JP2006178245A - Spectacle lens for for astigmatism correction - Google Patents

Spectacle lens for for astigmatism correction Download PDF

Info

Publication number
JP2006178245A
JP2006178245A JP2004372496A JP2004372496A JP2006178245A JP 2006178245 A JP2006178245 A JP 2006178245A JP 2004372496 A JP2004372496 A JP 2004372496A JP 2004372496 A JP2004372496 A JP 2004372496A JP 2006178245 A JP2006178245 A JP 2006178245A
Authority
JP
Japan
Prior art keywords
lens
astigmatism
curvature
curve
astigmatism correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372496A
Other languages
Japanese (ja)
Inventor
Hitoshi Miura
仁志 三浦
Masaya Suzuki
雅也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Optical Co Ltd
Original Assignee
Tokai Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Optical Co Ltd filed Critical Tokai Optical Co Ltd
Priority to JP2004372496A priority Critical patent/JP2006178245A/en
Publication of JP2006178245A publication Critical patent/JP2006178245A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectacle lens for astigmatism correction with which distortion aberration can be balanced. <P>SOLUTION: A toric surface as an astigmatism correction surface is formed on an object side (outside surface) of the lens and a toric surface as an astigmatism correction surface is also formed on the surface (inside surface) on the eyeball side of the lens. The direction where the curvature on the outside surface is maximized on these astigmatism correction surfaces is so set as to coincide with the direction where the curvature on the inside surface is maximized. As a result, the spectacle lens for astigmatism correction with which the distortion aberrations are balanced more satisfactorily than heretofore can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は乱視矯正用の眼鏡に使用される乱視矯正用眼鏡レンズに関するものである。   The present invention relates to a spectacle lens for correcting astigmatism used for spectacles for correcting astigmatism.

角膜が歪んでいることによって生ずる視覚障害の一つとして乱視がある。乱視とは点光源が、円、楕円あるいは線となって点として結像しないため明視できない状態である。乱視が生じている場合物体が見づらくなったり眼精疲労や頭痛の原因ともなるためごく軽度でない限りこれを矯正することが好ましい。乱視を矯正するためには光軸周りの角度によって度数の異なるレンズ(乱視レンズ)を装用する必要がある。このような乱視を矯正した乱視矯正用レンズではレンズの内面(眼球側)に乱視矯正面を形成するのが一般であった。しかし、近年特に老視矯正のための累進屈折力レンズにおいて、累進屈折面を裏面に設定することに伴い乱視矯正面をレンズの外面(物体側)に設定するようにしたレンズも提案されている。レンズの内面に乱視矯正面を設定した一例として特許文献1を、レンズの外面に乱視矯正面を設定した一例として特許文献2を示す。
特開2004−309588号公報 特開2002−311397号公報
Astigmatism is one of the visual impairments caused by distortion of the cornea. Astigmatism is a state in which a point light source cannot be clearly seen because it does not form a point as a circle, ellipse, or line. When astigmatism occurs, it is difficult to see the object and it may cause eye strain and headache, so it is preferable to correct it unless it is very mild. In order to correct astigmatism, it is necessary to wear lenses (astigmatic lenses) having different powers depending on the angle around the optical axis. In such an astigmatism correcting lens that corrects such astigmatism, an astigmatism correcting surface is generally formed on the inner surface (eyeball side) of the lens. However, in recent years, a progressive power lens especially for presbyopia correction has been proposed in which the astigmatism correction surface is set on the outer surface (object side) of the lens as the progressive refractive surface is set on the back surface. . Patent Document 1 is an example in which an astigmatism correction surface is set on the inner surface of the lens, and Patent Document 2 is an example in which an astigmatism correction surface is set on the outer surface of the lens.
JP 2004-309588 A JP 2002-311397 A

しかし、これら従来の乱視矯正用眼鏡レンズでは歪曲収差に関して次のような課題が生じている。すなわち、レンズを通して物体を目視した場合では多かれ少なかれ歪曲収差が生じる。ところが、乱視矯正用眼鏡レンズではレンズ表面には一般に乱視矯正のためのトリック面が合成されることから、歪曲収差が90度交差する方向において(例えば縦・横)均等にならずにそのバランスが崩れてしまうこととなっていた。特に、乱視の強い人では乱視度数を大きく設定する必要から歪曲収差のバランスの崩れは従来から大きな問題であった。ところが従来の乱視矯正用眼鏡レンズのように内外いずれかのレンズ面で乱視矯正する場合では歪曲収差のバランスの崩れを十分修正することが困難であるため、乱視度数の強い装用者では違和感を解消するため実際よりも度数を弱くした乱視矯正用眼鏡レンズを使用して対処することが多かった。そのため、歪曲収差のバランスがとれた乱視矯正用眼鏡レンズが要望されていた。
本発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、歪曲収差のバランスをとることが可能な乱視矯正用眼鏡レンズを提供することにある。
However, these conventional spectacle lenses for correcting astigmatism have the following problems regarding distortion. That is, when an object is viewed through a lens, more or less distortion occurs. However, since an astigmatism correction spectacle lens generally has a trick surface for correcting astigmatism on the lens surface, the balance is not uniform in the direction in which distortions intersect 90 degrees (for example, vertical and horizontal). It was supposed to collapse. In particular, in a person with strong astigmatism, since the astigmatism power needs to be set large, the balance of distortion aberration has been a serious problem. However, when correcting astigmatism with either the internal or external lens surface, as in the conventional spectacle lens for correcting astigmatism, it is difficult to sufficiently correct the distortion of the balance of distortion. For this reason, there are many cases to deal with by using spectacle lenses for correcting astigmatism whose frequency is weaker than actual. Therefore, a spectacle lens for correcting astigmatism with a balanced distortion has been demanded.
The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide a spectacle lens for correcting astigmatism capable of balancing distortion aberration.

上記課題を解決するために請求項1の発明では、レンズ体の中心を含んでレンズ面に垂直に交わる平面と同レンズ面の交わりによってできる断面曲線の曲率が同レンズ体中心近傍において断面の方向別に異なるような乱視矯正面を、同レンズ体中心近傍における同各断面曲線の曲率が最大となる方向と最小となる方向を略直交させるとともに最大曲率方向と最小曲率方向の間で曲率を単調に変化させるようにして同レンズ体の物体側の面と眼球側の面の両面に形成し、同両乱視矯正面によって所望の乱視度数を設定するようにしたことをその要旨とする。
また請求項2の発明では請求項1の発明の構成に加え、外面の曲率が最大になる方向が、内面の曲率が最大になる方向と略一致するようにしたことをその要旨とする。
また請求項3の発明では、請求項2の発明の構成に加え、外面の曲率が最大になる方向が、内面の曲率が最小になる方向と略一致するようにしたことをその要旨とする。
また請求項4の発明では請求項2又は3のいずれか発明の構成に加え、外面の曲率が最大になる方向が、マイナスレンズでは眼鏡レンズの透過屈折力がマイナス最強度となる方向と一致し、プラスレンズではプラス最強度となる方向と一致するようにしたことをその要旨とする。
In order to solve the above problems, in the invention of claim 1, the curvature of the cross-sectional curve formed by the intersection of the lens surface and the plane perpendicular to the lens surface including the center of the lens body is the direction of the cross section in the vicinity of the center of the lens body. Separately different astigmatism correction surfaces, the direction of maximum curvature and the direction of minimum curvature of each cross-sectional curve near the center of the lens body are substantially orthogonal and the curvature is monotonous between the maximum curvature direction and the minimum curvature direction. The gist of the present invention is to form the lens body on both the object-side surface and the eyeball-side surface of the lens body, and to set a desired astigmatism power by the both astigmatism correction surfaces.
The gist of the invention of claim 2 is that, in addition to the configuration of the invention of claim 1, the direction in which the curvature of the outer surface is maximized substantially coincides with the direction in which the curvature of the inner surface is maximized.
The gist of the invention of claim 3 is that, in addition to the configuration of the invention of claim 2, the direction in which the curvature of the outer surface is maximized substantially coincides with the direction in which the curvature of the inner surface is minimized.
In addition, in the invention of claim 4, in addition to the configuration of any one of claims 2 and 3, the direction in which the curvature of the outer surface is maximum coincides with the direction in which the transmission refractive power of the spectacle lens has the minus maximum intensity in the minus lens. The gist of the plus lens is that it coincides with the direction where the plus maximum intensity is obtained.

また請求項5の発明では請求項1〜4のいずれかの発明の構成に加え、前記乱視矯正面がレンズの中心を含んでレンズ面に垂直に交わる平面とレンズ面の交わりによってできる断面曲線が円でないものを含むような非トリック面で構成されるようにしたことをその要旨とする。
また請求項6の発明では請求項1〜5のいずれかの発明の構成に加え、前記レンズ体の両面に分離させて、あるいはいずれか一方の面のみに近用部における加入度を付加するための累進屈折面形状を合成したことをその要旨とする。
According to a fifth aspect of the present invention, in addition to the configuration of any of the first to fourth aspects of the present invention, a cross-sectional curve formed by the intersection of the lens surface and the plane in which the astigmatism correction surface intersects perpendicularly to the lens surface including the center of the lens is provided. The gist is that it is composed of non-trick surfaces that include non-circles.
Further, in the invention of claim 6, in addition to the structure of any one of claims 1 to 5, in order to add the addition in the near portion to both surfaces of the lens body or to only one of the surfaces. The gist of this is to synthesize the progressive refracting surface shape.

上記のような構成の乱視矯正眼鏡レンズではレンズの物体側の面(レンズ外面)及びレンズの眼球側の面(レンズ内面)の両面に乱視矯正面を設定することで、歪曲収差のバランスをとることを可能としている。乱視矯正面はレンズ体の中心を含んでレンズ面に垂直に交わる平面と同レンズ面の交わりによってできる断面曲線の曲率が同レンズ体中心近傍において断面の方向別に異なっており、そのレンズ体中心近傍における断面曲線の曲率が最大となる方向と最小となる方向が直交し、最大曲率方向と最小曲率方向の間で曲率が単調に変化するものである。このような乱視矯正面として例えばトリック面が挙げられる。トリック面とは円を中心を通らない直線を軸として回転させたときに描かれる曲面であって、「タル型」と「ドーナツ型」の二種類がある。トリック面では縦方向と横(周)方向の曲率が異なるため、所定の縦横の曲率とされたトリック面を設定して乱視の矯正とするものである。ここに、「レンズ体の中心を含んでレンズ面に垂直に交わる平面と同レンズ面の交わりによってできる断面曲線」はレンズ体中心近傍において断面の方向別に異なっており、なおかつ断面曲線の曲率が最大となる方向と最小となる方向が略直交し、最大曲率方向と最小曲率方向の間で曲率が単調に変化すればよい。つまり、レンズ体中心近傍から離れた位置ではこのような条件に合致しない断面曲線であっても構わない。   In the astigmatism correcting spectacle lens configured as described above, the astigmatism correction surfaces are set on both the object side surface of the lens (lens outer surface) and the lens eyeball side surface (lens inner surface) to balance distortion aberration. Making it possible. The astigmatism correction surface includes the center of the lens body, and the curvature of the cross-sectional curve formed by the intersection of the lens surface and the plane perpendicular to the lens surface differs depending on the direction of the cross section in the vicinity of the lens body center. The direction in which the curvature of the cross-sectional curve is maximum and the direction in which the curvature is minimum are orthogonal, and the curvature changes monotonously between the maximum curvature direction and the minimum curvature direction. An example of such an astigmatism correction surface is a trick surface. The trick surface is a curved surface drawn when rotating around a straight line that does not pass through the center of the circle, and there are two types: “tal type” and “donut type”. Since trick surfaces have different vertical and lateral (circumferential) curvatures, a trick surface having a predetermined vertical and horizontal curvature is set to correct astigmatism. Here, the “cross-section curve formed by the intersection of the lens surface and the plane perpendicular to the lens surface including the center of the lens body” varies depending on the direction of the cross-section in the vicinity of the center of the lens body, and the curvature of the cross-section curve is maximum. The minimum direction and the minimum direction may be substantially orthogonal, and the curvature may change monotonously between the maximum curvature direction and the minimum curvature direction. That is, it may be a cross-sectional curve that does not meet such a condition at a position away from the vicinity of the lens body center.

これはつまり、トリック面においては円を回転させてできる面を想定しているが、本発明では円以外の形状を回転させてできる拡張トリック面を使用したり、いわゆる非トリック面を使用することも可能であることを意味している。非トリック面とは非点収差または歪曲収差を軽減したり、レンズの厚さを薄くするため非球面レンズの概念をトリック面に組み合わせたものである。
乱視矯正面において断面曲線の曲率が最小となる方向(つまり乱視軸)と断面曲線の曲率が最大となる方向は直交するよう設計するのが基本である。しかし、実際の装用における乱視矯正能力としては完全に直交していなくとも問題がないため略直交で構わない。より具体的には例えば70〜110度の範囲ならば略直交に含まれ実際の装用には問題がない。また、曲率を単調に変化させるとは曲率の変化を二次以上の関数で示すことができればよい。
In other words, the trick surface is assumed to be a surface that can be rotated by a circle, but in the present invention, an extended trick surface that is formed by rotating a shape other than a circle is used, or a so-called non-trick surface is used. Also means that it is possible. The non-trick surface is a combination of the aspheric lens concept and the trick surface in order to reduce astigmatism or distortion and to reduce the thickness of the lens.
In principle, the astigmatism correction surface is designed so that the direction in which the curvature of the cross section curve is minimum (that is, the astigmatism axis) and the direction in which the curvature of the cross section curve is maximum are orthogonal. However, astigmatism correction ability in actual wearing does not pose a problem even if it is not completely orthogonal, it may be approximately orthogonal. More specifically, for example, a range of 70 to 110 degrees is included substantially orthogonally, and there is no problem in actual wearing. Further, to change the curvature monotonically, it is sufficient that the change in curvature can be expressed by a function of second order or higher.

このような構成であれば従来の乱視矯正用眼鏡レンズにおいて課題とされていた歪曲収差のバランスの崩れを修正することが可能となる。
従来の乱視矯正用眼鏡レンズでは以下のようなレンズ特性から歪曲収差のバランスが崩れてしまっていた。
図5はマイナスレンズ(近視用レンズ、以下同)において外面乱視矯正レンズpと内面乱視矯正レンズqとの形状を比較したものである。また、両レンズにおいてはそれぞれ90度ずれた乱視軸方向と乱視強度方向の2方向におけるレンズ断面をそれぞれ+記号と−記号を付して示す。外面乱視矯正レンズpは内面側が球面とされ、内面乱視矯正レンズqは外面側が球面とされている。これらはレンズの表裏の屈折力の平均値がほぼ同等となるように設定された仮想レンズである。尚、説明の簡略化のために乱視矯正面は単なるトリック面で構成した。
このような両レンズp、qにおいてまず、外面乱視矯正レンズpでは特に外面における乱視強度方向のカーブが浅いためこの方向の歪曲収差(この場合は凹レンズであるため縮小方向への収差)がかなり大きく、一方乱視軸方向の歪曲収差はカーブが深くなるのでそれほどではないため結果として縦横の変形比率が大きくなってしまう。結果としてこれら外面乱視矯正レンズpでは内面乱視矯正レンズqよりも歪曲収差による変形度が大きくなってしまう傾向にある。一方、内面乱視矯正レンズqでは内面において乱視強度方向のカーブが深いため外面乱視矯正レンズpのように変形比率が大きくならない点では優れているものの、歪曲収差による変形度を抑制する自由度に欠けるため十分な歪曲バランスをとることができなかった。尚、プラスレンズ(遠視用レンズ、以下同)ではマイナスレンズとは逆の特性となる。
With such a configuration, it becomes possible to correct the distortion of balance of distortion, which has been a problem in conventional spectacle lenses for correcting astigmatism.
Conventional spectacle lenses for correcting astigmatism have lost the balance of distortion due to the following lens characteristics.
FIG. 5 is a comparison of the shapes of the outer surface astigmatism correcting lens p and the inner surface astigmatism correcting lens q in a minus lens (lens for near vision, the same applies hereinafter). Further, in both lenses, the cross sections of the lenses in two directions of the astigmatism axis direction and the astigmatism intensity direction which are shifted by 90 degrees are shown with + symbol and-symbol, respectively. The outer surface astigmatism correction lens p is spherical on the inner surface side, and the inner surface astigmatism correction lens q is spherical on the outer surface side. These are virtual lenses set so that the average values of the refractive powers of the front and back surfaces of the lenses are substantially equal. For the sake of simplicity, the astigmatism correction surface is a simple trick surface.
First, in both lenses p and q, since the astigmatism intensity direction curve on the outer surface is shallow, particularly in the outer surface astigmatism correction lens p, distortion in this direction (in this case, the aberration in the reduction direction due to the concave lens) is considerably large. On the other hand, the distortion aberration in the astigmatic axis direction is not so great because the curve becomes deep, and as a result, the deformation ratio in the vertical and horizontal directions becomes large. As a result, the outer astigmatism correcting lens p tends to have a greater degree of deformation due to distortion than the inner astigmatism correcting lens q. On the other hand, the inner astigmatism correction lens q is excellent in that the deformation ratio does not increase as in the outer surface astigmatism correction lens p because the curve in the astigmatism intensity direction is deep on the inner surface, but lacks the freedom to suppress the degree of deformation due to distortion. Therefore, a sufficient distortion balance could not be achieved. Note that a plus lens (a hyperopic lens, hereinafter the same) has characteristics opposite to those of a minus lens.

一方、本発明では所定の乱視度数をレンズ面に設定するに際して、レンズ体の両面に乱視矯正面を形成するようにしているため、例えば上記のマイナスレンズのケースにおいてはレンズ外面の乱視強度方向側のカーブを深くし、これに追随させてレンズ内面の乱視強度方向カーブも深くすることで所定の乱視度数をレンズ面に設定することが可能となる(プラスレンズのケースにおいても同様である)。イメージとしては、例えば図6(a)及び(b)に示すようなレンズが挙げられる。
図6(a)は本発明をマイナスレンズに応用した場合の斜視図である。水平方向をマイナスの乱視強度方向とし、垂直方向を乱視軸方向とする。乱視強度方向においてレンズ外面のカーブを深く(つまり曲率が大きい)形成するとともに、これに応じてレンズ内面側の乱視強度方向も深く形成されている。一方、乱視軸方向はレンズの内外いずれの面も乱視強度方向よりもカーブが浅く(つまり曲率が小さい)形成されている。
また、図6(b)は本発明をプラスレンズに応用した場合の斜視図である。水平方向をプラスの乱視強度方向とし、垂直方向を乱視軸方向とする。乱視強度方向においてレンズ外面のカーブを深く(つまり曲率が大きい)形成するとともに、これに応じてレンズ内面側の乱視強度方向も深く形成されている。一方、乱視軸方向はレンズの内外いずれの面も乱視強度方向よりもカーブが浅く(つまり曲率が小さい)形成されている。
On the other hand, in the present invention, when the predetermined astigmatism power is set on the lens surface, the astigmatism correction surfaces are formed on both surfaces of the lens body. For example, in the case of the negative lens described above, the astigmatism intensity direction side of the lens outer surface By making this curve deeper and following it, the astigmatism intensity direction curve on the inner surface of the lens is also made deeper, so that a predetermined astigmatism power can be set on the lens surface (the same applies to the case of a plus lens). Examples of the image include lenses as shown in FIGS. 6 (a) and 6 (b).
FIG. 6A is a perspective view when the present invention is applied to a minus lens. The horizontal direction is the negative astigmatism intensity direction, and the vertical direction is the astigmatism axis direction. The lens outer surface curve is deep (that is, the curvature is large) in the astigmatism intensity direction, and the astigmatism intensity direction on the lens inner surface side is also deeply formed accordingly. On the other hand, the astigmatic axis direction is formed with a shallower curve (that is, a smaller curvature) than the astigmatic intensity direction on both the inside and outside surfaces of the lens.
FIG. 6B is a perspective view when the present invention is applied to a plus lens. The horizontal direction is the positive astigmatism intensity direction, and the vertical direction is the astigmatism axis direction. The lens outer surface curve is deep (that is, the curvature is large) in the astigmatism intensity direction, and the astigmatism intensity direction on the lens inner surface side is also deeply formed accordingly. On the other hand, the astigmatic axis direction is formed with a shallower curve (that is, a smaller curvature) than the astigmatic intensity direction on both the inside and outside surfaces of the lens.

ここに歪曲収差のバランスを図る意味で最も好ましい内外両面の設定は、外面の曲率が最大になる方向と、内面の曲率が最大になる方向とを一致させることである。しかし、歪曲収差のバランスが最もとれていると判断できるのは完全に一致する位相を含むある程度の裕度のある範囲であるため、ここでは略一致で構わない。つまり若干のズレ(±5度程度)を含む概念である。この場合に曲率が最大になる方向が乱視強度方向であるのがもちろん好ましい。
更に、マイナスレンズでは外面の曲率が最大になる方向においてレンズの透過屈折力がマイナス最強度となり、プラスレンズでは外面の曲率が最大になる方向においてレンズの透過屈折力がプラス最強度となることが歪曲収差のバランスを図る意味で好ましい。マイナス最強度とはマイナスレンズにおいて、またプラス最強度とはプラスレンズにおいてそれぞれ絶対値で示される透過屈折力の値が最大である場合をいう。
但し、図6(a)のマイナスレンズのように垂直に乱視軸が設定される場合では、あまり外面強度方向のカーブが深いとレンズの見栄えが悪くなるため、例えば外面の強度方向のカーブを浅くし、内面の強度方向のカーブを深くしつつ乱視の矯正を図るというような設定も可能である。つまり、外面の曲率が最大になる方向を、内面の曲率が最小になる方向と略一致するような設定の可能性もありうる。
Here, the most preferable setting for both the inner and outer surfaces in order to balance the distortion is to make the direction in which the curvature of the outer surface is maximized coincide with the direction in which the curvature of the inner surface is maximized. However, since it is possible to determine that the distortion aberration is balanced in the range having a certain degree of tolerance including completely matched phases, it may be substantially matched here. That is, it is a concept including a slight deviation (about ± 5 degrees). In this case, it is of course preferable that the direction in which the curvature is maximum is the astigmatism intensity direction.
Further, in the case of a minus lens, the transmission refractive power of the lens has a minus maximum intensity in the direction in which the curvature of the outer surface is maximum, and in the plus lens, the transmission refractive power of the lens has a plus maximum intensity in the direction of having the maximum curvature of the outer surface. This is preferable in terms of balancing the distortion. The minus maximum intensity means the case where the value of the transmission refractive power indicated by the absolute value is maximum in the minus lens, and the plus maximum intensity means that in the plus lens.
However, when the astigmatic axis is set vertically as in the minus lens of FIG. 6A, the appearance of the lens deteriorates if the curve in the outer surface intensity direction is too deep. For example, the curve in the intensity direction of the outer surface is shallower. In addition, it is possible to set the correction of astigmatism while deepening the curve in the strength direction of the inner surface. In other words, there may be a possibility that the direction in which the curvature of the outer surface is maximized substantially coincides with the direction in which the curvature of the inner surface is minimized.

本発明は特に累進屈折力レンズに応用することに好適である(例えば両面トリックレンズの外面・内面・両面に累進面形状を合成すること)。これは次のような理由による。例えば、遠用度数がプラスで乱視度数を含む処方の人は、累進屈折力レンズの歪み・ユレに慣れにくい人が多い。もともと累進屈折力レンズの下方部分には近用視のための加入度が加わるので、遠用度数がプラスの場合はレンズ全体の度数がプラスよりになって像の倍率が大きくなる効果、乱視の効果で物が歪んで見える効果、加入度のために下方視界の像が拡大される効果が合わせられるためである。
加えて、遠用度数が弱いプラスの人は眼鏡無しでも遠くがよく見えるため、累進屈折力レンズを装用する以前はもともと眼鏡をかけていなかったケースが多い。そのため、初めての眼鏡として累進屈折力レンズを装用する際に、同時に乱視矯正を行うことがままあるからである。
本発明はトリック面と非トリック面をレンズの内外面に組み合わせて設定することも可能である。例えば、外面非トリック+内面トリックのように内外面でトリック面と非トリック面を組み合わたレンズを構成してもよい。
またレンズはメニスク形状(外面凸面で内面が凹面)が一般的であるが、プラスレンズであれば、両面が凸となるダブルレンズであっても良い。また、本発明の乱視矯正用眼鏡レンズを台玉として、近方視用の小玉を付加する(いわゆるバイフォーカルレンズ)ことも可能である。
The present invention is particularly suitable for application to a progressive power lens (for example, a progressive surface shape is synthesized on the outer surface, the inner surface, and both surfaces of a double-sided trick lens). This is due to the following reason. For example, many people who have a prescription that includes positive astigmatism and an astigmatic power are difficult to get used to the distortion and distortion of the progressive power lens. Originally, an additional power for near vision is added to the lower part of the progressive-power lens, so when the distance power is positive, the power of the entire lens becomes positive and the magnification of the image increases, and astigmatism This is because the effect that the object looks distorted by the effect and the effect that the image in the lower field of view is enlarged due to the addition are combined.
In addition, a positive person with a weak distance power can see the distance well without glasses, so there are many cases where glasses were not originally worn before wearing a progressive power lens. Therefore, when wearing a progressive-power lens as the first glasses, astigmatism correction is still performed at the same time.
In the present invention, a trick surface and a non-trick surface can be set in combination with the inner and outer surfaces of the lens. For example, a lens that combines a trick surface and a non-trick surface on the inner and outer surfaces, such as an outer surface non-trick + an inner surface trick, may be configured.
The lens generally has a meniscus shape (a convex surface on the outer surface and a concave surface on the inner surface). However, as long as it is a plus lens, it may be a double lens having both surfaces convex. It is also possible to add a small lens for near vision (so-called bifocal lens) using the spectacle lens for correcting astigmatism of the present invention as a pedestal.

上記各請求項の発明では、従来に比べて歪曲収差のバランスがとれた乱視矯正用眼鏡レンズを提供することが可能となる。   According to the inventions of the above claims, it is possible to provide an astigmatism correcting spectacle lens in which the distortion aberration is balanced as compared with the related art.

以下、本発明の乱視矯正用眼鏡レンズの各実施例について歪曲収差をシミュレーションした結果について説明する。
(シミュレーション方法について)
比較レンズと実施例のレンズとを同一の乱視度数となるように設定し、これらレンズの歪曲収差についてシミュレーションした。このシミュレーションでは図7に示すような目視を想定した。眼球中心からレンズ内面頂点までの距離を25mmとし、眼球中心から前方の格子までの直線距離を10mとし、正面から5m(26.6度視線方向)及び10m(45度視線方向)離れた位置の歪曲度を指標とした。格子の間隔は2mとした。従って、歪曲が全くなければ(レンズの素材屈折率が1で、レンズの透過屈折率が0であれば)45度方向の視線は10m位置の格子に一致する。尚、実際にレンズを枠入れして装用する場合ではレンズは10度程度前傾するのであるが、説明を簡単にするためにレンズを眼に対して傾けない状態で行った。
Hereinafter, the result of simulating distortion for each example of the spectacle lens for correcting astigmatism of the present invention will be described.
(About simulation method)
The comparative lens and the example lens were set to have the same astigmatism power, and the distortion aberration of these lenses was simulated. In this simulation, visual observation as shown in FIG. 7 was assumed. The distance from the center of the eyeball to the apex of the inner surface of the lens is 25 mm, the linear distance from the center of the eyeball to the front grid is 10 m, and the distance from the front is 5 m (26.6 degrees viewing direction) and 10 m (45 degrees viewing direction). The degree of distortion was used as an index. The lattice spacing was 2 m. Therefore, if there is no distortion (if the material refractive index of the lens is 1 and the transmission refractive index of the lens is 0), the line of sight in the 45 degree direction coincides with the grid at the 10 m position. When the lens is actually put in a frame and worn, the lens is tilted forward by about 10 degrees. However, in order to simplify the explanation, the lens was not tilted with respect to the eyes.

シミュレーション1
シミュレーション1では単純な球面とトリック面で構成されるマイナスレンズにおけるシミュレーションを行った。外面を球面に、内面を乱視矯正面に設定した比較レンズ1と、内外面を乱視矯正面に設定した本発明の実施例1A,1Bとを比較した。いずれもレンズの度数はS−4.00D C−1.00D AX90とした。乱視度数としては縦方向の度数を−4.00Dとし、横方向の度数を−5.00Dとした。つまり、縦方向を乱視軸とし、横方向が乱視強度方向となるレンズを作製した。いずれもレンズを構成するガラスの素材屈折率は1.6、レンズの直径は60mm、レンズ中心厚は1mmとした。乱視矯正面はいずれもトリック面とした。
レンズの面屈折力は球面に構成された比較例1のレンズの外面を曲率半径300mmとして、次の計算式に基づいて算出した。
外面の面屈折力=(素材屈折率−空気の屈折率)×1000/曲率半径・・・式(1)
内面の面屈折力=外面の面屈折力/(1−外面の面屈折力×レンズ中心厚(m)/素材屈折率)−乱視度数・・・式(2)
Simulation 1
In simulation 1, a simulation was performed on a minus lens composed of a simple spherical surface and a trick surface. The comparison lens 1 in which the outer surface was set as a spherical surface and the inner surface was set as an astigmatism correction surface was compared with Examples 1A and 1B of the present invention in which the inner and outer surfaces were set as an astigmatism correction surface. In both cases, the power of the lens was S-4.00D C-1.00D AX90. Astigmatism power was set to -4.00D in the vertical direction and -5.00D in the horizontal direction. In other words, a lens was produced in which the vertical direction is the astigmatic axis and the horizontal direction is the astigmatic intensity direction. In all cases, the material refractive index of the glass constituting the lens was 1.6, the lens diameter was 60 mm, and the lens center thickness was 1 mm. All astigmatism correction surfaces were trick surfaces.
The surface refractive power of the lens was calculated based on the following calculation formula with the outer surface of the lens of Comparative Example 1 configured as a spherical surface having a curvature radius of 300 mm.
Surface refractive power of outer surface = (material refractive index−refractive index of air) × 1000 / radius of curvature (1)
Surface refractive power of the inner surface = surface refractive power of the outer surface / (1-surface refractive power of the outer surface × lens center thickness (m) / material refractive index) −astigmatism power formula (2)

(比較例1)
比較例1のレンズの外面を屈折力2.00のカーブの球面とした。上記式(1)に基づけばこのカーブの曲率半径は300mとされる。また、上記式(2)に基づいて比較例1のレンズの内面の面屈折力を縦方向は6.00カーブとし、横方向は7.00カーブのトリック面とした(小数点以下2桁まで四捨五入して表示)。表1に比較例1の屈折力を示す。
(実施例1A)
実施例1Aのレンズの外面では、横方向(乱視強度方向)のカーブを屈折力4.50とした。また、これに伴って上記式(2)より実施例1Aのレンズの内面の横方向のカーブは屈折力9.51とした。これによって乱視強度方向について内外面とも比較例1に対してより深いカーブが形成される。縦方向(乱視軸方向)については比較例1と同じである。表1に実施例1Aの屈折力を示す。
(実施例1B)
実施例1Bのレンズの外面では横方向(乱視強度方向)のカーブを屈折力3.50とした。これに伴って上記式(2)より実施例1Bのレンズの内面の横方向のカーブは屈折力8.51とされる。実施例1Bのレンズは、乱視強度方向において比較例1よりもカーブは深い(面屈折力が大きい)ものの実施例1Aに比べてカーブを抑制した設計となっている。縦方向(乱視軸方向)については比較例1よりもカーブを浅くし外面では屈折力1.00とし、これに併せてと内面では屈折力5.00とした。表1に実施例1Bの屈折力を示す。
・結果
26.6度視線方向及び45度視線方向の歪曲して目視される位置の実際の距離は表1の通りである。比較例1では図1(a)に示すように、実施例1Aでは図1(b)に示すように、実施例1Bでは図1(c)に示すような歪曲収差が目視がされることとなる。格子の間隔でわかるように、比較例1では横方向が縦方向に比べて間延びするため、縦横の歪曲バランスが崩れてしまっているが、実施例1A,1Bでは比較例1に比べて縦横のバランスがとれている。
(Comparative Example 1)
The outer surface of the lens of Comparative Example 1 was a curved spherical surface having a refractive power of 2.00. Based on the above equation (1), the radius of curvature of this curve is 300 m. Further, based on the above formula (2), the surface refractive power of the inner surface of the lens of Comparative Example 1 is set to a 6.00 curve in the vertical direction and 7.00 curve in the horizontal direction (rounded to the second decimal place). And display). Table 1 shows the refractive power of Comparative Example 1.
Example 1A
On the outer surface of the lens of Example 1A, the curve in the lateral direction (astigmatism intensity direction) was set to a refractive power of 4.50. Accordingly, the lateral curve of the inner surface of the lens of Example 1A is set to a refractive power of 9.51 from the above formula (2). Thereby, a deeper curve is formed with respect to the comparative example 1 in both the inner and outer surfaces in the astigmatic intensity direction. The longitudinal direction (astigmatic axis direction) is the same as that in Comparative Example 1. Table 1 shows the refractive power of Example 1A.
(Example 1B)
On the outer surface of the lens of Example 1B, the curve in the lateral direction (astigmatism intensity direction) was made refractive power 3.50. Accordingly, the lateral curve of the inner surface of the lens of Example 1B is made to have a refractive power of 8.51 from the above formula (2). The lens of Example 1B is designed to suppress the curve compared to Example 1A, although the curve is deeper than Comparative Example 1 in the astigmatism intensity direction (the surface refractive power is large). In the longitudinal direction (astigmatism axis direction), the curve was made shallower than that of Comparative Example 1, and the refractive power was 1.00 on the outer surface, and the refractive power was 5.00 on the inner surface. Table 1 shows the refractive power of Example 1B.
-Results Table 1 shows the actual distances of the positions viewed with distortion in the 26.6-degree viewing direction and the 45-degree viewing direction. In Comparative Example 1, as shown in FIG. 1 (a), in Example 1A, as shown in FIG. 1 (b), in Example 1B, distortion as shown in FIG. 1 (c) is visually observed. Become. As can be seen from the lattice spacing, in Comparative Example 1, the horizontal direction extends compared to the vertical direction, so the distortion balance in the vertical and horizontal directions is lost, but in Examples 1A and 1B, the horizontal and vertical distortions are smaller than those in Comparative Example 1. Balanced.

Figure 2006178245
Figure 2006178245

シミュレーション2
シミュレーション2では単純な球面とトリック面で構成されるプラスレンズにおけるシミュレーションを行った。外面を球面に、内面を乱視矯正面に設定した比較レンズ1と、内外面を乱視矯正面に設定した本発明の実施例1A,1Bとを比較した。いずれもレンズの度数はS+2.00D C+0.50D AX90とした。乱視度数としては縦方向の度数を+2.00Dとし、横方向の度数を+2.50Dとした。上記同様縦方向を乱視軸とし、横方向が乱視強度方向となるレンズを作製した。いずれもレンズを構成するガラスの素材屈折率は1.6、レンズの直径は60mmとした。レンズ中心厚は比較レンズ2は2.88mm、実施例2Aは2.92mm、実施例2Bは2.91mmとした。乱視矯正面はいずれもトリック面とした。
レンズの面屈折力は上記式(1)及び式(2)に基づいて算出した。
Simulation 2
In simulation 2, a simulation was performed on a plus lens composed of a simple spherical surface and a trick surface. The comparison lens 1 in which the outer surface was set as a spherical surface and the inner surface was set as an astigmatism correction surface was compared with Examples 1A and 1B of the present invention in which the inner and outer surfaces were set as an astigmatism correction surface. In all cases, the lens power was S + 2.00D C + 0.50D AX90. Astigmatism power was set to + 2.00D in the vertical direction and + 2.50D in the horizontal direction. Similarly to the above, a lens in which the vertical direction is the astigmatic axis and the horizontal direction is the astigmatic intensity direction was produced. In either case, the material refractive index of the glass constituting the lens was 1.6, and the lens diameter was 60 mm. The center thickness of the lens was 2.88 mm for the comparative lens 2, 2.92 mm for Example 2A, and 2.91 mm for Example 2B. All astigmatism correction surfaces were trick surfaces.
The surface refractive power of the lens was calculated based on the above formulas (1) and (2).

(比較例2)
比較例2のレンズの外面は、屈折力3.00のカーブの球面とした。上記式(1)に基づけばこのカーブの曲率半径は200mとされる。また、上記式(2)に基づいて比較例2のレンズの内面の面屈折力は縦は1.02カーブで横は0.52カーブのトリック面とされる(小数点以下2桁まで四捨五入して表示)。表2に比較例2の屈折力を示す。
(実施例2A)
実施例2Aのレンズの外面では、横方向(乱視強度方向)のカーブを屈折力6.50とした。また、これに伴って上記式(2)より実施例2Aのレンズの内面の横方向のカーブを屈折力4.08とした。これによって乱視強度方向について内外面とも比較例2に対してより深いカーブが形成される。縦方向(乱視軸方向)については比較例2と同じである。表2に実施例2Aの屈折力を示す。
(実施例2B)
実施例2Bのレンズの外面では横方向(乱視強度方向)のカーブを屈折力6.00とした。これに伴って上記式(2)より実施例1Bのレンズの内面の横方向のカーブは屈折力3.57とした。実施例2Bのレンズは、乱視強度方向において比較例2よりもカーブは深い(面屈折力が大きい)ものの実施例2Aに比べてカーブを抑制した設計となっている。縦方向(乱視軸方向)については比較例2よりもカーブを浅くし外面では屈折力2.50とし、これに併せてと内面では屈折力0.51とした。表2に実施例2Bの屈折力を示す。
・結果
26.6度視線方向及び45度視線方向の歪曲して目視される位置の実際の距離は表2の通りである。比較例2では図2(a)に示すように、実施例2Aでは図2(b)に示すように、実施例2Bでは図2(c)に示すような歪曲収差の目視がされることとなる。格子の間隔でわかるように、比較例2では縦方向が横方向に比べて縮小するため、縦横の歪曲バランスが崩れてしまっているが、実施例2A,2Bでは比較例2に比べて縦横のバランスがとれている。
(Comparative Example 2)
The outer surface of the lens of Comparative Example 2 was a curved spherical surface with a refractive power of 3.00. Based on the above formula (1), the radius of curvature of this curve is 200 m. Further, based on the above formula (2), the surface refractive power of the inner surface of the lens of Comparative Example 2 is a trick surface having a 1.02 curve in the vertical direction and a 0.52 curve in the horizontal direction (rounded to the second decimal place). display). Table 2 shows the refractive power of Comparative Example 2.
(Example 2A)
On the outer surface of the lens of Example 2A, the curve in the lateral direction (astigmatism intensity direction) was made refractive power 6.50. Accordingly, the lateral curve of the inner surface of the lens of Example 2A was determined to have a refractive power of 4.08 from the above formula (2). As a result, a deeper curve is formed with respect to the comparative example 2 in both the inner and outer surfaces in the astigmatism intensity direction. The vertical direction (astigmatic axis direction) is the same as that in Comparative Example 2. Table 2 shows the refractive power of Example 2A.
(Example 2B)
On the outer surface of the lens of Example 2B, the curve in the lateral direction (astigmatism intensity direction) was set at a refractive power of 6.00. Accordingly, the lateral curve of the inner surface of the lens of Example 1B is determined to have a refractive power of 3.57 from the above equation (2). The lens of Example 2B is designed to suppress the curve compared to Example 2A, although the curve in the astigmatism intensity direction is deeper than Comparative Example 2 (having a large surface refractive power). In the longitudinal direction (astigmatism axis direction), the curve is shallower than that of Comparative Example 2, and the refractive power is 2.50 on the outer surface, and the refractive power is 0.51 on the inner surface. Table 2 shows the refractive powers of Example 2B.
-Results Table 2 shows the actual distances of the positions viewed with distortion in the 26.6-degree viewing direction and the 45-degree viewing direction. In Comparative Example 2, as shown in FIG. 2 (a), in Example 2A, as shown in FIG. 2 (b), in Example 2B, distortion as shown in FIG. 2 (c) is visually observed. Become. As can be seen from the lattice spacing, in Comparative Example 2, the vertical direction is reduced compared to the horizontal direction, and thus the distortion balance in the vertical and horizontal directions is lost. In Examples 2A and 2B, the horizontal and vertical distortions are reduced. Balanced.

Figure 2006178245
Figure 2006178245

シミュレーション3
シミュレーション3では単純な球面とトリック面で構成されるマイナスレンズに非球面設計のマイナスレンズを加えてシミュレーションを行った。外面を球面に、内面を乱視矯正面に設定した比較レンズ3と、内外面を乱視矯正面に設定した本発明の実施例3A,3Bとを比較した。いずれもレンズの度数はS−4.00D C−2.00D AX90とした。乱視度数としては縦方向の度数を−4.00Dとし、横方向の度数を−6.00Dとした。つまり、縦方向を乱視軸とし、横方向が乱視強度方向となるレンズを作製した。いずれもレンズを構成するガラスの素材屈折率は1.6、レンズの直径は60mm、レンズ中心厚は1mmとした。乱視矯正面は比較レンズ3及び実施例3Aはトリック面に設定し、実施例3Bでは外面はトリック面とし内面を非トリック面とした。尚、この実施例3Bでは計算の簡便化を図るため非トリック面において縦方向断面は球面とし、横方向断面のみを非球面に設定した。
レンズの面屈折力は上記式(1)及び式(2)に基づいて算出した。
Simulation 3
In simulation 3, a simulation was performed by adding an aspherical minus lens to a minus lens composed of a simple spherical surface and a trick surface. The comparison lens 3 having the outer surface set as a spherical surface and the inner surface set as an astigmatism correction surface was compared with Examples 3A and 3B of the present invention in which the inner and outer surfaces were set as an astigmatism correction surface. In all cases, the power of the lens was S-4.00D C-2.00D AX90. Astigmatism power was set to -4.00D in the vertical direction and -6.00D in the horizontal direction. In other words, a lens was produced in which the vertical direction is the astigmatic axis and the horizontal direction is the astigmatic intensity direction. In all cases, the material refractive index of the glass constituting the lens was 1.6, the lens diameter was 60 mm, and the lens center thickness was 1 mm. The astigmatism correction surface was set as a trick surface for the comparative lens 3 and Example 3A, and in Example 3B, the outer surface was a trick surface and the inner surface was a non-trick surface. In Example 3B, in order to simplify the calculation, the longitudinal cross section of the non-trick surface is a spherical surface, and only the horizontal cross section is an aspheric surface.
The surface refractive power of the lens was calculated based on the above formulas (1) and (2).

(比較例3)
比較例3のレンズの外面は、屈折力2.00のカーブの球面とした。上記式(1)に基づけばこのカーブの曲率半径は300mとされる。また、上記式(2)に基づいて比較例1のレンズの内面の面屈折力は縦は6.00カーブで横は8.00カーブのトリック面とした(小数点以下2桁まで四捨五入して表示)。表3に比較例3の屈折力を示す。
(実施例3A)
実施例3Aのレンズの外面は、横方向(乱視強度方向)のカーブを屈折力3.00とした。これに伴って上記式(2)より実施例3Aのレンズの内面の横方向のカーブは屈折力9.01とした。これによって乱視強度方向について内外面とも比較例3に対してより深いカーブが形成される。縦方向(乱視軸方向)については比較例2よりもカーブを浅くし外面では屈折力1.00とし、これに併せてと内面では屈折力5.00とした。表3に実施例3Aの屈折力を示す。
(実施例3B)
実施例3Bのレンズの内外面のカーブは実施例3Aと同じ値に設定した。但し、内面は非トリック面としたため(横方向断面が非球面)横方向のフチ厚が薄い。つまり、実施例3Aのそれが5.87mmであるのに対し5.80mmとされている。表3に実施例3Bの屈折力を示す。
・結果
26.6度視線方向及び45度視線方向の歪曲して目視される位置の実際の距離は表3の通りである。比較例3では図3(a)に示すように、実施例3Aでは図3(b)に示すように、実施例3Bでは図3(c)に示すような歪曲収差の目視がされることとなる。格子の間隔でわかるように、比較例3では横方向が縦方向に比べて若干間延びするため、縦横の歪曲バランスが崩れてしまっているが、実施例3A,3Bでは比較例3に比べて縦横のバランスがとれている。特に、実施例3Bでは横方向の歪曲が小さくなって、より歪曲収差のバランスがとれている。
(Comparative Example 3)
The outer surface of the lens of Comparative Example 3 was a curved spherical surface having a refractive power of 2.00. Based on the above equation (1), the radius of curvature of this curve is 300 m. Further, based on the above formula (2), the surface refractive power of the inner surface of the lens of Comparative Example 1 is a trick surface having a 6.00 curve in the vertical direction and a 8.00 curve in the horizontal direction (rounded off to two decimal places). ). Table 3 shows the refractive power of Comparative Example 3.
(Example 3A)
The outer surface of the lens of Example 3A has a lateral power (astigmatism intensity direction) curve with a refractive power of 3.00. Accordingly, the lateral curve of the inner surface of the lens of Example 3A was determined to have a refractive power of 9.01 from the above formula (2). As a result, a deeper curve is formed with respect to the comparative example 3 in both the inner and outer surfaces in the astigmatism intensity direction. In the vertical direction (astigmatism axis direction), the curve is shallower than that of Comparative Example 2, and the refractive power is 1.00 on the outer surface, and the refractive power is 5.00 on the inner surface. Table 3 shows the refractive power of Example 3A.
(Example 3B)
The curve of the inner and outer surfaces of the lens of Example 3B was set to the same value as that of Example 3A. However, since the inner surface is a non-trick surface (the cross section in the lateral direction is aspheric), the lateral border thickness is thin. That is, it is 5.80 mm compared with 5.87 mm in Example 3A. Table 3 shows the refractive power of Example 3B.
-Results Table 3 shows the actual distances of the positions viewed with distortion in the 26.6-degree viewing direction and the 45-degree viewing direction. In Comparative Example 3, as shown in FIG. 3A, in Example 3A, as shown in FIG. 3B, in Example 3B, distortion as shown in FIG. 3C is visually observed. Become. As can be seen from the lattice spacing, in Comparative Example 3, the horizontal direction extends slightly compared to the vertical direction, so the distortion balance in the vertical and horizontal directions is lost, but in Examples 3A and 3B, the vertical and horizontal directions are longer than those in Comparative Example 3. Is balanced. In particular, in Example 3B, the distortion in the lateral direction is reduced, and the distortion aberration is more balanced.

Figure 2006178245
Figure 2006178245

シミュレーション4
シミュレーション4では単純な球面とトリック面で構成されるプラスレンズに非球面設計のプラスレンズを加えてシミュレーションを行った。外面を球面に、内面を乱視矯正面に設定した比較レンズ3と、内外面を乱視矯正面に設定した本発明の実施例3A,3Bとを比較した。
ここでは外面を球面に、内面を乱視矯正面に設定した比較レンズ4と、本発明の実施例4A,4Bとを比較した。いずれもレンズの度数はS+2.00D C+1.00D AX90とした。乱視度数としては縦方向の度数を+2.00Dとし、横方向の度数を+3.00Dとした。つまり、縦方向を乱視軸とし、横方向が乱視強度方向となるレンズを作製した。いずれもレンズを構成するガラスの素材屈折率は1.6、レンズの直径は60mm、レンズ中心厚は比較レンズ4は3.25mm、実施例4Aは3.28mm、実施例4Bは3.16mmとした。乱視矯正面は比較レンズ4及び実施例4Aはトリック面に設定し、実施例4Bでは外面はトリック面とし内面を非トリック面とした。尚、この実施例4Bでも計算の簡便化を図るため非トリック面において横方向断面は球面とし、縦方向断面のみを非球面に設定した。
レンズの面屈折力は上記式(1)及び式(2)に基づいて算出した。
Simulation 4
In simulation 4, a simulation was performed by adding an aspherical plus lens to a plus lens composed of a simple spherical surface and a trick surface. The comparison lens 3 having the outer surface set as a spherical surface and the inner surface set as an astigmatism correction surface was compared with Examples 3A and 3B of the present invention in which the inner and outer surfaces were set as an astigmatism correction surface.
Here, the comparison lens 4 having the outer surface set as a spherical surface and the inner surface set as an astigmatism correction surface was compared with Examples 4A and 4B of the present invention. In all cases, the power of the lens was S + 2.00D C + 1.00D AX90. Astigmatism power was set to + 2.00D in the vertical direction and + 3.00D in the horizontal direction. In other words, a lens was produced in which the vertical direction is the astigmatic axis and the horizontal direction is the astigmatic intensity direction. In any case, the material refractive index of the glass constituting the lens is 1.6, the lens diameter is 60 mm, the lens center thickness is 3.25 mm for the comparative lens 4, 3.28 mm for Example 4A, and 3.16 mm for Example 4B. did. The astigmatism correction surface was set as a trick surface for the comparative lens 4 and Example 4A, and in Example 4B, the outer surface was a trick surface and the inner surface was a non-trick surface. In Example 4B, in order to simplify the calculation, the non-trick surface has a spherical cross section in the lateral direction and only the vertical cross section is set to an aspheric surface.
The surface refractive power of the lens was calculated based on the above formulas (1) and (2).

(比較例4)
比較例4のレンズの外面は、屈折力3.50のカーブの球面とした。上記式(1)に基づけばこのカーブの曲率半径は約171.4mとされる。また、上記式(2)に基づいて比較例4のレンズの内面の面屈折力は縦は1.53カーブで横は0.53のカーブのトリック面とした(小数点以下2桁まで四捨五入して表示)。表4に比較例4の屈折力を示す。
(実施例4A)
実施例4Aのレンズの外面は、横方向(乱視強度方向)のカーブを屈折力5.50とした。これに伴って上記式(2)より実施例4Aのレンズの内面の横方向のカーブは屈折力2.56とした。これによって乱視強度方向について内外面とも比較例4に対してより深いカーブが形成される。縦方向(乱視軸方向)については比較例4よりもカーブを浅くし外面では屈折力2.50とし、これに併せてと内面では屈折力0.51とした。表4に実施例4Aの屈折力を示す。
(実施例4B)
実施例4Bのレンズの内外面のカーブは実施例4Aと同じ値に設定した。但し、内面は非トリック面としたため(縦方向断面が非球面)縦方向のフチ厚が薄い。つまり、実施例4Aのそれが1.78mmであるのに対し1.69mmとされている。表4に実施例4Bの屈折力を示す。
・結果
比較例4では図4(a)に示すように、実施例4Aでは図4(b)に示すように、実施例4Bでは図4(c)に示すような歪曲収差の目視がされることとなる。格子の間隔でわかるように、比較例4では横方向が縦方向に比べて若干間延びするため、縦横の歪曲バランスが崩れてしまっているが、実施例4A,4Bでは比較例4に比べて縦横のバランスがとれている。特に、実施例4Bでは横方向の歪曲が小さくなって、より歪曲収差のバランスがとれている。26.6度視線方向及び45度視線方向の歪曲して目視される位置の実際の距離は表4の通りである。
(Comparative Example 4)
The outer surface of the lens of Comparative Example 4 was a curved spherical surface having a refractive power of 3.50. Based on the above equation (1), the radius of curvature of this curve is about 171.4 m. Further, based on the above formula (2), the surface refractive power of the inner surface of the lens of Comparative Example 4 is a trick surface having a 1.53 curve in the vertical direction and a curve of 0.53 in the horizontal direction (rounded off to the second decimal place). display). Table 4 shows the refractive power of Comparative Example 4.
(Example 4A)
The outer surface of the lens of Example 4A has a refractive power of 5.50 in the curve in the lateral direction (astigmatism intensity direction). Accordingly, the lateral curve of the inner surface of the lens of Example 4A was determined to have a refractive power of 2.56 from the above formula (2). As a result, a deeper curve is formed with respect to the comparative example 4 in both the inner and outer surfaces in the astigmatism intensity direction. In the longitudinal direction (astigmatism axis direction), the curve is shallower than that of Comparative Example 4, and the refractive power is 2.50 on the outer surface, and the refractive power is 0.51 on the inner surface. Table 4 shows the refractive power of Example 4A.
(Example 4B)
The curve of the inner and outer surfaces of the lens of Example 4B was set to the same value as that of Example 4A. However, since the inner surface is a non-trick surface (longitudinal cross section is aspherical), the vertical border thickness is thin. That is, it is 1.69 mm compared with 1.78 mm in Example 4A. Table 4 shows the refractive power of Example 4B.
Results As shown in FIG. 4A in Comparative Example 4, as shown in FIG. 4B in Example 4A, distortion as shown in FIG. 4C is seen in Example 4B. It will be. As can be seen from the lattice spacing, in Comparative Example 4, the horizontal direction extends slightly compared to the vertical direction, so the distortion balance in the vertical and horizontal directions is lost. In Examples 4A and 4B, the vertical and horizontal directions are compared with Comparative Example 4. Is balanced. In particular, in Example 4B, the distortion in the lateral direction is reduced, and the distortion aberration is more balanced. Table 4 shows the actual distances of the positions viewed with distortion in the 26.6-degree viewing direction and the 45-degree viewing direction.

Figure 2006178245
Figure 2006178245

本発明の乱視矯正用眼鏡レンズの歪曲収差をシミュレーションした図であって(a)は比較例1、(b)は実施例1A、(c)は実施例1B。It is the figure which simulated the distortion aberration of the spectacle lens for astigmatism correction of this invention, (a) is the comparative example 1, (b) is Example 1A, (c) is Example 1B. 本発明の乱視矯正用眼鏡レンズの歪曲収差をシミュレーションした図であって(a)は比較例2、(b)は実施例2A、(c)は実施例2B。It is the figure which simulated the distortion aberration of the spectacle lens for astigmatism correction of this invention, (a) is the comparative example 2, (b) is Example 2A, (c) is Example 2B. 本発明の乱視矯正用眼鏡レンズの歪曲収差をシミュレーションした図であって(a)は比較例3、(b)は実施例3A、(c)は実施例3B。It is the figure which simulated the distortion aberration of the spectacle lens for astigmatism correction of this invention, (a) is the comparative example 3, (b) is Example 3A, (c) is Example 3B. 本発明の乱視矯正用眼鏡レンズの歪曲収差をシミュレーションした図であって(a)は比較例4、(b)は実施例4A、(c)は実施例4B。It is the figure which simulated the distortion aberration of the spectacle lens for astigmatism correction of this invention, (a) is the comparative example 4, (b) is Example 4A, (c) is Example 4B. マイナスレンズにおいて外面側を乱視矯正した場合と内面側を乱視矯正した場合を比較した説明図。Explanatory drawing which compared the case where astigmatism correction was carried out on the outer surface side in the minus lens, and the case where astigmatism was corrected on the inner surface side. (a)は本発明の概念を説明したマイナスレンズの斜視図、(b)は同じくプラスレンズの斜視図。(A) is a perspective view of the minus lens explaining the concept of the present invention, (b) is a perspective view of the plus lens. 実施例におけるシミュレーションの方法を説明する説明図。Explanatory drawing explaining the method of the simulation in an Example.

Claims (6)

レンズ体の中心を含んでレンズ面に垂直に交わる平面と同レンズ面の交わりによってできる断面曲線の曲率が同レンズ体中心近傍において断面の方向別に異なるような乱視矯正面を、同レンズ体中心近傍における同各断面曲線の曲率が最大となる方向と最小となる方向を略直交させるとともに最大曲率方向と最小曲率方向の間で曲率を単調に変化させるようにして同レンズ体の物体側の面と眼球側の面の両面に形成し、同両乱視矯正面によって所望の乱視度数を設定するようにしたことを特徴とする乱視矯正用眼鏡レンズ。 An astigmatism correction surface in the vicinity of the center of the lens body in which the curvature of the cross-sectional curve formed by the intersection of the plane that includes the center of the lens body perpendicular to the lens surface and the lens surface differs depending on the direction of the cross section near the center of the lens body The surface of the lens body on the object side so that the direction of the maximum curvature and the direction of the minimum curvature of each of the cross-sectional curves are substantially orthogonal and the curvature is monotonously changed between the maximum curvature direction and the minimum curvature direction. A spectacle lens for correcting astigmatism, which is formed on both surfaces of the eyeball side surface, and a desired astigmatism power is set by the both astigmatism correction surfaces. 外面の曲率が最大になる方向が、内面の曲率が最大になる方向と略一致することを特徴とする請求項1に記載の乱視矯正用眼鏡レンズ。 2. The spectacle lens for correcting astigmatism according to claim 1, wherein a direction in which the curvature of the outer surface is maximized substantially coincides with a direction in which the curvature of the inner surface is maximized. 外面の曲率が最大になる方向が、内面の曲率が最小になる方向と略一致することを特徴とする請求項1に記載の乱視矯正用眼鏡レンズ。 The spectacle lens for correcting astigmatism according to claim 1, wherein a direction in which the curvature of the outer surface is maximized substantially coincides with a direction in which the curvature of the inner surface is minimized. 外面の曲率が最大になる方向が、マイナスレンズでは眼鏡レンズの透過屈折力がマイナス最強度となる方向と一致し、プラスレンズではプラス最強度となる方向と一致することを特徴とする請求項2又は3に記載の乱視矯正用眼鏡レンズ。 The direction in which the curvature of the outer surface is maximum coincides with the direction in which the transmission refractive power of the spectacle lens has the minus maximum intensity in the minus lens, and coincides with the direction in which the plus maximum intensity in the plus lens. Or the spectacle lens for astigmatism correction of 3. 前記乱視矯正面がレンズの中心を含んでレンズ面に垂直に交わる平面とレンズ面の交わりによってできる断面曲線が円でないものを含むような非トリック面で構成されることを特徴とする請求項1〜4のいずれかに記載の乱視矯正用眼鏡レンズ。 2. The astigmatism correction surface is constituted by a non-trick surface in which a cross-sectional curve formed by the intersection of a lens surface with a plane perpendicular to the lens surface including the center of the lens includes a non-circular surface. The spectacle lens for astigmatism correction according to any one of? 前記レンズ体の両面に分離させて、あるいはいずれか一方の面のみに近用部における加入度を付加するための累進屈折面形状を合成したことを特徴とする請求項1〜5のいずれかに記載の乱視矯正用眼鏡レンズ。 The progressive refractive surface shape for adding the addition in the near part to only one of the two surfaces of the lens body or combining only one of the surfaces is synthesized. The spectacle lens for correcting astigmatism as described.
JP2004372496A 2004-12-24 2004-12-24 Spectacle lens for for astigmatism correction Pending JP2006178245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372496A JP2006178245A (en) 2004-12-24 2004-12-24 Spectacle lens for for astigmatism correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372496A JP2006178245A (en) 2004-12-24 2004-12-24 Spectacle lens for for astigmatism correction

Publications (1)

Publication Number Publication Date
JP2006178245A true JP2006178245A (en) 2006-07-06

Family

ID=36732409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372496A Pending JP2006178245A (en) 2004-12-24 2004-12-24 Spectacle lens for for astigmatism correction

Country Status (1)

Country Link
JP (1) JP2006178245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048124A1 (en) * 2007-10-10 2009-04-16 Hoya Corporation Progressive refractive power lens manufacturing method and progressive refractive power lens
JP2012510642A (en) * 2008-12-01 2012-05-10 リャン,ジュンジョン Method and apparatus for refractive correction of the eye
US9277863B2 (en) 2008-12-01 2016-03-08 Perfect Vision Technology (Hk) Ltd. Methods and systems for automated measurement of the eyes and delivering of sunglasses and eyeglasses
US9649032B2 (en) 2008-12-01 2017-05-16 Perfect Vision Technology (Hk) Ltd. Systems and methods for remote measurement of the eyes and delivering of sunglasses and eyeglasses
US10444539B2 (en) 2016-05-11 2019-10-15 Perect Vision Technology (Hk) Ltd. Methods and systems for determining refractive corrections of human eyes for eyeglasses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131950A (en) * 1978-04-03 1979-10-13 Asahi Optical Co Ltd Astigmatism spectacle lens
WO1993007525A1 (en) * 1991-10-09 1993-04-15 Seiko Epson Corporation Lens for glasses
JPH05323185A (en) * 1992-01-07 1993-12-07 Seiko Epson Corp Spectacle lens
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
JP2006506661A (en) * 2002-11-13 2006-02-23 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Double-sided progressive spectacle lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131950A (en) * 1978-04-03 1979-10-13 Asahi Optical Co Ltd Astigmatism spectacle lens
WO1993007525A1 (en) * 1991-10-09 1993-04-15 Seiko Epson Corporation Lens for glasses
JPH05323185A (en) * 1992-01-07 1993-12-07 Seiko Epson Corp Spectacle lens
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
JP2006506661A (en) * 2002-11-13 2006-02-23 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Double-sided progressive spectacle lens

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048124A1 (en) * 2007-10-10 2009-04-16 Hoya Corporation Progressive refractive power lens manufacturing method and progressive refractive power lens
US8002405B2 (en) 2007-10-10 2011-08-23 Hoya Corporation Progressive power lens manufacturing method and progressive power lens
JP5037625B2 (en) * 2007-10-10 2012-10-03 Hoya株式会社 Manufacturing method of progressive power lens
JP2012510642A (en) * 2008-12-01 2012-05-10 リャン,ジュンジョン Method and apparatus for refractive correction of the eye
US8827448B2 (en) 2008-12-01 2014-09-09 Perfect Vision Technology (Hk) Ltd. Methods and devices for refractive correction of eyes
US9277863B2 (en) 2008-12-01 2016-03-08 Perfect Vision Technology (Hk) Ltd. Methods and systems for automated measurement of the eyes and delivering of sunglasses and eyeglasses
US9345399B2 (en) 2008-12-01 2016-05-24 Perfect Vision Technology (Hk) Ltd. Methods and devices for refractive correction of eyes
JP2016180989A (en) * 2008-12-01 2016-10-13 パーフェクト・ビジョン・テクノロジー・(ホンコン)・リミテッドPerfect Vision Technology (Hk) Ltd. Methods and devices for refractive correction of eyes
US9649032B2 (en) 2008-12-01 2017-05-16 Perfect Vision Technology (Hk) Ltd. Systems and methods for remote measurement of the eyes and delivering of sunglasses and eyeglasses
US9826899B2 (en) 2008-12-01 2017-11-28 Perfect Vision Technology (Hk) Ltd. Methods and devices for refractive correction of eyes
US10444539B2 (en) 2016-05-11 2019-10-15 Perect Vision Technology (Hk) Ltd. Methods and systems for determining refractive corrections of human eyes for eyeglasses
US10884265B2 (en) 2016-05-11 2021-01-05 Perfect Vision Technology (Hk) Ltd. Methods and systems for determining refractive corrections of human eyes for eyeglasses

Similar Documents

Publication Publication Date Title
JP3852116B2 (en) Progressive multifocal lens and spectacle lens
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4674346B2 (en) Progressive Addition Lens
JP4811875B2 (en) Double-sided aspherical progressive-power lens group design method and double-sided aspherical progressive-power lens group
US7914145B2 (en) Progressive power lens and manufacturing method therefor
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP2007086740A (en) Progressive-power lens
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
JP2006350381A (en) Both-sided aspherical varifocal refractive lens and method of designing in
JP2003121801A (en) Progressive refractive power spectacle lens
JP2021015308A (en) Lens for spectacles
JP2012185448A (en) Progressive refractive power lens
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP2001318346A (en) Progressive power lens
JP2012185449A (en) Progressive refractive power lens
JP5789108B2 (en) Progressive power lens and design method thereof
JP2006178245A (en) Spectacle lens for for astigmatism correction
JP2003215507A (en) A spherical surface eyeglass lens
US8092012B2 (en) Single vision spectacle lens
US6851806B2 (en) Progressive multifocal lens and method of designing the same
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP4530207B2 (en) Design method of spectacle lens used for frame having bending angle and spectacle lens used for frame having bending angle
JP5749497B2 (en) Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof
JP2012198256A (en) Progressive refractive power lens and method for designing the same
WO2021152986A1 (en) Spectacle lens, method for designing spectacle lens, and method for manufacturing spectacle lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A02 Decision of refusal

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A02