JP2006140654A - Circuit and method for correcting defect detection - Google Patents

Circuit and method for correcting defect detection Download PDF

Info

Publication number
JP2006140654A
JP2006140654A JP2004327173A JP2004327173A JP2006140654A JP 2006140654 A JP2006140654 A JP 2006140654A JP 2004327173 A JP2004327173 A JP 2004327173A JP 2004327173 A JP2004327173 A JP 2004327173A JP 2006140654 A JP2006140654 A JP 2006140654A
Authority
JP
Japan
Prior art keywords
pixel signal
defect detection
signal
defect
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327173A
Other languages
Japanese (ja)
Other versions
JP2006140654A5 (en
JP4591046B2 (en
Inventor
Futabako Matsuzaki
二葉子 松崎
Hiromasa Katayama
博誠 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004327173A priority Critical patent/JP4591046B2/en
Publication of JP2006140654A publication Critical patent/JP2006140654A/en
Publication of JP2006140654A5 publication Critical patent/JP2006140654A5/ja
Application granted granted Critical
Publication of JP4591046B2 publication Critical patent/JP4591046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decide a defect with high precision by eliminating a misdecision on a defective pixel of an imaging device without increasing a circuit scale. <P>SOLUTION: A defect detection portion 2 detects a defect of an object pixel of defect detection in an image signal input to a defect detecting and correcting circuit 60 after being photoelectrically converted by the imaging device 22 and if a misdetection detection pattern detection portion 3 detects the defect detection object pixel signal and a pixel signal of its periphery having pixel signal pattern meeting designated conditions, a multiplexer 5 does not output a pixel signal corrected by a correction value generation portion 4 to a trailing-stage image processing portion 25 instead of the defect detection object pixel signal. Thus, it is possible to decide the defect with high precision by eliminating the misdecision on the defective pixel of the imaging device 22 without increasing the circuit scale. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、撮像装置に係り、特にCCDなどの固体撮像素子で画像を撮像した際の白きず欠陥等を検出して補正する欠陥検出補正回路及び欠陥検出補正方法に関する。   The present invention relates to an imaging apparatus, and more particularly, to a defect detection correction circuit and a defect detection correction method for detecting and correcting a white defect when an image is captured by a solid-state imaging device such as a CCD.

従来から、CCDなどの固定撮像素子では、半導体の結晶欠陥により信号レベルの高い映像信号部分が出力され、周囲の画像よりも輝度が高くなって白色表示が際立つ白きず欠陥と呼ばれる画像表示誤りがあり、このような白きず欠陥を検出して補正することが行われている。   Conventionally, in a fixed imaging device such as a CCD, a video signal portion having a high signal level is output due to a semiconductor crystal defect, and an image display error called a white defect is prominent because the brightness is higher than the surrounding image and white display is conspicuous. There is a technique for detecting and correcting such white defect.

従来の欠陥検出補正では、シャッタークローズによる欠陥検出の方法が用いられてきた。そのため、完全に遮光された状態の中に、白傷の信号があった場合に欠陥とするため、比較的容易に、かなりの精度で欠陥検出を行うことが可能であった。このシャッタークローズによる欠陥検出の方法では、シャッタークローズした状態で欠陥のアドレスをメモリに保持し、検出精度を上げるために何フレームごとかのアドレスの一致をとって補正をかける等の方法が行われている。しかし、多画素化が進む近年の固体撮像素子では、欠陥数の増大、メモリに格納する情報量の増大に伴い、多くのメモリ容量が必要となってしまうため、回路規模の増大、コストの増大につながってしまうという問題を抱えている。また、携帯電話用カメラ、車載カメラ等の低価格なモデルにおいては、シャッターがないため上記手法を適用することができなかった。   In the conventional defect detection correction, a defect detection method by shutter closing has been used. Therefore, a defect is detected when there is a white scratch signal in a state where it is completely shielded from light, so that it is possible to detect the defect with considerable accuracy relatively easily. In this defect detection method by closing the shutter, the address of the defect is held in the memory while the shutter is closed, and correction is performed by matching the addresses of every several frames in order to improve detection accuracy. ing. However, in recent solid-state imaging devices that are increasing in the number of pixels, as the number of defects is increased and the amount of information stored in the memory is increased, a large amount of memory capacity is required, which increases the circuit scale and the cost. I have a problem that leads to. Further, in the low-priced model such as a mobile phone camera and an in-vehicle camera, the above method cannot be applied because there is no shutter.

そこで、メモリを用いないリアルタイム欠陥検出補正回路が開発されている。これは1フレーム内で、注目画素の周辺画素情報から動的に欠陥を検出し、検出した欠陥を同じフレーム内にて画素補正を行う。この方法で欠陥検出補正を行うと、メモリを持たずに、無限大個までの検出補正が可能となり、またフレームをまたがって欠陥を検出する方法よりもすばやく欠陥を検出して補正することができる。   Therefore, a real-time defect detection and correction circuit that does not use a memory has been developed. In this method, a defect is dynamically detected from peripheral pixel information of the target pixel within one frame, and pixel correction is performed on the detected defect within the same frame. When this method is used for defect detection and correction, it is possible to detect and correct up to infinity without having a memory, and it is possible to detect and correct defects more quickly than the method of detecting defects across frames. .

しかしながら、リアルタイム欠陥検出補正方法では、空間的周波数が高い画像、例えば、解像度チャートなどのような画像を撮影した場合に、周辺画素の入力信号情報によって欠陥か否かを判定しなければならないため、入力画像や、ノイズ等によっては誤った欠陥判定をしてしまうことが非常に多く起こっている。そのため、画像に偽色がついたり、文字を写すと部分的に消えてしまったりするといった、画質を劣化させる場合が生じている。こういったことを防ぐために周辺画素のパターン認識を、より詳細に行う方法が提案されている。
特開平07−59011号公報
However, in the real-time defect detection and correction method, when an image with a high spatial frequency, for example, an image such as a resolution chart, is taken, it must be determined whether or not it is a defect based on input signal information of surrounding pixels. There are many cases where an erroneous defect determination is made depending on an input image or noise. For this reason, there are cases in which the image quality is deteriorated, for example, the image has a false color or disappears partially when characters are copied. In order to prevent this, a method of performing pattern recognition of peripheral pixels in more detail has been proposed.
Japanese Patent Application Laid-Open No. 07-59011

上記した誤った欠陥判定を周辺画素のパターン認識により無くすリアルタイム欠陥検出補正方法では、その欠陥判定の精度を上げるために全てのパターンを網羅する必要があるが、これを行うと、当然、リアルタイム欠陥検出補正回路の回路規模の増大を招いてしまうという問題があった。   In the real-time defect detection and correction method that eliminates the above-mentioned erroneous defect determination by pattern recognition of surrounding pixels, it is necessary to cover all patterns in order to increase the accuracy of the defect determination. There has been a problem that the circuit scale of the detection correction circuit is increased.

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、回路規模を増大させることなく、撮像素子の欠陥画素の誤判定を無くして、精度の高い欠陥判定を行うことができる欠陥検出補正回路及び欠陥検出補正方法を提供することにある。   The present invention has been devised in view of the above circumstances, and an object of the present invention is to perform defect determination with high accuracy without increasing the circuit scale and without erroneous determination of defective pixels of the image sensor. It is an object of the present invention to provide a defect detection correction circuit and defect detection correction method capable of performing

本発明は上記目的を達成するため、撮像素子により光電変換された画像信号を入力して欠陥検出対象画像信号とその周辺画像信号を生成する周辺画像信号生成手段と、前記周辺画像信号生成手段からの画像信号情報に基づいて欠陥検出対象画像信号の中の欠陥検出対象画素信号が欠陥画素信号であるか否かを検出する欠陥検出手段と、前記周辺画像信号生成手段からの画像信号情報に基づいて前記注目画素信号とその周辺画素信号が所定の条件を満たす画素信号パターンを有するか否かを検出する誤検出パターン検出手段と、前記欠陥検出対象画像信号を形成する画素信号を正常レベルの画像信号に置き換えて補正画素信号とする信号補正手段と、前記欠陥検出対象画素信号が欠陥画素信号であると検出され、且つ、当該欠陥検出対象画素信号とその周辺画素信号が前記所定の条件を満たす画素信号パターンを有すると検出された場合は前記欠陥検出対象画素信号を前記補正画素信号に置き換えずに出力する制御を行う制御手段とを具備することを特徴とする。   In order to achieve the above object, the present invention provides a peripheral image signal generating unit that inputs an image signal photoelectrically converted by an image sensor and generates a defect detection target image signal and its peripheral image signal, and the peripheral image signal generating unit. A defect detection means for detecting whether or not the defect detection target pixel signal in the defect detection target image signal is a defective pixel signal based on the image signal information of the defect, and based on the image signal information from the peripheral image signal generation means Erroneous detection pattern detection means for detecting whether the pixel signal of interest and its surrounding pixel signals have a pixel signal pattern satisfying a predetermined condition, and a pixel signal forming the defect detection target image signal as a normal level image A signal correction unit that replaces the signal with a corrected pixel signal, and detects that the defect detection target pixel signal is a defective pixel signal, and the defect detection target pixel signal And a control means for performing control to output the defect detection target pixel signal without replacing it with the correction pixel signal when it is detected that the peripheral pixel signal has a pixel signal pattern satisfying the predetermined condition. It is characterized by.

また、本発明は、撮像素子により光電変換されて入力される画像信号に欠陥画素信号があるか否かを検出し、欠陥画素信号であればこれを補正した補正画素信号に置き換えて出力する欠陥検出補正方法であって、前記欠陥検出対象画素信号とその周辺の画素信号が所定の条件を満たす画素信号パターンを有する場合は前記欠陥画素信号を前記補正画素信号に置き換えずに出力することを特徴とする。 In addition, the present invention detects whether or not there is a defective pixel signal in the image signal that is photoelectrically converted by the image sensor, and outputs a defective pixel signal by replacing it with a corrected pixel signal. In the detection correction method, when the defect detection target pixel signal and its surrounding pixel signals have a pixel signal pattern that satisfies a predetermined condition, the defect pixel signal is output without being replaced with the correction pixel signal. And

このように本発明では、撮像素子により光電変換されて入力される画像信号の中の欠陥検出対象画素の欠陥検出を行った際に、前記欠陥検出対象画素信号とその周辺の画素信号が所定の条件を満たす画素信号パターンを有する誤検出条件に当てはまった場合は、この画素信号を欠陥補正対象から除外することにより、欠陥判定精度を向上させることができる。それ故、従来のように欠陥判定の精度を上げるために全てのパターンを網羅する必要がなくなるため、回路規模を増大させることなく画素欠陥の誤検出を飛躍的に減少させることができ、欠陥判定精度を向上させることができる。   As described above, in the present invention, when the defect detection target pixel in the image signal photoelectrically converted by the image sensor is input, the defect detection target pixel signal and the surrounding pixel signal are set to a predetermined value. When a false detection condition having a pixel signal pattern that satisfies the condition is satisfied, the defect determination accuracy can be improved by excluding the pixel signal from the defect correction target. Therefore, since it is not necessary to cover all patterns in order to improve the accuracy of defect determination as in the conventional case, it is possible to dramatically reduce false detection of pixel defects without increasing the circuit scale. Accuracy can be improved.

また、誤検出条件である画素信号パターンの出現回数を計数し、その計数値が閾値を越えた場合は撮像対象が特殊画像であると判定して、以降、欠陥補正機能を停止して誤欠陥検出による画像の劣化又は破壊を防止することができる。   Also, the number of appearances of the pixel signal pattern, which is a false detection condition, is counted, and if the counted value exceeds a threshold value, it is determined that the imaging target is a special image, and thereafter, the defect correction function is stopped and the erroneous defect is stopped. Deterioration or destruction of the image due to detection can be prevented.

本発明によれば、撮像素子により光電変換されて入力される画像信号の中の欠陥検出対象画素の欠陥検出を行った際に、欠陥検出対象画素信号とその周辺の画素信号が誤検出パターン条件に当てはまった場合は、この画素信号を欠陥補正対象から除外することにより、回路規模を増大させることなく、撮像素子の欠陥画素の誤判定を無くして、精度の高い欠陥判定を行うことができる。
また、誤検出パターンの出現回数が閾値を超えた場合は、画素の欠陥検出には適さない特殊画像信号が入力されたと判定し、以降、欠陥補正機能を停止して誤欠陥検出による画像の劣化又は破壊を防止することができる。
According to the present invention, when the defect detection target pixel in the image signal photoelectrically converted and input by the image sensor is detected, the defect detection target pixel signal and the surrounding pixel signal are detected as false detection pattern conditions. If this is true, by excluding this pixel signal from the defect correction target, it is possible to perform a highly accurate defect determination without increasing the circuit scale and without erroneously determining a defective pixel of the image sensor.
If the number of occurrences of the false detection pattern exceeds the threshold value, it is determined that a special image signal that is not suitable for pixel defect detection has been input, and thereafter the defect correction function is stopped and the image is deteriorated due to false defect detection. Or destruction can be prevented.

回路規模を増大させることなく、撮像素子の欠陥画素の誤判定を無くして、精度の高い欠陥判定を行う目的を、撮像素子により光電変換されて入力される画像信号の中の欠陥検出対象画素の欠陥検出を行った際に、欠陥検出対象画素信号とその周辺の画素信号が誤検出パターン条件に当てはまった場合は、この画素信号を欠陥補正対象から除外することによって実現した。   The purpose of highly accurate defect determination without increasing the circuit scale and eliminating defective pixels of the image sensor is to detect defect detection target pixels in the image signal that is photoelectrically converted by the image sensor and input. When the defect detection is performed, if the defect detection target pixel signal and the surrounding pixel signals meet the false detection pattern condition, this is realized by excluding the pixel signal from the defect correction target.

図1は、本発明の第1の実施の形態に係る欠陥検出補正回路の構成を示したブロック図である。欠陥検出補正回路60は、ラインメモリ1、欠陥検出部2、誤検出パターン検出部3、補正値生成部4、マルチプレクサ5を有して構成されている。この欠陥検出補正回路60は固体撮像装置に組み込まれ、固体撮像装置はレンズ21、撮像素子22、前処理部23、A/D変換部24、後段の画像処理部25を有している。   FIG. 1 is a block diagram showing a configuration of a defect detection and correction circuit according to the first embodiment of the present invention. The defect detection correction circuit 60 includes a line memory 1, a defect detection unit 2, an erroneous detection pattern detection unit 3, a correction value generation unit 4, and a multiplexer 5. The defect detection and correction circuit 60 is incorporated in a solid-state imaging device, and the solid-state imaging device includes a lens 21, an imaging element 22, a preprocessing unit 23, an A / D conversion unit 24, and a subsequent image processing unit 25.

次に本実施の形態の動作について説明する。レンズ21から入射した光は撮像素子22で光電変換され、前処理部23で黒レベル調整やゲイン負荷などが行われる。その後、AD変換部24でアナログの画像信号をデジタル画像信号に変換され、撮像素子22の欠陥検出補正回路60に入力される。欠陥検出補正回路60では、入力された画像信号を水平走査期間(H)遅延させるため、ラインメモリ1に1H遅延信号と2H遅延信号の画像信号を一旦保持させ、これら欠陥検出対象画像信号(1H遅延信号)及び周辺画像信号(遅延のない現在の入力信号及び2H遅延信号)により欠陥検出対象画像信号(1H遅延信号)ラインの周辺画素レベルをモニタする。   Next, the operation of the present embodiment will be described. Light incident from the lens 21 is photoelectrically converted by the image sensor 22, and black level adjustment and gain load are performed by the preprocessing unit 23. Thereafter, the analog image signal is converted into a digital image signal by the AD conversion unit 24 and input to the defect detection correction circuit 60 of the image sensor 22. In the defect detection and correction circuit 60, in order to delay the input image signal in the horizontal scanning period (H), the line memory 1 temporarily holds the image signals of the 1H delay signal and the 2H delay signal, and these defect detection target image signals (1H The peripheral pixel level of the defect detection target image signal (1H delay signal) line is monitored by the delay signal) and the peripheral image signal (the current input signal without delay and the 2H delay signal).

欠陥検出部2はA/D変換部24から入力される欠陥検出対象画像ライン及びラインメモリ1に保持されている1H、2H遅延信号ラインを用いて、欠陥検出対象(注目)画素(1H遅延画像ライン中に含まれる)とその周辺画素レベルを比較し、その比較結果に基づいて注目画素が欠陥画素であるかどうかを検出し、検出結果をマルチプレクサ5に出力する。誤検出パターン検出部3は、A/D変換部24から入力される欠陥検出対象画像ライン及びラインメモリ1に保持されている1H、2H遅延信号ラインを用いて、欠陥検出部2が注目画素を誤検出する誤検出パターンであるかどうかを検出し、その検出結果をマルチプレクサ5に出力する。また、補正値生成部4は欠陥検出対象画像ライン(1H遅延信号ライン)を入力し、このラインに含まれる白点及び黒点を正常画素の信号レベルで置換した補正画素信号を生成し、これをマルチプレクサ5に出力する。   The defect detection unit 2 uses a defect detection target image line input from the A / D conversion unit 24 and a 1H, 2H delay signal line held in the line memory 1 to detect a defect detection target (attention) pixel (1H delay image). And the surrounding pixel level included in the line are compared, and based on the comparison result, it is detected whether the pixel of interest is a defective pixel, and the detection result is output to the multiplexer 5. The false detection pattern detection unit 3 uses the defect detection target image line input from the A / D conversion unit 24 and the 1H and 2H delay signal lines held in the line memory 1 so that the defect detection unit 2 selects the target pixel. It is detected whether or not the erroneous detection pattern is erroneously detected, and the detection result is output to the multiplexer 5. Further, the correction value generation unit 4 receives the defect detection target image line (1H delay signal line), generates a correction pixel signal in which the white point and the black point included in this line are replaced with the signal level of the normal pixel, Output to the multiplexer 5.

マルチプレクサ5は1H遅延信号ライン(欠陥検出対象信号ライン)を入力し、この1H遅延信号ラインの画素信号をそのまま後段画像処理部25に出力するか、或いは補正値生成部4からの補正画素信号を後段画像処理部25に出力するかを、欠陥検出部2及び誤検出パターン検出部3の検出結果により選択する。即ち、画素に欠陥がない場合は欠陥検出対象信号ライン(1H遅延信号ライン)の画素信号をそのまま後段画像処理部25に出力する。画素に欠陥があるが、誤検出パターンが検出された場合は欠陥検出対象信号ラインラインの画素信号をそのまま後段画像処理部25に出力する。画素に欠陥があり且つ、誤検出パターンが検出されない場合は欠陥検出対象信号に代えて補正画像信号を後段画像処理部25に出力する。   The multiplexer 5 receives the 1H delay signal line (defect detection target signal line) and outputs the pixel signal of the 1H delay signal line to the subsequent image processing unit 25 as it is, or receives the correction pixel signal from the correction value generation unit 4. Whether to output to the subsequent image processing unit 25 is selected based on the detection results of the defect detection unit 2 and the false detection pattern detection unit 3. That is, when the pixel is not defective, the pixel signal of the defect detection target signal line (1H delay signal line) is output to the subsequent image processing unit 25 as it is. If the pixel has a defect but an erroneous detection pattern is detected, the pixel signal of the defect detection target signal line line is output to the subsequent image processing unit 25 as it is. When the pixel is defective and no erroneous detection pattern is detected, the corrected image signal is output to the subsequent image processing unit 25 instead of the defect detection target signal.

図2は図1に示した撮像素子の欠陥検出補正回路60の動作を表したフローチャートである。まず、ステップ101にて、欠陥検出部2により撮像素子22の画素の欠陥を検出する処理が行われ、画素の欠陥が検出されるとステップ102に進む。また同時に、誤検出パターン検出部3により画素欠陥の検出が誤検出となる画素パターンを検出する処理が行われると共に、補正値生成部4により画素の補正処理が行われる。ステップ102では、誤検出パターンが検出されたかどうかを判定し、検出された場合は画素の補正処理をせずに処理を終了する。この補正処理をしないということは、マルチプレクサ5により入力される欠陥検出対象画素信号をそのまま後段に出力することと等価である。一方、誤検出パターンが検出されなかった場合は、ステップ103にて画素の補正処理をして処理を終了する。この補正処理するということは、マルチプレクサ5により入力欠陥検出対象画素信号に代えて補正画素信号を後段に出力することと等価である。   FIG. 2 is a flowchart showing the operation of the defect detection correction circuit 60 of the image sensor shown in FIG. First, in step 101, the defect detection unit 2 performs a process of detecting a pixel defect of the image sensor 22, and when a pixel defect is detected, the process proceeds to step 102. At the same time, processing for detecting a pixel pattern in which detection of a pixel defect is erroneously detected is performed by the erroneous detection pattern detection unit 3, and pixel correction processing is performed by the correction value generation unit 4. In step 102, it is determined whether or not a false detection pattern is detected, and if it is detected, the process ends without performing pixel correction processing. Not performing the correction process is equivalent to outputting the defect detection target pixel signal input from the multiplexer 5 to the subsequent stage as it is. On the other hand, if no erroneous detection pattern is detected, the pixel correction process is performed in step 103 and the process is terminated. This correction processing is equivalent to outputting the corrected pixel signal to the subsequent stage in place of the input defect detection target pixel signal by the multiplexer 5.

次に、誤検出パターン検出部3の処理を行う上での誤検出パターンを含む画像例及びその排除方法について詳述する。図3は、注目する画素(欠陥検出対象画素)と同色のカラーフィルターをもつ、周辺画素の信号レベルの一例を模擬的に示した図である。リアルタイム欠陥検出を行う手法の一つとして、注目画素と、その同色のカラーフィルターをもつ周辺画素との信号の差分が、一定の閾値より上回る、または下回ったときは欠陥であると検出する方法がある。その場合、図3のような画像信号が欠陥検出部2に入ってくると、実際には欠陥ではないのに、周辺画素より著しく信号レベルが低いために、欠陥とみなしてしまう。   Next, an example of an image including a false detection pattern and a method for removing the same will be described in detail when performing the process of the false detection pattern detection unit 3. FIG. 3 is a diagram schematically illustrating an example of signal levels of peripheral pixels having a color filter of the same color as the pixel of interest (defect detection target pixel). As one of the methods for performing real-time defect detection, there is a method for detecting a defect when the signal difference between a target pixel and a peripheral pixel having a color filter of the same color exceeds or falls below a certain threshold. is there. In that case, when an image signal as shown in FIG. 3 enters the defect detection unit 2, it is not actually a defect but is regarded as a defect because the signal level is significantly lower than that of surrounding pixels.

そこで、このような誤検出を防ぐための排除パターンを定義した例を示す。パターンの定義の詳細を、図4を用いて説明する。図4(A)のような原色カラーフィルターのセンサに、図4(B)のような画像が入力された場合、図4(A)の“1”と“8”、“3”と“6”の信号レベルはほぼ等しくなり、“2”、“4”、“5”、“7”の信号レベルは比較的大きく異なったレベルにはならない。しかし、注目画素である“T”の信号レベルは他の画素よりも著しく小さな値となってしまう。また、図4(C)の例においても、“2”と“7”、“4”と“5”の信号レベルはほぼ等しくなり、“1”、“3”、“6”、“8”の信号レベルもそれほど大きく異なったレベルにはならないが、“T”の信号レベルは他の画素と著しく異なる。   Therefore, an example in which an exclusion pattern for preventing such erroneous detection will be shown. Details of the pattern definition will be described with reference to FIG. When an image as shown in FIG. 4B is input to the primary color filter sensor as shown in FIG. 4A, “1” and “8”, “3” and “6” shown in FIG. "2", "4", "5", and "7" signal levels are not relatively different. However, the signal level of “T”, which is the target pixel, is significantly smaller than the other pixels. Also in the example of FIG. 4C, the signal levels of “2” and “7”, “4” and “5” are substantially equal, and “1”, “3”, “6”, “8”. The signal level of “T” is not so different, but the signal level of “T” is significantly different from other pixels.

このようなある周波数の画像が入力された場合、欠陥として誤検出され(この場合は黒点欠陥とみなされるが、“T”の信号量が著しく大きい場合も同様に考えられ、こちらは白点欠陥とみなされる。)実際の画素のレベルと大きく異なる周辺画素を用いて補正を行ってしまうため、画像を壊してしまう。   When an image of such a certain frequency is input, it is erroneously detected as a defect (in this case, it is regarded as a black spot defect, but the case where the signal amount of “T” is extremely large is considered as well, and this is a white spot defect. The image is destroyed because the correction is performed using peripheral pixels that are greatly different from the actual pixel level.

そのため、図4(A)において、“1”の画素と“8”の画素の信号レベルを(1,8)と表すとし、言葉を次のように定義する。
平らである:二つの画素において信号レベルに差が無く、同じ色・輝度の被写体を映していると視覚的に判断される場合。
離れている:二つの画素において信号レベルに差があり、異なる色・輝度の被写体を映していると視覚的に判断される場合。尚、どの程度レベルが異なれば視覚的に異なると判断するかは、当然、設定するパラメータに依り多少異なる。
このとき、
斜め条件
A:( 1,8) が平らで( 3,6) が( 1,8) から離れている。
B:( 3、6) が平らで( 1、8) が( 3,6) から離れている。
とし、
(1)Aの時、( 3,6) が( 1,8) より大きいもしくは小さい。
(2)Bの時、( 1,8) が( 3,6) より大きいもしくは小さい。
のとき、欠陥検出対象外とする。

また、同様に図4(A)において、画素配列の縦横方向についても
縦横条件
C:( 4,5) が平らで( 2,7) が( 4,5) から離れている。
D:( 2,7) が平らで( 4,5) が( 2,7) から離れている。
とし、
(3)Cの時、( 4,5) が( 2,7) より大きいもしくは小さい。
(4)Dの時、( 2,7) が( 4,5) より大きいもしくは小さい。
のとき、欠陥検出対象外とする。
つまり、(1)(2)(3)(4)のいずれかが成立する場合は、高周波パターンと認識し、欠陥検出対象から除外することとする。
Therefore, in FIG. 4A, the signal level of the pixel “1” and the pixel “8” is expressed as (1, 8), and the words are defined as follows.
Flat: When there is no difference in signal level between two pixels and it is visually determined that the subject has the same color and brightness.
Separated: When there is a difference in signal level between two pixels, and it is visually determined that an object of different color and brightness is being projected. It should be noted that the degree to which the level differs is determined to be visually different depending on the parameter to be set.
At this time,
Oblique condition A: (1, 8) is flat and (3, 6) is away from (1, 8).
B: (3, 6) is flat and (1, 8) is away from (3, 6).
age,
(1) When A, (3, 6) is larger or smaller than (1, 8).
(2) When B, (1,8) is larger or smaller than (3,6).
In this case, the defect is not detected.

Similarly, in FIG. 4A, the vertical and horizontal conditions C: (4, 5) are flat and (2, 7) are away from (4, 5) in the vertical and horizontal directions of the pixel array.
D: (2,7) is flat and (4,5) is away from (2,7).
age,
(3) When C, (4, 5) is larger or smaller than (2, 7).
(4) At D, (2,7) is larger or smaller than (4,5).
In this case, the defect is not detected.
That is, when any of (1), (2), (3), and (4) is established, it is recognized as a high-frequency pattern and excluded from the defect detection target.

図5は画素の信号レベルと閾値の関係を示した図である。上で示した除外条件を判定するために、平らであることを判断するための閾値1と、離れていることを判定するための閾値2を用いる。閾値1は実験的に得られる画素ノイズ等の信号レベルを考慮して計算・設定され、同じ色の被写体を映している・輝度差が無いとみなす範囲に幅を持たせるのに用いる。画素のノイズレベルが大きくなる場合は、閾値1が大きくなるようにすることで幅を広げる。逆にノイズが少ない場合は閾値1を小さくし、範囲を狭める。そうすることで、ノイズによる判定ミスを防ぐ。閾値2は、同色フィルターにおいて信号レベルに大きな差があり、コントラストが強く、輝度差が視覚的に大きい・異なる色の被写体を映していると判定するもので、|画素のとりうる最大又は最小信号レベル−閾値1|>|閾値2|>|閾値1|の範囲で設定される。   FIG. 5 is a diagram showing the relationship between the pixel signal level and the threshold value. In order to determine the exclusion condition shown above, a threshold value 1 for determining that it is flat and a threshold value 2 for determining that it is separated are used. The threshold value 1 is calculated and set in consideration of a signal level such as pixel noise obtained experimentally, and is used to give a width to a range in which an object of the same color is shown and that there is no luminance difference. When the noise level of the pixel increases, the width is widened by increasing the threshold value 1. Conversely, when there is little noise, the threshold value 1 is decreased and the range is narrowed. By doing so, judgment errors due to noise are prevented. Threshold 2 is a signal that has a large difference in signal level in the same color filter, a strong contrast, a visually large luminance difference, and a subject of a different color. Level-threshold 1 |> | threshold 2 |> | threshold 1 | is set.

図6はその効果を示した図であり、(A)は排除機能不使用時の解像度チャート画像を示し、(B)は排除機能使用時の解像度チャートに示す。図から明らかなように、排除機能使用時の解像度チャートは破壊された部分が無い綺麗な画像であることが分かる。   6A and 6B are diagrams showing the effect. FIG. 6A shows a resolution chart image when the exclusion function is not used, and FIG. 6B shows a resolution chart when the exclusion function is used. As is apparent from the figure, it can be seen that the resolution chart when using the exclusion function is a beautiful image with no destroyed part.

本実施の形態によれば、欠陥検出部2で注目画素の欠陥を誤検出した場合でも、誤検出パターン検出部3で誤検出パターンが検出された場合は注目画素を補正せず、元のまま後段画像処理部25に出力するため、欠陥検出部2で保持する欠陥判定のための周辺画素パターンをすべて網羅しなくとも、即ち、回路規模の増大無く、誤検出を飛躍的に減少させることができ、精度の良い画素欠陥とそれに伴う画素補正を行うことができる。   According to the present embodiment, even when a defect of the target pixel is erroneously detected by the defect detection unit 2, if the erroneous detection pattern is detected by the erroneous detection pattern detection unit 3, the target pixel is not corrected and remains unchanged. Since it is output to the subsequent image processing unit 25, it is possible to drastically reduce false detection without covering all the peripheral pixel patterns for defect determination held in the defect detection unit 2, that is, without increasing the circuit scale. It is possible to perform accurate pixel defects and accompanying pixel correction.

また、誤検出パターン検出部3で誤検出パターンを検出することで自動的に被写体に応じた動的な誤検出を行い、それによる欠陥検出、補正制御を行うことができる。   In addition, by detecting an erroneous detection pattern by the erroneous detection pattern detection unit 3, it is possible to automatically perform dynamic erroneous detection according to the subject, thereby performing defect detection and correction control.

また、リアルタイム欠陥検出の精度を回路規模を大きくすること無く上げられるため、より、機械的なシャッターが無いアプリケーションについてリアルタイム欠陥検出を適用して、工場出荷時の調整を不必要にすることができ、製造コストを抑制することができる。   In addition, since the accuracy of real-time defect detection can be increased without increasing the circuit scale, real-time defect detection can be applied to applications that do not have a mechanical shutter, eliminating the need for factory adjustment. The manufacturing cost can be suppressed.

図7は、本発明の第2の実施の形態に係る撮像装置の欠陥検出補正回路の構成を示したブロック図である。但し、第1の実施の形態と同様の部分には同一符号を付して説明する。欠陥検出補正回路80は、ラインメモリ1、欠陥検出部2、誤検出パターン検出部3、補正値生成部4、マルチプレクサ5、カウンタ6、比較器7を有して構成されている。この欠陥検出補正回路80は固体撮像装置に組み込まれ、固体撮像装置はレンズ21、撮像素子22、前処理部23、A/D変換部24、後段画像処理部25を有している。   FIG. 7 is a block diagram showing a configuration of a defect detection correction circuit of the imaging apparatus according to the second embodiment of the present invention. However, the same parts as those in the first embodiment will be described with the same reference numerals. The defect detection correction circuit 80 includes a line memory 1, a defect detection unit 2, an erroneous detection pattern detection unit 3, a correction value generation unit 4, a multiplexer 5, a counter 6, and a comparator 7. The defect detection and correction circuit 80 is incorporated in a solid-state imaging device, and the solid-state imaging device includes a lens 21, an imaging element 22, a preprocessing unit 23, an A / D conversion unit 24, and a subsequent image processing unit 25.

次に本実施の形態の動作について説明する。欠陥検出補正回路80の動作は図1に示した欠陥検出補正回路60とほぼ同じである。異なる点は、誤検出パターン検出部3で検出された誤検出パターンの個数をカウンタ6でカウント(計数)し、カウント値を比較器7に出力する。比較器7は入力されるカウント値が閾値を越えると、それを知らせる信号をマルチプレクサ5に出力すると共に、欠陥検出部2、誤検出パターン検出部3、補正値生成部4の動作を停止する停止信号を出力する。これにより、マルチプレクサ5は以降、欠陥検出対象画像信号をそのまま後段画像処理部25に出力する。また、欠陥検出部2、誤検出パターン検出部3、補正値生成部4はその動作を停止して省電力とする。   Next, the operation of the present embodiment will be described. The operation of the defect detection and correction circuit 80 is almost the same as that of the defect detection and correction circuit 60 shown in FIG. The difference is that the counter 6 counts the number of erroneous detection patterns detected by the erroneous detection pattern detection unit 3 and outputs the count value to the comparator 7. When the input count value exceeds the threshold value, the comparator 7 outputs a signal to notify the multiplexer 5 and stops the operations of the defect detection unit 2, the false detection pattern detection unit 3, and the correction value generation unit 4. Output a signal. Accordingly, the multiplexer 5 thereafter outputs the defect detection target image signal to the subsequent image processing unit 25 as it is. Further, the defect detection unit 2, the false detection pattern detection unit 3, and the correction value generation unit 4 stop their operations to save power.

図8は図7に示した欠陥検出補正回路の動作を表したフローチャートである。まず、ステップ201にて、比較器7によりカウンタ6のカウント値が閾値を越えているかどうかが判定され、越えている場合には欠陥検出処理を行わず、欠陥検出対象画像信号がそのままマルチプレクサ25から後段画像処理部25に入力される。カウンタ6のカウント値が閾値を越えていない場合は、ステップ202にて、欠陥検出部2により撮像素子22の画素の欠陥を検出する処理が行われ、画素の欠陥が検出されるとステップ203に進む。また同時に、誤検出パターン検出部3により画素欠陥の検出が誤検出となるパターンを検出する処理が行われると共に、補正値生成部4により画素の補正処理が行われる。   FIG. 8 is a flowchart showing the operation of the defect detection and correction circuit shown in FIG. First, in step 201, it is determined whether or not the count value of the counter 6 exceeds the threshold value by the comparator 7. If it exceeds, the defect detection processing is not performed, and the defect detection target image signal is directly sent from the multiplexer 25. The data is input to the subsequent image processing unit 25. If the count value of the counter 6 does not exceed the threshold value, in step 202, the defect detection unit 2 performs a process for detecting a pixel defect in the image sensor 22, and if a pixel defect is detected, the process proceeds to step 203. move on. At the same time, a process for detecting a pattern in which detection of a pixel defect is erroneously detected is performed by the erroneous detection pattern detection unit 3, and a pixel correction process is performed by the correction value generation unit 4.

ステップ203では、誤検出パターンが検出されたかどうかを判定し、検出された場合はステップ205にてカウンタ6のカウント値を+1インクリメントした後、画素の補正
処理をせずに処理を終了する。この補正処理をしないということは、マルチプレクサ5により欠陥検出対象画素信号をそのまま後段に出力することと等価である。一方、誤検出パターンが検出されなかった場合は、ステップ204にて画素の補正処理をして処理を終了する。この補正処理するということは、マルチプレクサ5により欠陥検出対象画素信号に代えて補正画素信号を後段に出力することと等価である。このような処理が撮像装置の動作中行われるため、高周波成分を多く含む特殊な画像を撮影した場合などには、検出される誤検出パターンの数が多いため、カウンタ6のカウント値がすぐに閾値を越えるため、画素の欠陥検出及び補正をしないモードに切り替えられ、撮像画像が間違った補正により破壊されるのを防止することができる。
In step 203, it is determined whether or not an erroneous detection pattern is detected. If it is detected, the count value of the counter 6 is incremented by +1 in step 205, and then the process is terminated without performing the pixel correction process. Not performing the correction process is equivalent to outputting the defect detection target pixel signal to the subsequent stage as it is by the multiplexer 5. On the other hand, if no erroneous detection pattern is detected, the pixel correction process is performed in step 204 and the process is terminated. This correction processing is equivalent to outputting the corrected pixel signal to the subsequent stage in place of the defect detection target pixel signal by the multiplexer 5. Since such processing is performed during the operation of the imaging apparatus, when a special image containing a large amount of high-frequency components is taken, the number of erroneous detection patterns detected is large, so the count value of the counter 6 is immediately set to the threshold value. Therefore, the mode is switched to a mode in which pixel defect detection and correction are not performed, and the captured image can be prevented from being destroyed by incorrect correction.

本実施の形態によれば、画像撮像時に検出される誤検出パターンの数が多い場合は、高周波成分を多く含む特殊な画像を撮影したと判定して、画素の欠陥検出及び補正をしないモードにすることにより、撮像画像が間違った補正により劣化又は破壊されるのを防止することができる。他の効果は第1の実施の形態と同様である。   According to the present embodiment, when the number of erroneous detection patterns detected at the time of image capturing is large, it is determined that a special image containing a large amount of high-frequency components has been captured, and the pixel defect detection and correction mode is not performed. By doing so, it is possible to prevent the captured image from being deteriorated or destroyed by incorrect correction. Other effects are the same as those of the first embodiment.

尚、本発明は上記実施の形態に限定されることなく、その要旨を逸脱しない範囲において、具体的な構成、機能、作用、効果において、他の種々の形態によっても実施することができる。撮像装素子で撮影した画像を処理する装置であれば、どのような装置にも本発明を適用して同様の効果を得ることができる。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can implement also with another various form in a concrete structure, a function, an effect | action, and an effect. The same effect can be obtained by applying the present invention to any apparatus as long as it is an apparatus that processes an image captured by an imaging device.

本発明の第1の実施の形態に係る欠陥検出補正回路を搭載した固体撮像装置の構成を示したブロック図である。1 is a block diagram showing a configuration of a solid-state imaging device equipped with a defect detection correction circuit according to a first embodiment of the present invention. 図1に示した欠陥検出補正回路の動作処理を説明するフローチャートである。3 is a flowchart for explaining an operation process of the defect detection and correction circuit shown in FIG. 1. 注目する画素(欠陥検出対象画素)と同色のカラーフィルターをもつ、周辺画素の信号レベルの一例を模擬的に示した図である。It is the figure which showed typically an example of the signal level of a surrounding pixel which has a color filter of the same color as the pixel of interest (defect detection object pixel). 図1に示した欠陥検出部による画素の欠陥誤検出が生じる理由を説明する図である。It is a figure explaining the reason for the defect defect detection of the pixel by the defect detection part shown in FIG. 図1に示した欠陥検出部が誤検出をする画素パターンの条件を説明するための図である。It is a figure for demonstrating the conditions of the pixel pattern which the defect detection part shown in FIG. 図1に示した欠陥検出補正回路で画素欠陥が検出された際に誤検出パターンにより画素補正をするかしないかの制御を行った場合とそうでない場合の画像を比較する図である。FIG. 2 is a diagram comparing an image when control is performed to determine whether or not to perform pixel correction by a false detection pattern when a pixel defect is detected by the defect detection and correction circuit illustrated in FIG. 1 and when the pixel correction is not performed. 本発明の第2の実施の形態に係る欠陥検出補正回路を搭載した固体撮像装置の構成を示したブロック図である。It is the block diagram which showed the structure of the solid-state imaging device carrying the defect detection correction circuit based on the 2nd Embodiment of this invention. 図7に示した欠陥検出補正回路の動作処理を説明するフローチャートである。It is a flowchart explaining the operation | movement process of the defect detection correction circuit shown in FIG.

符号の説明Explanation of symbols

1……ラインメモリ、2……欠陥検出部、3……誤検出パターン検出部、4……補正値生成部、5……マルチプレクサ、6……カウンタ、7……比較器、21……レンズ、22……撮像素子、23……前処理部、24……A/D変換部、25……後段画像処理部、60、80……欠陥検出補正回路。   DESCRIPTION OF SYMBOLS 1 ... Line memory, 2 ... Defect detection part, 3 ... False detection pattern detection part, 4 ... Correction value generation part, 5 ... Multiplexer, 6 ... Counter, 7 ... Comparator, 21 ... Lens , 22... Image sensor, 23... Pre-processing unit, 24... A / D conversion unit, 25.

Claims (6)

撮像素子により光電変換された画像信号を入力して欠陥検出対象画像信号とその周辺画像信号を生成する周辺画像信号生成手段と、
前記周辺画像信号生成手段からの画像信号情報に基づいて前記欠陥検出対象画像信号の中の欠陥検出対象画素信号が欠陥画素信号であるか否かを検出する欠陥検出手段と、
前記周辺画像信号生成手段からの画像信号情報に基づいて前記欠陥検出対象画素信号とその周辺画素信号が所定の条件を満たす画素信号パターンを有するか否かを検出する誤検出パターン検出手段と、
前記画像信号を形成する画素信号を正常レベルの画像信号に置き換えて補正画素信号とする信号補正手段と、
前記欠陥検出対象画素信号が欠陥画素信号であると検出され、且つ、当該欠陥検出対象画素信号とその周辺画素信号が前記所定の条件を満たす画素信号パターンを有すると検出された場合は前記欠陥検出対象画素信号を前記補正画素信号に置き換えずに出力する制御を行う制御手段を具備することを特徴とする欠陥検出補正回路。
Peripheral image signal generation means for inputting an image signal photoelectrically converted by the image sensor and generating a defect detection target image signal and its peripheral image signal;
Defect detection means for detecting whether or not a defect detection target pixel signal in the defect detection target image signal is a defective pixel signal based on image signal information from the peripheral image signal generation means;
A false detection pattern detection means for detecting whether or not the defect detection target pixel signal and the peripheral pixel signal have a pixel signal pattern satisfying a predetermined condition based on image signal information from the peripheral image signal generation means;
A signal correcting means for replacing the pixel signal forming the image signal with a normal level image signal to obtain a corrected pixel signal;
When the defect detection target pixel signal is detected to be a defective pixel signal, and the defect detection target pixel signal and its peripheral pixel signal are detected to have a pixel signal pattern that satisfies the predetermined condition, the defect detection is performed. A defect detection / correction circuit comprising: control means for performing control to output a target pixel signal without replacing it with the correction pixel signal.
前記誤検出パターン検出手段による前記所定の条件を満たす画素信号パターンの検出回数を計数する計数手段と、
前記計数手段の計数値と予め設定された閾値を比較する比較手段とを設け、
前記制御手段は前記計数値が前記閾値を越えた場合、以降、前記入力画像信号を出力することを特徴とする請求項1記載の欠陥検出補正回路。
Counting means for counting the number of times of detection of the pixel signal pattern that satisfies the predetermined condition by the erroneous detection pattern detection means;
Comparing means for comparing the count value of the counting means with a preset threshold value,
2. The defect detection and correction circuit according to claim 1, wherein the control means outputs the input image signal thereafter when the count value exceeds the threshold value.
前記所定の条件とは、前記欠陥検出対象画素信号とその周辺画素信号の範囲を矩形とすると、2本の対角線上の画素信号がそれぞれ比較的近いレベルを持ち、一方の対角線上の画素信号のレベルがもう一方の対角線上の画素信号のレベルよりも離れている場合、或いは縦横の2本の線上の画素信号がそれぞれ比較的近いレベルを持ち、一方の線上の画素信号のレベルがもう一方の線上の画素信号のレベルよりも離れている場合であることを特徴する請求項1記載の欠陥検出補正回路。   The predetermined condition is that when the range of the defect detection target pixel signal and its peripheral pixel signal is rectangular, the pixel signals on two diagonal lines have relatively close levels, and the pixel signals on one diagonal line When the level is farther than the level of the pixel signal on the other diagonal line, or the pixel signals on the two vertical and horizontal lines are relatively close to each other, and the level of the pixel signal on one line is the other 2. The defect detection / correction circuit according to claim 1, wherein the defect detection / correction circuit is separated from a level of a pixel signal on the line. 前記計数値が前記閾値を越えた場合、前記画素信号の欠陥検出補正に関わる回路の動作を停止することを特徴とする請求項2記載の欠陥検出補正回路。   3. The defect detection / correction circuit according to claim 2, wherein when the count value exceeds the threshold value, operation of a circuit related to defect detection / correction of the pixel signal is stopped. 撮像素子により光電変換されて入力される画像信号に欠陥画素信号があるか否かを検出し、欠陥画素信号があればこれを補正した補正画素信号に置き換えて出力する欠陥検出補正方法であって、
前記欠陥検出対象画素信号とその周辺の画素信号が所定の条件を満たす画素信号パターンを有する場合は、前記欠陥検出対象画素信号が欠陥画素信号であると検出されても、これを前記補正画素信号に置き換えずに出力することを特徴とする欠陥検出補正方法。
A defect detection and correction method that detects whether or not there is a defective pixel signal in an image signal that is photoelectrically converted by an image sensor and replaces it with a corrected pixel signal if there is a defective pixel signal. ,
When the defect detection target pixel signal and its surrounding pixel signals have a pixel signal pattern that satisfies a predetermined condition, even if the defect detection target pixel signal is detected as a defective pixel signal, this is detected as the correction pixel signal. A defect detection and correction method characterized in that the defect is output without being replaced.
前記所定の条件を満たす画素信号パターンの出現回数を計数し、この計数値が予めあたえられる閾値を越えた場合、以降、前記入力画像信号を出力することを特徴とする請求項5記載の欠陥検出補正方法。   6. The defect detection according to claim 5, wherein the number of appearances of the pixel signal pattern satisfying the predetermined condition is counted, and if the counted value exceeds a predetermined threshold value, the input image signal is output thereafter. Correction method.
JP2004327173A 2004-11-11 2004-11-11 Defect detection correction circuit and defect detection correction method Expired - Fee Related JP4591046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327173A JP4591046B2 (en) 2004-11-11 2004-11-11 Defect detection correction circuit and defect detection correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327173A JP4591046B2 (en) 2004-11-11 2004-11-11 Defect detection correction circuit and defect detection correction method

Publications (3)

Publication Number Publication Date
JP2006140654A true JP2006140654A (en) 2006-06-01
JP2006140654A5 JP2006140654A5 (en) 2007-10-18
JP4591046B2 JP4591046B2 (en) 2010-12-01

Family

ID=36621159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327173A Expired - Fee Related JP4591046B2 (en) 2004-11-11 2004-11-11 Defect detection correction circuit and defect detection correction method

Country Status (1)

Country Link
JP (1) JP4591046B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259198B2 (en) 2009-10-20 2012-09-04 Apple Inc. System and method for detecting and correcting defective pixels in an image sensor
US8817120B2 (en) 2012-05-31 2014-08-26 Apple Inc. Systems and methods for collecting fixed pattern noise statistics of image data
US8872946B2 (en) 2012-05-31 2014-10-28 Apple Inc. Systems and methods for raw image processing
US8917336B2 (en) 2012-05-31 2014-12-23 Apple Inc. Image signal processing involving geometric distortion correction
US8953882B2 (en) 2012-05-31 2015-02-10 Apple Inc. Systems and methods for determining noise statistics of image data
US9014504B2 (en) 2012-05-31 2015-04-21 Apple Inc. Systems and methods for highlight recovery in an image signal processor
US9025867B2 (en) 2012-05-31 2015-05-05 Apple Inc. Systems and methods for YCC image processing
US9031319B2 (en) 2012-05-31 2015-05-12 Apple Inc. Systems and methods for luma sharpening
US9077943B2 (en) 2012-05-31 2015-07-07 Apple Inc. Local image statistics collection
US9105078B2 (en) 2012-05-31 2015-08-11 Apple Inc. Systems and methods for local tone mapping
US9131196B2 (en) 2012-05-31 2015-09-08 Apple Inc. Systems and methods for defective pixel correction with neighboring pixels
US9142012B2 (en) 2012-05-31 2015-09-22 Apple Inc. Systems and methods for chroma noise reduction
US9332239B2 (en) 2012-05-31 2016-05-03 Apple Inc. Systems and methods for RGB image processing
WO2017010314A1 (en) * 2015-07-15 2017-01-19 ソニーセミコンダクタソリューションズ株式会社 Image capturing device and image capturing method, and program
US11089247B2 (en) 2012-05-31 2021-08-10 Apple Inc. Systems and method for reducing fixed pattern noise in image data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630425A (en) * 1992-07-06 1994-02-04 Sony Corp Solid state image pickup device
JP2000101924A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Defect detection correction device in image input device
JP2004061500A (en) * 2002-06-03 2004-02-26 Fuji Photo Film Co Ltd Method of detecting image defect
JP2005064697A (en) * 2003-08-08 2005-03-10 Canon Inc Imaging device and imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630425A (en) * 1992-07-06 1994-02-04 Sony Corp Solid state image pickup device
JP2000101924A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Defect detection correction device in image input device
JP2004061500A (en) * 2002-06-03 2004-02-26 Fuji Photo Film Co Ltd Method of detecting image defect
JP2005064697A (en) * 2003-08-08 2005-03-10 Canon Inc Imaging device and imaging method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259198B2 (en) 2009-10-20 2012-09-04 Apple Inc. System and method for detecting and correcting defective pixels in an image sensor
KR101258039B1 (en) 2009-10-20 2013-05-02 애플 인크. System and method for detecting and correcting defective pixels in an image sensor
US9105078B2 (en) 2012-05-31 2015-08-11 Apple Inc. Systems and methods for local tone mapping
US9131196B2 (en) 2012-05-31 2015-09-08 Apple Inc. Systems and methods for defective pixel correction with neighboring pixels
US8917336B2 (en) 2012-05-31 2014-12-23 Apple Inc. Image signal processing involving geometric distortion correction
US8953882B2 (en) 2012-05-31 2015-02-10 Apple Inc. Systems and methods for determining noise statistics of image data
US9014504B2 (en) 2012-05-31 2015-04-21 Apple Inc. Systems and methods for highlight recovery in an image signal processor
US9025867B2 (en) 2012-05-31 2015-05-05 Apple Inc. Systems and methods for YCC image processing
US9031319B2 (en) 2012-05-31 2015-05-12 Apple Inc. Systems and methods for luma sharpening
US9077943B2 (en) 2012-05-31 2015-07-07 Apple Inc. Local image statistics collection
US8817120B2 (en) 2012-05-31 2014-08-26 Apple Inc. Systems and methods for collecting fixed pattern noise statistics of image data
US8872946B2 (en) 2012-05-31 2014-10-28 Apple Inc. Systems and methods for raw image processing
US9142012B2 (en) 2012-05-31 2015-09-22 Apple Inc. Systems and methods for chroma noise reduction
US9317930B2 (en) 2012-05-31 2016-04-19 Apple Inc. Systems and methods for statistics collection using pixel mask
US9332239B2 (en) 2012-05-31 2016-05-03 Apple Inc. Systems and methods for RGB image processing
US9342858B2 (en) 2012-05-31 2016-05-17 Apple Inc. Systems and methods for statistics collection using clipped pixel tracking
US11689826B2 (en) 2012-05-31 2023-06-27 Apple Inc. Systems and method for reducing fixed pattern noise in image data
US9710896B2 (en) 2012-05-31 2017-07-18 Apple Inc. Systems and methods for chroma noise reduction
US9743057B2 (en) 2012-05-31 2017-08-22 Apple Inc. Systems and methods for lens shading correction
US9741099B2 (en) 2012-05-31 2017-08-22 Apple Inc. Systems and methods for local tone mapping
US11089247B2 (en) 2012-05-31 2021-08-10 Apple Inc. Systems and method for reducing fixed pattern noise in image data
WO2017010314A1 (en) * 2015-07-15 2017-01-19 ソニーセミコンダクタソリューションズ株式会社 Image capturing device and image capturing method, and program

Also Published As

Publication number Publication date
JP4591046B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US7876369B2 (en) Image processing apparatus, image processing method, and program
JP4591046B2 (en) Defect detection correction circuit and defect detection correction method
WO2011042948A1 (en) Defect detecting method for imaging device, and imaging device
US8804011B2 (en) Imaging device
JP2002354340A (en) Imaging device
JP6300529B2 (en) Imaging apparatus, control method therefor, program, and storage medium
US8711254B2 (en) Image processing apparatus and method having defective pixel detection and correction ability
US7567278B2 (en) Circuit and method for detecting pixel defect
JP2005101829A (en) Signal processing apparatus
US20050030412A1 (en) Image correction processing method and image capture system using the same
JP5262953B2 (en) Image processing apparatus, image processing method, and program
JP4895107B2 (en) Electronic device, information processing method, and program
JP4331120B2 (en) Defective pixel detection method
JP2010068329A (en) Imaging apparatus
JP2011114473A (en) Pixel defect correction device
JP2010056817A (en) Imaging apparatus
JP6041523B2 (en) Image processing apparatus and method
JP2000101924A (en) Defect detection correction device in image input device
JP2006148748A (en) Pixel defect correcting device and pixel defect correcting method
JP2008148115A (en) Image defect correction system of imaging device using direction detection
JP2007228269A (en) Image signal processing device and method
JP2001230976A (en) Device and method for picking up image, and computer- readable recording medium with recorded program for computer for executing the same
JP2005318337A (en) Defect detecting and correcting device for solid-state image pickup element and image pickup device
JP2007081858A (en) Smear correction method and circuit
JP2005109878A (en) Method for correcting video signal of solid-state imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees