JP2006194711A - Performance evaluation method and performance evaluation device of fluorescence-emission pigment - Google Patents

Performance evaluation method and performance evaluation device of fluorescence-emission pigment Download PDF

Info

Publication number
JP2006194711A
JP2006194711A JP2005005938A JP2005005938A JP2006194711A JP 2006194711 A JP2006194711 A JP 2006194711A JP 2005005938 A JP2005005938 A JP 2005005938A JP 2005005938 A JP2005005938 A JP 2005005938A JP 2006194711 A JP2006194711 A JP 2006194711A
Authority
JP
Japan
Prior art keywords
fluorescent
dye
light
fluorescence
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005938A
Other languages
Japanese (ja)
Inventor
Tomoyuki Makise
智之 牧瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005005938A priority Critical patent/JP2006194711A/en
Publication of JP2006194711A publication Critical patent/JP2006194711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for evaluating performance of a fluorescence-emission pigment by staining a cell with the fluorescence-emission pigment and by measuring a fluorescence-emission brightness value and pigment permeability of the fluorescence-emission pigment. <P>SOLUTION: The cell is stained by the fluorescence-emission pigment, and excitation light is irradiated to generate fluorescence emission, and the cell is imaged by a microbe-measuring device having a light-receiving wavelength filter for blocking wavelengths other than an objective wavelength. The brightness of a fluorescence-emission point is measured by measuring the brightness of an imaged image, and binarization is performed in the bounded state by a reference brightness value, to thereby change each emission point having the brightness value over a reference value into a bright point, and it is determined whether the emission is a cell or not by recognizing the shape or the area thereof, and then each bright point is measured. Then, each bright point is flattened 13 on the acquired image by a brightness value analysis means 12 shown in Figure 3, and binarization 14 is performed again, to thereby extract 15 bright points inconfirmable by a naked eye. The number of brightness values in one picture is expressed by a frequency in a histogram 16 relative to the extracted 15 image, and the maximum peak of the brightness values is clarified. Hereby, the fluorescence-emission brightness value of the fluorescence-emission pigment to the cell can be measured 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで細胞の部位や個数を認識する蛍光発光色素の性能を評価する方法および評価する装置に関する。   The present invention relates to a method and an apparatus for evaluating the performance of a fluorescent dye that recognizes the site and number of cells by staining cells with a fluorescent dye and irradiating the stained cells with excitation light to emit fluorescence. .

従来、この種の評価方法で用いられる装置は蛍光分光光度計が主に使われており、蛍光発光色素で被検材料である細胞を染色し、光源として、例えばキセノンランプを用いて被検材料を励起して、蛍光発光色素で標識した細胞が放つ蛍光スペクトルならびに蛍光強度を測定、または細胞内のpHならびにカルシウム濃度の測定ができる(例えば、特許文献1参照)。
特開平9−159609号公報
Conventionally, a fluorescence spectrophotometer is mainly used as an apparatus used in this kind of evaluation method, and a cell as a test material is stained with a fluorescent luminescent dye, and the test material is used as a light source using, for example, a xenon lamp. , And the fluorescence spectrum and fluorescence intensity emitted by cells labeled with a fluorescent dye can be measured, or the intracellular pH and calcium concentration can be measured (see, for example, Patent Document 1).
JP-A-9-159609

このような従来の蛍光分光光度計による蛍光発光色素の測定では、蛍光発光色素についての蛍光発光強度は明確となるものの、細胞に対する蛍光発光色素の膜浸透性が測定できないという課題があり、蛍光発光色素の蛍光発光強度および膜浸透性まで測定できる蛍光発光色素の性能評価方法と蛍光発光測定装置が要求されている。   In the measurement of fluorescent luminescent dyes using such a conventional fluorescent spectrophotometer, although the fluorescence emission intensity of the fluorescent luminescent dye becomes clear, there is a problem that the membrane permeability of the fluorescent luminescent dye to cells cannot be measured, and the fluorescence emission There is a demand for a fluorescent light emitting dye performance evaluation method and a fluorescent light emission measuring apparatus capable of measuring the fluorescent light emission intensity and membrane permeability of the dye.

また、蛍光分光光度計で染色した被検材料である細胞を測定する際、細胞がセル内で固定されていないため、同じ被検材料を再現良く測定できないという課題があり、被検材料を固定して測定できる蛍光発光測定方法が要求されている。   In addition, when measuring cells, which are test materials stained with a fluorescence spectrophotometer, there is a problem that the same test material cannot be measured with good reproducibility because the cells are not fixed in the cell. Thus, there is a demand for a fluorescence emission measurement method that can be measured in the same manner.

また、蛍光分光光度計で使用されている光源は主にキセノンランプ、ハロゲンランプが採用されているが、非常に高価な光源であり、冷却装置も必要になることから装置の小型化が困難とされている。   The light source used in the fluorescence spectrophotometer is mainly a xenon lamp or halogen lamp, but it is a very expensive light source and requires a cooling device, which makes it difficult to reduce the size of the device. Has been.

本発明は、このような従来の課題を解決するものであり、複数の蛍光発光色素を同じ種類の細胞で評価し計数計測することで蛍光発光強度と合わせて膜浸透性についても測定することができ、また、被検材料である細胞を再現性良く同じ検体を測定することができる。また、光源にLEDを採用することにより非常に安価な光源となり、冷却装置も必要としないため、装置の小型化も容易な蛍光発光色素評価方法および装置を提供することを目的としている。   The present invention solves such a conventional problem, and it is possible to measure the membrane permeability in addition to the fluorescence emission intensity by evaluating and counting a plurality of fluorescent luminescent dyes with the same type of cells. In addition, the same specimen can be measured with good reproducibility of cells as test materials. Another object of the present invention is to provide a fluorescent light emitting dye evaluation method and apparatus that can be easily reduced in size because the use of an LED as the light source makes the light source very inexpensive and does not require a cooling device.

本発明の蛍光発光色素の評価方法および装置は上記目的を達成するために、細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで蛍光発光輝度値と色素浸透性を画像解析手段で数値化し、細胞に対する蛍光発光色素の性能を評価するものである。   In order to achieve the above object, the fluorescent dye evaluation method and apparatus of the present invention stain cells with a fluorescent light-emitting dye, and irradiate the stained cells with excitation light to cause fluorescent light emission, whereby the fluorescence emission luminance value and the dye The penetrability is quantified by an image analysis means, and the performance of the fluorescent luminescent dye with respect to the cells is evaluated.

これにより蛍光発光色素の細胞に対する蛍光発光輝度値と色素色素浸透性を測定する蛍光発光色素の評価方法が得られる。   This provides a method for evaluating a fluorescent luminescent dye that measures the fluorescence emission luminance value and the dye dye permeability of the fluorescent luminescent dye to cells.

また、本発明は、細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで蛍光発光輝度値と色素浸透性を画像解析手段で数値化し、細胞に対する蛍光発光色素の性能を評価し、蛍光発光色素が備える吸収波長および蛍光発光波長の特性に合わせた励起光および受光波長フィルタを備えるものである。   In addition, the present invention stains cells with a fluorescent luminescent dye, irradiates the stained cells with excitation light and fluoresces, thereby quantifying the fluorescence emission luminance value and the dye permeability with an image analysis means, and fluorescing the cells. The performance of the dye is evaluated, and an excitation light and a light receiving wavelength filter that match the characteristics of the absorption wavelength and the fluorescence emission wavelength of the fluorescence emitting dye are provided.

これにより、様々な蛍光発光色素に最適な蛍光条件を与えることができる。   Thereby, optimal fluorescence conditions can be given to various fluorescent light-emitting dyes.

また、本発明は細胞を微多孔膜支持体にろ過し励起光を照射し撮像した後、形状と面積および蛍光発光輝度を、画像解析手段でその細胞を認識させるものである。   In the present invention, cells are filtered through a microporous membrane support, irradiated with excitation light and imaged, and then the shape, area and fluorescence emission luminance are recognized by the image analysis means.

これにより蛍光発光色素で染色した細胞を固定化することができ、再現性のよい測定が可能となり、また、形状と面積および蛍光発光輝度を認識することにより、染色された細胞と他に存在する夾雑物との差別化が可能となる。   This makes it possible to immobilize cells stained with fluorescent dyes, enable highly reproducible measurements, and to recognize the shape, area, and fluorescence emission brightness, so that they exist in addition to the stained cells. Differentiation from foreign matters becomes possible.

また、本発明は励起波長350nm〜400nmの励起光と430nm〜580nmの受光波長フィルタを備えたものである。   The present invention also includes excitation light having an excitation wavelength of 350 nm to 400 nm and a light receiving wavelength filter having a wavelength of 430 nm to 580 nm.

これにより前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる。   As a result, it is possible to measure a fluorescent luminescent dye having a wavelength belonging to the excitation wavelength or more and the light reception wavelength or less.

また、本発明は励起波長430nm〜485nmの励起光と受光波長520nm〜565nmの受光波長フィルタを備えたものである。   The present invention also includes excitation light having an excitation wavelength of 430 nm to 485 nm and a light receiving wavelength filter having a light receiving wavelength of 520 nm to 565 nm.

これにより前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる。   As a result, it is possible to measure a fluorescent luminescent dye having a wavelength belonging to the excitation wavelength or more and the light reception wavelength or less.

また、本発明は励起波長472nm〜545nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えたものである。   Further, the present invention includes excitation light having an excitation wavelength of 472 nm to 545 nm and a light receiving wavelength filter having a light receiving wavelength of 590 nm to 646 nm.

これにより前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる。   As a result, it is possible to measure a fluorescent luminescent dye having a wavelength belonging to the excitation wavelength or more and the light reception wavelength or less.

また、本発明は励起波長550nm〜570nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えたものである。   Further, the present invention includes excitation light having an excitation wavelength of 550 nm to 570 nm and a light receiving wavelength filter having a light receiving wavelength of 590 nm to 646 nm.

これにより前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる。   As a result, it is possible to measure a fluorescent luminescent dye having a wavelength belonging to the excitation wavelength or more and the light reception wavelength or less.

また、本発明は励起波長630nm〜670nmの励起光と受光波長690nm以上の受光波長フィルタを備えたものである。   The present invention also includes excitation light having an excitation wavelength of 630 nm to 670 nm and a light receiving wavelength filter having a light receiving wavelength of 690 nm or more.

これにより前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる。また微生物を計測する場合、生死菌および死菌を染め分ける手段があるが、前期励起波長により短波長励起と組み合わせることで、生死菌および死菌を染め分ける手段を備えたものである。   As a result, it is possible to measure a fluorescent luminescent dye having a wavelength belonging to the excitation wavelength or more and the light reception wavelength or less. Moreover, when measuring microorganisms, there is a means for dyeing live and dead bacteria and dead bacteria, but there is a means for dyeing live and dead bacteria and dead bacteria by combining with short wavelength excitation according to the previous excitation wavelength.

また、本発明は蛍光発光色素の性能評価装置で得られた蛍光発光輝度値および色素浸透性値をヒストグラムで表したものである。   In the present invention, the fluorescence emission luminance value and the dye permeability value obtained with the fluorescent light emitting dye performance evaluation apparatus are represented by a histogram.

これにより蛍光発光輝度値がどの波長でピークを示したのが一目で把握でき、円滑な測定が可能となる。   Thereby, it is possible to grasp at a glance at which wavelength the fluorescence emission luminance value has a peak, and smooth measurement is possible.

また、本発明はヒストグラムの半値幅が小さい現象を蛍光発光色素が細胞活性に影響しないと判定するものである。   Further, the present invention determines that the phenomenon that the half width of the histogram is small is that the fluorescent dye does not affect the cell activity.

これにより蛍光発光色素のスクリーニングを行なう際、蛍光発光輝度値および色素浸透性で差が出ない場合に半値幅で判断することが可能となる。   As a result, when screening for fluorescent luminescent dyes, it is possible to make a judgment based on the half-value width if there is no difference between the fluorescent light emission luminance value and the dye permeability.

また、本発明では性能の良い蛍光発光色素のスクリーニングをするために、測定条件を合わせる手段として励起光の照射時間を調整し、測定後に蛍光発光輝度値を換算するものである。   Further, in the present invention, in order to screen a fluorescent luminescent dye having good performance, the irradiation time of excitation light is adjusted as a means for adjusting the measurement conditions, and the fluorescence emission luminance value is converted after the measurement.

これにより蛍光発光輝度値の差が大きい蛍光発光色素同士を同じレベルで比較することができ、また、装置の限界を超える性能を持つ蛍光発光色素の評価も可能となる。   As a result, it is possible to compare fluorescent luminescent dyes having a large difference in fluorescence emission luminance values at the same level, and it is also possible to evaluate fluorescent luminescent dyes having performance exceeding the limit of the apparatus.

また、本発明は細胞に負荷を与えることで蛍光発光色素の染色性変動が評価できるものである。   In addition, the present invention can evaluate the change in dyeability of fluorescent dyes by applying a load to cells.

これにより実使用時を想定した蛍光発光色素の評価が可能となる。   As a result, it is possible to evaluate a fluorescent luminescent dye assuming actual use.

また、本発明では細胞の経時変化を測定できるものである。   Moreover, in this invention, the time-dependent change of a cell can be measured.

これにより経時変化時の細胞に対する蛍光発光色素の性能が把握できる。   Thereby, the performance of the fluorescent luminescent dye with respect to the cells at the time of change can be grasped.

また、本発明では蛍光発光色素の細胞に対する褪色能を測定できるものである。   In addition, in the present invention, the ability of the fluorescent luminescent dye to discolor the cells can be measured.

これにより蛍光発光色素の褪色能を評価できる。   Thereby, the fading ability of the fluorescent luminescent dye can be evaluated.

本発明によれば蛍光発光色素の蛍光発光輝度値および色素浸透性を評価できる蛍光発光色素の評価方法および装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the evaluation method and apparatus of the fluorescent luminescent pigment | dye which can evaluate the fluorescence luminescence luminance value and pigment | dye permeability of a fluorescent luminescent pigment | dye can be provided.

また、微多孔膜支持体に被検材料である細胞をろ過することで細胞を固定でき、再現性のよい測定ができる蛍光発光色素の評価方法および装置を提供できる。   In addition, it is possible to provide a method and an apparatus for evaluating a fluorescent luminescent dye that can fix cells by filtering the cells as the test material on the microporous membrane support and can perform measurement with good reproducibility.

また、光源にLEDを採用することにより、光源の寿命を延ばし安価で小型ならびに容易に使用でき、評価に使用するトータルのエネルギーを削減できる蛍光発光色素の評価装置が提供できる。   Further, by adopting an LED as the light source, it is possible to provide a fluorescent light emitting dye evaluation device that extends the life of the light source, can be used inexpensively, in a small size and can be easily used, and can reduce the total energy used for evaluation.

本発明の請求項1記載の発明は、細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで蛍光発光輝度値と色素浸透性を画像解析手段で数値化し、細胞に対する蛍光発光色素の性能を評価することとしたものであり、蛍光発光色素の細胞に対する蛍光発光輝度値と色素浸透性を簡単に測定する蛍光発光色素の評価方法が得られるという作用を有する。   According to the first aspect of the present invention, cells are stained with a fluorescent luminescent dye, and the fluorescent emission luminance value and the dye permeability are digitized by an image analysis means by irradiating the stained cells with excitation light to cause fluorescence emission. , Which is intended to evaluate the performance of fluorescent dyes for cells, and has the effect of obtaining a method for evaluating fluorescent dyes by simply measuring the fluorescence emission luminance value and dye permeability of cells with fluorescent dyes. .

また、本発明の請求項2記載の発明は、蛍光発光色素が備える吸収波長および蛍光発光波長の特性に合わせた励起光および受光波長フィルタを備えるというものであり、様々な蛍光発光色素に最適な蛍光条件を与えることにより、蛍光発光色素の特性を生かし自家蛍光物質と区別できる作用を有する。   The invention according to claim 2 of the present invention is provided with excitation light and light receiving wavelength filters that match the characteristics of the absorption wavelength and fluorescence emission wavelength of the fluorescent light-emitting dye, and is optimal for various fluorescent light-emitting dyes. By giving the fluorescence condition, it has an action that can be distinguished from the autofluorescent substance by making use of the characteristics of the fluorescent dye.

また、本発明の請求項3記載の発明は細胞を微多孔膜支持体にろ過し励起光を照射し撮像した後、形状と面積および蛍光発光輝度を、画像解析手段でその細胞を認識させるというものであり、蛍光発光色素で染色した細胞を固定化することができ、再現性のよい測定が可能となり、また、形状と面積および蛍光発光輝度を認識することにより、染色された細胞と他に存在する夾雑物との差別化が可能となる作用を有する。   Further, according to the third aspect of the present invention, after filtering a cell on a microporous membrane support, irradiating with excitation light and taking an image, the shape, area and fluorescence emission luminance are recognized by the image analysis means. It can immobilize cells stained with fluorescent dyes, enables reproducible measurement, and recognizes the shape, area, and fluorescence emission brightness to recognize stained cells and others. It has the effect of being able to differentiate from existing impurities.

また、本発明の請求項4記載の発明は、励起波長350nm〜400nmの励起光と430nm〜580nmの受光波長フィルタを備えたものであり、前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる作用を有する。   According to a fourth aspect of the present invention, there is provided an excitation light having an excitation wavelength of 350 nm to 400 nm and a light receiving wavelength filter having a wavelength of 430 nm to 580 nm, and having a wavelength belonging to the excitation wavelength or more and the reception wavelength or less. It has the effect | action which becomes possible to measure a fluorescent luminescent pigment | dye.

また、本発明の請求項5記載の発明は、励起波長430nm〜485nmの励起光と受光波長520nm〜565nmの受光波長フィルタを備えたものであり、前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる作用を有する。   The invention according to claim 5 of the present invention is provided with excitation light having an excitation wavelength of 430 nm to 485 nm and a reception wavelength filter having a reception wavelength of 520 nm to 565 nm, and a wavelength belonging to the excitation wavelength or more and the reception wavelength or less. It has the effect | action which becomes possible to measure the fluorescent luminescent pigment | dye which has.

また、本発明の請求項6記載の発明は、本発明は励起波長472nm〜545nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えたものであり、前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる作用を有する。   According to a sixth aspect of the present invention, the present invention comprises excitation light having an excitation wavelength of 472 nm to 545 nm and a light receiving wavelength filter having a light receiving wavelength of 590 nm to 646 nm. It has the effect | action which becomes possible to measure the fluorescent luminescent pigment | dye which has the wavelength which belongs to.

また、本発明の請求項7記載の発明は、励起波長550nm〜570nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えたものであり、前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能となる作用を有する。   According to a seventh aspect of the present invention, there is provided an excitation light having an excitation wavelength of 550 nm to 570 nm and a reception wavelength filter having a reception wavelength of 590 nm to 646 nm, and a wavelength belonging to the excitation wavelength or more and the reception wavelength or less. It has the effect | action which becomes possible to measure the fluorescent luminescent pigment | dye which has.

また、本発明の請求項8記載の発明は、励起波長630nm〜670nmの励起光と受光波長690nm以上の受光波長フィルタを備えたものであり、前記励起波長以上ならびに前記受光波長以下に属する波長を持つ蛍光発光色素を測定することが可能であり、また微生物を計測する場合、生死菌および死菌を染め分ける手段があるが、前期励起波長により短波長励起と組み合わせることで、生死菌および死菌を染め分ける作用を有する。   The invention according to claim 8 of the present invention is provided with excitation light having an excitation wavelength of 630 nm to 670 nm and a light receiving wavelength filter having a light receiving wavelength of 690 nm or more, and a wavelength belonging to the excitation wavelength or more and the light receiving wavelength or less. Fluorescent dyes can be measured, and when measuring microorganisms, there is a means to distinguish between live and dead bacteria and dead bacteria, but by combining with short wavelength excitation by the previous excitation wavelength, live and dead bacteria and dead bacteria Has the effect of differentiating dyes.

また、本発明の請求項9記載の発明は、蛍光発光色素の性能評価装置で得られた蛍光発光輝度値および色素浸透性値をヒストグラムで表したものであり、蛍光発光輝度値がどの波長でピークを示したのが一目で把握でき、円滑な測定が可能となる作用を有する。   Further, the invention according to claim 9 of the present invention is a histogram showing the fluorescence emission luminance value and the dye permeability value obtained with the fluorescent light emitting dye performance evaluation apparatus, and at which wavelength the fluorescence emission luminance value is. It can be grasped at a glance that the peak is shown, and has an effect of enabling smooth measurement.

また、本発明の請求項10記載の発明は、ヒストグラムの半値幅が小さい現象を蛍光発光色素が細胞活性に影響しないと判定するものであり、蛍光発光色素のスクリーニングを行なう際、蛍光発光輝度値および色素浸透性で差が出ない場合に半値幅で判断することが可能となる作用を有する。   In the invention according to claim 10 of the present invention, the phenomenon that the half width of the histogram is small is judged that the fluorescent luminescent dye does not affect the cell activity. In addition, when there is no difference in dye permeability, it has an effect that it can be determined by a half width.

また、本発明の請求項11記載の発明は、性能の良い蛍光発光色素のスクリーニングをするために、測定条件を合わせる手段として励起光の照射時間を調整し、測定後に蛍光発光輝度値を換算するものであり、蛍光発光輝度値の差が大きい蛍光発光色素同士を同じレベルで比較することが可能となる作用を有する。   According to the eleventh aspect of the present invention, in order to screen a fluorescent dye having good performance, the irradiation time of the excitation light is adjusted as a means for adjusting the measurement conditions, and the fluorescence emission luminance value is converted after the measurement. The fluorescent light emitting dyes having a large difference in fluorescence emission luminance values can be compared at the same level.

また、本発明の請求項12記載の発明は、細胞に負荷を与えることで蛍光発光色素の染色性変動が評価できるものであり、実使用時を想定した蛍光発光色素の評価が可能となる作用を有する。   Further, the invention according to claim 12 of the present invention is capable of evaluating the change in staining property of the fluorescent luminescent dye by applying a load to the cells, and the effect of enabling evaluation of the fluorescent luminescent dye assuming actual use. Have

また、本発明の請求項13記載の発明は、細胞の経時変化を測定できるものであり、経時変化時の細胞に対する蛍光発光色素の性能が把握できる作用を有する。   The invention according to claim 13 of the present invention is capable of measuring changes with time of cells, and has an effect of grasping the performance of the fluorescent luminescent dye with respect to the cells at the time of change.

また、本発明の請求項14記載の発明は、蛍光発光色素の細胞に対する褪色能を測定できるものであり、蛍光発光色素の褪色能を評価できる作用を有する。   In addition, the invention according to claim 14 of the present invention can measure the fading ability of a fluorescent luminescent dye to cells, and has an effect of evaluating the fading ability of the fluorescent luminescent dye.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
細胞を蛍光発光色素(例えばSYTO11〜SYTO16、SYTO20〜SYTO25、SYTO40〜SYTO45、SYTO17、SYTO59〜SYTO64、SYTO80〜SYTO85、DAPI、Propidium Iodide、SYTOXGreen、SYBRGreen、Hoechst33342、Hoechst33258、BOBO−1、YOYO−1、YO−PRO−1、TOTO−1、POPO−3、TO−PRO3、SYTOXBlue、SYTOXOrenge、SYTO9)で染色しその染色した細胞を図1に示した微多孔膜1と押さえリング2とベース3からなる微多孔膜支持体4に被検材料をろ過し、励起光であるLED(例えば350nm〜400nm、430nm〜485nm、472nm〜545nm、550nm〜570nm、630nm〜670nmのものであり、細胞を蛍光発光させる蛍光発光色素に適しているもの)を照射し蛍光発光させ、目的の波長以外の波長を遮断する受光波長フィルタ(例えば430nm〜580nm、520nm〜565nm、590nm〜646nm、590nm〜646nm、690nm以上のものであり、細胞が蛍光発光する波長に適しているもの)を有する微生物計測装置(図示せず)で細胞を撮像する。そして図2に示すように画像解析手段5として、撮像6をした画像を輝度測定7により蛍光発光点の輝度を測定し、基準の輝度値を境に2値化8をして基準値以上の輝度値がある発光点を輝点化し、形状判断9で輝点化された形状の面積を認識してその発光が細胞か否かを判断し、細胞と判断した輝点をカウント10し計量11する。これにより画像解析手段5を使用して細胞以外の被検材料中の夾雑物を誤って計測しないようになり、微多孔膜1に捕集された細胞を計量し、細胞に対する蛍光発光色素の色素浸透性を計測することが可能となる。次に取得した画像を図3で示した輝度値解析手段12により輝点を平坦化13し再度2値化14することにより、肉眼では確認できない輝点を抽出15する。その抽出15した画像をヒストグラム16を用いて、1画面中の輝度値の数を頻度で表し、輝度値の最大ピークを明確にする。これにより細胞に対する蛍光発光色素の蛍光発光輝度値の計測17が可能となる。
(Embodiment)
Cells are fluorescent dyes (for example, SYTO11 to SYTO16, SYTO20 to SYTO25, SYTO40 to SYTO45, SYTO17, SYTO59 to SYTO64, SYTO80 to SYTO85, DAPI, Prodium Iodide, SYTOXGreen, SYBRGreen33, HoB33, HoB33, HoB 1) YO-PRO-1, TOTO-1, POPO-3, TO-PRO3, SYTOXBlue, SYTOXOrange, SYTO9), and the stained cells are composed of the microporous membrane 1 shown in FIG. The test material is filtered on the microporous membrane support 4, and an LED that is excitation light (for example, 350 nm to 400 nm, 430 nm to 485 nm, 472 nm to 472 nm) A light-receiving wavelength filter (for example, 430 nm) that emits fluorescent light by irradiating cells with a wavelength of 545 nm, 550 nm to 570 nm, or 630 nm to 670 nm and is suitable for a fluorescent dye that causes cells to emit fluorescence. The cells are imaged with a microorganism measuring device (not shown) having ˜580 nm, 520 nm to 565 nm, 590 nm to 646 nm, 590 nm to 646 nm, 690 nm or more suitable for the wavelength at which the cells emit fluorescence. Then, as shown in FIG. 2, the image analysis means 5 measures the brightness of the fluorescent emission point of the image taken 6 by the brightness measurement 7, and binarizes 8 with the reference brightness value as a boundary and exceeds the reference value. A luminescent spot having a luminance value is converted into a luminescent spot, the area of the shape converted into a luminescent spot in the shape determination 9 is recognized to determine whether the luminescence is a cell, and the luminescent spot determined to be a cell is counted 10 and measured 11 To do. As a result, the image analysis means 5 is used to prevent erroneous measurement of contaminants in the test material other than the cells. The cells collected in the microporous membrane 1 are weighed, and the fluorescent dye for the cells is dyed. It becomes possible to measure the permeability. Next, the brightness value analyzing means 12 shown in FIG. 3 is used to flatten 13 bright points and binarize 14 again to extract 15 bright points that cannot be confirmed with the naked eye. Using the histogram 16, the extracted image 15 represents the number of luminance values in one screen by frequency, and the maximum peak of the luminance value is clarified. As a result, the measurement 17 of the fluorescence emission luminance value of the fluorescence emitting dye with respect to the cell becomes possible.

(実施例1)
蛍光発光色素のスクリーニングを行なう場合、まず蛍光発光色素の濃度の調整から行なう。蛍光発光色素は有機化合物であるため、希釈溶媒にジメチルスルホキシドを選択した。なお、有機化合物ということですべての蛍光発光色素をジメチルスルホキシドで希釈するわけではない。希釈濃度はメーカー推奨濃度を用い、希釈濃度もメーカー推奨濃度を用いた。次に細胞の数の調整を行なうが、被検材料として微生物を用いた。微生物の数を調整するため希釈溶媒として、被検材料のpHの変性により細胞膜に影響を与えないため、pH7.2りん酸緩衝液を用いた。染色方法はマイクロチューブ内で10分間染色した。
Example 1
When screening for fluorescent luminescent dyes, first, the concentration of the fluorescent luminescent dye is adjusted. Since the fluorescent dye is an organic compound, dimethyl sulfoxide was selected as the diluent solvent. Note that not all fluorescent dyes are diluted with dimethyl sulfoxide because they are organic compounds. The manufacturer's recommended concentration was used as the dilution concentration, and the manufacturer's recommended concentration was also used as the dilution concentration. Next, the number of cells was adjusted, and microorganisms were used as test materials. In order to adjust the number of microorganisms, a pH 7.2 phosphate buffer solution was used as a diluting solvent so as not to affect the cell membrane due to the denaturation of the pH of the test material. As a staining method, staining was performed for 10 minutes in a microtube.

染色が完了した後、微多孔膜支持体4にろ過し、画像解析手段5ならびに輝度値解析手段12を踏まえて、図4に蛍光発光色素A、B、C、D、E、F、Gを評価した結果を示す。蛍光発光色素毎の蛍光発光輝度値ならびに色素浸透性を計測ならびに比較し、蛍光発光色素をスクリーニングすることにより、各蛍光発光色素の特徴を把握することが可能である。   After the dyeing is completed, it is filtered to the microporous membrane support 4, and based on the image analysis means 5 and the luminance value analysis means 12, the fluorescent dyes A, B, C, D, E, F, and G are shown in FIG. The evaluation results are shown. By measuring and comparing the fluorescence emission luminance value and the dye permeability for each fluorescence emitting dye and screening the fluorescence emitting dye, it is possible to grasp the characteristics of each fluorescence emitting dye.

(実施例2)
蛍光発光色素の染色性を確認する際、細胞に負荷を与えることで染色性の影響を把握するため、例えば、微生物を計測する場合、専用の容器に希釈溶媒(好ましくは生理食塩水、リン酸緩衝液または蒸留水)で菌数を調整した細胞を700時間まで放置する手段をとり、0時間〜700時間の間で微生物をスポット測定し、図5で示すように、時間を経過し様々な状態の細胞膜を有する微生物に対する蛍光発光色素の蛍光発光輝度値ならびに色素浸透性を確認できた。
(Example 2)
When confirming the staining property of the fluorescent luminescent dye, in order to grasp the influence of the staining property by applying a load to the cells, for example, when measuring microorganisms, a diluent solvent (preferably physiological saline, phosphoric acid is preferably used in a dedicated container. Take a means to leave the cells whose number of bacteria has been adjusted with a buffer solution or distilled water) for up to 700 hours, and spot-measure microorganisms between 0 hours and 700 hours. As shown in FIG. It was confirmed that the fluorescence emission luminance value and the dye permeability of the fluorescence emission dye with respect to the microorganism having the cell membrane in the state.

(実施例3)
被検材料である微生物の細胞膜が損傷した状態を死菌状態と定義しているため有機溶剤(好ましくはエタノール)によって微生物の細胞膜を溶解させた。溶解させた後、前記画像解析手段5および輝度値解析手段12を用いることで、死菌状態の微生物に対する蛍光発光色素の蛍光発光輝度値および色素浸透性の定量的な計測17が可能となる。
(Example 3)
Since the state in which the cell membrane of the microorganism that is the test material is damaged is defined as the dead cell state, the cell membrane of the microorganism was dissolved with an organic solvent (preferably ethanol). After the dissolution, the image analysis means 5 and the brightness value analysis means 12 can be used to quantitatively measure the fluorescence emission brightness value and dye permeability of the fluorescence emitting dye for dead microorganisms.

(実施例4)
また、図6で示すように、蛍光発光色素で染色した細胞を乾燥する条件および環境に放置することで、蛍光発光色素の細胞に対する褪色能の計測が可能となる。なお、蛍光発光色素に与える負荷工程として、蛍光発光色素で染色した細胞を励起光照射下に放置することで、蛍光発光色素の細胞に対する褪色能を計測17することも可能である。
Example 4
Further, as shown in FIG. 6, by allowing the cells stained with the fluorescent luminescent dye to stand in the conditions and environment for drying, it is possible to measure the fading ability of the fluorescent luminescent dye to the cells. In addition, as a loading step applied to the fluorescent luminescent dye, it is also possible to measure 17 the fading ability of the fluorescent luminescent dye to the cells by leaving the cells stained with the fluorescent luminescent dye under irradiation with excitation light.

細胞を蛍光発光色素で染色し、画像解析手段と輝度値解析手段を用いて蛍光発光輝度値と色素浸透性を計測しスクリーニングできることにより、製薬分野、研究所分野における蛍光染色法を用いた実験において、細胞を染色できる蛍光発光色素のスクリーニングの用途で適用できる。   In experiments using fluorescent staining methods in the pharmaceutical and laboratory fields, cells can be stained with fluorescent dyes and screened by measuring fluorescence emission luminance values and dye permeability using image analysis means and luminance value analysis means. It can be applied to screening fluorescent fluorescent dyes that can stain cells.

本発明の実施の形態1の微多孔膜支持体を示す全体断面図Whole sectional view showing a microporous membrane support according to Embodiment 1 of the present invention 本発明の実施の形態1の撮像から計量までの模式図Schematic diagram from imaging to weighing according to Embodiment 1 of the present invention 本発明の実施の形態1の平坦化から計測までの模式図Schematic diagram from flattening to measurement of Embodiment 1 of the present invention 本発明の実施例1の蛍光発光色素スクリーニング結果の図Diagram of fluorescent dye screening results of Example 1 of the present invention 本発明の実施例2の細胞に対する蛍光発光色素の経時変化評価図Time-dependent evaluation chart of fluorescent luminescent dye for cells of Example 2 of the present invention 本発明の実施例4の細胞に対する蛍光発光色素の褪色経過図Discoloration progress diagram of fluorescent luminescent dye on the cells of Example 4 of the present invention

符号の説明Explanation of symbols

1 微多孔膜
2 押さえリング
3 ベース
4 微多孔膜支持体
5 画像解析手段
6 撮像
7 輝度測定
8 2値化
9 形状判断
10 カウント
11 計量
12 輝度値解析手段
13 平坦化
14 2値化
15 抽出
16 ヒストグラム
17 計測
DESCRIPTION OF SYMBOLS 1 Microporous film 2 Holding ring 3 Base 4 Microporous film support body 5 Image analysis means 6 Imaging 7 Luminance measurement 8 Binarization 9 Shape judgment 10 Count 11 Measurement 12 Luminance value analysis means 13 Flattening 14 Binarization 15 Extraction 16 Histogram 17 measurement

Claims (14)

細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで蛍光発光輝度値と色素浸透性を画像解析手段で数値化し、細胞に対する蛍光発光色素の性能を評価することを特徴とした蛍光発光色素の性能評価方法。 The cells are stained with a fluorescent dye, and the fluorescence emission luminance value and the dye permeability are quantified by image analysis means by irradiating the stained cells with excitation light to emit fluorescence, and the performance of the fluorescent dye on the cells is evaluated. A method for evaluating the performance of a fluorescent luminescent dye characterized by the above. 細胞を蛍光発光色素で染色し、その染色した細胞に励起光を照射し蛍光発光させることで蛍光発光輝度値と色素浸透性を画像解析手段で数値化し、細胞に対する蛍光発光色素の性能を評価し、装置蛍光発光色素が備える吸収波長及び蛍光発光波長の特性に合わせた励起光及び受光波長フィルタを備えることを特徴とした蛍光発光色素の性能評価装置。 The cells are stained with a fluorescent dye, and the fluorescence emission luminance value and the dye permeability are quantified by image analysis means by irradiating the stained cells with excitation light to emit fluorescence, and the performance of the fluorescent dye on the cells is evaluated. An apparatus for evaluating the performance of a fluorescent luminescent dye, comprising: an excitation light and a light receiving wavelength filter that match the characteristics of the absorption wavelength and the fluorescent emission wavelength of the apparatus fluorescent luminescent dye. 細胞を微多孔膜支持体にろ過し励起光を照射し撮像した後、形状と面積および蛍光発光輝度を、画像解析手段でその細胞を認識させることを特徴とした請求項1記載の蛍光発光色素の性能評価方法。 2. The fluorescent luminescent dye according to claim 1, wherein the cell is filtered through a microporous membrane support, irradiated with excitation light and imaged, and then the shape, area and fluorescence emission luminance are recognized by the image analysis means. Performance evaluation method. 励起波長350nm〜400nmの励起光と受光波長430nm〜580nmの受光波長フィルタを備えた請求項2記載の蛍光発光色素の性能評価装置。 The fluorescent light emitting dye performance evaluation apparatus according to claim 2, comprising excitation light having an excitation wavelength of 350 nm to 400 nm and a light receiving wavelength filter having a light receiving wavelength of 430 nm to 580 nm. 励起波長430nm〜485nmの励起光と受光波長520nm〜565nmの受光波長フィルタを備えた請求項2または4記載の蛍光発光色素の性能評価装置。 5. The fluorescent light emitting dye performance evaluation apparatus according to claim 2, further comprising excitation light having an excitation wavelength of 430 nm to 485 nm and a light receiving wavelength filter having a light receiving wavelength of 520 nm to 565 nm. 励起波長472nm〜545nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えた請求項2、4または5記載の蛍光発光色素の性能評価装置。 6. The fluorescent light emitting dye performance evaluation apparatus according to claim 2, comprising excitation light having an excitation wavelength of 472 nm to 545 nm and a light receiving wavelength filter having a light receiving wavelength of 590 nm to 646 nm. 励起波長550nm〜570nmの励起光と受光波長590nm〜646nmの受光波長フィルタを備えた請求項2、4、5または6記載の蛍光発光色素の性能評価装置。 7. The fluorescent light emitting dye performance evaluation apparatus according to claim 2, comprising excitation light having an excitation wavelength of 550 nm to 570 nm and a light receiving wavelength filter having a light receiving wavelength of 590 nm to 646 nm. 励起波長630nm〜670nmの励起光と受光波長690nm以上の受光波長フィルタを備えた請求項2、4、5、6または7記載の蛍光発光色素の性能評価装置。 8. The fluorescent light emitting dye performance evaluation apparatus according to claim 2, comprising excitation light having an excitation wavelength of 630 nm to 670 nm and a light receiving wavelength filter having a light receiving wavelength of 690 nm or more. 請求項2、4、5、6、7または8記載の蛍光発光色素の性能評価装置で得られた蛍光発光輝度値ならびに色素膜浸透性値をヒストグラムで表したことを特徴とする請求項1、または3記載の蛍光発光色素の性能評価方法。 The fluorescent light emission luminance value and the dye membrane permeability value obtained by the fluorescent light emitting dye performance evaluation apparatus according to claim 2, 4, 5, 6, 7, or 8 are represented by a histogram. Or the method for evaluating the performance of the fluorescent light-emitting dye according to 3. ヒストグラムの半値幅が比較的小さい現象を蛍光発光色素が細胞活性に影響しないと判定する請求項1、3または9記載の蛍光発光色素の性能評価方法。 The method for evaluating the performance of a fluorescent luminescent dye according to claim 1, 3 or 9, wherein the phenomenon in which the half width of the histogram is relatively small is determined that the fluorescent luminescent dye does not affect the cell activity. 性能の良い蛍光発光色素のスクリーニングをするために、測定条件を合わせる手段として励起光の照射時間を調整し、測定後に蛍光発光輝度値を換算する請求項1、3、9または10記載の蛍光発光色素の性能評価方法。 The fluorescent light emission according to claim 1, 3, 9 or 10, wherein the irradiation time of the excitation light is adjusted as a means for adjusting the measurement conditions, and the fluorescent light emission luminance value is converted after the measurement in order to screen the fluorescent light emitting dye having good performance. Method for evaluating dye performance. 細胞に負荷を与えることで蛍光発光色素の染色性変動が評価できる請求項1、3、9、10または11記載の蛍光発光色素の性能評価方法。 The method for evaluating the performance of a fluorescent light-emitting dye according to claim 1, 3, 9, 10 or 11, wherein the change in staining property of the fluorescent light-emitting dye can be evaluated by applying a load to the cells. 細胞の経時変化を測定する請求項1、3、9、10、11または12記載の蛍光発光色素の性能評価方法。 13. The method for evaluating the performance of a fluorescent luminescent dye according to claim 1, wherein the time-dependent change of cells is measured. 蛍光発光色素の細胞に対する褪色能を測定する請求項1、3、9、10、11、12または13記載の蛍光発光色素の性能評価方法。 The method for evaluating the performance of a fluorescent light-emitting dye according to claim 1, wherein the ability of the fluorescent light-emitting dye to fade is measured.
JP2005005938A 2005-01-13 2005-01-13 Performance evaluation method and performance evaluation device of fluorescence-emission pigment Pending JP2006194711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005938A JP2006194711A (en) 2005-01-13 2005-01-13 Performance evaluation method and performance evaluation device of fluorescence-emission pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005938A JP2006194711A (en) 2005-01-13 2005-01-13 Performance evaluation method and performance evaluation device of fluorescence-emission pigment

Publications (1)

Publication Number Publication Date
JP2006194711A true JP2006194711A (en) 2006-07-27

Family

ID=36800911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005938A Pending JP2006194711A (en) 2005-01-13 2005-01-13 Performance evaluation method and performance evaluation device of fluorescence-emission pigment

Country Status (1)

Country Link
JP (1) JP2006194711A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907271B2 (en) 2007-06-15 2011-03-15 Historx, Inc. Method and system for standardizing microscope instruments
US7978258B2 (en) 2007-08-31 2011-07-12 Historx, Inc. Automatic exposure time selection for imaging tissue
US8121365B2 (en) 2007-08-07 2012-02-21 Historx, Inc. Method and system for determining an optimal dilution of a reagent
US8160348B2 (en) 2007-08-06 2012-04-17 Historx, Inc. Methods and system for validating sample images for quantitative immunoassays
WO2012144515A1 (en) * 2011-04-21 2012-10-26 株式会社ニコン Microscope device and image processing method
US8335360B2 (en) 2007-05-14 2012-12-18 Historx, Inc. Compartment segregation by pixel characterization using image data clustering
JP2013057631A (en) * 2011-09-09 2013-03-28 Konica Minolta Medical & Graphic Inc Evaluation system of biological material expression level
US8588502B2 (en) 2008-07-10 2013-11-19 Nikon Corporation Evaluation apparatus of fluorescence population, evaluation method of fluorescence population and computer readable storage medium
JP2014035255A (en) * 2012-08-08 2014-02-24 National Agriculture & Food Research Organization Organism-count model generation device, organism-count model generation method, cytometer, and program
US9240043B2 (en) 2008-09-16 2016-01-19 Novartis Ag Reproducible quantification of biomarker expression
WO2016157345A1 (en) * 2015-03-27 2016-10-06 株式会社ニコン Microscope device, viewing method, and control program
CN112014193A (en) * 2020-07-24 2020-12-01 武汉大学中南医院 Novel FJ dyeing method and device
CN115855911A (en) * 2023-02-24 2023-03-28 湖南三友环保科技有限公司 Determination method and application of powder carrier biological affinity

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335360B2 (en) 2007-05-14 2012-12-18 Historx, Inc. Compartment segregation by pixel characterization using image data clustering
US8655037B2 (en) 2007-05-14 2014-02-18 Historx, Inc. Compartment segregation by pixel characterization using image data clustering
US8027030B2 (en) 2007-06-15 2011-09-27 Historx, Inc. Method and system for standardizing microscope instruments
US8120768B2 (en) 2007-06-15 2012-02-21 Historx, Inc. Method and system for standardizing microscope instruments
US7907271B2 (en) 2007-06-15 2011-03-15 Historx, Inc. Method and system for standardizing microscope instruments
US8160348B2 (en) 2007-08-06 2012-04-17 Historx, Inc. Methods and system for validating sample images for quantitative immunoassays
US8417015B2 (en) 2007-08-06 2013-04-09 Historx, Inc. Methods and system for validating sample images for quantitative immunoassays
US8121365B2 (en) 2007-08-07 2012-02-21 Historx, Inc. Method and system for determining an optimal dilution of a reagent
US7978258B2 (en) 2007-08-31 2011-07-12 Historx, Inc. Automatic exposure time selection for imaging tissue
US8588502B2 (en) 2008-07-10 2013-11-19 Nikon Corporation Evaluation apparatus of fluorescence population, evaluation method of fluorescence population and computer readable storage medium
US9240043B2 (en) 2008-09-16 2016-01-19 Novartis Ag Reproducible quantification of biomarker expression
WO2012144515A1 (en) * 2011-04-21 2012-10-26 株式会社ニコン Microscope device and image processing method
JP2013057631A (en) * 2011-09-09 2013-03-28 Konica Minolta Medical & Graphic Inc Evaluation system of biological material expression level
JP2014035255A (en) * 2012-08-08 2014-02-24 National Agriculture & Food Research Organization Organism-count model generation device, organism-count model generation method, cytometer, and program
WO2016157345A1 (en) * 2015-03-27 2016-10-06 株式会社ニコン Microscope device, viewing method, and control program
JPWO2016157345A1 (en) * 2015-03-27 2017-12-28 株式会社ニコン Microscope device, observation method, and control program
CN112014193A (en) * 2020-07-24 2020-12-01 武汉大学中南医院 Novel FJ dyeing method and device
CN115855911A (en) * 2023-02-24 2023-03-28 湖南三友环保科技有限公司 Determination method and application of powder carrier biological affinity

Similar Documents

Publication Publication Date Title
JP2006194711A (en) Performance evaluation method and performance evaluation device of fluorescence-emission pigment
JP5812095B2 (en) Biological substance detection method
US7186990B2 (en) Method and apparatus for detecting and imaging the presence of biological materials
Adler et al. Colocalization analysis in fluorescence microscopy
TWI622650B (en) Method of inspecting microorganisms
US20110293154A1 (en) Method and system for characterizing a sample by imaging fluorescence microscopy
JP4118927B2 (en) Specimens for normality confirmation test of microorganism weighing device
EP2630492A2 (en) Internal focus reference beads for imaging cytometry
JP4029983B2 (en) Microorganism inspection apparatus and inspection method
JP2006284604A5 (en)
JP2007071742A (en) Fluorescence reading device and device for counting microorganisms
JP4967280B2 (en) Microbe counting device
JP3734080B2 (en) Method and apparatus for immediate discrimination of fungi
JP4487985B2 (en) Microorganism weighing device
JP2007006709A (en) Method for discriminating luminescent material
JP4590902B2 (en) Filamentous fungus measurement method
US20100105022A1 (en) Analyzing biological cell material based on different interactions between illumination light and cell components
JP2005065570A (en) Method for detecting viable cell and apparatus for counting viable cell
KR101758114B1 (en) Method for measuring fluorescence lifetime according to energy transfer
WO2007029821A1 (en) Apparatus for counting the number of microorganisms
JP5140956B2 (en) Microbe counting device
JP2006280296A (en) Method for detecting living cell
JP2003169695A (en) Method for measuring microorganism and instrument for the same
JP2006333812A (en) Method for metering microorganism and apparatus for metering microorganism
JP4118930B2 (en) Microorganism weighing method