greater than 1 at this stage, a Cu—Se phase is formed mainly on the surface of the CIGS thin film as a different phase in addition to the CIGS phase. Since the Cu—Se phase has a low resistance, it causes a shunt, and in most cases, the CIGS thin film solar cell including the CIGS thin film with Cu / (In + Ga)> 1 in which the Cu—Se phase is present has a conversion efficiency of 0.1%. Less than. For this reason, the CIGS thin film with Cu / (In + Ga)> 1 is determined as a defective product, and the subsequent steps are not performed.

次に、CIGS薄膜の表面積測定を原子間力顕微鏡を用いて行う。
ここでは、原子間力顕微鏡(日本電子(JEOL)社製、JSPM-5700)を用い、測定領域10μm×10μm内を512ラインにて走査することで表面積測定を行った。この走査間隔は約0.02μm(10μm/512ライン≒0.02μm)に相応する。なお「表面積」とは、CIGS薄膜の上面、つまり次工程でその上にZnO/CdS膜が積層される面の面積である。Mo電極膜に密着した面は含まれない。
Next, the surface area of the CIGS thin film is measured using an atomic force microscope.
Here, an atomic force microscope (manufactured by JEOL, JSPM-5700) was used, and the surface area was measured by scanning the measurement region 10 μm × 10 μm with 512 lines. This scanning interval corresponds to about 0.02 μm (10 μm / 512 lines≈0.02 μm). The “surface area” is the area of the upper surface of the CIGS thin film, that is, the surface on which the ZnO / CdS film is laminated in the next step. The surface closely attached to the Mo electrode film is not included.

原子間力顕微鏡による表面積測定の原理は次の通りである。
図2に示すように、CIGS薄膜3aの上面の任意の測定領域a(μm)×b(μm)をmライン走査し、各ラインについて所定の間隔をおいたn箇所で高さデータを取得する。この場合、測定領域内に桝目状にm×n個の測定点Pが存在することになる。
The principle of surface area measurement with an atomic force microscope is as follows.
As shown in FIG. 2, an arbitrary measurement region a (μm) × b (μm) on the upper surface of the CIGS thin film 3a is scanned by m lines, and height data is acquired at n positions with a predetermined interval for each line. . In this case, there are m × n measurement points P in a grid shape in the measurement region.

任意の測定点Pi,jの座標を(xi,j,yi,j,zi,j)(ただし、i=1〜m−1,j=1〜n−1)とし、隣接する3点(Pi,j,Pi+1,j,Pi,j+1)、3点(Pi+1,j,Pi,j+1,Pi+1,j+1)をそれぞれ頂点とする三角形の面積をSai,j、Sbi,jとすると、測定領域の表面積Ssは次の式(1)で表わされる。 The coordinates of an arbitrary measurement point P i, j are (x i, j , y i, j , z i, j ) (where i = 1 to m−1, j = 1 to n−1) and are adjacent to each other. Sa i, j is the area of a triangle with three points (P i, j , P i + 1, j , P i, j + 1 ) and three points (P i + 1, j , P i, j + 1 , P i + 1, j + 1 ) as vertices, respectively. , Sb i, j , the surface area Ss of the measurement region is expressed by the following equation (1).

Figure 2006196798
表面積測定が終了したら、測定領域の「表面積」に対する「平坦面積」の比を算出する。ここで「平坦面積」とは凹凸の全く無い理想的な平面の面積を言い、測定領域が上記した寸法の長方形であれば、平坦面積Sf=a×b(μm)で表される。
Figure 2006196798
When the surface area measurement is completed, the ratio of the “flat area” to the “surface area” of the measurement region is calculated. Here, “flat area” means an area of an ideal plane having no irregularities, and is expressed by a flat area Sf = a × b (μm 2 ) if the measurement region is a rectangle having the dimensions described above.

その後に、算出された「表面積/平坦面積比」、すなわちSs/Sfに基づいて、良品、不良品を判定する。「表面積/平坦面積比」が1より大きく且つ所定の値以下の時に、CIGS薄膜を良品と判定する。   Thereafter, a non-defective product and a defective product are determined based on the calculated “surface area / flat area ratio”, that is, Ss / Sf. When the “surface area / flat area ratio” is greater than 1 and less than or equal to a predetermined value, the CIGS thin film is determined to be non-defective.

図3は、複数のCIGS薄膜の表面積測定を行い、各CIGS薄膜にそれ以降の工程を行って作製したCIGS薄膜太陽電池について、I−V特性の測定結果より得られる逆飽和電流密度Jと、表面積測定結果より得られる「表面積/平坦面積比」との相関を示したものである。図4は、「表面積/平坦面積比」とCIGS薄膜太陽電池の変換効率Eff.との相関を示す。 FIG. 3 shows the reverse saturation current density J 0 obtained from the measurement results of IV characteristics for CIGS thin film solar cells prepared by performing surface area measurement of a plurality of CIGS thin films and performing subsequent steps on each CIGS thin film. The correlation with the “surface area / flat area ratio” obtained from the surface area measurement results is shown. FIG. 4 shows the “surface area / flat area ratio” and the conversion efficiency Eff. The correlation is shown.

逆飽和電流密度J(A/cm)の求め方を説明する。
図5に示す薄膜太陽電池の等価回路において、太陽電池の両端子で測定される電流密度Jと電圧Vとの関係は以下の式(2)で表すことができる。
A method for obtaining the reverse saturation current density J 0 (A / cm 2 ) will be described.
In the equivalent circuit of the thin film solar cell shown in FIG. 5, the relationship between the current density J and the voltage V measured at both terminals of the solar cell can be expressed by the following equation (2).

Figure 2006196798
[式中、Jscは短絡電流密度、Rsは直列抵抗、Rshは並列抵抗、qは電子電荷(C)、nはダイオード因子、kはボルツマン定数1.38×10E-23,Tは絶対温度(K)である]
電流Iと電流密度Jの関係は、太陽電池の受光面積をSとすると、I/S=Jとなる。したがって、J値は、CIGS薄膜太陽電池のI−V測定を行い、得られたI−Vカーブを式(2)にフィッティングすることで求めることができる。
Figure 2006196798
[ Where J sc is the short-circuit current density, R s is the series resistance, R sh is the parallel resistance, q is the electronic charge (C), n is the diode factor, k is the Boltzmann constant 1.38 × 10E −23 , T is the absolute temperature (K)]
The relationship between the current I and the current density J is I / S = J, where S is the light receiving area of the solar cell. Thus, J 0 value performs I-V measurements of the CIGS thin film solar cell, the I-V curve obtained can be determined by fitting to the equation (2).

逆飽和電流密度J等の太陽電池特性と「表面積/平坦面積比」との関係を説明する。
CIGS薄膜太陽電池では、p型のCIGS薄膜とn型のZnO/CdS膜との界面にpn接合が形成される。pn接合は、太陽電池において照射光によって生成したキャリアを分離し、光起電力を生むための最も重要な要素である。pn接合の界面に欠陥が存在すると、キャリアの再結合が起こり、逆飽和電流が流れる。逆飽和電流値が大きくなると、太陽電池特性は低下する。
The relationship between the solar cell characteristics such as the reverse saturation current density J 0 and the “surface area / flat area ratio” will be described.
In the CIGS thin film solar cell, a pn junction is formed at the interface between the p-type CIGS thin film and the n-type ZnO / CdS film. The pn junction is the most important element for separating the carriers generated by the irradiation light in the solar cell and generating photovoltaic power. If there is a defect at the interface of the pn junction, carrier recombination occurs and a reverse saturation current flows. When the reverse saturation current value increases, the solar cell characteristics deteriorate.

pn接合の接合面積(界面の面積)はCIGS薄膜の表面積に相当する。単位接合面積あたりの欠陥量が均一であれば、接合面積(表面積)が広いほど欠陥量も多くなり、逆飽和電流値も大きくなる。しかるに、CIGS薄膜の結晶粒子のサイズが小さいと表面積は一般に大きくなり、また結晶粒子のサイズが小さくなるような不適当な条件下で形成されたCIGS薄膜は単位表面積あたりの欠陥量も多くなると考えられる。つまり、表面積が大きいCIGS薄膜では、単位表面積あたりの欠陥量も大きくなるため、相乗的に逆飽和電流値が大きくなり、太陽電池特性は低下する。   The junction area (area of the interface) of the pn junction corresponds to the surface area of the CIGS thin film. If the amount of defects per unit bonding area is uniform, the larger the bonding area (surface area), the larger the amount of defects and the larger the reverse saturation current value. However, when the size of the crystal particles of the CIGS thin film is small, the surface area is generally large, and the CIGS thin film formed under an inappropriate condition such that the size of the crystal particles is small is considered to increase the amount of defects per unit surface area. It is done. That is, in the CIGS thin film having a large surface area, the amount of defects per unit surface area also increases, so the reverse saturation current value increases synergistically and the solar cell characteristics deteriorate.

再び図3および図4を参照すると、図3では「表面積/平坦面積比」が増大するにしたがって逆飽和電流密度Jが増大している。図4では「表面積/平坦面積比」が増大するにしたがって変換効率Eff.が減少している。これら図3および図4においては、「表面積/平坦面積比」が接合面積に対応し、それが小さいほど逆飽和電流密度Jは小さくなり、その結果として変換効率Eff.が高くなったと考えられる。したがって、表面積測定を行うことにより、その後の工程を行って作製される薄膜太陽電池の太陽電池特性を予測することが可能である。 Referring to FIGS. 3 and 4 again, in FIG. 3, the reverse saturation current density J 0 increases as the “surface area / flat area ratio” increases. In FIG. 4, as the “surface area / flat area ratio” increases, the conversion efficiency Eff. Is decreasing. 3 and 4, the “surface area / flat area ratio” corresponds to the junction area, and the smaller the value is, the smaller the reverse saturation current density J 0 becomes. As a result, the conversion efficiency Eff. It is thought that became higher. Therefore, by measuring the surface area, it is possible to predict the solar cell characteristics of a thin film solar cell manufactured by performing the subsequent steps.

図4に基づくと、変換効率が14%以上の高効率の薄膜太陽電池を得るためには、「表面積/平坦面積比」が1.2以下である必要がある。変換効率が10%以上の薄膜太陽電池を得るためには、「表面積/平坦面積比」が1.3以下であればよい。「表面積/平坦面積比」が1.3より大きいと、変換効率が10%未満となってしまい、変換効率が10%以上の太陽電池と接続して使用するのに十分な電力を得ることができず、太陽電池としての利用が難しい。   According to FIG. 4, in order to obtain a highly efficient thin film solar cell with a conversion efficiency of 14% or more, the “surface area / flat area ratio” needs to be 1.2 or less. In order to obtain a thin film solar cell having a conversion efficiency of 10% or more, the “surface area / flat area ratio” may be 1.3 or less. If the “surface area / flat area ratio” is greater than 1.3, the conversion efficiency is less than 10%, and sufficient power can be obtained to connect to a solar cell having a conversion efficiency of 10% or more. It cannot be used as a solar cell.

このようにして、CIGS薄膜の製膜後に表面積測定する検査を行うことにより、好ましくはCIGS薄膜の全数に対して検査を行うことにより、その後の工程を行って作製されるCIGS薄膜太陽電池の変換効率を高い確率で予測可能であり、例えば14%以上のCIGS薄膜太陽電池が得られる可能性のあるCIGS薄膜であるかを判断することができる。   Thus, by performing the inspection to measure the surface area after forming the CIGS thin film, preferably by performing the inspection on the total number of CIGS thin films, the conversion of the CIGS thin film solar cell produced by performing the subsequent steps The efficiency can be predicted with a high probability. For example, it is possible to determine whether the CIGS thin film has a possibility of obtaining a CIGS thin film solar cell of 14% or more.

判断結果に基づいてその後の工程を行わないなどの対処をすることにより、工程ロスによる無駄をなくすことができ、CIGS薄膜の製膜プロセスへのフィードバックも可能となり、良品率を飛躍的に向上させることが可能である。   By taking measures such as not performing subsequent processes based on the judgment results, waste due to process loss can be eliminated, feedback to the CIGS thin film deposition process is possible, and the yield rate is dramatically improved. It is possible.

作製したCIGS薄膜太陽電池は、酸性水溶液に浸漬することで、CIGS薄膜の上に積層したZnO/CdS膜およびITO透明導電膜を溶解して除去することができる。このようにして膜除去したCIGS薄膜の表面積測定を行ったところ、ZnO/CdS膜の製膜前に測定した表面積とほぼ同等であり、変化量は±2%であった。この結果は、CIGS薄膜の製膜後(ZnO/CdS膜の製膜前)に検査することにより、CIGS薄膜太陽電池の完成品を検査するのと同等の検査精度を実現できることを示すものである。   The produced CIGS thin film solar cell can be dissolved and removed from the ZnO / CdS film and the ITO transparent conductive film laminated on the CIGS thin film by being immersed in an acidic aqueous solution. When the surface area of the CIGS thin film thus removed was measured, it was almost the same as the surface area measured before forming the ZnO / CdS film, and the variation was ± 2%. This result shows that the inspection accuracy equivalent to the inspection of the finished product of the CIGS thin film solar cell can be realized by inspecting after the CIGS thin film is formed (before the ZnO / CdS film is formed). .

なお、上記した実施形態において、原子間力顕微鏡を用いたCIGS薄膜の表面積測定条件として、測定領域を10μm×10μm=100μmとし、512ラインで走査(走査間隔約0.02μm)するようにしたのは、CIGS薄膜の結晶粒子サイズが一般に数百nmから数μmであるため、測定領域内に結晶粒子が少なくとも数個存在し、CIGS薄膜を十分に代表できるようにするためである。 In the above-described embodiment, as a surface area measurement condition of the CIGS thin film using an atomic force microscope, the measurement region is 10 μm × 10 μm = 100 μm 2 and scanning is performed with 512 lines (scanning interval is about 0.02 μm). This is because the crystal particle size of the CIGS thin film is generally several hundred nm to several μm, so that at least several crystal particles are present in the measurement region and the CIGS thin film can be sufficiently represented.

しかしこれに限らず、例えば2μm×5μm=10μmの測定領域を20ライン走査して、走査間隔を0.1μm(2μm÷20ライン=0.1μm)としてもよく、これによっても精度良い表面積の測定が可能である。 However, the present invention is not limited to this. For example, a measurement area of 2 μm × 5 μm = 10 μm 2 may be scanned by 20 lines, and the scanning interval may be set to 0.1 μm (2 μm ÷ 20 lines = 0.1 μm). Measurement is possible.

また上記した実施形態において、CIGS薄膜の製膜方法として多元同時蒸着法を例示したが、セレン化法、スパッタ法、スプレー法、電着法などを用いる場合も、本発明の検査方法を適用できるのは言うまでも無い。また、CIGS薄膜に限らず、CIS薄膜や、Cu(In,Ga)(S,Se)薄膜など、他のI−III−VI族化合物半導体薄膜を光吸収層とする薄膜太陽電池にも本発明の検査方法を適用できる。 In the above-described embodiment, the multi-source co-evaporation method is exemplified as the CIGS thin film forming method, but the inspection method of the present invention can also be applied when a selenization method, a sputtering method, a spray method, an electrodeposition method, or the like is used. Needless to say. Further, the present invention is not limited to CIGS thin films, but is also applied to thin film solar cells using other I-III-VI group compound semiconductor thin films as light absorption layers such as CIS thin films and Cu (In, Ga) (S, Se) 2 thin films. The inspection method of the invention can be applied.

上記した実施の形態では、n型半導体薄膜としてCdSとZnOから成る積層膜を例示したが、ZnMgO、ZnS、ZnSeなどを用いてもよい。透明導電膜としてITO透明導電膜を例示したが、ZnO:Al、ZnO:B、SnOなどを用いてもよい。 In the above-described embodiment, a laminated film made of CdS and ZnO is exemplified as the n-type semiconductor thin film, but ZnMgO, ZnS, ZnSe, or the like may be used. Although the ITO transparent conductive film is exemplified as the transparent conductive film, ZnO: Al, ZnO: B, SnO 2 or the like may be used.

本発明の薄膜太陽電池の検査方法は、光吸収層に用いるCIGS薄膜等のI−III−VI族化合物半導体薄膜などの検査に有用であり、高品質の薄膜太陽電池を実現できる。   The method for inspecting a thin film solar cell of the present invention is useful for inspecting a I-III-VI group compound semiconductor thin film such as a CIGS thin film used for a light absorption layer, and can realize a high quality thin film solar cell.

本発明の一実施形態における薄膜太陽電池の検査方法を実施する薄膜太陽電池製造工程のフローチャートThe flowchart of the thin film solar cell manufacturing process which enforces the test | inspection method of the thin film solar cell in one Embodiment of this invention 本発明の薄膜太陽電池の検査方法で用いる原子間力顕微鏡による表面積測定の原理を示す模式図The schematic diagram which shows the principle of the surface area measurement by the atomic force microscope used with the inspection method of the thin film solar cell of this invention 本発明の薄膜太陽電池の検査方法で求められる表面積/平坦面積比と逆飽和電流密度との相関図Correlation diagram between surface area / flat area ratio and reverse saturation current density obtained by inspection method of thin film solar cell of the present invention 本発明の薄膜太陽電池の検査方法で求められる表面積/平坦面積比と薄膜太陽電池完成品の変換効率との相関図Correlation diagram between surface area / flat area ratio required by thin film solar cell inspection method of the present invention and conversion efficiency of finished thin film solar cell 薄膜太陽電池の逆飽和電流密度の求め方を説明するための等価回路図Equivalent circuit diagram for explaining how to determine reverse saturation current density of thin film solar cell 本発明および従来の薄膜太陽電池の製造工程断面図Manufacturing process sectional drawing of this invention and the conventional thin film solar cell 従来よりある薄膜太陽電池の検査方法を実施する薄膜太陽電池製造工程のフローチャートFlow chart of thin film solar cell manufacturing process for implementing a conventional thin film solar cell inspection method

符号の説明Explanation of symbols

1 ガラス基板
2 導電膜
3 p型化合物半導体薄膜
4 n型半導体薄膜
5 透明導電膜
1 glass substrate 2 conductive film 3 p-type compound semiconductor thin film 4 n-type semiconductor thin film 5 transparent conductive film

Claims (5)

基板上に導電膜と光吸収層としてのp型化合物半導体薄膜とn型半導体薄膜と透明導電膜とを順次に形成して薄膜太陽電池を製造する際の検査方法であって、
前記p型化合物半導体薄膜の形成後に、その任意領域の表面凹凸形状に沿う表面積を測定し、前記任意領域の内側に想定される平坦面の面積と比較し、前記平坦面に対する前記表面積の面積比が1より大きく所定値以下である時に前記p型化合物半導体薄膜を良品と判定する薄膜太陽電池の検査方法。
An inspection method for manufacturing a thin film solar cell by sequentially forming a conductive film, a p-type compound semiconductor thin film as a light absorption layer, an n-type semiconductor thin film, and a transparent conductive film on a substrate,
After the formation of the p-type compound semiconductor thin film, the surface area along the surface irregularity shape of the arbitrary region is measured, and compared with the area of the flat surface assumed inside the arbitrary region, the area ratio of the surface area to the flat surface A method for inspecting a thin-film solar cell, wherein the p-type compound semiconductor thin film is determined to be a non-defective product when is greater than 1 and less than or equal to a predetermined value.
所定値が1.3である請求項1記載の薄膜太陽電池の検査方法。   The method for inspecting a thin film solar cell according to claim 1, wherein the predetermined value is 1.3. 表面積の測定を原子間力顕微鏡により行う請求項1記載の薄膜太陽電池の検査方法。   The method for inspecting a thin film solar cell according to claim 1, wherein the surface area is measured by an atomic force microscope. 原子間力顕微鏡の走査間隔が10−3μm以上、10−1μm以下である請求項3記載の薄膜太陽電池の検査方法。 The method for inspecting a thin film solar cell according to claim 3 , wherein the scanning interval of the atomic force microscope is 10 -3 µm or more and 10 -1 µm or less. 任意領域の平坦面積が10μm以上、10μm以下である請求項1記載の薄膜太陽電池の検査方法。 The thin film solar cell inspection method according to claim 1, wherein a flat area of the arbitrary region is 10 μm 2 or more and 10 6 μm 2 or less.
JP2005008480A 2005-01-17 2005-01-17 Method of inspecting thin film solar cell Pending JP2006196798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008480A JP2006196798A (en) 2005-01-17 2005-01-17 Method of inspecting thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008480A JP2006196798A (en) 2005-01-17 2005-01-17 Method of inspecting thin film solar cell

Publications (1)

Publication Number Publication Date
JP2006196798A true JP2006196798A (en) 2006-07-27

Family

ID=36802609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008480A Pending JP2006196798A (en) 2005-01-17 2005-01-17 Method of inspecting thin film solar cell

Country Status (1)

Country Link
JP (1) JP2006196798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.
WO2011052574A1 (en) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 Method for manufacturing chalcopyrite type compound thin film and method for manufacturing thin film solar cell using the method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456172A (en) * 1990-06-21 1992-02-24 Fuji Electric Co Ltd Method for forming thin cuinse2 film
JPH04212430A (en) * 1990-09-03 1992-08-04 Fuji Electric Corp Res & Dev Ltd Manufacture of chalcopyrite type compound thin film
JPH05291599A (en) * 1992-04-09 1993-11-05 Matsushita Electric Ind Co Ltd Manufacture of solar cell
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery
JPH11284209A (en) * 1998-03-27 1999-10-15 Yazaki Corp Manufacture of compound semiconductor thin film having chalcopyrite structure and manufacture of solar cell having the thin film
JP2003347572A (en) * 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd Tandem type thin film photoelectric converter and method of manufacturing the same
JP2004235274A (en) * 2003-01-28 2004-08-19 Kyocera Corp Polycrystalline silicon substrate and method of roughing its surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456172A (en) * 1990-06-21 1992-02-24 Fuji Electric Co Ltd Method for forming thin cuinse2 film
JPH04212430A (en) * 1990-09-03 1992-08-04 Fuji Electric Corp Res & Dev Ltd Manufacture of chalcopyrite type compound thin film
JPH05291599A (en) * 1992-04-09 1993-11-05 Matsushita Electric Ind Co Ltd Manufacture of solar cell
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery
JPH11284209A (en) * 1998-03-27 1999-10-15 Yazaki Corp Manufacture of compound semiconductor thin film having chalcopyrite structure and manufacture of solar cell having the thin film
JP2003347572A (en) * 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd Tandem type thin film photoelectric converter and method of manufacturing the same
JP2004235274A (en) * 2003-01-28 2004-08-19 Kyocera Corp Polycrystalline silicon substrate and method of roughing its surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.
WO2010125078A1 (en) * 2009-04-30 2010-11-04 Universite Du Luxembourg Electrical and opto-electrical characterisation of large-area semiconductor devices
US9245810B2 (en) 2009-04-30 2016-01-26 Universite Du Luxembourg Electrical and opto-electrical characterization of large-area semiconductor devices
WO2011052574A1 (en) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 Method for manufacturing chalcopyrite type compound thin film and method for manufacturing thin film solar cell using the method
JP5378534B2 (en) * 2009-10-27 2013-12-25 キヤノンアネルバ株式会社 Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same

Similar Documents

Publication Publication Date Title
CN101313411B (en) Solar battery and its fabrication method
US5399504A (en) Method of manufacturing CuInSe2 thin film solar cell
Barkhouse et al. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn (Se, S) 4 solar cell
Repins et al. Correlation Between Measured Minority-Carrier Lifetime and $\hbox {Cu}(\hbox {In},\hbox {Ga})\hbox {Se} _ {2} $ Device Performance
Repins et al. Comparison of device performance and measured transport parameters in widely‐varying Cu (In, Ga)(Se, S) solar cells
Hossain et al. A comprehensive methodology to evaluate losses and process variations in silicon solar cell manufacturing
JPH09186212A (en) Inspecting equipment of characteristics of photovoltaic element and manufacture of the element
Winkler et al. CISCuT––solar cells and modules on the basis of CuInS2 on Cu-tape
Peshek et al. Degradation processes in photovoltaic cells
Marlein et al. Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells
Schall et al. Accelerated stress testing of perovskite photovoltaic modules: differentiating degradation modes with electroluminescence imaging
Ermer et al. Challenges and progress in the scale up of CuInSe2 thin film photovoltaic technology
JP2006196798A (en) Method of inspecting thin film solar cell
Pianezzi Electronic transport and doping mechanisms in Cu (In, Ga) Se₂ thin film solar cells
KR101241714B1 (en) Solar cell and method for repairing the same
Aninat et al. Extraction and microscopic analysis of partial shading‐induced defects in a commercial CIGS PV module
Moore Performance and metastability of CdTe solar cells with a Te back-contact buffer layer
Repins et al. Measured minority-carrier lifetime and CIGS device performance
Skvarenina et al. Noise fluctuation changes related to edge deletion of thin-film Cu (In, Ga) Se 2 solar cells
Visconti et al. A Survey on Ageing Mechanisms in II and III-Generation PV Modules: accurate matrix-method based Energy Prediction through short-term performance measures
EP2458651A2 (en) Laser apparatus and method for manufacturing a solar cell module using the same
Silva et al. Luminescence in Photovoltaics
Paul et al. A Simulation Study on Radiative Recombination Analysis in CIGS Solar Cell
JP2014036163A (en) Method of evaluating thin-film solar cell, and method of manufacturing the same
JPH0541531A (en) Cuinse2-based thin-film solar cell and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601