JP2006171017A - Method for manufacturing toner - Google Patents

Method for manufacturing toner Download PDF

Info

Publication number
JP2006171017A
JP2006171017A JP2004345178A JP2004345178A JP2006171017A JP 2006171017 A JP2006171017 A JP 2006171017A JP 2004345178 A JP2004345178 A JP 2004345178A JP 2004345178 A JP2004345178 A JP 2004345178A JP 2006171017 A JP2006171017 A JP 2006171017A
Authority
JP
Japan
Prior art keywords
toner
silica
hmds
treated
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345178A
Other languages
Japanese (ja)
Inventor
Hiroyuki Murakami
博之 村上
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004345178A priority Critical patent/JP2006171017A/en
Publication of JP2006171017A publication Critical patent/JP2006171017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the occurrence of a reversely charged or weakly charged toner, and of fogging and toner flying-off caused by the toner. <P>SOLUTION: In a method for manufacturing toner by externally adding silica, having an average particle diameter of 20-40 nm surface-treated with aminosilane (AS)+hexamethyldisilazane (HMDS) and silica, having an average particle diameter of 6-20 nm surface-treated with HMDS, in the first stage of a multistage treatment, the silica surface-treated with AS+HMDS is added externally, and in the second-stage or later external addition treatment, the silica surface-treated with HMDS is added externally. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は2種類のシリカを外添処理するトナーの製造方法に関する。   The present invention relates to a toner production method in which two types of silica are externally added.

負帯電性のトナー母粒子に電荷制御剤として正帯電性の疎水性シリカ微粒子を外添することにより、トナーの帯電を安定化させるものが提案されている(特許文献1)。
また、離型性を高めるために特定のフッ素含有重合体定着助剤として使用したトナー母体に、少なくとも正帯電性の疎水性シリカ、負帯電性の疎水性シリカを添加することで、フッ素含有重合体を配合したトナーで見られるトナーの凝集、長期連続使用での過帯電を防止するものも提案されている(特許文献2)。
また、疎水化された負帯電性シリカと正帯電性シリカ(平均粒径10〜50nm)の付着量を所定範囲に制御し、トナー表面の一部にニュートラル乃至正極性に帯電する部分を生じさせ、この部分のコロ作用でトナー融着を防止するとともに、極端な正帯電の発生も防止して好ましい帯電量とするものも提案されている(特許文献3)。
また、負帯電性のトナー母粒子に大きさの異なる2種類の正帯電性のシリカと無機微粒子とを外添し、トナー帯電を安定化させるものも提案されている(特許文献4)。
特開2000ー267337号公報 特開2002ー14487号公報 特開平11ー231571号公報 特開2002ー214834号公報
There has been proposed a toner that stabilizes toner charging by externally adding positively charged hydrophobic silica fine particles as a charge control agent to negatively charged toner base particles (Patent Document 1).
In addition, by adding at least a positively chargeable hydrophobic silica and a negatively chargeable hydrophobic silica to a toner base used as a specific fluorine-containing polymer fixing aid in order to improve releasability, There has also been proposed a toner that prevents toner aggregation and overcharge in long-term continuous use, which can be seen with a toner blended with a coalescence (Patent Document 2).
Also, the adhesion amount of the hydrophobically charged negatively charged silica and the positively charged silica (average particle diameter of 10 to 50 nm) is controlled within a predetermined range, and a neutral or positively charged part is generated on a part of the toner surface. In addition, there has been proposed a toner having a preferable charging amount by preventing toner fusion by the roller action of this portion and preventing the occurrence of extreme positive charging (Patent Document 3).
In addition, there has been proposed a method in which two types of positively chargeable silica and inorganic fine particles having different sizes are externally added to negatively charged toner base particles to stabilize toner charging (Patent Document 4).
JP 2000-267337 A Japanese Patent Laid-Open No. 2002-14487 JP-A-11-231571 Japanese Patent Laid-Open No. 2002-214834

上記特許文献1〜4では、正帯電性の外添剤を添加することにより、トナーの帯電性を安定化させることは可能ではあるが、トナーの帯電性の制御が十分ではなく、帯電量分布がブロードになり、逆帯電や弱帯電トナーが生じてトナーの飛散やカブリが発生するという問題があった。   In Patent Documents 1 to 4, it is possible to stabilize the chargeability of the toner by adding a positively chargeable external additive, but the chargeability of the toner is not sufficiently controlled, and the charge amount distribution Has a problem that the toner is scattered and fogging occurs due to reverse charging or weakly charged toner.

本発明は上記課題を解決しようとするもので、逆帯電や弱帯電トナーの発生、それに伴うカブリやトナーの飛散の発生を極力抑えることを目的とする。
そのために本発明は、平均粒径20〜40nmのアミノシラン(AS)+ヘキサメチルジシラザン(HMDS)で表面処理したシリカと、平均粒径6〜20nmのHMDSで表面処理したシリカを外添するトナーの製造方法において、多段処理の1段目に前記AS+HMDSで表面処理したシリカを外添処理した後、2段目以降の外添処理において前記HMDSで表面処理したシリカを外添処理することを特徴とする。
また、本発明は、前記外添処理をQ型ミキサーを用いて行うことを特徴とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to suppress the occurrence of reversely charged or weakly charged toner, and the occurrence of fog and toner scattering associated therewith as much as possible.
Therefore, the present invention provides a toner externally added to silica surface-treated with aminosilane (AS) + hexamethyldisilazane (HMDS) having an average particle diameter of 20 to 40 nm and silica surface-treated with HMDS having an average particle diameter of 6 to 20 nm. In the production method, the silica surface-treated with the AS + HMDS is externally added in the first stage of the multi-stage treatment, and then the silica surface-treated with the HMDS is externally added in the second and subsequent external addition processes. And
Further, the present invention is characterized in that the external addition process is performed using a Q-type mixer.

本発明は、多段処理の1段目で正帯電性疎水性シリカを外添した後、2段目以降に正帯電性疎水性シリカより粒径が小さい負帯電性疎水性シリカを外添することによって、トナー表面に正帯電性疎水性シリカを選択的に付着させ、トナー同士あるいは帯電部材(規制ブレ−ド等)との摩擦帯電を行う際に正帯電性疎水性シリカがマイクロキャリアの機能を発揮することで、帯電の立ち上がりが早くなるため、逆帯電や弱帯電のトナーの発生が極力抑えられ、カブリやトナ−飛散の発生を抑えることができる。   In the present invention, the positively charged hydrophobic silica is externally added in the first stage of the multistage treatment, and then the negatively charged hydrophobic silica having a particle diameter smaller than that of the positively charged hydrophobic silica is externally added in the second and subsequent stages. Thus, the positively charged hydrophobic silica is selectively attached to the toner surface, and the positively charged hydrophobic silica functions as a microcarrier when the toner is frictionally charged with each other or with a charging member (regulation blade, etc.). By exhibiting this effect, the rising of the charge is accelerated, so that the generation of reversely charged or weakly charged toner can be suppressed as much as possible, and the occurrence of fog and toner scattering can be suppressed.

以下、本発明の実施の形態を詳細に説明する。
本発明は、AS処理で正帯電性にし、HMDS処理で疎水性にした平均粒径20〜40nmの正帯電性シリカを多段処理の1段目で外添処理し、2段目以降においてHMDSで表面処理した平均粒径6〜20nmのシリカを外添処理することを骨子とするものである。多段処理の1段目で正帯電性シリカを外添処理することで、トナー同士あるいは帯電部材(規制ブレ−ド等)との摩擦帯電を行う際に正帯電性疎水性シリカがマイクロキャリアの機能を発揮することで、帯電の立ち上がりが早くなるため、逆帯電や弱帯電のトナーの発生が極力抑えられる。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, positively-charged silica having an average particle diameter of 20 to 40 nm, which has been made positively charged by AS treatment and made hydrophobic by HMDS treatment, is externally added in the first stage of the multistage treatment, and HMDS is used in the second and subsequent stages. The main point is that the surface-treated silica having an average particle diameter of 6 to 20 nm is externally added. In the first stage of the multi-stage treatment, positively-charged silica is externally added, so that the positively-charged hydrophobic silica functions as a microcarrier when friction charging between toners or charging members (regulator blades, etc.) is performed. By exhibiting the above, the rise of charging is accelerated, so that the generation of reversely charged or weakly charged toner is suppressed as much as possible.

なお、外添処理の混合機としてQ型ミキサーを使用し、槽内の層流を積極的に利用することにより、トナー母粒子と外添剤が転動する距離を大きくすることで、選択的付着を起こすことが可能であるので、Q型ミキサーを使用するのが好ましい。   Note that a Q-type mixer is used as a mixer for external addition treatment, and the laminar flow in the tank is positively used to increase the distance that the toner base particles and the external additive roll, thereby making it selective. Since it is possible to cause adhesion, it is preferable to use a Q-type mixer.

Q型ミキサーの例を図1に示す。
処理槽210は、比較的大きな水平円板状の槽底21を有する球形であり、上下に二分割できるように、中央部にフランジ218を備えている。また、球形部全体はジャケット219が設けられて二重構造となっており、ここに熱媒体を流すことにより、被処理物を加熱又は冷却することができる。処理槽210の上部には被処理物を投入するための投入口216が、また下部には製品を排出するための排出口217が設けられている。円板状の槽底211の中央には駆動軸215が貫通し、外部の動力によって回転可能となっている。駆動軸215には、尖端に丸みを与えた比較的大きな円錐型のボス212が取付けられ、ボス212の下端外周部には、撹拌羽根213が設けられている。その撹拌羽根213はボス212の外周の傾斜とは反対の勾配が付されており、その下側のエッジは処理槽210の球面状の内壁に沿った弧となっている。ボス212の上部には、撹拌羽根213より直径をやや小さくした補助羽根214が設けられている。この球形の処理槽においては、被処理物は撹拌羽根により球面状の槽壁に沿って滑らかに上昇して頂部近傍迄到達し、槽の頂部から落下した被処理物は、ボスの表面に沿って落下しボスの下端外周部の撹拌羽根に到達してボスの表面に沿って滑らかに流れる。そしてボスの表面に沿って落下し、撹拌羽根に到達した被処理物は、撹拌羽根の回転力により放出されて槽壁に沿って上昇し、処理槽内を循環する。
An example of a Q-type mixer is shown in FIG.
The processing tank 210 has a spherical shape having a relatively large horizontal disk-shaped tank bottom 21 and includes a flange 218 at the center so that the processing tank 210 can be divided into two vertically. In addition, the entire spherical portion is provided with a jacket 219 and has a double structure. By flowing a heat medium therethrough, the object to be processed can be heated or cooled. An input port 216 for supplying an object to be processed is provided in the upper part of the processing tank 210, and an exhaust port 217 for discharging a product is provided in the lower part. A drive shaft 215 passes through the center of the disk-shaped tank bottom 211 and can be rotated by external power. A relatively large conical boss 212 having a rounded tip is attached to the drive shaft 215, and a stirring blade 213 is provided on the outer periphery of the lower end of the boss 212. The stirring blade 213 has a slope opposite to the slope of the outer periphery of the boss 212, and the lower edge thereof is an arc along the spherical inner wall of the processing tank 210. An auxiliary blade 214 having a diameter slightly smaller than that of the stirring blade 213 is provided above the boss 212. In this spherical processing tank, the object to be processed rises smoothly along the spherical tank wall by the stirring blades and reaches the vicinity of the top, and the object to be processed dropped from the top of the tank along the surface of the boss. It falls and reaches the stirring blade on the outer periphery of the lower end of the boss, and smoothly flows along the surface of the boss. And the to-be-processed object which fell along the surface of the boss | hub, and reached | attained the stirring blade is discharged | emitted by the rotational force of a stirring blade, raises along a tank wall, and circulates in the inside of a processing tank.

次に実施例及び比較例について説明する。
なお、以下において使用する各外添剤の概要を以下に示す。
〔正帯電性外添剤〕
NA50H:日本アエロジル社製シリカ(粒径30nm)
TG820F:キャボット社製シリカ(粒径8nm)
〔他の外添剤〕
RX200:日本アエロジル社製シリカ(粒径12nm)
TG−811F:キャボット社製シリカ(粒径8nm)
RX50:日本アエロジル社製シリカ(粒径40nm)
STT−30S:チタン工業社製酸化チタン(粒径20nm)
ST−110S:チタン工業社製酸化チタン(粒径80〜150nm)
〔実施例〕
実施例1〜5を表1に示す。
Next, examples and comparative examples will be described.
In addition, the outline | summary of each external additive used below is shown below.
[Positively charged external additive]
NA50H: Silica manufactured by Nippon Aerosil Co., Ltd. (particle size 30 nm)
TG820F: Cabot silica (particle size 8nm)
[Other external additives]
RX200: Silica manufactured by Nippon Aerosil Co., Ltd. (particle size: 12 nm)
TG-811F: Silica manufactured by Cabot (particle size: 8 nm)
RX50: Nippon Aerosil Co., Ltd. silica (particle size 40 nm)
STT-30S: titanium oxide manufactured by Titanium Industry Co., Ltd. (particle size 20 nm)
ST-110S: Titanium Kogyo Co., Ltd. titanium oxide (particle size 80-150 nm)
〔Example〕
Examples 1 to 5 are shown in Table 1.

Figure 2006171017
Figure 2006171017

表1において、トナーの逆電荷量とカブリOD値については以下のように評価する。
セイコ−エプソン社製LP−9000Cのマゼンタ現像器に上記実施例1〜5のトナ−をセットし、ベタOD値が約1.2になるよう現像バイアス条件を設定し、その際の現像ローラ上の帯電特性をホソカワミクロン社製E−Spartアナライザ−EST−3型で測定し、逆電荷量が50[fC]を超えた場合は「逆帯電トナ−が多い」と判断する。
さらに、その際のOPC上のカブリOD値はテ−プ転写法で測定する。テープ転写法とは住友3M社製のメンディングテープを貼り付け、カブリトナーを該テ−プ上に転写し、次いで白紙上に貼り付けて反射濃度計で濃度測定し、白紙上のテープ上の濃度を差し引いたカブリOD値が0.02を超えた場合は「カブリが多い」と判断する。
In Table 1, the reverse charge amount and fog OD value of the toner are evaluated as follows.
The toner of Examples 1 to 5 is set in a LP-9000C magenta developing device manufactured by Seiko-Epson, and the developing bias condition is set so that the solid OD value is about 1.2. When the reverse charge amount exceeds 50 [fC], it is determined that “there is a large amount of reverse charge toner”.
Further, the fog OD value on the OPC at that time is measured by a tape transfer method. With the tape transfer method, a mending tape manufactured by Sumitomo 3M is applied, the fog toner is transferred onto the tape, and then applied onto a blank paper, and the density is measured with a reflection densitometer. When the fog OD value obtained by subtracting the density exceeds 0.02, it is determined that “there is much fog”.

表1から分かるように、多段処理の1段目において正帯電性外添剤を外添することにより、実施例1〜5の何れにおいてもカブリの発生が抑制されている。
〔比較例〕
比較例1〜2を表2に示す。
As can be seen from Table 1, fogging is suppressed in any of Examples 1 to 5 by externally adding a positively chargeable external additive in the first stage of the multistage treatment.
[Comparative Example]
Comparative Examples 1 and 2 are shown in Table 2.

Figure 2006171017
Figure 2006171017

比較例1は多段処理の1段目に正帯電性外添剤と他の外添剤とを同時投入した場合、、比較例2は外添順を逆にし、他の外添剤を1段目、正帯電性外添剤を2段目に外添処理した場合であり、実施例の場合と同様にして逆電荷量とカブリOD値を評価した結果、正帯電性疎水性シリカがマイクロキャリアの機能をうまく発揮できずに、逆帯電トナ−(カブリ)の発生を抑えることが出来なかった。   In Comparative Example 1, when a positively chargeable external additive and another external additive are simultaneously charged in the first stage of the multi-stage treatment, Comparative Example 2 reverses the order of external addition and puts the other external additive in one stage. In the case where the positively chargeable external additive was externally added to the second stage, the reverse charge amount and fog OD value were evaluated in the same manner as in the examples. Thus, the reverse charging toner (fogging) could not be suppressed.

本発明によれば、逆帯電や弱帯電のトナーの発生が極力抑えられ、カブリやトナ−飛散の発生を抑えることができるので産業上の利用価値は大きい。   According to the present invention, the generation of reversely charged or weakly charged toner can be suppressed as much as possible, and the occurrence of fogging and toner scattering can be suppressed.

Q形ミキサの例を説明する図である。It is a figure explaining the example of Q type mixer.

符号の説明Explanation of symbols

200…混合処理槽、201…下羽根、202…上羽根、210…処理槽、212…ボス、213…撹拌羽根、214…補助羽根、215…駆動軸、216…投入口、217…排出口。 DESCRIPTION OF SYMBOLS 200 ... Mixing processing tank, 201 ... Lower blade, 202 ... Upper blade, 210 ... Processing tank, 212 ... Boss, 213 ... Stirring blade, 214 ... Auxiliary blade, 215 ... Drive shaft, 216 ... Input port, 217 ... Discharge port.

Claims (2)

平均粒径20〜40nmのアミノシラン(AS)+ヘキサメチルジシラザン(HMDS)で表面処理したシリカと、平均粒径6〜20nmのHMDSで表面処理したシリカを外添するトナーの製造方法において、多段処理の1段目に前記AS+HMDSで表面処理したシリカを外添処理した後、2段目以降の外添処理において前記HMDSで表面処理したシリカを外添処理することを特徴とするトナーの製造方法。 In a method for producing a toner in which silica surface-treated with aminosilane (AS) + hexamethyldisilazane (HMDS) having an average particle diameter of 20 to 40 nm and silica surface-treated with HMDS having an average particle diameter of 6 to 20 nm are externally added. A method for producing a toner, wherein the silica surface-treated with AS + HMDS is externally added to the first stage of the treatment, and then the silica surface-treated with HMDS is externally added in the second and subsequent stages of external addition treatment. . 前記外添処理をQ型ミキサーを用いて行うことを特徴とする請求項1記載のトナーの製造方法。 The toner manufacturing method according to claim 1, wherein the external addition process is performed using a Q-type mixer.
JP2004345178A 2004-11-18 2004-11-30 Method for manufacturing toner Pending JP2006171017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345178A JP2006171017A (en) 2004-11-18 2004-11-30 Method for manufacturing toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004334100 2004-11-18
JP2004345178A JP2006171017A (en) 2004-11-18 2004-11-30 Method for manufacturing toner

Publications (1)

Publication Number Publication Date
JP2006171017A true JP2006171017A (en) 2006-06-29

Family

ID=36671888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345178A Pending JP2006171017A (en) 2004-11-18 2004-11-30 Method for manufacturing toner

Country Status (1)

Country Link
JP (1) JP2006171017A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031551A1 (en) * 2007-09-06 2009-03-12 Tomoegawa Co., Ltd. Toner for electrophotography and process for producing the same
JP2010198004A (en) * 2009-01-29 2010-09-09 Mitsubishi Chemicals Corp Toner for electrostatic charge development and image forming method
JP2011215310A (en) * 2010-03-31 2011-10-27 Mitsubishi Chemicals Corp Method for producing toner for electrostatic charge image development
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
JP2013105153A (en) * 2011-11-16 2013-05-30 Mitsubishi Chemicals Corp Toner for electrostatic charge image development and method for manufacturing toner
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide
WO2009031551A1 (en) * 2007-09-06 2009-03-12 Tomoegawa Co., Ltd. Toner for electrophotography and process for producing the same
JPWO2009031551A1 (en) * 2007-09-06 2010-12-16 株式会社巴川製紙所 Toner for electrophotography and method for producing the same
US8232036B2 (en) 2007-09-06 2012-07-31 Tomoegawa Co., Ltd. Toner for electrophotography and process for producing the same
JP5248511B2 (en) * 2007-09-06 2013-07-31 株式会社巴川製紙所 Toner for electrophotography and method for producing the same
JP2010198004A (en) * 2009-01-29 2010-09-09 Mitsubishi Chemicals Corp Toner for electrostatic charge development and image forming method
JP2011215310A (en) * 2010-03-31 2011-10-27 Mitsubishi Chemicals Corp Method for producing toner for electrostatic charge image development
JP2013105153A (en) * 2011-11-16 2013-05-30 Mitsubishi Chemicals Corp Toner for electrostatic charge image development and method for manufacturing toner

Similar Documents

Publication Publication Date Title
EP2444848B1 (en) Method for producing magnetic carrier and magnetic carrier produced using the same production method
US8921023B2 (en) Magnetic carrier and two-component developer
US20140134535A1 (en) Magnetic carrier and two-component developer
JP2006171017A (en) Method for manufacturing toner
JP2012053408A (en) Toner for electrostatic charge image development, developer for electrostatic charge image development, and image forming apparatus
JP2017111454A (en) Toner for developing electrostatic image
JP2017161824A (en) Process cartridge
JP2004163807A (en) Toner for nonmagnetic single component development and image forming method
JP2006201563A (en) Method for manufacturing negatively charged spherical toner
JP2010249987A (en) Toner, image forming method and image forming apparatus
JP2015079166A (en) Production method of toner
JP2009085975A (en) Toner and image forming method
JPH1195478A (en) Electrophotographic toner and its production
JP2000352841A (en) Toner and its manufacturing method and image forming method
JPH11295925A (en) Electrostatic latent image developing magnetic toner
JP5339778B2 (en) Image forming method and fixing method
JP5451062B2 (en) Method for producing toner particles
JP2006171016A (en) Method for manufacturing toner
JP4154302B2 (en) Two-component developer and developing device
JP2011215310A (en) Method for producing toner for electrostatic charge image development
JP4158109B2 (en) Electrostatic latent image developer and image forming method
JPH0980913A (en) Image forming method
JP4143574B2 (en) Toner production method and surface modification apparatus
JP5282517B2 (en) Method for producing toner for developing electrostatic image and toner for developing electrostatic image
JP2002268277A (en) Method for manufacturing toner for electrophotography