JP2006176811A - METHOD FOR PRODUCING CRYSTALLINE SiC FILM - Google Patents

METHOD FOR PRODUCING CRYSTALLINE SiC FILM Download PDF

Info

Publication number
JP2006176811A
JP2006176811A JP2004369581A JP2004369581A JP2006176811A JP 2006176811 A JP2006176811 A JP 2006176811A JP 2004369581 A JP2004369581 A JP 2004369581A JP 2004369581 A JP2004369581 A JP 2004369581A JP 2006176811 A JP2006176811 A JP 2006176811A
Authority
JP
Japan
Prior art keywords
sic film
crystalline sic
producing
hexamethyldisilazane
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004369581A
Other languages
Japanese (ja)
Inventor
Makoto Konagai
誠 小長井
Akira Yamada
山田  明
Shinsuke Miyajima
晋介 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2004369581A priority Critical patent/JP2006176811A/en
Publication of JP2006176811A publication Critical patent/JP2006176811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a crystalline SiC film with low resistivity, at a low substrate temperature of about 500°C or lower. <P>SOLUTION: This production method for depositing the crystalline SiC film on a substrate comprises controlling the substrate temperature to 500°C or lower and preferably to 300°C or lower; and doping nitrogen into the film by using preferably a silazane. It is preferable to employ a CVD method in order to deposit the film, and further preferably to employ a catalytic CVD method. The silazane includes hexamethyl disilazane, hexaethyl disilazane, heptamethyl disilazane and divinyltetramethyl disilazane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は結晶性SiC(炭化ケイ素)膜の製造方法に関する。   The present invention relates to a method for producing a crystalline SiC (silicon carbide) film.

従来、結晶性SiC膜は1000℃から2000℃程度の高い基板温度条件下で作製される。このような条件において、低抵抗率を有する結晶性SiC膜を得る方法に関して多くの報告がなされている(たとえば非特許文献1および2)。これらの結晶性SiC膜はCVD法やガスソースMBE法で作製され、その結晶性SiC膜作製時に窒素ガスもしくはアンモニアを他の原料ガスとともに反応器内に導入することにより、窒素ガスもしくはアンモニアが基板において分解されて窒素のドーピングが行われ、その結果、低抵抗膜が得られる。しかしながら、たとえば500℃程度以下の基板温度では、これらの窒素ガスもしくはアンモニアが分解しないために、上記のドーピングが困難であり、低抵抗率を有する結晶性SiC膜を得ることは困難である。このような状況下で、500℃程度以下の低温基板温度で低抵抗率を有する結晶性SiC膜を効率的に作製しうる方法については未だに報告されていない。   Conventionally, a crystalline SiC film is produced under a high substrate temperature condition of about 1000 ° C. to 2000 ° C. Many reports have been made on methods for obtaining a crystalline SiC film having a low resistivity under such conditions (for example, Non-Patent Documents 1 and 2). These crystalline SiC films are produced by the CVD method or gas source MBE method, and nitrogen gas or ammonia is introduced into the reactor together with other source gases at the time of producing the crystalline SiC film, so that nitrogen gas or ammonia is introduced into the substrate. Is decomposed and doped with nitrogen, resulting in a low resistance film. However, for example, at a substrate temperature of about 500 ° C. or lower, since these nitrogen gas or ammonia is not decomposed, the above doping is difficult and it is difficult to obtain a crystalline SiC film having a low resistivity. Under such circumstances, a method that can efficiently produce a crystalline SiC film having a low resistivity at a low substrate temperature of about 500 ° C. or less has not yet been reported.

H.Matsunami et al. “Step-controlled Epitaxial Growth of SiC: High Quality Homoepitaxy”, Material Science and Engineering, R20 (1997)125H. Matsunami et al. “Step-controlled Epitaxial Growth of SiC: High Quality Homoepitaxy”, Material Science and Engineering, R20 (1997) 125 R.S.Kern et al. “Deposition and Doping of Silicon Carbide by Gas-source Molecular Beam Epitaxy”, Appl. Phys. Lett.71 (1997)1356R.S.Kern et al. “Deposition and Doping of Silicon Carbide by Gas-source Molecular Beam Epitaxy”, Appl. Phys. Lett. 71 (1997) 1356

本発明は、500℃以下の基板温度で低抵抗率を有する結晶性SiC膜を効率的に作製しうる方法を提供する。   The present invention provides a method capable of efficiently producing a crystalline SiC film having a low resistivity at a substrate temperature of 500 ° C. or lower.

本発明は、上記の課題を解決するために以下の発明を提供する。
(1)基板上に結晶性SiC膜を堆積させるに際して、基板温度を500℃以下として、窒素をドーピングすることを特徴とする結晶性SiC膜の製造方法;
(2)基板温度が300℃以下である(1)記載の結晶性SiC膜の製造方法;
(3)シラザン類を用いて窒素をドーピングする(1)記載の結晶性SiC膜の製造方法;
(4)シラザン類がヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘプタメチルジシラザン、もしくはジビニルテトラメチルジシラザン、から選ばれる(3)記載の結晶性SiC膜の製造方法;
(5)堆積がCVD法による(1)〜(4)のいずれか記載の結晶性SiC膜の製造方法;
(6)CVD法が触媒CVD法、プラズマCVD法もしくはレーザーCVD法である(5)記載の結晶性SiC膜の製造方法;
(7)CVD法が触媒CVD法である(6)記載の結晶性SiC膜の製造方法;ならびに
(8)触媒がワイヤ、板もしくはメッシュ状である(7)記載の結晶性SiC膜の製造方法、
である。
The present invention provides the following inventions in order to solve the above problems.
(1) A method for producing a crystalline SiC film, wherein when depositing a crystalline SiC film on a substrate, the substrate temperature is set to 500 ° C. or lower and nitrogen is doped;
(2) The method for producing a crystalline SiC film according to (1), wherein the substrate temperature is 300 ° C. or lower;
(3) The method for producing a crystalline SiC film according to (1), wherein silazanes are used to dope nitrogen.
(4) The method for producing a crystalline SiC film according to (3), wherein the silazanes are selected from hexamethyldisilazane, hexaethyldisilazane, heptamethyldisilazane, or divinyltetramethyldisilazane;
(5) The method for producing a crystalline SiC film according to any one of (1) to (4), wherein the deposition is performed by a CVD method;
(6) The method for producing a crystalline SiC film according to (5), wherein the CVD method is a catalytic CVD method, a plasma CVD method or a laser CVD method;
(7) The method for producing a crystalline SiC film according to (6), wherein the CVD method is a catalytic CVD method; and (8) The method for producing a crystalline SiC film according to (7), wherein the catalyst is in the form of a wire, plate or mesh. ,
It is.

本発明によれば、低抵抗率を有する結晶性SiC膜を500℃以下の基板温度で効率的に作製しうる。   According to the present invention, a crystalline SiC film having a low resistivity can be efficiently produced at a substrate temperature of 500 ° C. or lower.

本発明の結晶性SiC膜の製造方法においては、基板上に結晶性SiC膜を堆積させるに際して、基板温度を500℃以下として、窒素をドーピングする。基板としては特に制限されず、目的に応じてガラスその他のセラミックス、金属等が用いられる。   In the method for producing a crystalline SiC film according to the present invention, nitrogen is doped at a substrate temperature of 500 ° C. or lower when the crystalline SiC film is deposited on the substrate. The substrate is not particularly limited, and glass, other ceramics, metal, or the like is used depending on the purpose.

結晶性SiC膜を堆積させるには、CVD(化学気相蒸着)法等が用いられるが、触媒CVD法、プラズマCVD法もしくはレーザーCVD法等のCVD法が好適であり、触媒CVD法が特に好適である。触媒としては通常、タンタル、タングステン、レニウム、白金、イリジウム等の金属が挙げられ、通常、ワイヤ、板もしくはメッシュ状で用いられる。本発明においては原料ガスを導入して触媒CVD法により基板上に結晶性SiC膜を堆積させる際に、基板温度を500℃以下、好適には300℃以下、として、窒素をドーピングする。窒素ドーピング材料としては、シラザン類、アンモニア、ヒドラジン、アルキルヒドラジン、等が挙げられるが、シラザン類が基板温度500℃以下で良好な窒素ドーピングを容易に与えうるので好適である。シラザン類としては、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘプタメチルジシラザン、もしくはジビニルテトラメチルジシラザン、から選ばれるのが好適である。窒素ドーピング材料として、このようなシラザン類を用いる場合、シラザン類はSiC膜の炭素源の役割をも果たすので、たとえば他の原料ガスであるシラン類および水素、窒素、アルゴン等のキャリアガスとともに導入して触媒CVD法により、窒素ドーピングされた低抵抗率の結晶性SiC膜を基板上に堆積させることができる。シラン類としては、モノシランに限定されず、少なくとも1つの水素原子が炭化水素基、ハロゲン原子、等で置換されていてもよい。窒素ドーピング材料の量比は目的に応じて適宜選定されうる。   A CVD (chemical vapor deposition) method or the like is used to deposit a crystalline SiC film, but a CVD method such as a catalytic CVD method, a plasma CVD method or a laser CVD method is preferable, and a catalytic CVD method is particularly preferable. It is. Examples of the catalyst usually include metals such as tantalum, tungsten, rhenium, platinum, and iridium, and they are usually used in the form of wires, plates, or meshes. In the present invention, when a raw material gas is introduced and a crystalline SiC film is deposited on the substrate by catalytic CVD, nitrogen is doped at a substrate temperature of 500 ° C. or lower, preferably 300 ° C. or lower. Examples of the nitrogen doping material include silazanes, ammonia, hydrazine, alkyl hydrazine, and the like. Silazanes are preferable because they can easily give good nitrogen doping at a substrate temperature of 500 ° C. or lower. The silazanes are preferably selected from hexamethyldisilazane, hexaethyldisilazane, heptamethyldisilazane, or divinyltetramethyldisilazane. When such silazanes are used as nitrogen doping materials, silazanes also serve as a carbon source for the SiC film, so they are introduced together with other source gases such as silanes and carrier gases such as hydrogen, nitrogen and argon. Then, a low resistivity crystalline SiC film doped with nitrogen can be deposited on the substrate by catalytic CVD. Silanes are not limited to monosilane, and at least one hydrogen atom may be substituted with a hydrocarbon group, a halogen atom, or the like. The amount ratio of the nitrogen doping material can be appropriately selected according to the purpose.

シラザン類以外の窒素ドーピング材料を用いる場合には、たとえばアンモニアを用いるとき、たとえばプラズマで分解した後に導入することにより本発明の目的を達成しうる。炭素源として、アセチレン等の炭化水素を用いることもできる。   When a nitrogen doping material other than silazanes is used, for example, when ammonia is used, the object of the present invention can be achieved by introducing it after being decomposed by plasma, for example. A hydrocarbon such as acetylene can also be used as the carbon source.

ここで基板温度は、基板表面を熱電対によって測定した温度をいう。   Here, the substrate temperature refers to a temperature obtained by measuring the surface of the substrate with a thermocouple.

以下、実施例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限りこれらの実施例に限定されない。
実施例1および比較例1
1.図1に示すホットワイヤーCVD装置(1)のヒーターユニット(7)に、基板(6)としてガラス(「Corning#7059」)を密着させ、ついで真空ポンプ(9)によりチャンバー(10)内の圧力が5×10−6Paになるまで排気した。ヒーターユニット(7)に通電し、基板(6)を加熱した。この段階での基板温度は100℃程度であった。 製金属ワイヤー(2)と基板(6)の距離は約6cmとした。
2. 原料ガスとしてモノメチルシラン(SiHCH)、水素およびヘキサメチルジシラザ
ン((CHSiNHSi(CH)をガス供給管(4)よりガス導入用シャワーヘッド(3)を通してチャンバー(10)内に導入した。各ガスの流量は、モノメチルシラン:1sccm、水素:140sccmとした(sccmは標準状態(大気圧、0°)で1分間に流れるガスの量(cc)を示す)。図1において(5)は直流電源、(8)は排気管、(9)は真空ポンプである。図2はヘキサメチルジシラザン供給部の概略図であり、ヘキサメチルジシラザンは水素により気化させてチャンバー(10)内に導入した。このとき、ヘキサメチルジシラザン貯蔵タンク(21)は水(24)を満たした恒温槽(20)により一定温度に保持された。ここでは、ヘキサメチルジシラザン貯蔵タンク(21)の温度を−11℃、−6℃および−2℃と変化させて、キャリアガスとしての水素の流量を60sccmとした。
3.ガス導入後、圧力自動制御装置(図示せず)により、チャンバー(10)内の圧
力を40Paに制御した。このチャンバー(10)内の圧力を十分に安定させた後、直流電源(5)を用いて金属ワイヤー(2)を通電加熱した。このとき、ガラス基板(6)温度は金属ワイヤー(2)からの熱輻射を受けて約300℃に上昇した。この加熱された金属ワイヤー(2)により、各ガスが分解され、ガラス基板(6)上に低抵抗率を有する結晶性SiC膜が形成された。(22)はキャリアガス導入管、(23)は気化ヘキサメチルジシラザン供給管である。
4.抵抗率の測定:
モノメチルシラン:1sccm、水素:140sccmとして、ヘキサメチルジシラザン貯蔵タンク(21)の温度を変化させて実施例1で作製した結晶性SiC膜の抵抗率を図3の(b)に示す。また、比較のために、原料ガスにモノメチルシラン(1sccm)と水素(200sccm)を用いて、ヘキサメチルジシラザンを添加せずに作製した結晶性SiC膜(比較例1)の抵抗率を図3の(a)に示す。図3により、ヘキサメチルジシラザンを添加することにより、抵抗率が7桁以上減少することがわかる。
5.X線回折:
実施例1および比較例1で作製した結晶性SiC膜についてX線回折を行った。図4に得られたX線回折パターンを示す。(a)はヘキサメチルジシラザン貯蔵タンク温度が−2℃、(b)はヘキサメチルジシラザン貯蔵タンク温度が−11℃、(c)はヘキサメチルジシラザン無添加の場合を示す。回折ピークは2θ=35度付近に存在し、作製した膜が結晶性SiC膜であることが確認された。
6.二次イオン質量分析:
作製した結晶性SiC膜に添加された窒素の量を二次イオン質量分析計(SIMS)を用いて分析した。分析に供した結晶性SiC膜の構造は、基板からi.ヘキサメチルジシラザン無添加(膜厚170μm);ii.へキサメチルジシラザン貯蔵タンク温度が−11℃(膜厚180μm);iii .ヘキサメチルジシラザン貯蔵タンク温度が−2℃(膜厚250μm);そしてiv.ヘキサメチルジシラザン無添加(膜厚200μm)であった。その分析結果を図5に示す。図5において、(a)はヘキサメチルジシラザン無添加、(b)はヘキサメチルジシラザン貯蔵タンク温度が−2℃、(c)はヘキサメチルジシラザン貯蔵タンク温度が−11℃、(d)はヘキサメチルジシラザン無添加の場合を示す。ヘキサメチルジシラザン貯蔵タンク(21)の温度−11℃では約5%、そして−2℃では約8%の窒素が結晶性SiC膜中に取り込まれたことがわかった。これは、ヘキサメチルジシラザンを用いることにより効果的に窒素をドーピングできたことを示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples, unless the summary is exceeded.
Example 1 and Comparative Example 1
1. Glass (“Corning # 7059”) as a substrate (6) is brought into close contact with the heater unit (7) of the hot wire CVD apparatus (1) shown in FIG. 1, and then the pressure in the chamber (10) by the vacuum pump (9). Was evacuated to 5 × 10 −6 Pa. The heater unit (7) was energized to heat the substrate (6). The substrate temperature at this stage was about 100 ° C. The distance between the metal wire (2) and the substrate (6) was about 6 cm.
2. Monomethylsilane (SiH 3 CH 3 ), hydrogen and hexamethyldisilazane ((CH 3 ) 3 SiNHSi (CH 3 ) 3 ) as source gases are passed through the gas supply pipe (4) through the gas introduction shower head (3). It introduced into the chamber (10). The flow rate of each gas was monomethylsilane: 1 sccm, hydrogen: 140 sccm (sccm indicates the amount of gas (cc) flowing in one minute in the standard state (atmospheric pressure, 0 °)). In FIG. 1, (5) is a DC power source, (8) is an exhaust pipe, and (9) is a vacuum pump. FIG. 2 is a schematic view of a hexamethyldisilazane supply unit, and hexamethyldisilazane was vaporized with hydrogen and introduced into the chamber (10). At this time, the hexamethyldisilazane storage tank (21) was kept at a constant temperature by a thermostatic bath (20) filled with water (24). Here, the temperature of the hexamethyldisilazane storage tank (21) was changed to −11 ° C., −6 ° C., and −2 ° C., and the flow rate of hydrogen as the carrier gas was set to 60 sccm.
3. After the gas introduction, the pressure in the chamber (10) was controlled to 40 Pa by an automatic pressure controller (not shown). After the pressure in the chamber (10) was sufficiently stabilized, the metal wire (2) was energized and heated using the DC power source (5). At this time, the temperature of the glass substrate (6) rose to about 300 ° C. upon receiving heat radiation from the metal wire (2). Each gas was decomposed | disassembled by this heated metal wire (2), and the crystalline SiC film | membrane which has a low resistivity was formed on the glass substrate (6). (22) is a carrier gas introduction pipe, and (23) is a vaporized hexamethyldisilazane supply pipe.
4). Resistivity measurement:
FIG. 3B shows the resistivity of the crystalline SiC film produced in Example 1 by changing the temperature of the hexamethyldisilazane storage tank (21) with monomethylsilane: 1 sccm and hydrogen: 140 sccm. For comparison, the resistivity of a crystalline SiC film (Comparative Example 1) prepared by using monomethylsilane (1 sccm) and hydrogen (200 sccm) as source gases without adding hexamethyldisilazane is shown in FIG. Of (a). From FIG. 3, it can be seen that the resistivity decreases by 7 digits or more by adding hexamethyldisilazane.
5. X-ray diffraction:
X-ray diffraction was performed on the crystalline SiC films produced in Example 1 and Comparative Example 1. FIG. 4 shows the obtained X-ray diffraction pattern. (A) is a hexamethyldisilazane storage tank temperature of −2 ° C., (b) is a hexamethyldisilazane storage tank temperature of −11 ° C., and (c) is a case where hexamethyldisilazane is not added. A diffraction peak exists in the vicinity of 2θ = 35 degrees, and it was confirmed that the produced film was a crystalline SiC film.
6). Secondary ion mass spectrometry:
The amount of nitrogen added to the produced crystalline SiC film was analyzed using a secondary ion mass spectrometer (SIMS). The structure of the crystalline SiC film subjected to the analysis is i. No addition of hexamethyldisilazane (film thickness 170 μm); ii. Hexamethyldisilazane storage tank temperature is −11 ° C. (film thickness 180 μm); iii. A hexamethyldisilazane storage tank temperature of −2 ° C. (film thickness 250 μm); and iv. Hexamethyldisilazane was not added (film thickness 200 μm). The analysis result is shown in FIG. In FIG. 5, (a) hexamethyldisilazane is not added, (b) hexamethyldisilazane storage tank temperature is −2 ° C., (c) hexamethyldisilazane storage tank temperature is −11 ° C., (d) Shows the case where hexamethyldisilazane is not added. It was found that about 5% of nitrogen was incorporated into the crystalline SiC film at a temperature of −11 ° C. in the hexamethyldisilazane storage tank (21) and about 8% at −2 ° C. This indicates that nitrogen was effectively doped by using hexamethyldisilazane.

本発明によれば、300℃程度以下の低温基板温度で低抵抗率を有する結晶性SiC膜を効率的に作製しうる。   According to the present invention, a crystalline SiC film having a low resistivity at a low substrate temperature of about 300 ° C. or less can be efficiently produced.

本発明の実施例で用いたホットワイヤーCVD装置の概略図。The schematic of the hot wire CVD apparatus used in the Example of this invention. 図1のホットワイヤーCVD装置におけるヘキサメチルジシラザン供給部の概略図。The schematic of the hexamethyldisilazane supply part in the hot wire CVD apparatus of FIG. 実施例1で作製した結晶性SiC膜の抵抗率を示す。The resistivity of the crystalline SiC film produced in Example 1 is shown. 結晶性SiC膜のX線回折パターンを示す。2 shows an X-ray diffraction pattern of a crystalline SiC film. 結晶性SiC膜に添加された窒素の量を二次イオン質量分析計(SIMS)を用いて分析した結果を示す。The result of having analyzed the quantity of nitrogen added to crystalline SiC film using a secondary ion mass spectrometer (SIMS) is shown.

符号の説明Explanation of symbols

1 ホットワイヤーCVD装置
2 金属ワイヤー
4 ガス供給管
6 基板
7 ヒーターユニット
10 チャンバー
21 ヘキサメチルジシラザン貯蔵タンク
22 キャリアガス導入管、
23 気化ヘキサメチルジシラザン
DESCRIPTION OF SYMBOLS 1 Hot wire CVD apparatus 2 Metal wire 4 Gas supply pipe 6 Substrate 7 Heater unit 10 Chamber 21 Hexamethyldisilazane storage tank 22 Carrier gas introduction pipe,
23 Vaporized hexamethyldisilazane

Claims (8)

基板上に結晶性SiC膜を堆積させるに際して、基板温度を500℃以下として、窒素をドーピングすることを特徴とする結晶性SiC膜の製造方法。   A method for producing a crystalline SiC film, comprising depositing a crystalline SiC film on a substrate at a substrate temperature of 500 ° C. or lower and doping with nitrogen. 基板温度が300℃以下である請求項1記載の結晶性SiC膜の製造方法。   The method for producing a crystalline SiC film according to claim 1, wherein the substrate temperature is 300 ° C or lower. シラザン類を用いて窒素をドーピングする請求項1記載の結晶性SiC膜の製造方法。   The method for producing a crystalline SiC film according to claim 1, wherein silazanes are used to dope nitrogen. シラザン類がヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘプタメチルジシラザン、もしくはジビニルテトラメチルジシラザン、から選ばれる請求項3記載の結晶性SiC膜の製造方法。   The method for producing a crystalline SiC film according to claim 3, wherein the silazanes are selected from hexamethyldisilazane, hexaethyldisilazane, heptamethyldisilazane, or divinyltetramethyldisilazane. 堆積がCVD法による請求項1〜4のいずれか記載の結晶性SiC膜の製造方法。   5. The method for producing a crystalline SiC film according to claim 1, wherein the deposition is performed by a CVD method. CVD法が触媒CVD法、プラズマCVD法もしくはレーザーCVD法である請求項5記載の結晶性SiC膜の製造方法。   6. The method for producing a crystalline SiC film according to claim 5, wherein the CVD method is a catalytic CVD method, a plasma CVD method or a laser CVD method. CVD法が触媒CVD法である請求項6記載の結晶性SiC膜の製造方法。   The method for producing a crystalline SiC film according to claim 6, wherein the CVD method is a catalytic CVD method. 触媒がワイヤ、板もしくはメッシュ状である請求項7記載の結晶性SiC膜の製造方法。   The method for producing a crystalline SiC film according to claim 7, wherein the catalyst is in the form of a wire, plate or mesh.
JP2004369581A 2004-12-21 2004-12-21 METHOD FOR PRODUCING CRYSTALLINE SiC FILM Pending JP2006176811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369581A JP2006176811A (en) 2004-12-21 2004-12-21 METHOD FOR PRODUCING CRYSTALLINE SiC FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369581A JP2006176811A (en) 2004-12-21 2004-12-21 METHOD FOR PRODUCING CRYSTALLINE SiC FILM

Publications (1)

Publication Number Publication Date
JP2006176811A true JP2006176811A (en) 2006-07-06

Family

ID=36731180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369581A Pending JP2006176811A (en) 2004-12-21 2004-12-21 METHOD FOR PRODUCING CRYSTALLINE SiC FILM

Country Status (1)

Country Link
JP (1) JP2006176811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043885B2 (en) 2007-04-20 2011-10-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor film and method of manufacturing photovoltaic element
US9090969B2 (en) 2011-06-22 2015-07-28 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267719A (en) * 1988-09-02 1990-03-07 Mitsui Toatsu Chem Inc Formation of silicon carbide crystallite thin film
JP2003142471A (en) * 2001-11-01 2003-05-16 Canon Inc Plasma treatment apparatus and method of manufacturing constitutional body
JP2004128375A (en) * 2002-10-07 2004-04-22 Ulvac Japan Ltd Forming method of surface coating layer and multilayer structure of hydrophobic porous silica film
JP2004525509A (en) * 2001-02-12 2004-08-19 エーエスエム アメリカ インコーポレイテッド Manufacturing method using dopant precursor
JP2004247725A (en) * 2003-02-13 2004-09-02 Asm Japan Kk Method for forming silicon carbide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267719A (en) * 1988-09-02 1990-03-07 Mitsui Toatsu Chem Inc Formation of silicon carbide crystallite thin film
JP2004525509A (en) * 2001-02-12 2004-08-19 エーエスエム アメリカ インコーポレイテッド Manufacturing method using dopant precursor
JP2003142471A (en) * 2001-11-01 2003-05-16 Canon Inc Plasma treatment apparatus and method of manufacturing constitutional body
JP2004128375A (en) * 2002-10-07 2004-04-22 Ulvac Japan Ltd Forming method of surface coating layer and multilayer structure of hydrophobic porous silica film
JP2004247725A (en) * 2003-02-13 2004-09-02 Asm Japan Kk Method for forming silicon carbide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043885B2 (en) 2007-04-20 2011-10-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor film and method of manufacturing photovoltaic element
US9090969B2 (en) 2011-06-22 2015-07-28 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film
US9184046B2 (en) 2011-06-22 2015-11-10 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film

Similar Documents

Publication Publication Date Title
AU2020220154B2 (en) A method of producing a two-dimensional material
JP5619164B2 (en) CVD method and CVD reactor
US20100273320A1 (en) Device and method for selectively depositing crystalline layers using mocvd or hvpe
JPH01162326A (en) Manufacture of beta-silicon carbide layer
US10000850B2 (en) Deposition method and method of manufacturing a catalyst wire for a catalytic chemical vapor deposition apparatus
CN104695012A (en) Device and method for preparing large-size high-quality graphene single crystal
US9834445B2 (en) Porous graphene member, method for manufacturing same, and apparatus for manufacturing same using the method
JP2006290662A (en) Method and apparatus for producing aluminum-based group iii nitride crystal
JP5910430B2 (en) Method for manufacturing epitaxial silicon carbide wafer
CN104412362A (en) Silicon carbide epitaxial wafer, and preparation method thereof
CN107075728B (en) Epitaxial growth method of silicon carbide
WO2006054393A1 (en) Method and apparatus for preparing thin film
JP2006028625A (en) Cvd apparatus
JPH05254808A (en) Preparation of boron nitride
JP2006176811A (en) METHOD FOR PRODUCING CRYSTALLINE SiC FILM
TWI739799B (en) A method of producing a two-dimensional material
KR101916289B1 (en) Method for deposition of silicon carbide
CN112899644A (en) Diamond film boron oxide doping method
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JP2003155567A (en) Film deposition method, film, element, alkylsilicon compound, and film deposition system
RU2578104C1 (en) Method for gas-phase carbidisation of surface of monocrystalline silicon of orientation (111), (100)
US20130266742A1 (en) Chemical vapor deposition apparatus for synthesizing diamond film and method for synthesizing diamond film using the same
JP3743567B2 (en) Film forming method and film forming apparatus
JP2006144084A (en) Method for producing thin film
KR101829800B1 (en) Apparatus and method for deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070516

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071115

A711 Notification of change in applicant

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02