JP2006162418A - Cars three-dimensional image system - Google Patents

Cars three-dimensional image system Download PDF

Info

Publication number
JP2006162418A
JP2006162418A JP2004353955A JP2004353955A JP2006162418A JP 2006162418 A JP2006162418 A JP 2006162418A JP 2004353955 A JP2004353955 A JP 2004353955A JP 2004353955 A JP2004353955 A JP 2004353955A JP 2006162418 A JP2006162418 A JP 2006162418A
Authority
JP
Japan
Prior art keywords
light
cars
dimensional image
scanning
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353955A
Other languages
Japanese (ja)
Inventor
Fumio Kawaguchi
文男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2004353955A priority Critical patent/JP2006162418A/en
Publication of JP2006162418A publication Critical patent/JP2006162418A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CARS three-dimensional image system capable of speeding up scanning in the direction of optical axis of irradiation, while suppressing complication of a system constitution. <P>SOLUTION: Two-dimensional scanning in a plane (X-Y plane) vertical to the incident optical axis is mechanically performed by an x-y scanning part 18. Scanning in the direction of an optical axis (Z) is performed by simultaneously changing the energies of first and second lights and changing the focal distance of an objective lens 10. More specifically, by changing the wavelengths of the first and second lights by a wavelength conversion control part 19, without changing a wavelength difference, the energy of the first and second lights is changed. The focal distance of the objective lens 10 is thereby changed, and the depth of a measuring plane is changed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えばCARS(コヒーレントアンチストークスラマン散乱)顕微鏡、又はCARS顕微鏡を用いた生体計測装置など、医学生物学分野において生体組織やそれを構成する細胞の微細構造を非侵襲的に高精度で3次元計測するためのCARS3次元画像装置に関するものである。   In the medical biology field, the present invention is capable of non-invasively and highly accurately measuring a living tissue and a fine structure of a cell constituting the same, such as a CARS (coherent anti-Stokes Raman scattering) microscope or a biological measuring device using a CARS microscope. The present invention relates to a CARS three-dimensional image device for three-dimensional measurement.

従来のCARS顕微鏡では、2波長の光が試料に照射され、それらの2波長光の周波数差のエネルギー順位の共鳴から発生する光が計測される。これにより、試料に固有の物質の分子振動における特定周波数成分が選択的に計測され画像化される。このため、高エネルギーの蛍光用の励起光を照射する必要も、計測物質を蛍光体でラベリングする必要もなく、細胞の微細構造を画像化することができる(例えば、特許文献1参照)。   In a conventional CARS microscope, a sample is irradiated with light of two wavelengths, and light generated from resonance of energy ranks of frequency differences between the two wavelengths of light is measured. Thereby, the specific frequency component in the molecular vibration of the substance specific to the sample is selectively measured and imaged. For this reason, it is not necessary to irradiate excitation light for high energy fluorescence, and it is not necessary to label the measurement substance with a phosphor, and the fine structure of the cell can be imaged (for example, see Patent Document 1).

特開2002−107301号公報JP 2002-107301 A

上記のような従来のCARS顕微鏡により3次元画像データを収集するためには、照射光軸に垂直な面内の2次元的な走査だけではなく、照射光軸方向(いわゆるスライス深度方向)の走査も行う必要がある。そして、このような照射光軸方向の走査には、対物レンズ又は被検体の機械的移動による走査方法(機械的走査)が用いられている。このため、計測時間の短縮に限界があった。また、試料に最も近づく対物レンズ部に高精度の移動機構を組み込む必要があるため、装置構成が複雑で高価になってしまう。さらに、CARS顕微鏡を小型化し、内視鏡に組み込む上での障害となっていた。   In order to collect three-dimensional image data with the conventional CARS microscope as described above, not only two-dimensional scanning in a plane perpendicular to the irradiation optical axis but also scanning in the irradiation optical axis direction (so-called slice depth direction). Also need to do. For such scanning in the irradiation optical axis direction, a scanning method (mechanical scanning) by mechanical movement of the objective lens or the subject is used. For this reason, there was a limit in shortening measurement time. In addition, since it is necessary to incorporate a highly accurate moving mechanism in the objective lens portion that is closest to the sample, the apparatus configuration is complicated and expensive. Furthermore, the CARS microscope has been reduced in size and has become an obstacle to incorporation into an endoscope.

この発明は、上記のような課題を解決するためになされたものであり、装置構成の複雑化を抑えつつ、照射光軸方向の走査を高速化することができるCARS3次元画像装置を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. It is an object of the present invention to obtain a CARS three-dimensional image apparatus capable of speeding up scanning in the irradiation optical axis direction while suppressing the complexity of the apparatus configuration. Objective.

この発明に係るCARS3次元画像装置は、互いに波長の異なる第1及び第2の光を合成して被計測体に照射し、発生したCARS光を計測することにより被計測体の3次元状態を画像化するCARS3次元画像装置において、第1及び第2の光のエネルギーを同一周量ずつ変化させることにより、照射光軸方向の走査を行うものである。   The CARS three-dimensional image device according to the present invention synthesizes the first and second light beams having different wavelengths and irradiates the measured object, and measures the generated CARS light to image the three-dimensional state of the measured object. In the CARS three-dimensional image device to be converted, scanning in the direction of the irradiation optical axis is performed by changing the energy of the first and second light by the same circumference amount.

この発明のCARS3次元画像装置は、第1及び第2の光のエネルギーを同一周量ずつ変化させることにより、照射光軸方向の走査を行うので、照射光軸方向については機械的な走査機構を用いずに済み、装置構成の複雑化を抑えつつ、照射光軸方向の走査を高速化することができる。   Since the CARS three-dimensional image device of the present invention performs scanning in the direction of the irradiation optical axis by changing the energy of the first and second light by the same amount of circumference, a mechanical scanning mechanism is used in the direction of the irradiation optical axis. Scanning in the direction of the irradiation optical axis can be accelerated while suppressing the complexity of the apparatus configuration.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1によるCARS3次元画像装置を示す構成図である。この例では、光源部1としてYAGレーザが用いられている。光源部1で発生した光は、パルス光発生部2によりピコ秒オーダーの超短パルス光に変換される。パルス光発生部2からの光は、第1の波長変換部3に入射される。第1の波長変換部3は、例えば非線型効果を利用したパラメトリック増幅装置により構成されている。この第1の波長変換部3により、パルス光発生部2からの光の波長が変換される。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing a CARS three-dimensional image apparatus according to Embodiment 1 of the present invention. In this example, a YAG laser is used as the light source unit 1. The light generated by the light source unit 1 is converted by the pulsed light generation unit 2 into ultrashort pulsed light on the order of picoseconds. The light from the pulsed light generation unit 2 is incident on the first wavelength conversion unit 3. The first wavelength conversion unit 3 is configured by a parametric amplification device using a nonlinear effect, for example. The wavelength of the light from the pulsed light generating unit 2 is converted by the first wavelength converting unit 3.

第1の波長変換部3を通過した光は、分光手段としての第1のハーフミラー4で第1及び第2の光に分岐される。第1のハーフミラー4で反射された第1の光は、第1のミラー(全反射鏡)5で90度変向され、第2のミラー7で再度90度変向され、第2のハーフミラー8に入射される。   The light that has passed through the first wavelength conversion unit 3 is branched into first and second light by a first half mirror 4 as a spectroscopic means. The first light reflected by the first half mirror 4 is turned 90 degrees by the first mirror (total reflection mirror) 5 and turned again 90 degrees by the second mirror 7, so that the second half The light enters the mirror 8.

一方、第1のハーフミラー4を透過した第2の光は、第2の波長変換部9に入射される。第2の波長変換部9では、被計測体である試料11における計測物質の振動周期に対応するエネルギー変位が第2の光に加えられる。第2の波長変換部9を通過した第2の光は、光路調整部6に入射される。光路調整部6は、一対の固定ミラー6a,6bと、固定ミラー6a,6bに接離する方向へ変位可能な一対の可動ミラー6c,6dとを有している。光路調整部6を通過した第1の光は、第2のハーフミラー8に入射される。第2のハーフミラー8では、第1の光と第2の光とが、それらの光軸が一致するように合成され、照射光が生成される。   On the other hand, the second light transmitted through the first half mirror 4 is incident on the second wavelength converter 9. In the second wavelength conversion unit 9, an energy displacement corresponding to the vibration period of the measurement substance in the sample 11 that is the measurement target is applied to the second light. The second light that has passed through the second wavelength conversion unit 9 enters the optical path adjustment unit 6. The optical path adjustment unit 6 includes a pair of fixed mirrors 6a and 6b and a pair of movable mirrors 6c and 6d that can be displaced in a direction in which the fixed mirrors 6a and 6b come into contact with and away from each other. The first light that has passed through the optical path adjustment unit 6 is incident on the second half mirror 8. In the second half mirror 8, the first light and the second light are combined so that their optical axes coincide with each other, and irradiation light is generated.

第2のハーフミラー8で生成された照射光は、所望の深度に調整された焦点を持つ対物レンズ9により試料11内部に収束される。試料11内に照射光が収束されると、試料11内の非線型効果によりコヒーレントアンチストークスラマン散乱光(以下、CARS光と略称する。)が発生する。このCARS光は、照射光とは異なる波長で、照射光と同一光路を逆向きに進行し、ダイクロイックミラー12で分離され第1の検出器13で検出される。また、試料11内からの後方散乱光は、ダイクロイックミラー12を通過し、第3のハーフミラー14で分離され、第2の検出器15で検出される。   The irradiation light generated by the second half mirror 8 is converged inside the sample 11 by the objective lens 9 having a focal point adjusted to a desired depth. When the irradiation light is converged in the sample 11, coherent anti-Stokes Raman scattering light (hereinafter abbreviated as CARS light) is generated due to the nonlinear effect in the sample 11. This CARS light has a wavelength different from that of the irradiation light, travels in the same optical path as the irradiation light in the opposite direction, is separated by the dichroic mirror 12, and is detected by the first detector 13. Further, the backscattered light from the sample 11 passes through the dichroic mirror 12, is separated by the third half mirror 14, and is detected by the second detector 15.

第1及び第2の検出器13,15からの計測信号は、信号収集部16を介してコンピュータ17へ転送される。   Measurement signals from the first and second detectors 13 and 15 are transferred to the computer 17 via the signal collecting unit 16.

試料11に対する2次元的な走査は、xy走査部18により行われる。また、照射光軸方向の走査は、エネルギー変換制御部である波長変換制御部19によって、第1の波長変換部3におけるシフトエネルギーを逐次変換することにより行われる。信号収集部16からコンピュータ17への計測信号の転送は、xy走査部18及び波長変換制御部19の動作に同期して行われる。コンピュータ17は、上記のような3方向の空間走査により得られた計測信号を用いて、第2の波長変換部9の変位周波数に同期する振動順位を有する分子の空間分布を画像化して表示する。   Two-dimensional scanning of the sample 11 is performed by the xy scanning unit 18. The scanning in the irradiation optical axis direction is performed by sequentially converting the shift energy in the first wavelength conversion unit 3 by the wavelength conversion control unit 19 which is an energy conversion control unit. The measurement signal is transferred from the signal collecting unit 16 to the computer 17 in synchronization with the operations of the xy scanning unit 18 and the wavelength conversion control unit 19. The computer 17 images and displays the spatial distribution of molecules having a vibration order synchronized with the displacement frequency of the second wavelength conversion unit 9 using the measurement signals obtained by the spatial scanning in the three directions as described above. .

次に、3次元画像化の詳細について説明する。試料11内に照射光が収束されると、焦点位置近傍においては、照射波長に対応するCARS光が入射光軸方向に沿って発生する。このCARS光は、入射する第1及び第2の光の振動数差の周波数の振動エネルギー順位を持つ特定の分子から、共鳴光として発生する。従って、第1及び第2の光の振動数差を、例えば細胞の膜に特異的に含まれる脂質の振動順位に設定すれば、細胞を染色することなく、その膜構造を詳細に画像化することができる。   Next, details of the three-dimensional imaging will be described. When the irradiation light is converged in the sample 11, CARS light corresponding to the irradiation wavelength is generated along the incident optical axis direction in the vicinity of the focal position. The CARS light is generated as resonance light from a specific molecule having a vibration energy rank of a frequency difference between the incident first and second light. Therefore, if the vibration frequency difference between the first and second light is set to the vibration order of lipids specifically contained in the cell membrane, for example, the membrane structure is imaged in detail without staining the cells. be able to.

ここで、CARS光は、照射光強度の2乗に比例して発生するため、図1のように対物レンズ10を用いると、その焦点位置付近からのみ共鳴光が発生するように設定することができる。また、CARS光は照射光とのコヒーレントな効果により発生するため、その進行方向は、入射励起光と同一方向及び180度逆転した方向(入射光にコヒーレントな光)となる。これらのうち、前者はT−CARS、後者はE−CARSと称される。   Here, since the CARS light is generated in proportion to the square of the irradiation light intensity, when the objective lens 10 is used as shown in FIG. 1, the resonance light can be set to be generated only from the vicinity of the focal position. it can. Further, since CARS light is generated by a coherent effect with irradiation light, the traveling direction thereof is the same direction as the incident excitation light and a direction reversed by 180 degrees (light coherent to the incident light). Among these, the former is called T-CARS and the latter is called E-CARS.

ここで、T−CARS光は、入射光方向と同一方向に出射するため、試料11の裏側から計測する必要がある。このため、試料11の厚みが薄く、かつ試料11の裏側にも収束用の対物レンズを装着できる場合のみ画像化に利用できる。   Here, since the T-CARS light is emitted in the same direction as the incident light direction, it is necessary to measure from the back side of the sample 11. For this reason, it can be used for imaging only when the thickness of the sample 11 is thin and a focusing objective lens can be attached to the back side of the sample 11.

従って、この実施の形態では、後方散乱を用いるE−CARSタイプの画像化方式を採用している。これにより、試料11の裏側に対物レンズを配置する必要がなく、厚い試料11への適用も可能となっている。また、1個の対物レンズ10を用いるだけで済むため、厳密な焦点調節が不要である。さらに、内視鏡に装着して体腔内表面付近の細胞特性を調べる非侵襲診断にも利用できる。   Therefore, in this embodiment, an E-CARS type imaging method using backscattering is adopted. Thereby, it is not necessary to arrange an objective lens on the back side of the sample 11, and application to the thick sample 11 is also possible. Further, since only one objective lens 10 is used, strict focus adjustment is unnecessary. Furthermore, it can be used for non-invasive diagnosis that is attached to an endoscope and examines cell characteristics near the surface of the body cavity.

また、照射光が対物レンズ10で絞り込まれることにより、CARS光は、照射光の光密度が十分に高い対物レンズ10の焦点位置近傍に限定されて発生する。この焦点領域を3方向へ走査すれば、照射光のビーム幅及び焦点付近の光分布で決まる微小な領域の空間分解能での3次元画像化が可能となる。   Further, when the irradiation light is narrowed down by the objective lens 10, the CARS light is generated only in the vicinity of the focal position of the objective lens 10 where the light density of the irradiation light is sufficiently high. By scanning this focal region in three directions, it becomes possible to form a three-dimensional image with a spatial resolution of a minute region determined by the beam width of the irradiation light and the light distribution near the focal point.

この実施の形態のCARS3次元画像装置では、入射光軸に垂直な面(XY面)内での2次元走査は、xy走査部18により機械的に行われる。一方、光軸方向(Z)方向の走査は、第1及び第2の光のエネルギーを同時に変化させ、対物レンズ10の焦点距離を変化させることにより行われる。具体的には、波長差は同じままで(共鳴周波数となる2波長光の周波数の差を変化させることなく)、第1及び第2の光の波長を波長変換制御部19により変化させることにより、第1及び第2の光のエネルギーが変化される。これにより、対物レンズ10の焦点距離が変化され、計測面深度が変化される。   In the CARS three-dimensional image apparatus according to this embodiment, two-dimensional scanning in a plane (XY plane) perpendicular to the incident optical axis is mechanically performed by the xy scanning unit 18. On the other hand, scanning in the direction of the optical axis (Z) is performed by simultaneously changing the energy of the first and second lights and changing the focal length of the objective lens 10. Specifically, the wavelength conversion controller 19 changes the wavelengths of the first and second lights while the wavelength difference remains the same (without changing the difference between the frequencies of the two-wavelength light that is the resonance frequency). The energy of the first and second light is changed. Thereby, the focal distance of the objective lens 10 is changed, and the measurement surface depth is changed.

図2は図1のCARS3次元画像装置における照射光の波長と対物レンズ10の焦点距離との関係を示すグラフである。このような焦点距離の変化は、レンズの色収差として知られており、一般的には光学系の歪みの原因となることから抑制されるべきものである。しかし、この実施の形態では、波長の変化を積極的に利用して焦点距離を変化させ、3次元走査に利用している。   FIG. 2 is a graph showing the relationship between the wavelength of irradiation light and the focal length of the objective lens 10 in the CARS three-dimensional image apparatus of FIG. Such a change in focal length is known as chromatic aberration of the lens, and should generally be suppressed because it causes distortion of the optical system. However, in this embodiment, the focal length is changed by positively using the change in wavelength and used for three-dimensional scanning.

図3は図1のCARS3次元画像装置における照射光の波長変化による対物レンズ10の焦点面の変化を示す説明図である。照射光の波長をλ1からλ2に変化させることにより、対物レンズ10の焦点面(計測スライス面)の位置は、焦点面11aから焦点面11bへと変化される。   FIG. 3 is an explanatory diagram showing a change in the focal plane of the objective lens 10 due to a change in the wavelength of the irradiation light in the CARS three-dimensional image apparatus of FIG. By changing the wavelength of the irradiation light from λ1 to λ2, the position of the focal plane (measurement slice plane) of the objective lens 10 is changed from the focal plane 11a to the focal plane 11b.

なお、通常の分光的な計測では、照射光波長を変化させると計測スペクトル特性が変化するため、画像化は不可能となる。しかし、CARS計測では、第1及び第2の光のエネルギー差が一定であれば、対象となる計測順位エネルギー、つまり計測分子は変わらないため、第1及び第2の光のエネルギーを同量変化させることにより、計測対象物質は変化しない。また、照射光のエネルギー変化により、試料中11での分光吸収変化が生じ、データが変化するが、第2の検出器15で後方散乱光強度を計測し、第1の検出器13で検出されたCARS光強度を補正することにより、データの変化を補正することができる。   In normal spectroscopic measurement, if the irradiation light wavelength is changed, the measurement spectral characteristics change, so that imaging becomes impossible. However, in CARS measurement, if the energy difference between the first and second lights is constant, the target measurement order energy, that is, the measurement molecule does not change, so the energy of the first and second lights changes by the same amount. By doing so, the measurement target substance does not change. Moreover, the spectral absorption change in the sample 11 occurs due to the energy change of the irradiation light, and the data changes, but the backscattered light intensity is measured by the second detector 15 and detected by the first detector 13. By correcting the CARS light intensity, a change in data can be corrected.

3次元走査の手順は、まず波長変換制御部19によるシフトエネルギーを最小として固定し、その上でxy走査部18による2次元走査を行い、1番目の計測スライス面のCARS信号分布を計測する。このとき、第2の検出器15の信号も同時に取り込み、第1の検出器13による検出光強度を補正する。次に、波長変換制御部19によるシフトエネルギーを適当な量だけ増加して固定し、同様に2次元走査を行い、2番目の計測スライス面のCARS信号分布を計測する。このような動作を逐次繰り返すことにより、3次元画像化が可能となる。   In the three-dimensional scanning procedure, first, the shift energy by the wavelength conversion control unit 19 is fixed to a minimum, and then the two-dimensional scanning by the xy scanning unit 18 is performed to measure the CARS signal distribution on the first measurement slice plane. At this time, the signal of the second detector 15 is also taken at the same time, and the light intensity detected by the first detector 13 is corrected. Next, the shift energy by the wavelength conversion control unit 19 is increased and fixed by an appropriate amount, similarly, two-dimensional scanning is performed, and the CARS signal distribution on the second measurement slice plane is measured. By sequentially repeating such operations, three-dimensional imaging can be performed.

ここで、各計測スライス面間の距離は、対物レンズ10の焦点距離と波長との関係から規定される。逆に、各計測スライス面間の距離から、エネルギーシフトのステップ値を決定することができる。図2は焦点距離の波長依存性の一例を示すもので、焦点距離が5mmの場合800nm付近で10nmの波長変化を与えれば、約2μmの焦点移動が可能であることを示している。   Here, the distance between each measurement slice plane is defined from the relationship between the focal length of the objective lens 10 and the wavelength. Conversely, the step value of the energy shift can be determined from the distance between each measurement slice plane. FIG. 2 shows an example of the wavelength dependency of the focal length. When the focal length is 5 mm, it is possible to move the focal point by about 2 μm if a wavelength change of 10 nm is applied in the vicinity of 800 nm.

以上のように、この実施の形態のCARS3次元画像装置では、第1及び第2の光のエネルギーを同一周量ずつ変化させることにより、照射光軸方向の走査を行うので、照射光軸方向の機械的な走査が不要となり、装置構成の複雑化を抑えつつ、照射光軸方向の走査を高速化することができる。
また、共通の光源部1からの光の波長を、第1の波長変換部3で変化させた後、第1のハーフミラー4で第1及び第2の光に分け、さらに第2の光の波長を第2の波長変換部9で変化させるので、第1の波長変換部3でのシフトエネルギーを波長変換制御部19により制御することにより、第1及び第2の光の波長を容易に同一周量変更することができる。
As described above, in the CARS three-dimensional image apparatus according to this embodiment, scanning in the irradiation optical axis direction is performed by changing the energy of the first and second lights by the same amount of circumference, so Mechanical scanning is unnecessary, and the scanning in the irradiation optical axis direction can be speeded up while suppressing the complexity of the apparatus configuration.
Moreover, after changing the wavelength of the light from the common light source unit 1 by the first wavelength conversion unit 3, the light is divided into the first and second light by the first half mirror 4, and the second light Since the wavelength is changed by the second wavelength conversion unit 9, the wavelength of the first and second lights can be easily made equal by controlling the shift energy in the first wavelength conversion unit 3 by the wavelength conversion control unit 19. The circumference can be changed.

さらに、照射光軸方向の走査を機械的走査で行わないことにより、CARS3次元画像装置の内視鏡への適用が容易になる。即ち、CARS3次元内視鏡は、被検体の体腔内に挿入される挿入部と、挿入部の先端部に設けられたヘッド部と、挿入部の基端部に接続され挿入部を操作する操作部とを有している。そして、ヘッド部には、照射光の出射部及びCARS光の受光部である対物レンズ10及びxy走査部18が設けられている。また、挿入部には、照射光及びCARS光を導く光ファイバが内蔵されている。このような内視鏡では、照射光軸方向の機械的走査を行わずに済むので、ヘッド部を小型化することができる。また、照射光軸方向へのヘッド部の変位については、変位を無視できるように変位速度に対して十分に高速で走査を行うか、又は被計測部とヘッド部との距離を保つための間隔保持具をヘッド部に搭載すればよい。   Furthermore, since the scanning in the irradiation optical axis direction is not performed by the mechanical scanning, the application of the CARS three-dimensional image device to the endoscope becomes easy. That is, the CARS three-dimensional endoscope is an operation for operating the insertion portion connected to the insertion portion inserted into the body cavity of the subject, the head portion provided at the distal end portion of the insertion portion, and the proximal end portion of the insertion portion. Part. The head unit is provided with an objective lens 10 and an xy scanning unit 18 which are an emitting unit for irradiation light and a light receiving unit for CARS light. Moreover, the optical fiber which guides irradiation light and CARS light is incorporated in the insertion part. In such an endoscope, since it is not necessary to perform mechanical scanning in the irradiation optical axis direction, the head portion can be reduced in size. As for the displacement of the head portion in the direction of the irradiation optical axis, the scanning is performed at a sufficiently high speed with respect to the displacement speed so that the displacement can be ignored, or an interval for maintaining the distance between the measured portion and the head portion. What is necessary is just to mount a holder in a head part.

なお、上記の例では、照射光軸に垂直な面内の2次元走査を機械的な光軸移動で実施したが、例えば共焦点型顕微鏡で利用されているマルチマイクロレンズを用いれば、機械走査せずに多点の焦点計測が可能となる。従って、エネルギー変化による軸方向走査とマイクロレンズアレイ法とを共用すれば、機械的操作の不要な非常に小型なCARS顕微鏡が実現できる。   In the above example, two-dimensional scanning in a plane perpendicular to the irradiation optical axis is performed by mechanical optical axis movement. However, for example, if a multi-micro lens used in a confocal microscope is used, mechanical scanning is performed. Multipoint focus measurement is possible without this. Therefore, if the axial scanning by energy change and the microlens array method are shared, a very small CARS microscope that does not require mechanical operation can be realized.

この発明の実施の形態1によるCARS3次元画像装置を示す構成図である。It is a block diagram which shows the CARS three-dimensional image apparatus by Embodiment 1 of this invention. 図1のCARS3次元画像装置における照射光の波長と対物レンズの焦点距離との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of irradiation light in the CARS three-dimensional image apparatus of FIG. 1, and the focal distance of an objective lens. 図1のCARS3次元画像装置における照射光の波長変化による対物レンズの焦点面の変化を示す説明図である。It is explanatory drawing which shows the change of the focal plane of the objective lens by the wavelength change of the irradiation light in the CARS three-dimensional image apparatus of FIG.

符号の説明Explanation of symbols

1 光源部、3 第1の波長変換部、4 第1のハーフミラー(分光手段)、9 第2の波長変換部、19 波長変換制御部。   DESCRIPTION OF SYMBOLS 1 Light source part, 3 1st wavelength converter, 4 1st half mirror (spectral means), 9 2nd wavelength converter, 19 Wavelength conversion control part

Claims (4)

互いに波長の異なる第1及び第2の光を合成して被計測体に照射し、発生したCARS光を計測することにより上記被計測体の3次元状態を画像化するCARS3次元画像装置において、上記第1及び第2の光のエネルギーを同一周量ずつ変化させることにより、照射光軸方向の走査を行うことを特徴とするCARS3次元画像装置。   In the CARS three-dimensional image device that combines the first and second lights having different wavelengths and irradiates the measurement object, and measures the generated CARS light, thereby imaging the three-dimensional state of the measurement object. A CARS three-dimensional image device that scans in the direction of the irradiation optical axis by changing the energy of the first and second light by the same amount of circumference. 上記第1及び第2の光の波長差は同じままで、上記第1及び第2の光の波長を変化させることにより、上記第1及び第2の光のエネルギーを変化させる波長変換制御部を備えていることを特徴とする請求項1記載のCARS3次元画像装置。   A wavelength conversion controller that changes the energy of the first and second lights by changing the wavelengths of the first and second lights while the wavelength difference between the first and second lights remains the same. The CARS three-dimensional image apparatus according to claim 1, further comprising: 光源部と、上記光源部からの光の波長を変化させる第1の波長変換部と、上記第1の波長変換部からの光を上記第1及び第2の光に分光する分光手段と、上記第2の光の波長を変化させる第2の波長変換部とを備えていることを特徴とする請求項2記載のCARS3次元画像装置。   A light source unit, a first wavelength conversion unit that changes a wavelength of light from the light source unit, a spectroscopic unit that splits light from the first wavelength conversion unit into the first and second light, and The CARS three-dimensional image apparatus according to claim 2, further comprising a second wavelength conversion unit that changes a wavelength of the second light. 被検体の体腔内に挿入される挿入部と、上記挿入部の先端部に設けられ、上記被計測体への上記照射光の出射部及び上記CARS光の受光部が設けられているヘッド部とを備えていることを特徴とする請求項1〜請求項3のいずれかに記載のCARS3次元画像装置。   An insertion portion to be inserted into the body cavity of the subject; a head portion provided at a distal end portion of the insertion portion, and provided with an emission portion of the irradiation light to the measurement object and a light receiving portion of the CARS light; The CARS three-dimensional image apparatus according to claim 1, wherein the CARS three-dimensional image apparatus is provided.
JP2004353955A 2004-12-07 2004-12-07 Cars three-dimensional image system Pending JP2006162418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353955A JP2006162418A (en) 2004-12-07 2004-12-07 Cars three-dimensional image system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353955A JP2006162418A (en) 2004-12-07 2004-12-07 Cars three-dimensional image system

Publications (1)

Publication Number Publication Date
JP2006162418A true JP2006162418A (en) 2006-06-22

Family

ID=36664610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353955A Pending JP2006162418A (en) 2004-12-07 2004-12-07 Cars three-dimensional image system

Country Status (1)

Country Link
JP (1) JP2006162418A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014792A2 (en) * 2008-07-30 2010-02-04 Sterling Lc Method and device for incremental wavelength variation to analyze tissue
US7835074B2 (en) 2007-06-05 2010-11-16 Sterling Lc Mini-scope for multi-directional imaging
JP2011033351A (en) * 2009-07-29 2011-02-17 Mitsubishi Heavy Ind Ltd Gas analyzer
US7969659B2 (en) 2008-01-11 2011-06-28 Sterling Lc Grin lens microscope system
CN102759838A (en) * 2012-07-17 2012-10-31 中国科学院合肥物质科学研究院 Device for continuously adjusting single to noise ratio of femtosecond CARS (Computerized Automatic Rating System) quantum microscope and adjusting method thereof
US8614768B2 (en) 2002-03-18 2013-12-24 Raytheon Company Miniaturized imaging device including GRIN lens optically coupled to SSID
US8690762B2 (en) 2008-06-18 2014-04-08 Raytheon Company Transparent endoscope head defining a focal length
US8717428B2 (en) 2009-10-01 2014-05-06 Raytheon Company Light diffusion apparatus
JP2015096857A (en) * 2005-01-21 2015-05-21 プレジデント アンド フェローズ オブ ハーバード カレッジ System and method for providing tunable optical parametric oscillator laser system that provides dual frequency output for non-linear vibrational spectroscopy and microscopy
US9060704B2 (en) 2008-11-04 2015-06-23 Sarcos Lc Method and device for wavelength shifted imaging
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device
CN112649415A (en) * 2020-12-11 2021-04-13 华南理工大学 Three-beam self-synchronization high-speed frequency sweep optical fiber laser Raman scanning imaging system and method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614768B2 (en) 2002-03-18 2013-12-24 Raytheon Company Miniaturized imaging device including GRIN lens optically coupled to SSID
JP2015096857A (en) * 2005-01-21 2015-05-21 プレジデント アンド フェローズ オブ ハーバード カレッジ System and method for providing tunable optical parametric oscillator laser system that provides dual frequency output for non-linear vibrational spectroscopy and microscopy
US8358462B2 (en) 2007-06-05 2013-01-22 Jacobsen Stephen C Mini-scope for multi-directional imaging
US7835074B2 (en) 2007-06-05 2010-11-16 Sterling Lc Mini-scope for multi-directional imaging
US7969659B2 (en) 2008-01-11 2011-06-28 Sterling Lc Grin lens microscope system
US8690762B2 (en) 2008-06-18 2014-04-08 Raytheon Company Transparent endoscope head defining a focal length
US9521946B2 (en) 2008-06-18 2016-12-20 Sarcos Lc Transparent endoscope head defining a focal length
US8486735B2 (en) 2008-07-30 2013-07-16 Raytheon Company Method and device for incremental wavelength variation to analyze tissue
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
WO2010014792A2 (en) * 2008-07-30 2010-02-04 Sterling Lc Method and device for incremental wavelength variation to analyze tissue
WO2010014792A3 (en) * 2008-07-30 2010-04-08 Sterling Lc Method and device for incremental wavelength variation to analyze tissue
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging
US9060704B2 (en) 2008-11-04 2015-06-23 Sarcos Lc Method and device for wavelength shifted imaging
JP2011033351A (en) * 2009-07-29 2011-02-17 Mitsubishi Heavy Ind Ltd Gas analyzer
US8717428B2 (en) 2009-10-01 2014-05-06 Raytheon Company Light diffusion apparatus
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device
CN102759838B (en) * 2012-07-17 2015-11-25 中国科学院合肥物质科学研究院 For regulating the control method of femtosecond CARS quantum microscope signal to noise ratio (S/N ratio) continuously
CN102759838A (en) * 2012-07-17 2012-10-31 中国科学院合肥物质科学研究院 Device for continuously adjusting single to noise ratio of femtosecond CARS (Computerized Automatic Rating System) quantum microscope and adjusting method thereof
CN112649415A (en) * 2020-12-11 2021-04-13 华南理工大学 Three-beam self-synchronization high-speed frequency sweep optical fiber laser Raman scanning imaging system and method

Similar Documents

Publication Publication Date Title
US11029287B2 (en) Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
EP1441215B1 (en) Optical scanning type observation device
US7488070B2 (en) Optical measuring system and optical measuring method
US7515274B2 (en) Method for obtaining the image of an object, device for carrying out said method and device for delivering low coherent optical radiation
EP1653477B1 (en) Surface texture measuring instrument
EP1840558B1 (en) Multiphoton-excitation observation apparatus
JP6118441B2 (en) Adaptive optical retinal imaging apparatus and method
US20110137126A1 (en) endoscope
US10352819B2 (en) Method of measuring transmission characteristics of optical transfer medium and image acquisition device using the same
JP2002139421A (en) Optical tomographic image acquiring instrument
JP2007101250A (en) Optical tomographic imaging method
TW201142352A (en) Fluorescence micro imaging system
JP5658730B2 (en) Surgical microscope with OCT system
JP2006162418A (en) Cars three-dimensional image system
US20180106729A1 (en) Imaging platform based on nonlinear optical microscopy for rapid scanning large areas of tissue
WO2013190843A1 (en) Photo-acoustic microscope
Holmes et al. Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications
KR20190031834A (en) Photoacoustic imaging probe, image system using photoacoustic imaging probe, and image acquisition method using photoacoustic imaging probe
JP5213417B2 (en) Surgical microscope with OCT system
JPWO2016151633A1 (en) Scanning trajectory measuring method, scanning trajectory measuring apparatus, and image calibration method for optical scanning device
JP4647449B2 (en) Sample analyzer
JP6887350B2 (en) Optical image measuring device
JP2006301541A (en) Scanning type fluorescence observation apparatus
JP2010142570A (en) Optical system of endoscope
CN114967104B (en) Image transmission beam large-view-field three-dimensional imaging device and method based on light field regulation