JP2006170811A - Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus - Google Patents

Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus Download PDF

Info

Publication number
JP2006170811A
JP2006170811A JP2004363912A JP2004363912A JP2006170811A JP 2006170811 A JP2006170811 A JP 2006170811A JP 2004363912 A JP2004363912 A JP 2004363912A JP 2004363912 A JP2004363912 A JP 2004363912A JP 2006170811 A JP2006170811 A JP 2006170811A
Authority
JP
Japan
Prior art keywords
multilayer film
layer
multilayer
reflecting mirror
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363912A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004363912A priority Critical patent/JP2006170811A/en
Publication of JP2006170811A publication Critical patent/JP2006170811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer film reflecting mirror capable of preventing diffusion of noble metals into the multilayer film, and keeping oxidation prevention function for long hours, while using the noble metals as an oxidation prevention agent for the multilayer film reflecting mirror. <P>SOLUTION: The multilayer film is formed by laminating alternately an Si layer 2 and an Mo layer on a substrate 4 by a sputtering method. A cermet thin film 1 wherein Pt particles are dispersed in SiO<SB>2</SB>is formed as an oxidation prevention layer on the uppermost Si layer 2. Since Pt is confined and fixed as particles in ceramics, easy diffusion of Pt into the multilayered film can be prevented effectively. Since part of the Pt particles is exposed from the surface, adhesion of a carbon contamination can be suppressed effectively, compare with an oxidation prevention layer comprising only an oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はEUV露光装置、および軟X線顕微鏡、軟X線分析装置などの軟X線光学機器に使用される多層膜反射鏡、及びEUV露光装置、軟X線光学機器に関するものである。なお、本明細書及び特許請求の範囲では、EUV光及び軟X線は同じ意味に用い、光の波長換算で1nm〜100nmの光又はX線を言う。   The present invention relates to an EUV exposure apparatus, a multilayer mirror used in a soft X-ray optical instrument such as a soft X-ray microscope and a soft X-ray analyzer, an EUV exposure apparatus, and a soft X-ray optical instrument. In the present specification and claims, EUV light and soft X-ray are used interchangeably and refer to light or X-ray having a wavelength of 1 nm to 100 nm in terms of wavelength of light.

近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えてこれより短い波長(11〜14nm)のEUV光を使用した投影リソグラフィ技術が開発されている(例えば、D.Tichenor, et al, SPIE 2437 (1995) 292:非特許得文献1参照)。この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィと呼ばれており、従来の波長190nm程度の光線を用いた光リソグラフィでは実現不可能な、70nm以下の解像力を得られる技術として期待されている。   In recent years, with the miniaturization of semiconductor integrated circuits, EUV light having a shorter wavelength (11 to 14 nm) is used in place of conventional ultraviolet rays in order to improve the resolving power of the optical system limited by the diffraction limit of light. Projection lithography techniques have been developed (see, for example, D. Tichenor, et al, SPIE 2437 (1995) 292: Non-Patent Document 1). This technique is recently called EUV (Extreme UltraViolet) lithography, and is expected as a technique capable of obtaining a resolution of 70 nm or less, which cannot be realized by conventional optical lithography using light having a wavelength of about 190 nm.

EUV光の波長領域での物質の複素屈折率nは、n=1−δ−ik(iは複素記号)で表わされる。この屈折率の虚部kは極端紫外線の吸収を表す。δは1に比べて非常に小さいため、この領域での屈折率の実部は1に非常に近い。又、kは大きな値となり吸収が非常に大きい。したがって従来のレンズのような透過屈折型の光学素子を使用できず、反射を利用した光学系が使用される。   A complex refractive index n of a substance in a wavelength region of EUV light is represented by n = 1−δ−ik (i is a complex symbol). The imaginary part k of the refractive index represents absorption of extreme ultraviolet rays. Since δ is much smaller than 1, the real part of the refractive index in this region is very close to 1. Further, k is a large value and the absorption is very large. Accordingly, a transmission / refraction type optical element such as a conventional lens cannot be used, and an optical system utilizing reflection is used.

このようなEUV露光装置の概要を図4に示す。EUV光源31から放出されたEUV光32は、照明光学系33に入射し、コリメータミラーとして作用する凹面反射鏡34を介してほぼ平行光束となり、一対のフライアイミラー35aおよび35bからなるオプティカルインテグレータ35に入射する。一対のフライアイミラー35aおよび35bとして、たとえば特開平11−312638号公報(特許文献1)に開示されたフライアイミラーを用いることができる。なお、フライアイミラーのさらに詳細な構成および作用については、特許文献1に詳しく説明されており、かつ、本発明と直接の関係がないので、その説明を省略する。   An outline of such an EUV exposure apparatus is shown in FIG. The EUV light 32 emitted from the EUV light source 31 enters the illumination optical system 33 and becomes a substantially parallel light beam via a concave reflecting mirror 34 that acts as a collimator mirror, and an optical integrator 35 comprising a pair of fly-eye mirrors 35a and 35b. Is incident on. As the pair of fly-eye mirrors 35a and 35b, for example, a fly-eye mirror disclosed in JP-A-11-312638 (Patent Document 1) can be used. In addition, since the more detailed structure and effect | action of a fly eye mirror are demonstrated in detail in patent document 1, and since there is no direct relationship with this invention, the description is abbreviate | omitted.

こうして、第2フライアイミラー35bの反射面の近傍、すなわちオプティカルインテグレータ35の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は、平面反射鏡36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する(円弧状の照明領域を形成するための開口板は図示を省略している)。照明されたマスクMのパターンからの光は、複数の反射鏡(図4では例示的に6つの反射鏡M1〜M6)からなる投影光学系PLを介して、ウエハW上にマスクパターンの像を形成する。なお、マスクMはマスクステージ、ウエハWはウエハステージに保持され、このマスクステージ、ウエハステージを移動(走査)させることにより、マスクM面のパターン像全体をウエハWに転写するが、マスクステージ、ウエハステージの図示を省略している。   Thus, a substantial surface light source having a predetermined shape is formed in the vicinity of the reflecting surface of the second fly's eye mirror 35b, that is, in the vicinity of the exit surface of the optical integrator 35. The light from the substantial surface light source is deflected by the plane reflecting mirror 36 and then forms an elongated arc-shaped illumination area on the mask M (the aperture plate for forming the arc-shaped illumination area is not shown). is doing). The light from the pattern of the illuminated mask M forms an image of the mask pattern on the wafer W via the projection optical system PL including a plurality of reflecting mirrors (six reflecting mirrors M1 to M6 in FIG. Form. The mask M is held on the mask stage, and the wafer W is held on the wafer stage. By moving (scanning) the mask stage and wafer stage, the entire pattern image on the mask M surface is transferred to the wafer W. The illustration of the wafer stage is omitted.

このようなEUV露光装置をはじめ、軟X線顕微鏡、軟X線分析装置などの軟X線光学機器に使用される反射鏡としては、基板の上に多層膜を形成し、界面での微弱な反射光を位相を合わせて多数重畳させて高い反射率を得る多層膜反射鏡が一般的に使用されている。   As a reflector used in soft X-ray optical instruments such as an EUV exposure apparatus, a soft X-ray microscope, and a soft X-ray analyzer, a multilayer film is formed on a substrate, and the reflection mirror at the interface is weak. A multilayer-film reflective mirror that obtains a high reflectance by superimposing a large number of reflected lights in phase is generally used.

13.4nm付近の波長域では、モリブデン(Mo)層とシリコン(Si)層を交互に積層したMo/Si多層膜を用いると垂直入射で67.5%の反射率を得ることができ、波長11.3nm付近の波長域では、Mo層とベリリウム(Be)層を交互に積層したMo/Be多層膜を用いると垂直入射で70.2%の反射率を得ることができる(例えば、C. Montcalm、「Proceedings of SPIE」、1998年、第3331巻、p.42 :非特許文献2参照)。   In the wavelength region near 13.4 nm, when a Mo / Si multilayer film in which molybdenum (Mo) layers and silicon (Si) layers are alternately stacked is used, a reflectance of 67.5% can be obtained at normal incidence. In the wavelength region near 11.3 nm, when a Mo / Be multilayer film in which Mo layers and beryllium (Be) layers are alternately stacked is used, a reflectivity of 70.2% can be obtained at normal incidence (for example, C.I. Montcalm, “Proceedings of SPIE”, 1998, 3331, p. 42: see Non-Patent Document 2.

これら、EUV光や軟X線用の反射鏡は、空気による吸収を防ぐために真空中で使用される。   These reflectors for EUV light and soft X-rays are used in a vacuum in order to prevent absorption by air.

しかしながら、露光装置内は完全な真空にはなっておらず、炭化水素等の有機物系のガス等が常に存在する環境にある。炭化水素を含んだ残留ガスには、真空排気系(真空ポンプ)に用いられるオイルに起因するもの、装置内部の可動部分の潤滑材に起因するもの、装置内部で使用される部品(例えば電気ケーブルの被覆材料など)に起因するものなどがある。   However, the inside of the exposure apparatus is not completely evacuated and is in an environment where organic gases such as hydrocarbons are always present. Residual gases containing hydrocarbons include those caused by oil used in the vacuum exhaust system (vacuum pump), those caused by lubricants in moving parts inside the equipment, and parts used inside the equipment (for example, electric cables) Due to the coating material).

EUV露光装置の場合は、フォトレジストを塗布したウェハが装置内部の真空中に導入される。ここにEUV光が照射されると、残留していた溶剤の蒸発やレジストを構成する樹脂の分解脱離などにより、炭化水素を含んだガスが放出される。   In the case of an EUV exposure apparatus, a wafer coated with a photoresist is introduced into a vacuum inside the apparatus. When irradiated with EUV light, hydrocarbon-containing gas is released due to evaporation of the remaining solvent, decomposition and desorption of the resin constituting the resist, and the like.

炭化水素を含んだ残留ガス分子は、多層膜反射鏡の表面に物理吸着する。物理吸着したガス分子は、脱離と吸着を繰り返しており、そのままでは厚く成長することはない。   Residual gas molecules containing hydrocarbons are physically adsorbed on the surface of the multilayer reflector. Physically adsorbed gas molecules are repeatedly desorbed and adsorbed and do not grow thick as they are.

しかし、ここにEUV光が照射されると、反射鏡の基板内部で二次電子が発生し、この二次電子が表面に吸着している炭化水素を含んだガス分子を分解して炭素を析出させる。   However, when EUV light is irradiated here, secondary electrons are generated inside the substrate of the reflector, and the secondary electrons decompose hydrocarbon molecules adsorbed on the surface to deposit carbon. Let

吸着したガス分子がどんどん分解されて析出していくので、多層膜反射鏡の表面には炭素層が形成され、その厚さはEUV光の照射量に比例して増加していく(K. Boller et al., Nucl. Instr. and Meth. 208 (1983) 273 :非特許文献3参照)。   As the adsorbed gas molecules are gradually decomposed and deposited, a carbon layer is formed on the surface of the multilayer mirror, and its thickness increases in proportion to the dose of EUV light (K. Boller et al., Nucl. Instr. and Meth. 208 (1983) 273: Non-patent document 3).

多層膜反射鏡の表面に炭素層が形成されると、反射鏡の反射率が低下してしまうという問題点が発生する。   When the carbon layer is formed on the surface of the multilayer film reflecting mirror, there arises a problem that the reflectance of the reflecting mirror is lowered.

図2に、Mo/Si多層膜(最上層Si)の表面に炭素層が形成されたときの反射率の変化を示す。厚さ2nmまでは反射率の低下はないが、6nm付くと6%以上も反射率が低下してしまうのがわかる。   FIG. 2 shows a change in reflectance when a carbon layer is formed on the surface of the Mo / Si multilayer (uppermost layer Si). It can be seen that the reflectance does not decrease up to a thickness of 2 nm, but if the thickness is 6 nm, the reflectance decreases by 6% or more.

なお、炭素層が薄い(〜2nm)場合に反射率の低下が生じないのは、表面に付着した炭素層の光学定数が多層膜を構成する重原子層(モリブデン層)と近いので、炭素層が多層膜の重原子層と同様の役割を果たすためである。   In addition, when the carbon layer is thin (˜2 nm), the reflectance does not decrease because the optical constant of the carbon layer attached to the surface is close to the heavy atom layer (molybdenum layer) constituting the multilayer film. This is because it plays the same role as the heavy atom layer of the multilayer film.

EUV露光装置においては、多層膜反射鏡のわずかな反射率低下が、露光装置のスループットに大きな影響を与える。図3は、実際のEUV露光装置を想定して、照明系6枚、反射マスク、投影系6枚の合計13枚の多層膜反射鏡を用いたシステムにおいて、多層膜反射鏡1枚あたりの反射率低下(ΔR)が光学系全体の透過率(スループット)に対してどの程度影響するかを計算した結果である。例えば、多層膜反射鏡1枚あたりの反射率が6%低下すると、光学系全体の透過率は元の値の3割にまで著しく低下してしまう。   In an EUV exposure apparatus, a slight decrease in the reflectivity of the multilayer mirror greatly affects the throughput of the exposure apparatus. FIG. 3 shows a reflection using a multilayer reflector in a system using a total of 13 multilayer reflectors including six illumination systems, reflection masks, and six projection systems, assuming an actual EUV exposure apparatus. This is a result of calculating how much the rate decrease (ΔR) affects the transmittance (throughput) of the entire optical system. For example, if the reflectance per multilayer film reflector is reduced by 6%, the transmittance of the entire optical system is significantly reduced to 30% of the original value.

このような炭素層析出による光学素子のコンタミネーションを防止するために、使用雰囲気中に酸素または水蒸気を導入する技術が開発されている。(M. Malinowski et al., Proc. SPIE 4343 (2001) 347 :非特許文献4参照)
この技術によれば、EUV光照射により酸素または水蒸気が分解されて酸素ラジカルが生成される。酸素ラジカルは光学素子表面に物理吸着した炭化水素を含んだガス分子、および表面に析出した炭素層と反応して炭酸ガスとなる。炭酸ガスは気体なので、真空ポンプで排気されて炭素のコンタミネーションは除去される。
In order to prevent such contamination of the optical element due to the carbon layer deposition, a technique for introducing oxygen or water vapor into the use atmosphere has been developed. (See M. Malinowski et al., Proc. SPIE 4343 (2001) 347: Non-Patent Document 4)
According to this technique, oxygen radicals are generated by the decomposition of oxygen or water vapor by EUV light irradiation. Oxygen radicals react with gas molecules containing hydrocarbons physically adsorbed on the surface of the optical element and a carbon layer deposited on the surface to become carbon dioxide. Since carbon dioxide is a gas, it is evacuated by a vacuum pump to remove carbon contamination.

しかしながら、この方法は酸素ラジカルによる酸化反応を利用しているので、表面に析出した炭素だけでなく多層膜表面も酸化させてしまう。その結果、表面酸化による反射率の低下が無視できなくなる。   However, since this method uses an oxidation reaction by oxygen radicals, not only the carbon deposited on the surface but also the surface of the multilayer film is oxidized. As a result, a decrease in reflectance due to surface oxidation cannot be ignored.

多層膜の表面酸化を抑制するために、酸素または水蒸気と同時にエタノールを導入する方法が提案されている(H. Meiling et al., abstract of 2nd International Workshop on EUV Lithography, San Francisco (2000) p. 17 :非特許文献5参照)。これは、炭素の析出と酸化による除去とをバランスさせようという試みである。   In order to suppress the surface oxidation of the multilayer film, a method of introducing ethanol simultaneously with oxygen or water vapor has been proposed (H. Meiling et al., Abstract of 2nd International Workshop on EUV Lithography, San Francisco (2000) p. 17: See non-patent document 5). This is an attempt to balance carbon deposition with oxidation removal.

しかしながら、この方法は、原理実験では効果が示されているが、実際の光学系においては、多層膜反射鏡の面内にEUV光強度の分布があり、炭素層の析出速度は一様ではないため、全ての場所で析出速度と酸化除去速度をバランスさせることが困難であり、実用的ではないと考えられる。   However, although this method has been shown to be effective in principle experiments, in an actual optical system, there is a distribution of EUV light intensity in the plane of the multilayer mirror, and the deposition rate of the carbon layer is not uniform. For this reason, it is difficult to balance the deposition rate and the oxidation removal rate at all locations, which is considered impractical.

特開平11−312638号公報JP 11-312638 A D.Tichenor, et al, SPIE 2437 (1995) 292D. Tichenor, et al, SPIE 2437 (1995) 292 C. Montcalm、「Proceedings of SPIE」、1998年、第3331巻、p.42C. Montcalm, “Proceedings of SPIE”, 1998, 3331, p.42 K. Boller et al., Nucl. Instr. and Meth. 208 (1983) 273K. Boller et al., Nucl. Instr. And Meth. 208 (1983) 273 M. Malinowski et al., Proc. SPIE 4343 (2001) 347M. Malinowski et al., Proc.SPIE 4343 (2001) 347 H. Meiling et al., abstract of 2nd International Workshop on EUV Lithography, San Francisco (2000) p. 17H. Meiling et al., Abstract of 2nd International Workshop on EUV Lithography, San Francisco (2000) p. 17

結局、酸化性雰囲気を使用して炭素層析出による光学素子コンタミネーションを除去したり、付着防止することを前提とすると、多層膜表面の酸化を防ぐ対策が必要である。金(Au)、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、オスミウム(Os)、イリジウム(Ir)等の貴金属類は、安定な金属材料であり酸化されにくいことは良く知られている。これらの物質からなる層を多層膜の最上層形成しておけば、多層膜の酸化を防ぐことができると当然考えられる。   In the end, it is necessary to take measures to prevent the oxidation of the multilayer film surface on the premise that the optical element contamination due to the carbon layer deposition is removed or the adhesion prevention is performed using an oxidizing atmosphere. Precious metals such as gold (Au), platinum (Pt), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir) are stable metal materials and are not easily oxidized. Is well known. It is naturally considered that the oxidation of the multilayer film can be prevented by forming a layer made of these substances as the uppermost layer of the multilayer film.

酸化を防ぐ目的からは、初めから酸化物を用いる方法も有効である。しかし、放射光ビームラインに使用される斜入射ミラーにおいて、SiO製コート無しのミラーよりも、Pt等の貴金属薄膜を表面にコートしたミラーの方が、EUV光照射による炭素コンタミネーションの付着が少ないことが経験的に知られている。すなわち、酸化物よりも貴金属の方が、多層膜反射鏡のコンタミネーション防止の観点から優れている。 For the purpose of preventing oxidation, a method using an oxide from the beginning is also effective. However, in the oblique incidence mirror used for the synchrotron beam line, the mirror coated with a noble metal thin film such as Pt on the surface is more susceptible to carbon contamination due to EUV light irradiation than the mirror without SiO 2 coating. Less is known empirically. That is, the noble metal is superior to the oxide from the viewpoint of preventing contamination of the multilayer reflector.

しかしながら、これらの貴金属材料からなる層を多層膜の最上層へ形成すると、時間の経過とともに貴金属原子が多層膜中に拡散して散逸してしまい、多層膜の最上層物質が露出してしまうようになり酸化防止効果が失われてしまうという問題点があった。   However, when a layer made of these noble metal materials is formed on the uppermost layer of the multilayer film, noble metal atoms diffuse and dissipate in the multilayer film over time, so that the uppermost layer material of the multilayer film is exposed. And the antioxidant effect is lost.

安定である(化学反応性が低い)ということは、他の物質と結合しにくいということと同義である。貴金属類は、他の分子との結合が弱いために、一般に物質中を容易に拡散する性質がある。   Stable (low chemical reactivity) is synonymous with being difficult to bind to other substances. Precious metals generally have the property of easily diffusing through substances because of their weak bonds with other molecules.

例えばモリブデン(Mo)とシリコン(Si)の交互層からなる多層膜の最上層のSi層の上に酸化防止層としてPt層を形成すると、時間が経つにつれてPt原子がSi層の内部へ拡散して行き、徐々に表面のPt層が無くなってSi層が表面に露出してきてしまい、露出したSi表面が酸化してしまう。   For example, when a Pt layer is formed as an antioxidant layer on the uppermost Si layer of a multilayer film composed of alternating layers of molybdenum (Mo) and silicon (Si), Pt atoms diffuse into the Si layer over time. As a result, the Pt layer on the surface gradually disappears and the Si layer is exposed on the surface, and the exposed Si surface is oxidized.

本発明はこのような事情に鑑みてなされたもので、多層膜反射鏡の酸化防止剤として貴金属類を使用しながら、貴金属類の多層膜中への拡散を防止し、長時間に亘って酸化防止作用を持たせることが可能な多層膜反射鏡、及びこの多層膜反射鏡を使用したEUV露光装置、及び軟X線光学機器を提供することを課題とする。   The present invention has been made in view of such circumstances, and while using noble metals as an antioxidant for multilayer mirrors, it prevents diffusion of noble metals into the multilayer film and oxidizes over a long period of time. It is an object of the present invention to provide a multilayer film reflecting mirror capable of having a preventive action, an EUV exposure apparatus using the multilayer film reflecting mirror, and a soft X-ray optical apparatus.

前記課題を解決するための第1の手段は、最上層に、セラミクス中に貴金属、又は貴金属を主成分とする合金の微粒子を分散させたサーメット薄膜からなる酸化防止層を設けたことを特徴とする多層膜反射鏡(請求項1)である。   The first means for solving the above-mentioned problems is characterized in that an anti-oxidation layer made of a cermet thin film in which fine particles of a noble metal or an alloy mainly containing a noble metal are dispersed in ceramics is provided in the uppermost layer. A multilayer film reflector (claim 1).

本手段においては、多層膜の最上層に設ける酸化防止層として、従来の貴金属薄膜あるいは酸化物薄膜に代えて、貴金属又は貴金属を主成分とする合金の微粒子をセラミクス中に分散させた、いわゆるサーメット(Cermet:Ceramics + Metalの複合語)薄膜を用いている。   In this means, a so-called cermet in which fine particles of a noble metal or an alloy containing a noble metal as a main component are dispersed in ceramics instead of a conventional noble metal thin film or oxide thin film as an anti-oxidation layer provided on the uppermost layer of the multilayer film (Cermet: Compound of Ceramics + Metal) Thin films are used.

本手段においては、貴金属を微粒子としてセラミクスの中に閉じ込めて固定するため、従来のように貴金属が容易に多層膜中へ拡散することを効果的に防止することができる。また、貴金属微粒子の一部は表面に露出しているため、酸化物のみからなる酸化防止層と比べて、炭素コンタミネーションの付着を効果的に抑止することができる。貴金属としては、Au,Pt,Th,Pd,Ag,Ru,Os,Ir等を用いることができ、2種以上の貴金属や、その合金を用いてもよい。セラミクスも2種類以上を用いてもよい。   In this means, since the noble metal is confined and fixed in the ceramic as fine particles, it is possible to effectively prevent the noble metal from being easily diffused into the multilayer film as in the prior art. In addition, since some of the noble metal fine particles are exposed on the surface, adhesion of carbon contamination can be effectively suppressed as compared with an antioxidant layer made of only an oxide. As the noble metal, Au, Pt, Th, Pd, Ag, Ru, Os, Ir and the like can be used, and two or more kinds of noble metals and alloys thereof may be used. Two or more types of ceramics may be used.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記セラミクスが、酸化物系セラミクスであることを特徴とするもの(請求項2)である。   A second means for solving the problem is the first means, wherein the ceramics is an oxide-based ceramics (claim 2).

前述のように、セラミクスは、貴金属を微粒子としてその中に閉じ込めて固定するものであるので、このような作用を有するものを任意に選んで使用することができるが、特に、酸化物系のセラミクスは、それ自身が酸化物であるので、それ以上酸化されることが無く、貴金属を微粒子として安定な状態で閉じこめることができる。このような、酸化物系セラミクスとして、酸化ケイ素(SiO)、酸化ジルコニウム(ZnO)、酸化セリウム(CeO)、酸化チタン(TiO)、酸化ハフニウム(HfO)等を使用することができる。 As described above, ceramics confine and fix precious metals as fine particles in the ceramics. Therefore, it is possible to arbitrarily select and use those having such actions. Since it is an oxide itself, it is not oxidized any more, and the noble metal can be confined in a stable state as fine particles. As such oxide-based ceramics, silicon oxide (SiO 2 ), zirconium oxide (ZnO), cerium oxide (CeO 2 ), titanium oxide (TiO 2 ), hafnium oxide (HfO 2 ), and the like can be used. .

前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段の多層膜反射鏡を少なくとも1枚備えたことを特徴とするEUV露光装置(請求項3)である。   A third means for solving the above-mentioned problem is an EUV exposure apparatus (Claim 3), comprising at least one multilayer film reflecting mirror of the first means or the second means.

前述のように、EUV露光装置内では、特にコンタミネーションの影響が問題となるので、前記第1の手段又は第2の手段である多層膜反射鏡を使用することが有効であり、これにより、反射鏡の反射率がコンタミネーションによって低下するのを防ぎ、スループットの低下を、長期間に亘って防止することができる。   As described above, since the influence of contamination becomes a problem in the EUV exposure apparatus, it is effective to use the multilayer film reflecting mirror which is the first means or the second means. It is possible to prevent the reflectance of the reflecting mirror from decreasing due to contamination, and to prevent a decrease in throughput over a long period of time.

前記課題を解決するための第4の手段は、前記第1の手段又は第2の手段の多層膜反射鏡を少なくとも1枚備えたことを特徴とする軟X線光学機器(請求項4)である。   A fourth means for solving the above-mentioned problem is a soft X-ray optical instrument (Claim 4) characterized by comprising at least one multilayer mirror of the first means or the second means. is there.

EUV露光装置以外の、軟X線顕微鏡、軟X線分析装置などの軟X線光学機器においても、コンタミネーションの付着による反射鏡反射率の低下が問題となるときは、前記第1の手段又は第2の手段である多層膜反射鏡を使用することが有効である。   In soft X-ray optical instruments such as a soft X-ray microscope and a soft X-ray analyzer other than the EUV exposure apparatus, if the reduction in the reflectance of the reflecting mirror due to the adhesion of contamination becomes a problem, the first means or It is effective to use a multilayer film reflecting mirror as the second means.

本発明によれば、多層膜反射鏡の酸化防止剤として貴金属類を使用しながら、貴金属類の多層膜中への拡散を防止し、長時間に亘って酸化防止作用を持たせることが可能な多層膜反射鏡、及びこの多層膜反射鏡を使用したEUV露光装置、軟X線光学機器を提供することができる。   According to the present invention, it is possible to prevent diffusion of noble metals into the multilayer film and to have an antioxidant action for a long time while using the noble metals as the antioxidant for the multilayer mirror. A multilayer film reflecting mirror, an EUV exposure apparatus using the multilayer film reflecting mirror, and a soft X-ray optical apparatus can be provided.

図1に、本発明の実施例である多層膜反射鏡の断面図を示す。なお、簡単のために多層膜の積層数を実際よりも少なく描いてある。また、一般に多層膜反射鏡は曲率を持っているが、図では簡略化のために平面鏡として描いてある。   FIG. 1 shows a cross-sectional view of a multilayer-film reflective mirror that is an embodiment of the present invention. For the sake of simplicity, the number of stacked multilayer films is drawn smaller than the actual number. In general, the multilayer mirror has a curvature, but in the figure, it is drawn as a plane mirror for the sake of simplicity.

基板4として、低熱膨張ガラスであるコーニング社製ULEを用いた。ショット社製Zerodur等の他の低熱膨張ガラスを用いてもよい。基板4の表面粗さによる反射率低下を防ぐために、基板表面は0.3nm(RMS)以下の表面粗さに研磨した。   As the substrate 4, ULE made by Corning, which is a low thermal expansion glass, was used. Other low thermal expansion glass such as Zerodur manufactured by Schott may be used. In order to prevent the reflectance from decreasing due to the surface roughness of the substrate 4, the substrate surface was polished to a surface roughness of 0.3 nm (RMS) or less.

この基板4の上にスパッタリング法でMo/Si多層膜を成膜した。成膜中は基板を水冷して室温に保った。Si層2の厚さは4.6nmとし、Mo層3の厚さは2.3nmとした。従って、多層膜の一周期の厚さ(周期長)は6.9nmである。Si層2とMo層3を交互に積層して多層膜を形成した。Si層2から始めて、Si層2を46層、Mo層3を45層形成した。   A Mo / Si multilayer film was formed on the substrate 4 by sputtering. During film formation, the substrate was cooled with water and kept at room temperature. The thickness of the Si layer 2 was 4.6 nm, and the thickness of the Mo layer 3 was 2.3 nm. Therefore, the thickness (period length) of one cycle of the multilayer film is 6.9 nm. The Si layer 2 and the Mo layer 3 were alternately stacked to form a multilayer film. Starting from the Si layer 2, 46 Si layers 2 and 45 Mo layers 3 were formed.

46層目のSi層2の上に、酸化防止層として、SiO中にPt微粒子を分散させたサーメット薄膜1を形成した。 A cermet thin film 1 in which Pt fine particles were dispersed in SiO 2 was formed on the 46th Si layer 2 as an antioxidant layer.

サーメット薄膜1は、Mo/Si多層膜と同一の成膜装置で、以下のようにして形成することができる。多層膜を形成するときと同様にSiO薄膜とPt薄膜とを交互に積層する。このとき、成膜時間を短くすることにより、一回あたりのPt薄膜の成膜量を極端に小さくする。 The cermet thin film 1 can be formed by the same film forming apparatus as the Mo / Si multilayer film as follows. Similar to the formation of the multilayer film, SiO 2 thin films and Pt thin films are alternately laminated. At this time, by shortening the film formation time, the film formation amount of the Pt thin film per time is extremely reduced.

例えば、一回あたり0.1〜0.2nm程度の厚さしか付かないように成膜時間を設定すると、このような極端に薄い金属薄膜は連続的な薄膜になることができず、島状に成長する。その結果、SiO中にPt微粒子が分散した構造を形成することができる。 For example, if the deposition time is set so that the thickness is only about 0.1 to 0.2 nm per time, such an extremely thin metal thin film cannot be a continuous thin film and grows in an island shape. . As a result, a structure in which Pt fine particles are dispersed in SiO 2 can be formed.

Pt微粒子の寸法は、一回あたりに成膜するPt層の厚さ(成膜時間)によって制御することができる。(一回当り成膜時間を長くするほど微粒子径は大きくなる。更に長くすると連続薄膜となり、Pt/SiO多層膜が形成される。)
Mo/Si多層膜と、Pt−SiOサーメット薄膜からなるサーメット薄膜(酸化防止層)1は、同一の成膜装置内で真空を破らずに連続して成膜した。
The size of the Pt fine particles can be controlled by the thickness (film formation time) of the Pt layer formed at one time. (The longer the film formation time per time, the larger the fine particle diameter. When the film formation time is further increased, a continuous thin film is formed, and a Pt / SiO 2 multilayer film is formed.)
The Mo / Si multilayer film and the cermet thin film (antioxidation layer) 1 composed of the Pt—SiO 2 cermet thin film were continuously formed in the same film forming apparatus without breaking the vacuum.

本実施例ではサーメット薄膜中に分散させる金属材料としてPtを用いたが、それ以外に、Au,Rh,Pd,Ag,Ru,Os,Irなどの他の貴金属材料や、これらの貴金属材料の少なくとも一つを主成分とする合金、混合物等を用いてもよい。   In this embodiment, Pt is used as the metal material to be dispersed in the cermet thin film. However, other noble metal materials such as Au, Rh, Pd, Ag, Ru, Os, and Ir, and at least of these noble metal materials are used. You may use the alloy, mixture, etc. which have one as a main component.

又、本実施例ではサーメット薄膜のセラミクス材料としてSiOを用いたが、それ以外に、ZnO,CeO,TiO,HfOの他の酸化物を使用してもよい。また、酸化物以外にも、窒化物、炭化物などの他のセラミクス材料を使用することもできる。 In this embodiment, SiO 2 is used as the ceramic material for the cermet thin film, but other oxides such as ZnO, CeO 2 , TiO 2 , and HfO 2 may be used. In addition to oxides, other ceramic materials such as nitrides and carbides can also be used.

このようにして、製造した多層膜反射鏡を、図4に示すようなEUV露光装置の投影光学系の反射鏡として使用した。比較例として、表面にコーティングを施さない、従来のMo/Si多層膜反射反射鏡を使用して、露光を繰り返し、両者におけるウエハへの光量の低下を比較した。   Thus, the produced multilayer film reflective mirror was used as a reflective mirror of the projection optical system of an EUV exposure apparatus as shown in FIG. As a comparative example, the exposure was repeated using a conventional Mo / Si multilayer reflective mirror with no coating on the surface, and the reduction in the amount of light on the wafer in both cases was compared.

投影光学系の雰囲気中に水蒸気を1x10−6Torrの分圧だけ導入した。その結果、反射鏡表面に析出する炭素コンタミネーションは酸化して除去された。 Water vapor was introduced into the atmosphere of the projection optical system at a partial pressure of 1 × 10 −6 Torr. As a result, carbon contamination deposited on the reflecting mirror surface was oxidized and removed.

比較例の多層膜反射反射鏡を用いた場合には、露光を繰り返すとウェハへ到達する光量は徐々に低下したが、上記のようにして製造した本発明の実施例の多層膜反射鏡を用いた場合には、ウェハへ到達する光量の低下は生じなかった。比較例において、ウエハへ到達する光量が低下したのは、Mo/Si多層膜の表面が酸化したためであった。それに対し、実施例の多層膜反射鏡においては、反射鏡表面の多層膜の酸化は見られなかった。   When the multilayer reflective reflector of the comparative example was used, the amount of light reaching the wafer gradually decreased as the exposure was repeated, but the multilayer reflective mirror of the embodiment of the present invention manufactured as described above was used. In such a case, the amount of light reaching the wafer did not decrease. In the comparative example, the amount of light reaching the wafer decreased because the surface of the Mo / Si multilayer film was oxidized. On the other hand, in the multilayer mirror of the example, oxidation of the multilayer film on the mirror surface was not observed.

なお、本実施例においては、コンタミネーションの酸化剤として水蒸気を用いたが、酸素や、過酸化水素水の蒸気を使用してもよい。   In this embodiment, water vapor is used as the oxidant for contamination. However, oxygen or hydrogen peroxide water vapor may be used.

本発明の実施例である多層膜反射鏡の断面図を示す図である。It is a figure which shows sectional drawing of the multilayer film reflective mirror which is an Example of this invention. Mo/Si多層膜(最上層Si)の表面に炭素層が形成されたときの反射率の変化を示す図である。It is a figure which shows the change of a reflectance when a carbon layer is formed in the surface of Mo / Si multilayer film (uppermost layer Si). 実際のEUV露光装置を想定して、照明系6枚、反射マスク、投影系6枚の合計13枚の多層膜反射鏡を用いたシステムにおいて、多層膜反射鏡1枚あたりの反射率低下が光学系全体の透過率(スループット)に対してどの程度影響するかを計算した結果を示す図である。Assuming an actual EUV exposure apparatus, in a system using a total of 13 multilayer reflectors including six illumination systems, reflection masks, and six projection systems, the reflectance reduction per multilayer reflector is optical. It is a figure which shows the result of having calculated how much it has influence with respect to the transmittance | permeability (throughput) of the whole system. EUV露光装置の概要を示す図である。It is a figure which shows the outline | summary of an EUV exposure apparatus.

符号の説明Explanation of symbols

1…サーメット薄膜、2…Si層、3…Mo層、4…基板
DESCRIPTION OF SYMBOLS 1 ... Cermet thin film, 2 ... Si layer, 3 ... Mo layer, 4 ... Substrate

Claims (4)

最上層に、セラミクス中に貴金属、又は貴金属を主成分とする合金の微粒子を分散させたサーメット薄膜からなる酸化防止層を設けたことを特徴とする多層膜反射鏡。 A multilayer film reflector comprising an anti-oxidation layer comprising a cermet thin film in which fine particles of a noble metal or an alloy containing a noble metal as a main component are dispersed in ceramics on the uppermost layer. 前記セラミクスが、酸化物系セラミクスであることを特徴とする請求項1に記載の多層膜反射鏡。 2. The multilayer reflector according to claim 1, wherein the ceramic is an oxide-based ceramic. 請求項1又は請求項2に記載の多層膜反射鏡を少なくとも1枚備えたことを特徴とするEUV露光装置。 An EUV exposure apparatus comprising at least one multilayer film reflecting mirror according to claim 1. 請求項1又は請求項2に記載の多層膜反射鏡を少なくとも1枚備えたことを特徴とする軟X線光学機器。
A soft X-ray optical apparatus comprising at least one multilayer film reflecting mirror according to claim 1.
JP2004363912A 2004-12-16 2004-12-16 Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus Pending JP2006170811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363912A JP2006170811A (en) 2004-12-16 2004-12-16 Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363912A JP2006170811A (en) 2004-12-16 2004-12-16 Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus

Publications (1)

Publication Number Publication Date
JP2006170811A true JP2006170811A (en) 2006-06-29

Family

ID=36671731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363912A Pending JP2006170811A (en) 2004-12-16 2004-12-16 Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus

Country Status (1)

Country Link
JP (1) JP2006170811A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007660A1 (en) * 2006-07-14 2008-01-17 Nikon Corporation Stage apparatus and exposure apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN107533301A (en) * 2015-04-20 2018-01-02 卡尔蔡司Smt有限责任公司 The speculum of speculum, particularly microlithographic projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN112684526A (en) * 2020-12-28 2021-04-20 中国科学院长春光学精密机械与物理研究所 Ultra-smooth dual-band reflector and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2008007660A1 (en) * 2006-07-14 2008-01-17 Nikon Corporation Stage apparatus and exposure apparatus
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN107533301A (en) * 2015-04-20 2018-01-02 卡尔蔡司Smt有限责任公司 The speculum of speculum, particularly microlithographic projection exposure apparatus
CN107533301B (en) * 2015-04-20 2020-05-05 卡尔蔡司Smt有限责任公司 Mirror, in particular mirror of a microlithographic projection exposure apparatus
CN112684526A (en) * 2020-12-28 2021-04-20 中国科学院长春光学精密机械与物理研究所 Ultra-smooth dual-band reflector and preparation method thereof
CN112684526B (en) * 2020-12-28 2021-09-14 中国科学院长春光学精密机械与物理研究所 Ultra-smooth dual-band reflector and preparation method thereof

Similar Documents

Publication Publication Date Title
US8501373B2 (en) Passivation of multi-layer mirror for extreme ultraviolet lithography
JP5349697B2 (en) Reflective optical element and method of operating an EUV lithographic apparatus
JP5511818B2 (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such an optical element, and method for manufacturing such an optical element
JP6166257B2 (en) Reflective optical element and optical system for EUV lithography
US9773578B2 (en) Radiation source-collector and method for manufacture
EP2681625A1 (en) Lithograpic apparatus, spectral purity filter and device manufacturing method
JP2006170811A (en) Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus
TW201122570A (en) Spectral purity filter, lithographic apparatus, method for manufacturing a spectral purity filter and method of manufacturing a device using lithographic apparatus
US20220179329A1 (en) Optical element and euv lithographic system
JP5717765B2 (en) Spectral purity filter
TWI804135B (en) Euv pellicles
US10247862B2 (en) Mirror, more particularly for a microlithographic projection exposure apparatus
JP2003227898A (en) Multi-layer film reflecting mirror, soft x-ray optical equipment, exposure device and method for cleaning it
TWI797275B (en) Optical arrangement for euv lithography
JP2006170812A (en) Multilayer film reflecting mirror, euv exposure device and soft x-ray optical apparatus
US20230076667A1 (en) Optical element, euv lithography system, and method for forming nanoparticles
JP2016536653A (en) Mirrors for microlithography projection exposure equipment
JP2006173502A (en) Optical element and projection exposing device using it
JP2023538620A (en) Reflective optical elements, illumination optical units, projection exposure devices, and methods for making protective layers
JP2005300249A (en) Multilayer film reflector, method for manufacturing it and euv exposure system
JP2006170813A (en) Multilayer reflection mirror, extreme ultraviolet (euv) exposure system and soft x-ray optic equipment
JP2005250187A (en) Multilayer film mirror and euv aligner
NL2006604A (en) Lithographic apparatus, spectral purity filter and device manufacturing method.
JP2006228840A (en) Soft x-ray optical device and instrument