JP2006158169A - Electrohydrodynamic pump - Google Patents

Electrohydrodynamic pump Download PDF

Info

Publication number
JP2006158169A
JP2006158169A JP2004381641A JP2004381641A JP2006158169A JP 2006158169 A JP2006158169 A JP 2006158169A JP 2004381641 A JP2004381641 A JP 2004381641A JP 2004381641 A JP2004381641 A JP 2004381641A JP 2006158169 A JP2006158169 A JP 2006158169A
Authority
JP
Japan
Prior art keywords
electrode
fluid
outer electrode
inner electrode
delivery channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004381641A
Other languages
Japanese (ja)
Other versions
JP4759671B2 (en
Inventor
Ryoichi Hanaoka
良一 花岡
Shinzo Takada
新三 高田
Tadashi Fukami
正 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2004381641A priority Critical patent/JP4759671B2/en
Publication of JP2006158169A publication Critical patent/JP2006158169A/en
Application granted granted Critical
Publication of JP4759671B2 publication Critical patent/JP4759671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a production cost by improving the constitution of an electrode in a fluid channel in an EHD pump, reducing a channel resistance of the EHD pump and simplifying a structure for arranging electrode. <P>SOLUTION: In an electrohydrodynamic pump, a linear metal inside electrode is bridged in the inside longitudinal direction of a cylindrical metal outside electrode, exposing itself in the outside electrode, and the outer periphery of the inside electrode is surrounded with a liquid delivery channel tube extending outward of the outside electrode to form a liquid delivery channel. The exposed part of the inside electrode is made to face the inner peripheral surface of the outside electrode, the fluid, which generates dissociated ions when electric field acts, is introduced in the outside electrode and filled in between the outside electrode and the inside electrode, and a high DC voltage is applied between the inside electrode and the outside electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

この発明は、電界を作用させることにより解離イオンが生成される流体を、直流高電圧が印加された一対の電極の間を圧送する電気流体力学ポンプに関するもので、特にそのポンプ内の流体流路の構造に関するものである。  The present invention relates to an electrohydrodynamic pump that pumps a fluid in which dissociated ions are generated by applying an electric field between a pair of electrodes to which a direct high voltage is applied. In particular, the present invention relates to a fluid flow path in the pump. Is related to the structure of

古くから使用されてきた機械式ポンプ、すなわち回転羽根あるいは往復動ピストンを用いて流体を送り出すポンプは、羽根やピストンの動きに伴う摩擦熱や振動や摩擦音・振動音が生じ、それらを低減するためのメンテナンスを要することから、機械的ポンプに替わる電気流体力学ポンプ(electro−hydro−dynamics pump)(「EHDポンプ」と略す)の実用化に向けた研究開発が進んでいる。そして特開2003−284316号公開特許公報(特許文献1)に示されるようなEHDポンプが提案されている。  Mechanical pumps that have been used for a long time, that is, pumps that use a rotary blade or a reciprocating piston to send fluid, generate frictional heat, vibration, friction noise, and vibration noise that accompany the movement of the blade and piston. Therefore, research and development for practical application of an electro-hydro-dynamics pump (abbreviated as “EHD pump”) replacing the mechanical pump is in progress. And the EHD pump as shown by Unexamined-Japanese-Patent No. 2003-284316 patent document (patent document 1) is proposed.

上記特許文献1に示されるEHDポンプの概略構造は図8に示す通りで、ポンプケース70内に、リング状電極71と、リング状電極71の外径より小さい外径の柱状電極72を同軸状で長手方向にずらせて対向させ、その対をなすリング状電極71と柱状電極72の間に、電界が作用すると解離イオンが生ずる流体73(電界が加わると流体中にプラス・イオンとマイナス・イオンに分かれて現われる性質の流体)を充填し、そのリング状電極71と柱状電極72に間に電源74から直流高電圧を印加するものである。そしてリング状電極71と柱状電極72に間に直流高電圧が印加されると、リング状電極71と柱状電極72の間の電界によって、リング状電極71および柱状電極72の近傍にある流体73に解離イオンが生じ、電極界面にヘテロチャージ層が形成され、その結果、この層内のイオンと電極との間のクーロン力により、流体3は矢印M7に示すような流れとなって圧送される。しかし、このような従来のEHDポンプでは、リング状電極71と柱状電極72を同軸状で長手方向にずらせて対向させた電極群塊をポンプ内の流体流路中に置いていることから、ポンプ内に形成される流体流路の流路抵抗が大きくなる難点があり、またリング状電極71と柱状電極72を同軸状で長手方向にずらせて対向させる構造では、電極配置を構成する製作コストが嵩む難点があった。
特開2003−284316号公開特許公報
The schematic structure of the EHD pump disclosed in Patent Document 1 is as shown in FIG. 8. In the pump case 70, a ring electrode 71 and a columnar electrode 72 having an outer diameter smaller than the outer diameter of the ring electrode 71 are coaxial. The fluid 73 in which dissociated ions are generated when an electric field is applied between the ring-shaped electrode 71 and the columnar electrode 72 that are opposed to each other in the longitudinal direction (the positive ion and the negative ion in the fluid when the electric field is applied). And a DC high voltage is applied between the ring-shaped electrode 71 and the columnar electrode 72 from the power source 74. When a high DC voltage is applied between the ring electrode 71 and the columnar electrode 72, the electric field between the ring electrode 71 and the columnar electrode 72 causes the fluid 73 in the vicinity of the ring electrode 71 and the columnar electrode 72 to flow. Dissociated ions are generated, and a heterocharge layer is formed at the electrode interface. As a result, the fluid 3 is pumped in a flow as indicated by an arrow M7 by the Coulomb force between the ions in the layer and the electrode. However, in such a conventional EHD pump, the electrode group lump in which the ring-shaped electrode 71 and the columnar electrode 72 are coaxially shifted in the longitudinal direction and face each other is placed in the fluid flow path in the pump. In the structure where the ring-shaped electrode 71 and the columnar electrode 72 are opposed to each other while being coaxial and shifted in the longitudinal direction, the manufacturing cost for configuring the electrode arrangement is high. There was a difficult point.
Japanese Patent Laid-Open No. 2003-284316

この発明は、上記のような従来のEHDポンプにおける難点に鑑み、ポンプ内の流体流路における電極の構成を改良することにより、EHDポンプの流路抵抗を減少させると共に電極配置構造を簡素化して製作コストを低減させようとするものである。  In view of the above-mentioned difficulties in the conventional EHD pump, the present invention reduces the flow resistance of the EHD pump and simplifies the electrode arrangement structure by improving the electrode configuration in the fluid flow path in the pump. It is intended to reduce manufacturing costs.

この課題を解決するために、この発明では、流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、その外側電極の外部に延びた流体送出流路管で上記内側電極を囲って流体送出流路を形成すると共に、内側電極の上記露出部分を外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を上記外側電極内に導入して外側電極と内側電極の間にその流体を満たし、上記の内側電極と外側電極との間に直流高電圧を印加して電気流体力学ポンプを構成する。  In order to solve this problem, in the present invention, a linear inner electrode is installed in an exposed state in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes. A fluid delivery passage tube extending outside the outer electrode to surround the inner electrode to form a fluid delivery passage, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that an electric field is generated. When activated, a fluid that generates dissociated ions is introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, and a DC high voltage is applied between the inner electrode and the outer electrode to Configure a hydrodynamic pump.

そして実用的に好ましい手段として、流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、その外側電極の外部に延びた流体送出流路管で上記内側電極を囲って流体送出流路を形成すると共に、その内側電極の露出部分を外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を上記外側電極内に導入して外側電極と内側電極の間にその流体を満たし、上記の内側電極と前記外側電極との間に直流高電圧を印加して電気流体力学ポンプを構成する。  As a practically preferable means, a linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes. The fluid delivery flow path tube extending outside the outer electrode surrounds the inner electrode to form a fluid delivery flow path, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that an electric field acts Then, a fluid in which dissociated ions are generated is introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, and a DC high voltage is applied between the inner electrode and the outer electrode to Configure a hydrodynamic pump.

また流体送出流路管を複数設けることも有効であり、流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、その外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で上記内側電極を囲って流体送出流路を形成すると共に、その内側電極の露出部分を外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を上記外側電極内に導入して外側電極と内側電極の間にその流体を満たし、上記の内側電極と外側電極との間に直流高電圧を印加して電気流体力学ポンプを構成する。  It is also effective to provide a plurality of fluid delivery channel tubes, and the linear inner electrode is exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes. A fluid delivery channel is formed by surrounding the inner electrode with two fluid delivery channel tubes that are installed in a state and extend in opposite directions to the outside of the outer electrode, and the exposed portion of the inner electrode is outside Opposite the inner peripheral surface of the electrode, a fluid that generates dissociated ions when an electric field acts is introduced into the outer electrode to fill the fluid between the outer electrode and the inner electrode. An electrohydrodynamic pump is configured by applying a direct current high voltage between the two.

さらにまた、流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、その外側電極の外部に延びた流体送出流路管で内側電極を囲って流体送出流路を形成すると共に、上記の内側電極の露出部分を外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して上記の外側電極と内側電極の間にその流体を満たして内側電極と外側電極との間に直流高電圧を印加し、且つ上記の外側電極を複数個、上記の流体送出流路管、ならびに上記流体帰還孔に通ずる流体帰還流路管を介して並列または直列に連結してポンプ能力の拡大を図る。  Furthermore, a linear inner electrode is exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes, and extends outside the outer electrode. The fluid delivery flow path tube surrounds the inner electrode to form a fluid delivery flow path, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that dissociated ions are generated when an electric field is applied. Is introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, a DC high voltage is applied between the inner electrode and the outer electrode, and a plurality of the outer electrodes are formed. These pumps are connected in parallel or in series via the fluid delivery channel pipe and the fluid return channel pipe communicating with the fluid return hole, thereby expanding the pump capacity.

上記のように、この発明に係る電気流体力学ポンプの構成では、可動機構がない上にポンプ内の流路内に、流体の流れ方向に大きな流路抵抗となる電極群を配設しないことから、摩擦音や振動音が生ずることなく大きな圧力ヘッドが得られ、また電極配置構造が極めて単純であることから、製造コストも低く抑えることができる。さらに原理上、従来のポンプのような電磁誘導現象を利用していないので電気的ノイズが一切発生しないという大きな特長がある。したがって、例えば精密電子機器等のクーリングユニットなどにこの発明に係る電気瘤多雨力学ポンプを利用すれば極めて大きな効果を期待できる。  As described above, in the configuration of the electrohydrodynamic pump according to the present invention, there is no movable mechanism, and no electrode group having a large flow path resistance in the flow direction of the fluid is provided in the flow path in the pump. A large pressure head can be obtained without generating frictional noise and vibration noise, and since the electrode arrangement structure is extremely simple, the manufacturing cost can be kept low. Furthermore, in principle, there is a great feature that no electrical noise is generated because the electromagnetic induction phenomenon as in the conventional pump is not used. Therefore, for example, if the electric rain-heavy rain dynamics pump according to the present invention is used for a cooling unit such as a precision electronic device, an extremely great effect can be expected.

この発明の望ましい実施形態は、流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部を長手方向に貫通するように線状の内側電極を同軸状に露出状態で架設し、その外側電極の外部に互いに反対方向へ延びた2本の流体送出流路管が上記内側電極を囲って流体送出流路を形成すると共に、少なくとも長さL=0.7mmに設定した上記内側電極の露出部分を外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を上記外側電極内に導入して上記の外側電極と内側電極の間にその流体を満たし、上記の内側電極と外側電極との間に直流高電圧を印加し、且つ上記の外側電極を少なくとも2個、上記の流体送出流路管、ならびに上記流体帰還孔に通ずる流体帰還流路管を介して並列または直列に連結した電気流体力学ンプである。なお、前記内側電極の露出部分の長さLが0.7mm以下では十分な圧力ヘッドが得られない。一方、ポンプを設置する対象に応じて長さLをmm以上に大きくすることは全く問題はないが、圧力ヘッドはそれ以上増大せず飽和傾向を示す。    In a preferred embodiment of the present invention, a linear inner electrode is coaxially exposed so as to penetrate the inside of a cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes. The two fluid delivery channel pipes extending in opposite directions to the outside of the outer electrode surround the inner electrode to form a fluid delivery channel, and at least the length L is set to 0.7 mm. The exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode, and a fluid that generates dissociated ions when an electric field acts is introduced into the outer electrode, and the fluid is interposed between the outer electrode and the inner electrode. And a fluid return flow path that applies a DC high voltage between the inner electrode and the outer electrode, and communicates with at least two of the outer electrodes, the fluid delivery flow path pipe, and the fluid return hole. Connected in parallel or in series via a tube It is the electrohydrodynamic pump. Note that when the length L of the exposed portion of the inner electrode is 0.7 mm or less, a sufficient pressure head cannot be obtained. On the other hand, there is no problem in increasing the length L to mm or more depending on the object on which the pump is installed, but the pressure head does not increase any more and shows a saturation tendency.

以下、この発明の実施例を説明する。図1はこの発明の一実施例を示す電気流体力学ポンプの縦断面図、図2は図1に示す電気流体力学ポンプのA−A′線断面図である。図1、図2において、1は、外径aの線状の内側電極で、内側電極1の露出部分1aの長さはLである。2は、内径bの円筒状の外側電極で、外側電極2の長さはNである。また、内側電極1と外側電極2の材質はステンレススチールで、内側電極1と外側電極2は同軸状に配置されている。3,4は電気絶縁性の流体送出流路管で、3a,4aはそれぞれ流体送出流路管3,4の送出口である。5,6は電気絶縁性端板で、外側電極2の両端面はそれぞれ電気絶縁性端板5,6で封じられている。7は電界が作用すると解離イオンが生成される流体、8は直流高圧電源である。9,10はそれぞれ電気絶縁性の流体帰還流路で、9a,10aはそれぞれ流体帰還流路9,10の流体還流口である。そして各絶縁性端板5,6の中心部にはそれぞれ流体送出流路管3,4のが接続され、外側電極2の内面近傍に流体帰還流路管9,10の流体還流口9a,10aが接続されている。また、外側電極2は接地線11を通じて常に接地電位に保たれており、線状の内側電極1と円筒状の外側電極2の間に直流高圧電圧を印加すると、内側電極1と外側電極2の間に強い電界が形成される。そして内側電極1と外側電極2が同軸電極配置となっているので、不平等電界が形成され、特に内側電極1の表面近傍に強電界が形成される結果となる。そこで解離性イオンとして負のイオンが生成され易い弱導電性流体の場合、内側電極1に(+)の電位、外側電極2に(−)の電位を与えると、「純伝導ポンピング」(前記特許文献1参照)の機構に基づき内側電極1の周囲に形成されたヘテロチャージ層と内側電極1との間で、層内イオンの当該電極表面法線方向に押す力により軸中心へ向こう圧力が発生する。この圧力は、露出している内側電極表面全体に及びベクトル的に相殺し合ってその積分値は零となるが、しかし流体送出流路管3,4の送出口3a,4a付近では当該圧力が無くなる結果、流体送出流路管3,4の送出口3a,4aへ向かう軸方向に新たな圧力差が生じて、これがポンピングの駆動源となる。  Examples of the present invention will be described below. FIG. 1 is a longitudinal sectional view of an electrohydrodynamic pump showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA 'of the electrohydrodynamic pump shown in FIG. 1 and 2, 1 is a linear inner electrode having an outer diameter a, and the length of the exposed portion 1a of the inner electrode 1 is L. Reference numeral 2 denotes a cylindrical outer electrode having an inner diameter b, and the length of the outer electrode 2 is N. The material of the inner electrode 1 and the outer electrode 2 is stainless steel, and the inner electrode 1 and the outer electrode 2 are arranged coaxially. Reference numerals 3 and 4 denote electrically insulating fluid delivery channel tubes, and 3a and 4a denote delivery ports of the fluid delivery channel tubes 3 and 4, respectively. Reference numerals 5 and 6 denote electrically insulating end plates, and both end faces of the outer electrode 2 are sealed with electrically insulating end plates 5 and 6, respectively. 7 is a fluid in which dissociated ions are generated when an electric field acts, and 8 is a DC high-voltage power source. Reference numerals 9 and 10 denote electrically insulating fluid return channels, and 9a and 10a denote fluid return ports of the fluid return channels 9 and 10, respectively. The center portions of the insulating end plates 5 and 6 are connected to the fluid delivery channel tubes 3 and 4, respectively, and the fluid return ports 9 a and 10 a of the fluid return channel tubes 9 and 10 are provided near the inner surface of the outer electrode 2. Is connected. The outer electrode 2 is always kept at the ground potential through the ground wire 11, and when a DC high voltage is applied between the linear inner electrode 1 and the cylindrical outer electrode 2, the inner electrode 1 and the outer electrode 2 A strong electric field is formed between them. Since the inner electrode 1 and the outer electrode 2 are arranged coaxially, an unequal electric field is formed, and a strong electric field is formed particularly near the surface of the inner electrode 1. Therefore, in the case of a weakly conductive fluid in which negative ions are easily generated as dissociative ions, if a positive potential is applied to the inner electrode 1 and a negative potential is applied to the outer electrode 2, “pure conduction pumping” (see above patent) The pressure toward the center of the axis is generated between the heterocharge layer formed around the inner electrode 1 and the inner electrode 1 based on the mechanism described in Document 1) by the force of the ions in the layer pushing in the normal direction of the electrode surface. To do. This pressure cancels out over the entire exposed inner electrode surface in a vector manner, and its integrated value becomes zero. However, in the vicinity of the delivery ports 3a and 4a of the fluid delivery channel tubes 3 and 4, the pressure is reduced. As a result, there is a new pressure difference in the axial direction toward the delivery ports 3a and 4a of the fluid delivery channel tubes 3 and 4, which becomes a pumping drive source.

上記のように、内側電極1と外側電極2の間に直流高電圧を印加して内側電極露出部分1aの表面電界強度が5〜12MV/m程度の高い電界強度になると、円筒状の外側電極2から線状の内側電極1の露出部分1aに向かう強い電界が流体7に作用し、前記のように内側電極露出部分1aの表面近傍で流体7に大きな圧力が作用し、その内側電極露出部分1aと流体送出流路管3,4の内部を軸方向に沿って流体7が流動してポンプ機能が生じ、流体送出流路管3,4から吐出した流体7は、外部管路を経て流体帰還流路管9,10からそれぞれ流体帰還口9a,10aに流れ込んで循環する。  As described above, when a DC high voltage is applied between the inner electrode 1 and the outer electrode 2 and the surface electric field strength of the inner electrode exposed portion 1a becomes a high electric field strength of about 5 to 12 MV / m, the cylindrical outer electrode A strong electric field directed from 2 to the exposed portion 1a of the linear inner electrode 1 acts on the fluid 7, and a large pressure acts on the fluid 7 in the vicinity of the surface of the inner electrode exposed portion 1a as described above. 1a and the fluid delivery flow path pipes 3 and 4 flow in the axial direction along the fluid 7 to generate a pump function, and the fluid 7 discharged from the fluid delivery flow path pipes 3 and 4 passes through the external pipelines The return flow pipes 9 and 10 circulate by flowing into the fluid return ports 9a and 10a, respectively.

この発明に係るEHDポンプの他の実施例として、上記実施例1に示したEHDポンプを基にその構成を変え、電気絶縁性端板5,6のそれぞれに直径5mmの流体流流通孔を新たに設けると共に流体送出流路管3,4を大気中へ開放した内径4mmのガラス管とし、線状の内側電極1として外径(直径/線径)a=1.5mmの金属線を用い、円筒状の外側電極2の長さN=50mmとし、そのポンプ構造体を、電界が作用すると解離イオンが生成される流体7を満たしたタンク内に浸漬してポンピング特性を測定した。流体7として、2,3−ジヒドロデカフルオロペンテン(2,3−Dihydrodecafluoropenten)(「HFC43−10」と略す)(商品名:バートレル)を用いた上で、円筒状の外側電極2の内径b、内側電極1の露出部分1a露出部長さL、内側電極1と外側電極2の間に印加する印加電圧(直流高電圧)Vをそれぞれ変化させて、ポンピング圧力PEHDを測定した結果、それぞれ図3および図4に示す特性が認められた。As another embodiment of the EHD pump according to the present invention, the configuration is changed based on the EHD pump shown in the first embodiment, and a fluid flow hole having a diameter of 5 mm is newly provided in each of the electrically insulating end plates 5 and 6. And using a metal wire with an outer diameter (diameter / wire diameter) of a = 1.5 mm as the linear inner electrode 1. The length N of the cylindrical outer electrode 2 was set to 50 mm, and the pump structure was immersed in a tank filled with a fluid 7 in which dissociated ions were generated when an electric field was applied, and the pumping characteristics were measured. After using 2,3-dihydrodecafluoropentene (abbreviated as “HFC43-10”) (trade name: Bertrell) as the fluid 7, the inner diameter b of the cylindrical outer electrode 2, As a result of measuring the pumping pressure P EHD by changing the exposed portion length L of the inner electrode 1 and the applied voltage (DC high voltage) V 0 applied between the inner electrode 1 and the outer electrode 2, respectively, 3 and the characteristics shown in FIG. 4 were observed.

図3は、外側電極2の内径b(=R)をパラメータとして、印加電圧Vに対するポンピング圧力PEHDの関係を示している。すなわち、外側電極2の内径bが小さくなるほど、内側電極1と外側電極2の間の電界が強くなるため、ポンピング圧力が2次曲線的に増大する特性が認められた。他方、図4は、外側電極2の内径b(=R)をパラメータとして、内側電極1の露出部長さLを変化させた場合のポンピング圧力PEHDの変化を示している。なお図4において、白抜き記号は印加電圧V=10kVの場合を示し、黒塗りつぶし記号は印加電圧V=14kVの場合を示している。当然ながら印加電圧Vが高い方がより大きなポンピング圧力PEHDが得られるが、一方で印加電圧Vに関わらず、内側電極1の露出部長さL=0.7mmを境に、内側電極1の露出部長さLをより長くしてもポンピング圧力PEHDが増大せず飽和傾向になることが認められた。したがって内側電極1の露出部長さLの最小値は0.7mmであるという結果が得られた。FIG. 3 shows the relationship of the pumping pressure P EHD with respect to the applied voltage V 0 using the inner diameter b (= R 0 ) of the outer electrode 2 as a parameter. That is, since the electric field between the inner electrode 1 and the outer electrode 2 becomes stronger as the inner diameter b of the outer electrode 2 becomes smaller, a characteristic that the pumping pressure increases in a quadratic curve is recognized. On the other hand, FIG. 4 shows changes in the pumping pressure P EHD when the exposed portion length L of the inner electrode 1 is changed using the inner diameter b (= R 0 ) of the outer electrode 2 as a parameter. In FIG. 4, the white symbols indicate the case where the applied voltage V 0 = 10 kV, and the black symbols indicate the case where the applied voltage V 0 = 14 kV. Naturally, a higher pumping pressure P EHD is obtained when the applied voltage V 0 is higher, but on the other hand, regardless of the applied voltage V 0 , the inner electrode 1 It was confirmed that even if the exposed portion length L of the film was made longer, the pumping pressure P EHD did not increase and became saturated. Therefore, the result that the minimum value of the exposed portion length L of the inner electrode 1 was 0.7 mm was obtained.

次に、この発明に係る電気流体力学ポンプをクーリングユニットとして使用した実施例を、図5を参考に説明する。図5において、20はこの発明に係る前述と同様の電気流体力学ポンプ部(EHDポンプ部)で、1aは内側電極の露出部分、2は外側電極、3,4は流体送出流路管、5,6は電気絶縁性端板、7は解離イオンが生成される流体、8は直流高圧電源、9,10は流体帰還流路管、11は接地線である。21はペルチェ電子冷却素子で、ペルチェ電子冷却素子21は外側電極2の更に外側に密着して取り付けられている。22,23はアルミニウム製の冷却ユニットで、各冷却ユニット22,23には、それぞれ流体送出流路管3,4と流体帰還流路管9,10が接続されている。24,25はそれぞれ冷却ユニット22,23の吸熱面(被冷却面)であり、26,27はそれぞれ冷却ユニット22,23における流体流れ方向制御仕切り板である。そしてこの実施例では、外側電極2の長さN=20mmとし、直流高圧電源8を8kVに設定し、冷媒となる流体7にHFC43−10(商品名:バートレル)を用い、ペルチェ電子冷却素子21を−10℃に設定し、流体7をEHDポンプ部20により循環させた結果、約20分間で冷却ユニット22,23の吸熱面(被冷却面)24,25の温度が略−10℃に到達した。なお、この実施例では2箇所に吸熱面(被冷却面)24,25を設けたが、吸熱面(被冷却面)を1箇所として運転しても何ら支障は生じなかった。またペルチェ電子冷却素子21の冷却能力に応じて外側電極2の長さNを0.7mm以上にすれば、種々変えてもポンプ性能には問題生じなかった。さらにポンプの設置状況によって流体帰還流路管9,10の接続を入れ替えて用いることも可能であった。また、電界が作用すると解離イオンが生成される流体7としては、HFC43−10のほか、2,2−ジクロロ−1,1,1トリフルオロエタン(2,2−Dichloro−1,1,1−Trifluoroethane)(「HCFC123」と略す)、ジエチルグリコールモノブチルエーテルアセテート(「BCRA」と略す)、ドデカン二酸−nブチル(「DBDN」と略す)、フッ素変成シリコーン油、等を用いても良く、あるいは電気絶縁性液体にアルコールを微量添加したり、フッ素を添加して解離イオンの生成能力を高めて使用することは何ら差し支えない。    Next, an embodiment in which the electrohydrodynamic pump according to the present invention is used as a cooling unit will be described with reference to FIG. In FIG. 5, reference numeral 20 denotes an electrohydrodynamic pump section (EHD pump section) similar to that described above according to the present invention. 1a is an exposed portion of the inner electrode, 2 is an outer electrode, 3 and 4 are fluid delivery channel tubes, 5 , 6 are electrically insulating end plates, 7 is a fluid in which dissociated ions are generated, 8 is a DC high-voltage power supply, 9 and 10 are fluid return flow channel tubes, and 11 is a ground wire. Reference numeral 21 denotes a Peltier electronic cooling element. The Peltier electronic cooling element 21 is attached in close contact with the outer side of the outer electrode 2. Reference numerals 22 and 23 denote aluminum cooling units, to which the fluid delivery passage pipes 3 and 4 and the fluid return passage pipes 9 and 10 are connected, respectively. Reference numerals 24 and 25 denote heat absorption surfaces (cooled surfaces) of the cooling units 22 and 23, and reference numerals 26 and 27 denote fluid flow direction control partition plates in the cooling units 22 and 23, respectively. In this embodiment, the length N of the outer electrode 2 is set to 20 mm, the DC high-voltage power supply 8 is set to 8 kV, HFC43-10 (trade name: Vertrel) is used for the fluid 7 serving as a refrigerant, and the Peltier electronic cooling element 21 is used. Is set to −10 ° C., and the fluid 7 is circulated by the EHD pump unit 20. As a result, the temperature of the heat absorbing surfaces (cooled surfaces) 24 and 25 of the cooling units 22 and 23 reaches approximately −10 ° C. in about 20 minutes. did. In this example, the endothermic surfaces (cooled surfaces) 24 and 25 were provided at two locations, but no trouble occurred even when the endothermic surfaces (cooled surfaces) were operated as one location. Further, if the length N of the outer electrode 2 is set to 0.7 mm or more in accordance with the cooling capacity of the Peltier electronic cooling element 21, there is no problem in pump performance even if various changes are made. Further, the connection of the fluid return flow path pipes 9 and 10 can be switched depending on the installation state of the pump. In addition to HFC43-10, fluid 7 in which dissociated ions are generated when an electric field is applied includes 2,2-dichloro-1,1,1 trifluoroethane (2,2-Dichloro-1,1,1- Trifluoroethane (abbreviated as “HCFC123”), diethyl glycol monobutyl ether acetate (abbreviated as “BCRA”), dodecanedioic acid-n-butyl (abbreviated as “DBDN”), fluorine-modified silicone oil, etc. There is no problem in adding a slight amount of alcohol to the electrical insulating liquid or adding fluorine to increase the ability to generate dissociated ions.

さらにこの発明に係るEHDポンプの他の実施例として、図6に示すように、2台の電気流体力学ポンプを流体送出流路管3と流体帰還流路管9を介して直列に連結して駆動することもできた。この場合、ポンプの外径寸法は実施例3と同一とし、流体7はHFC43−10(商品名:バートレル)を採用し、両方のポンプとも印加電圧V直流を8kVに設定して、流体7を 流体送出流路管3−流体帰還流路管9−流体送出流路管3 と循環させた。その結果、外部管路に設置した圧力計によれば最大4kPaが得られた。Furthermore, as another embodiment of the EHD pump according to the present invention, as shown in FIG. 6, two electrohydrodynamic pumps are connected in series via a fluid delivery channel tube 3 and a fluid return channel tube 9. It was also possible to drive. In this case, the outer diameter of the pump is the same as in Example 3, the fluid 7 is HFC43-10 (trade name: Bartrel), the applied voltage V 0 DC is set to 8 kV for both pumps, and the fluid 7 Were circulated with fluid delivery channel tube 3 -fluid return channel tube 9 -fluid delivery channel tube 3. As a result, a maximum of 4 kPa was obtained according to the pressure gauge installed in the external pipeline.

さらにまた、図7に示すように、2台の電気流体力学ポンプを流体送出流路管3と流体帰還流路管9を介して並列に結合して駆動することもできた。ここでの流体7や駆動条件は実施例4におけると同一としたが、一方のぽんぷ送出流体が他方のポンプの出口(流体送出管路)へ逆流することを防止するために逆止弁31を配設した。その結果、その結果、外部管路に設置した圧力計によれば最大2kPaが得られ、流量は2倍に達した。Furthermore, as shown in FIG. 7, two electrohydrodynamic pumps could be coupled and driven in parallel via the fluid delivery channel tube 3 and the fluid return channel tube 9. The fluid 7 and the driving conditions here are the same as those in the fourth embodiment, but a check valve 31 is used to prevent one pump delivery fluid from flowing backward to the outlet (fluid delivery conduit) of the other pump. Arranged. As a result, according to the pressure gauge installed in the external pipeline, a maximum of 2 kPa was obtained, and the flow rate reached twice.

この発明に係る電気流体力学ポンプは、可動機構がない上に流体の流れ方向に大きな流路抵抗となる電極群が存在しないことから摩擦音や振動音が生ずることなく大きな圧力ヘッドが得られ、また電極配置構造が極めて単純であることから製造コストも低く抑えることができるのできる。さらに原理上、従来のポンプのような電磁誘導現象を利用していないので電気的ノイズが一切発生せず、したがって、例えば精密電子回路部品などのクーリングユニットなど、極めて幅広い分野・用途に、この発明に係る電気流体力学ポンプを活用することができる。  In the electrohydrodynamic pump according to the present invention, there is no movable mechanism, and since there is no electrode group having a large flow path resistance in the fluid flow direction, a large pressure head can be obtained without generating frictional noise and vibration noise. Since the electrode arrangement structure is very simple, the manufacturing cost can be kept low. Furthermore, in principle, no electrical noise is generated because the electromagnetic induction phenomenon as in the conventional pump is not used. Therefore, the present invention can be applied to a very wide range of fields and applications such as cooling units such as precision electronic circuit parts. The electrohydrodynamic pump according to the above can be utilized.

この発明の一実施例を示す電気流体力学ポンプの正面図。  The front view of the electrohydrodynamic pump which shows one Example of this invention. 図1のA−A′線断面図。  FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1. 同電気流体力学ポンプの印加電圧に対するポンピング圧力の関係図。  The relationship figure of the pumping pressure with respect to the applied voltage of the same electrohydrodynamic pump. 同電気流体力学ポンプの内側電極の露出部分長さに対するポンピング圧力の関係図。  The related figure of the pumping pressure with respect to the exposed part length of the inner side electrode of the same electrohydrodynamic pump. 同電気流体力学ポンプをクーリングユニットに利用した概略構成図。  The schematic block diagram which utilized the electrohydrodynamic pump for the cooling unit. 同電気流体力学ポンプを2台直列接続して用いる概略構成図。  The schematic block diagram which uses two said electrohydrodynamic pumps connected in series. 同電気流体力学ポンプを2台並列接続して用いる概略構成図。  The schematic block diagram which uses two said electrohydrodynamic pumps connected in parallel. 従来の電気流体力学ポンプの断面図。  Sectional drawing of the conventional electrohydrodynamic pump.

符号の説明Explanation of symbols

1:内側電極
1a:内側電極の露出部分
2:外側電極
3,4:流体送出流路管
3a,4a:流体送出流路管の送出口
5,6:電気絶縁性端板
5a,6a:流体帰還孔
7:解離イオンが生成される流体
8:直流高圧電源
9,10:流体帰還流路管
9a,10a:流体帰還流路管の帰還口
11:接地線
20:電気流体力学ポンプ部分
21:ペルチェ電子冷却素子
22,23:冷却ユニット
24,25:吸熱面
26,27:流体流れ方向制御仕切り板
31:逆止弁
a:内側電極の外径
b:外側電極の内径
L:内側電極の露出部長さ
N:外側電極の長さ
EHD:ポンピング圧力
:外側電極の内径(半径)
:印加電圧
1: inner electrode 1a: exposed portion of inner electrode 2: outer electrode 3, 4: fluid delivery channel tube 3a, 4a: outlet of fluid delivery channel tube 5, 6: electrically insulating end plates 5a, 6a: fluid Return hole 7: Fluid in which dissociated ions are generated 8: DC high-voltage power supply 9, 10: Fluid return channel tube 9a, 10a: Return port 11 of fluid return channel tube: Ground wire 20: Electrohydrodynamic pump portion 21: Peltier electronic cooling elements 22, 23: Cooling units 24, 25: Endothermic surfaces 26, 27: Fluid flow direction control partition plate 31: Check valve a: Outer diameter of inner electrode b: Inner electrode inner diameter L: Inner electrode exposure Part length N: Length of outer electrode P EHD : Pumping pressure R 0 : Inner diameter (radius) of outer electrode
V 0 : Applied voltage

Claims (13)

流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加することを特徴とする電気流体力学ポンプ。  A fluid delivery system in which a linear inner electrode is exposed in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with a fluid return hole, and extends outside the outer electrode. A fluid delivery channel is formed by surrounding the inner electrode with a channel tube, and an exposed portion of the inner electrode is opposed to an inner peripheral surface of the outer electrode, and a fluid in which dissociated ions are generated when an electric field is applied to the fluid. An electrohydrodynamic pump that is introduced into an outer electrode, fills the fluid between the outer electrode and the inner electrode, and applies a DC high voltage between the inner electrode and the outer electrode. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加することを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes, and extends outside the outer electrode. The fluid delivery channel tube surrounds the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode. When an electric field is applied, dissociated ions are generated. An electrohydrodynamic pump characterized by introducing a fluid into the outer electrode, filling the fluid between the outer electrode and the inner electrode, and applying a DC high voltage between the inner electrode and the outer electrode. . 流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加することを特徴とする電気流体力学ポンプ。  A linear inner electrode is installed in an exposed state in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and opposite to each other on the outside of the outer electrode. Two fluid delivery channel pipes extending to the inner electrode surround the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode, and dissociates when an electric field acts. A fluid in which ions are generated is introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, and a DC high voltage is applied between the inner electrode and the outer electrode. Electrohydrodynamic pump. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加することを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and is externally connected to the outside of the outer electrode. The fluid delivery channel is formed by surrounding the inner electrode with two fluid delivery channel tubes extending in opposite directions, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that an electric field is generated. Introducing a fluid that generates dissociated ions into the outer electrode when acted, fills the fluid between the outer electrode and the inner electrode, and applies a DC high voltage between the inner electrode and the outer electrode. Electrohydrodynamic pump characterized by 流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して直列に連結したことを特徴とする電気流体力学ポンプ。  A fluid delivery system in which a linear inner electrode is exposed in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with a fluid return hole, and extends outside the outer electrode. A fluid delivery channel is formed by surrounding the inner electrode with a channel tube, and an exposed portion of the inner electrode is opposed to an inner peripheral surface of the outer electrode, and a fluid in which dissociated ions are generated when an electric field is applied to the fluid. Introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, a DC high voltage is applied between the inner electrode and the outer electrode, and a plurality of the outer electrodes are supplied to the fluid. An electrohydrodynamic pump characterized in that it is connected in series via a flow path pipe and a fluid return flow path pipe communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して直列に連結したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes, and extends outside the outer electrode. The fluid delivery channel tube surrounds the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode. When an electric field is applied, dissociated ions are generated. Introducing a fluid into the outer electrode to fill the fluid between the outer electrode and the inner electrode, applying a DC high voltage between the inner electrode and the outer electrode, and a plurality of the outer electrodes; An electrohydrodynamic pump characterized by being connected in series via the fluid delivery channel pipe and a fluid return channel pipe communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して直列に連結したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is installed in an exposed state in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and opposite to each other on the outside of the outer electrode. Two fluid delivery channel pipes extending to the inner electrode surround the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode, and dissociates when an electric field acts. A fluid in which ions are generated is introduced into the outer electrode to fill the fluid between the outer electrode and the inner electrode, a direct current high voltage is applied between the inner electrode and the outer electrode, and the outer electrode An electrohydrodynamic pump characterized in that a plurality of electrodes are connected in series via the fluid delivery channel tube and the fluid return channel tube communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して直列に連結したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and is externally connected to the outside of the outer electrode. The fluid delivery channel is formed by surrounding the inner electrode with two fluid delivery channel tubes extending in opposite directions, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that an electric field is generated. When introduced, a fluid that generates dissociated ions is introduced into the outer electrode to fill the fluid between the outer electrode and the inner electrode, and a DC high voltage is applied between the inner electrode and the outer electrode, An electrohydrodynamic pump characterized in that a plurality of the outer electrodes are connected in series via the fluid delivery channel tube and a fluid return channel tube communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して並列に結合したことすることを特徴とする電気流体力学ポンプ。  A fluid delivery system in which a linear inner electrode is exposed in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with a fluid return hole, and extends outside the outer electrode. A fluid delivery channel is formed by surrounding the inner electrode with a channel tube, and an exposed portion of the inner electrode is opposed to an inner peripheral surface of the outer electrode, and a fluid in which dissociated ions are generated when an electric field is applied to the fluid. Introduced into the outer electrode, the fluid is filled between the outer electrode and the inner electrode, a DC high voltage is applied between the inner electrode and the outer electrode, and a plurality of the outer electrodes are supplied to the fluid. An electrohydrodynamic pump characterized by being coupled in parallel via a flow path pipe and a fluid return flow path pipe communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に延びた流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して並列に結合したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends with an electrically insulating end plate provided with fluid return holes, and extends outside the outer electrode. The fluid delivery channel tube surrounds the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode. When an electric field is applied, dissociated ions are generated. Introducing a fluid into the outer electrode to fill the fluid between the outer electrode and the inner electrode, applying a DC high voltage between the inner electrode and the outer electrode, and a plurality of the outer electrodes; An electrohydrodynamic pump characterized by being coupled in parallel through the fluid delivery channel tube and a fluid return channel tube communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた筒状の外側電極の内部の長手方向に、線状の内側電極を露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して並列に結合したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is installed in an exposed state in the longitudinal direction inside a cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and opposite to each other on the outside of the outer electrode. Two fluid delivery channel pipes extending to the inner electrode surround the inner electrode to form a fluid delivery channel, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode, and dissociates when an electric field acts. A fluid in which ions are generated is introduced into the outer electrode to fill the fluid between the outer electrode and the inner electrode, a direct current high voltage is applied between the inner electrode and the outer electrode, and the outer electrode An electrohydrodynamic pump characterized in that a plurality of electrodes are coupled in parallel via the fluid delivery channel tube and the fluid return channel tube communicating with the fluid return hole. 流体帰還孔を設けた電気絶縁性端板で両端を封じた円筒状の外側電極の内部の長手方向に、線状の内側電極を同軸状に露出状態で架設し、前記外側電極の外部に互に反対方向へ延びた2本の流体送出流路管で前記内側電極を囲って流体送出流路を形成すると共に、前記内側電極の露出部分を前記外側電極の内周面と対向させ、電界が作用すると解離イオンが生成される流体を前記外側電極内に導入して前記外側電極と内側電極の間に前記流体を満たし、前記内側電極と前記外側電極との間に直流高電圧を印加し、且つ前記外側電極を複数個、前記流体送出流路管、ならびに前記流体帰還孔に通ずる流体帰還流路管を介して並列に結合したことすることを特徴とする電気流体力学ポンプ。  A linear inner electrode is coaxially exposed in the longitudinal direction inside the cylindrical outer electrode sealed at both ends by an electrically insulating end plate provided with fluid return holes, and is externally connected to the outside of the outer electrode. The fluid delivery channel is formed by surrounding the inner electrode with two fluid delivery channel tubes extending in opposite directions, and the exposed portion of the inner electrode is opposed to the inner peripheral surface of the outer electrode so that an electric field is generated. When introduced, a fluid that generates dissociated ions is introduced into the outer electrode to fill the fluid between the outer electrode and the inner electrode, and a DC high voltage is applied between the inner electrode and the outer electrode, An electrohydrodynamic pump characterized in that a plurality of the outer electrodes are coupled in parallel via the fluid delivery channel tube and the fluid return channel tube communicating with the fluid return hole. 内側電極の露出部分の長さLを少なくとも0.7mmに設定したことを特徴とする請求項1ないし請求項12のいずれが1項に記載の電気流体力学ポンプ。  13. The electrohydrodynamic pump according to claim 1, wherein the length L of the exposed portion of the inner electrode is set to at least 0.7 mm.
JP2004381641A 2004-11-29 2004-11-29 Electrohydrodynamic pump Expired - Fee Related JP4759671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381641A JP4759671B2 (en) 2004-11-29 2004-11-29 Electrohydrodynamic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381641A JP4759671B2 (en) 2004-11-29 2004-11-29 Electrohydrodynamic pump

Publications (2)

Publication Number Publication Date
JP2006158169A true JP2006158169A (en) 2006-06-15
JP4759671B2 JP4759671B2 (en) 2011-08-31

Family

ID=36635764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381641A Expired - Fee Related JP4759671B2 (en) 2004-11-29 2004-11-29 Electrohydrodynamic pump

Country Status (1)

Country Link
JP (1) JP4759671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141870A (en) * 2006-12-01 2008-06-19 Kanazawa Inst Of Technology Electrohydrodynamic pump
JP2012057872A (en) * 2010-09-09 2012-03-22 Denso Corp Cooling device using ehd fluid
CN114930109A (en) * 2019-11-08 2022-08-19 Apr 技术有限公司 Electrohydrodynamic systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148659A (en) * 1982-02-10 1983-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Electromagnetic pump
JPH0568810A (en) * 1991-09-13 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Equipment for removing bubbles in liquid
JP2002008140A (en) * 2000-06-27 2002-01-11 Nec Soft Ltd Point system
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148659A (en) * 1982-02-10 1983-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Electromagnetic pump
JPH0568810A (en) * 1991-09-13 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Equipment for removing bubbles in liquid
JP2002008140A (en) * 2000-06-27 2002-01-11 Nec Soft Ltd Point system
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141870A (en) * 2006-12-01 2008-06-19 Kanazawa Inst Of Technology Electrohydrodynamic pump
US7914262B2 (en) 2006-12-01 2011-03-29 Kanazawa Institute Of Technology Electrohydrodynamic pump (EHD pump) with electrode arrangement
JP2012057872A (en) * 2010-09-09 2012-03-22 Denso Corp Cooling device using ehd fluid
CN114930109A (en) * 2019-11-08 2022-08-19 Apr 技术有限公司 Electrohydrodynamic systems and methods

Also Published As

Publication number Publication date
JP4759671B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
Zeng et al. Fabrication and characterization of electroosmotic micropumps
JP5083751B2 (en) Electrohydrodynamic pump
Pearson et al. Experimental study of EHD conduction pumping at the meso-and micro-scale
CN1906821A (en) Semiconductor laser equipment
CN111043005B (en) Micropump based on capillary phenomenon and electrowetting phenomenon
JP4759671B2 (en) Electrohydrodynamic pump
CN104197024A (en) Peristaltic pumping circulation cooling type magnetic liquid sealing device
JP5274658B2 (en) Method and capacitive apparatus for electrostatically transporting dielectric and ferroelectric fluids
US6932580B2 (en) Electrohydrodynamic conduction pump
Chen et al. Development of a planar electrokinetic micropump
US7056017B2 (en) Cooling system and method for an imaging system
US11566728B2 (en) Flexible pipe and temperature control system
Patel et al. Dielectric fluid flow generation in meso-tubes with micro-scale electrohydrodynamic conduction pumping
US20080025883A1 (en) Ozone generator
US11415226B1 (en) Magnetic fluid sealing device for sealing fluid medium
Jeong et al. Performance characteristics of electrohydrodynamic conduction pump in two-phase loops
JP2003287378A (en) Capillary heat pipe and heat exchanger
JP5669685B2 (en) Ozone generator and method for manufacturing ozone generator
US20150364288A1 (en) Radiation generating apparatus
US20170298917A1 (en) Solid State Pump Using Electro-Rheological Fluid
Tsukiji et al. Study on EHD pump with multi-holes electrode
US20050254967A1 (en) Gasless and gas bubble-free electrodes
Seyed-Yagoobi et al. Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry-experimental study
Takahashi et al. Flow Properties of Liquid Circulatory System with Coaxial Cone to Rod Electrode Type EHD Pumps
JP2023174234A (en) Ozonizer and ozone generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4759671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees