JP2006140626A - Pixel shifting fine movement mechanism - Google Patents

Pixel shifting fine movement mechanism Download PDF

Info

Publication number
JP2006140626A
JP2006140626A JP2004326841A JP2004326841A JP2006140626A JP 2006140626 A JP2006140626 A JP 2006140626A JP 2004326841 A JP2004326841 A JP 2004326841A JP 2004326841 A JP2004326841 A JP 2004326841A JP 2006140626 A JP2006140626 A JP 2006140626A
Authority
JP
Japan
Prior art keywords
axis
fine movement
movement mechanism
axis direction
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004326841A
Other languages
Japanese (ja)
Inventor
Hideo Torii
秀雄 鳥井
Hiroshi Hirasawa
拓 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004326841A priority Critical patent/JP2006140626A/en
Publication of JP2006140626A publication Critical patent/JP2006140626A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pixel shifting fine movement mechanism capable of being driven highly precidely with a simple configuration. <P>SOLUTION: Light from a subject is passed through an optical system 6, reflected by a reflecting mirror 1, and imaged on an imaging element 7. Denoting the optical axis connecting the reflecting mirror 1 and imaging element 7 as a Z axis, a Y-axial fine movement mechanism 5 finely and mechanically moves the reflecting mirror 1 along a Y axis perpendicular to the Z axis and an X-axial fine movement mechanism 12 finely and mechanically moves the imaging element 7 along an X axis perpendicular to the Z axis and Y axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、撮像素子上に形成された被写体像を撮像素子に対して微小量だけ相対的に移動させる画素ずらし微動機構に関する。   The present invention relates to a pixel shift fine movement mechanism that moves a subject image formed on an image sensor relative to the image sensor by a minute amount.

近年、固体撮像素子を用いた電子カメラの急速な普及にともない、種々の分野で高精細画像が要求されてきている。固体撮像素子の撮像面は、光電変換を行う受光素子(画素)が多数形成されている。この受光素子の形成密度、すなわち受光素子の配列のピッチによって、解像度が決まる。現在、CCDなどの固体撮像素子の撮像デバイスにより実現されている画素数は数百万画素であるが、高解像度に対する要求はますます高まっている。解像度を高めるため、受光素子の配列ピッチを小さくすることで、高密度化する努力がなされているが、製造工程が複雑化し、必然的に製造コストが高くなる傾向にある。したがって、撮像素子の高密度化には限界がある。   In recent years, with the rapid spread of electronic cameras using solid-state image sensors, high-definition images have been required in various fields. A large number of light receiving elements (pixels) that perform photoelectric conversion are formed on the imaging surface of the solid-state imaging element. The resolution is determined by the formation density of the light receiving elements, that is, the pitch of the arrangement of the light receiving elements. At present, the number of pixels realized by an image pickup device such as a CCD such as a CCD is several million pixels, but the demand for high resolution is increasing. In order to increase the resolution, efforts have been made to increase the density by reducing the arrangement pitch of the light receiving elements, but the manufacturing process becomes complicated and the manufacturing cost tends to increase. Therefore, there is a limit to increasing the density of the image sensor.

そこで、電子カメラにおいては、撮像素子の能力である画素数は同じままで、より高解像度な画像を得る方法として、銀塩写真のカメラにはない技術である、画素ずらし方式が用いられている。一例として、撮像素子の結像面を受光素子の配列ピッチの半分だけ水平方向にずらし、このずらしの前後で撮像した被写体像を合成して、水平方向のサンプリング周波数を2倍にして、水平解像度を2倍にする撮像機構が提案されている(例えば、特許文献1参照)。しかしながら、この高解像度化方法は、水平方向の解像度の向上は実現されるが、垂直方向の解像度の向上は実現できない。   Therefore, in the electronic camera, as a method for obtaining a higher resolution image while maintaining the same number of pixels as the capability of the image sensor, a pixel shifting method, which is a technique not available in a silver salt photography camera, is used. . As an example, the imaging plane of the image sensor is shifted in the horizontal direction by half the arrangement pitch of the light receiving elements, the subject images captured before and after this shift are combined, the sampling frequency in the horizontal direction is doubled, and the horizontal resolution An imaging mechanism for doubling the number has been proposed (see, for example, Patent Document 1). However, this high resolution method can improve the resolution in the horizontal direction, but cannot improve the resolution in the vertical direction.

そこで、水平方向と垂直方向の両方の解像度を向上させる画素ずらし方式が提案されている(例えば、特許文献2参照)。これを図10を用いて説明する。ベース50にスペーサ51を介して垂直方向微小変位板52の固定部52aが固定される。垂直方向微小変位板52の可動部52bに、水平方向微小変位板53の固定部53aが固定される。水平方向微小変位板53の可動部53bにブラケット54を介して撮像素子55を保持する撮像素子基板56が固定される。垂直方向微小変位板52に取り付けられた圧電アクチュエーター52cは、可動部52bを固定部52aに対して垂直方向に微小駆動する。水平方向微小変位板53に取り付けられた圧電アクチュエーター53cは、可動部53bを固定部53aに対して水平方向に微小駆動する。撮影レンズ系60は、レンズマウント61、フロントパネル62、一対の取付板63a,63bを介してベース50に固定される。   Therefore, a pixel shifting method that improves both the horizontal and vertical resolutions has been proposed (see, for example, Patent Document 2). This will be described with reference to FIG. A fixing portion 52 a of the vertical minute displacement plate 52 is fixed to the base 50 via a spacer 51. The fixed portion 53 a of the horizontal minute displacement plate 53 is fixed to the movable portion 52 b of the vertical minute displacement plate 52. An imaging element substrate 56 that holds the imaging element 55 is fixed to the movable portion 53 b of the horizontal minute displacement plate 53 via a bracket 54. The piezoelectric actuator 52c attached to the vertical minute displacement plate 52 minutely drives the movable part 52b in the vertical direction with respect to the fixed part 52a. The piezoelectric actuator 53c attached to the horizontal minute displacement plate 53 slightly drives the movable portion 53b in the horizontal direction with respect to the fixed portion 53a. The photographing lens system 60 is fixed to the base 50 via a lens mount 61, a front panel 62, and a pair of mounting plates 63a and 63b.

撮影レンズ系60は撮像素子55の撮像面に被写体像を結像する。この状態において、圧電アクチュエーター52c,53cにより、撮像素子55を垂直方向及び水平方向に、受光素子の配列ピッチの半分だけそれぞれ微小移動させる。微小移動の前後で撮像した画像を電子的に合成することにより、高解像度の画像を得ることができる。   The taking lens system 60 forms a subject image on the image pickup surface of the image pickup device 55. In this state, the piezoelectric actuators 52c and 53c slightly move the image sensor 55 in the vertical direction and the horizontal direction by half the arrangement pitch of the light receiving elements. A high-resolution image can be obtained by electronically synthesizing images captured before and after the minute movement.

しかしながら、垂直方向及び水平方向に撮像素子55を微動させる機構は機械的精度が要求されるため、複雑で大型な装置になってしまう。さらに、垂直方向微小変位板52の可動部52bには、撮像素子55、撮像素子基板56、及びブラケット54に加えて水平方向微小変位板53も搭載されるため、圧電アクチュエーター52cの負荷に駆動される被駆動物の重量が増大する。従って、垂直方向の高速な駆動が困難である。   However, the mechanism for finely moving the image sensor 55 in the vertical direction and the horizontal direction requires mechanical accuracy, and thus becomes a complicated and large-sized device. Furthermore, in addition to the image sensor 55, the image sensor substrate 56, and the bracket 54, the horizontal minute displacement plate 53 is also mounted on the movable portion 52b of the vertical minute displacement plate 52, so that it is driven by the load of the piezoelectric actuator 52c. The weight of the driven object increases. Therefore, high-speed driving in the vertical direction is difficult.

被駆動物の重量を軽減した微動機構が各種提案されている。その一例として、薄型軽量化を図った微動機構を図11を用いて説明する(例えば、特許文献3参照)。例えば厚み5mm程度の1枚の金属板材をワイヤ放電加工機で切り欠き加工することにより、金属板材内に、1つの平板形状の固定台110と、1つの平板形状の可動部111と、4つの板ばね部112a〜112dと、4つの駆動ばね部113a〜113dと、4つのアーム部114a〜114dと、4つのヒンジ部115a〜115dとを形成する。正方形状の可動部111は、その四隅のL字形状の板ばね部112a〜112dを介して固定台110と接続されている。また、可動部111は、4つの駆動ばね部113a〜113dと、4つのアーム部114a〜114dと、4つのヒンジ部115a〜115dとをそれぞれ順に介して、固定台110と接続されている。4つの駆動ばね部113a〜113dは狭幅の直線状であり、その一端は可動部111に接続され、他端は4つのアーム部114a〜114dの一端にそれぞれ略L字状に接続されている。4つのアーム部114a〜114dの他端は、4つのヒンジ部115a〜115dをそれぞれ介して固定台110に接続されている。図示したように、可動部111の中央で直交するX軸及びY軸を定義すると、4つの駆動ばね部113a〜113dはX軸又はY軸に沿って配置され、板ばね部、駆動ばね部、アーム部、及びヒンジ部はX軸及びY軸に対して略軸対称に配置されている。X軸方向に延びるアーム部114a及びY軸方向に延びるアーム部114dには、圧電アクチュエーター116a,116bがそれぞれ取り付けられている。圧電アクチュエーター116a,116bは、アーム部114a及びアーム部114dを、XY面内においてその長手方向と直交する方向に、固定台110に対して変位させる。かくして、可動部111は、固定台110の略中央にて、XY面内で、互いに直交するX軸及びY軸の二方向に移動可能である。この可動部111に撮像素子が搭載される。   Various fine movement mechanisms that reduce the weight of the driven object have been proposed. As an example, a fine movement mechanism that is thin and lightweight will be described with reference to FIG. 11 (see, for example, Patent Document 3). For example, by cutting out a single metal plate having a thickness of about 5 mm with a wire electric discharge machine, one flat plate-shaped fixed base 110, one flat plate-shaped movable portion 111, and four The leaf spring portions 112a to 112d, the four drive spring portions 113a to 113d, the four arm portions 114a to 114d, and the four hinge portions 115a to 115d are formed. The square-shaped movable portion 111 is connected to the fixed base 110 via L-shaped leaf spring portions 112a to 112d at the four corners. In addition, the movable portion 111 is connected to the fixed base 110 via four drive spring portions 113a to 113d, four arm portions 114a to 114d, and four hinge portions 115a to 115d, respectively. The four drive spring portions 113a to 113d are linear with a narrow width, one end thereof is connected to the movable portion 111, and the other end is connected to one end of the four arm portions 114a to 114d in a substantially L shape. . The other ends of the four arm portions 114a to 114d are connected to the fixed base 110 via the four hinge portions 115a to 115d, respectively. As shown in the figure, when the X axis and the Y axis orthogonal to each other at the center of the movable portion 111 are defined, the four drive spring portions 113a to 113d are arranged along the X axis or the Y axis, and the leaf spring portion, the drive spring portion, The arm part and the hinge part are arranged substantially symmetrically with respect to the X axis and the Y axis. Piezoelectric actuators 116a and 116b are attached to an arm portion 114a extending in the X-axis direction and an arm portion 114d extending in the Y-axis direction, respectively. The piezoelectric actuators 116a and 116b displace the arm part 114a and the arm part 114d with respect to the fixed base 110 in a direction orthogonal to the longitudinal direction in the XY plane. Thus, the movable portion 111 can move in two directions of the X axis and the Y axis that are orthogonal to each other within the XY plane at the approximate center of the fixed base 110. An image sensor is mounted on the movable portion 111.

例えば、圧電アクチュエータ116aに所定の電圧を印加して伸びさせると、アーム部114aはヒンジ部115aを支点にして回転運動(反時計回り)を起こし、駆動ばね部113aを+Y方向に移動させ、可動部111を+Y方向に微小移動させる。このとき、可動部111と接続されているX軸上の2つの駆動ばね113b,113dは曲げ変形されるが、Y軸に対して可動部111の両側に軸対称に配置されているため、可動部111は回転運動を起こさずに+Y方向にのみ移動(並進運動)する。同様に、圧電アクチュエータ116bに所定の電圧を印加することにより、可動部111を回転運動を起こさずに+X方向にのみ移動(並進運動)させることができる。   For example, when a predetermined voltage is applied to the piezoelectric actuator 116a to be extended, the arm portion 114a causes a rotational movement (counterclockwise) with the hinge portion 115a as a fulcrum, and the drive spring portion 113a is moved in the + Y direction to be movable. The part 111 is slightly moved in the + Y direction. At this time, the two drive springs 113b and 113d on the X-axis connected to the movable part 111 are bent and deformed, but are arranged symmetrically on both sides of the movable part 111 with respect to the Y-axis. The unit 111 moves (translates) only in the + Y direction without causing rotational movement. Similarly, by applying a predetermined voltage to the piezoelectric actuator 116b, the movable portion 111 can be moved (translated) only in the + X direction without causing rotational movement.

このような構造によって、固定台110と同一平面内に配置された可動部111を、X軸方向及びY軸方向に、回転運動を伴うことなく、且つZ軸(X軸及びY軸に直交する軸)方向の変位を伴うことなく、移動させることができるので、可動部111に搭載された撮像素子上に形成された被写体像を受光素子の配列方向に沿って正確に移動させることが可能になる。
特開昭59−13476号公報 特開平1−123580号公報 特開2003−98059号公報
With such a structure, the movable portion 111 arranged in the same plane as the fixed base 110 is not accompanied by rotational movement in the X-axis direction and the Y-axis direction and is orthogonal to the Z-axis (X-axis and Y-axis). The object image formed on the image sensor mounted on the movable portion 111 can be accurately moved along the arrangement direction of the light receiving elements. Become.
JP 59-13476 Japanese Patent Laid-Open No. 1-123580 JP 2003-98059 A

しかしながら、上記の図11の微動機構では、可動部111が回転運動しないように、板ばね部、駆動ばね部、アーム部、及びヒンジ部などを軸対称に、かつ、たわみのバランスが保たれるように、さらに撮像素子の重量をも考慮して、1枚の金属板材を極めて高精度に加工する必要がある。そのため、微動機構が高価になり、量産に適さないという課題があった。   However, in the fine movement mechanism of FIG. 11 described above, the leaf spring portion, the drive spring portion, the arm portion, the hinge portion, and the like are axially symmetrical and the balance of deflection is maintained so that the movable portion 111 does not rotate. As described above, it is necessary to process one metal plate with extremely high accuracy in consideration of the weight of the image sensor. Therefore, there is a problem that the fine movement mechanism becomes expensive and is not suitable for mass production.

本発明は、かかる従来の技術の課題を鑑みてなされたものであり、その目的にするところは、簡単な機構で高精度で駆動できる画素ずらし微動機構を提供することにある。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a pixel shifting fine movement mechanism that can be driven with high accuracy by a simple mechanism.

本発明の第1の画素ずらし微動機構は、光学レンズ系と、反射鏡と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過し前記反射鏡で反射されて前記撮像素子上に結像される画素ずらし微動機構であって、前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構とを更に備えることを特徴とする。   The first pixel shifting fine movement mechanism of the present invention includes an optical lens system, a reflecting mirror, and an imaging device, and light from a subject passes through the optical lens system and is reflected by the reflecting mirror and is reflected on the imaging device. A fine movement mechanism for shifting a pixel formed on the optical axis, wherein the optical axis connecting the reflecting mirror and the imaging device is the Z axis, and the reflecting mirror is moved in the Y axis direction which is one direction perpendicular to the Z axis. It further comprises a Y-axis direction fine movement mechanism that finely moves mechanically, and an X-axis direction fine movement mechanism that mechanically finely moves the image sensor in the X-axis direction perpendicular to the Z-axis and the Y-axis.

本発明の第2の画素ずらし微動機構は、光学レンズ系と、反射鏡と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過し前記反射鏡で反射されて前記撮像素子上に結像される画素ずらし微動機構であって、前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、前記Z軸及び前記Y軸に垂直なX軸方向に前記光学レンズ系を機械的に微動させるX軸方向微動機構とを更に備えることを特徴とする。   The second pixel shifting fine movement mechanism of the present invention includes an optical lens system, a reflecting mirror, and an image sensor, and light from a subject passes through the optical lens system and is reflected by the reflector to be reflected on the image sensor. A fine movement mechanism for shifting a pixel formed on the optical axis, wherein the optical axis connecting the reflecting mirror and the imaging device is the Z axis, and the reflecting mirror is moved in the Y axis direction which is one direction perpendicular to the Z axis. A Y-axis direction fine movement mechanism that finely moves mechanically, and an X-axis direction fine movement mechanism that finely moves the optical lens system mechanically in the X-axis direction perpendicular to the Z-axis and the Y-axis. .

本発明の第3の画素ずらし微動機構は、光学レンズ系と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、前記光学レンズ系と前記撮像素子とを結ぶ光軸をZ軸としたとき、前記Z軸に垂直な一方向であるY軸方向に前記光学レンズ系を機械的に微動させるY軸方向微動機構と、前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構とを更に備えることを特徴とする。   The third pixel shift fine movement mechanism of the present invention is a pixel shift fine movement mechanism that includes an optical lens system and an image pickup device, and light from a subject passes through the optical lens system and forms an image on the image pickup device. When the optical axis connecting the optical lens system and the imaging device is the Z axis, the Y axis direction mechanically finely moves the optical lens system in the Y axis direction which is one direction perpendicular to the Z axis. It further includes a fine movement mechanism and an X-axis direction fine movement mechanism that mechanically finely moves the image sensor in the X-axis direction perpendicular to the Z-axis and the Y-axis.

本発明の第4の画素ずらし微動機構は、反射鏡と、光学レンズ系と、撮像素子とを備え、被写体からの光が前記反射鏡で反射され前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構とを更に備えることを特徴とする。   A fourth pixel shifting fine movement mechanism of the present invention includes a reflecting mirror, an optical lens system, and an image sensor, and light from a subject is reflected by the reflector and passes through the optical lens system to be on the image sensor. A fine movement mechanism for shifting a pixel formed on the optical axis, wherein the optical axis connecting the reflecting mirror and the imaging device is the Z axis, and the reflecting mirror is moved in the Y axis direction which is one direction perpendicular to the Z axis. It further comprises a Y-axis direction fine movement mechanism that finely moves mechanically, and an X-axis direction fine movement mechanism that mechanically finely moves the image sensor in the X-axis direction perpendicular to the Z-axis and the Y-axis.

本発明の第5の画素ずらし微動機構は、反射鏡と、光学レンズ系と、撮像素子とを備え、被写体からの光が前記反射鏡で反射され前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、前記Z軸及び前記Y軸に垂直なX軸方向に前記光学レンズ系を機械的に微動させるX軸方向微動機構とを更に備えることを特徴とする。   A fifth pixel shifting fine movement mechanism of the present invention includes a reflecting mirror, an optical lens system, and an imaging device, and light from a subject is reflected by the reflecting mirror and passes through the optical lens system to be on the imaging device. A fine movement mechanism for shifting a pixel formed on the optical axis, wherein the optical axis connecting the reflecting mirror and the imaging device is the Z axis, and the reflecting mirror is moved in the Y axis direction which is one direction perpendicular to the Z axis. A Y-axis direction fine movement mechanism that finely moves mechanically, and an X-axis direction fine movement mechanism that finely moves the optical lens system mechanically in the X-axis direction perpendicular to the Z-axis and the Y-axis. .

本発明によれば、光学系を構成する2つの部材をそれぞれ独立して変位駆動するX軸方向微動機構とY軸方向微動機構とを備えるので、変位にともなって前記2つの部材が回転したり、結像面がずれてフォーカスが甘くなったりする欠点が生じない。しかも、このような高精度駆動機構は、構成が簡単であるので、比較的安価に、容易に量産できる。従って、本発明によれば、微小変位移動にばらつきが少なく、かつ、高い信頼性を有する画素ずらし微動機構を提供できる。   According to the present invention, since the X-axis direction fine movement mechanism and the Y-axis direction fine movement mechanism that independently drive the displacement of the two members constituting the optical system are provided, the two members rotate according to the displacement. , There is no disadvantage that the image plane is shifted and the focus is softened. Moreover, such a high-precision drive mechanism has a simple configuration and can be easily mass-produced at a relatively low cost. Therefore, according to the present invention, it is possible to provide a pixel shift fine movement mechanism with little variation in minute displacement movement and high reliability.

本発明の上記の第1〜第5の画素ずらし微動機構において、前記Y軸方向微動機構及び前記X軸方向微動機構が、圧電アクチュエータを備えることが好ましい。これにより、高精度な微動変位の制御が可能になる。また、圧電アクチュエータに印加する電圧の大きさを制御することによって、必要な駆動変位量の調整が容易に可能になる。   In the first to fifth pixel shifting fine movement mechanisms of the present invention, it is preferable that the Y-axis direction fine movement mechanism and the X-axis direction fine movement mechanism include a piezoelectric actuator. Thereby, it is possible to control the fine movement displacement with high accuracy. Further, by controlling the magnitude of the voltage applied to the piezoelectric actuator, it becomes possible to easily adjust the required drive displacement amount.

あるいは、本発明の上記の第1〜第5の画素ずらし微動機構において、前記Y軸方向微動機構及び前記X軸方向微動機構が、電磁アクチュエータを備えることが好ましい。これにより、電磁アクチュエータに流す電流値の大きさを制御することによって、必要な駆動変位量の調整が容易に可能になる。   Alternatively, in the first to fifth pixel shifting fine movement mechanisms of the present invention, it is preferable that the Y-axis direction fine movement mechanism and the X-axis direction fine movement mechanism include an electromagnetic actuator. As a result, it is possible to easily adjust the required driving displacement amount by controlling the magnitude of the current value flowing through the electromagnetic actuator.

本発明の画素ずらし微動機構としては、上記第1及び第4の画素ずらし微動機構のように、反射鏡を微動させる機構と撮像素子を微動させる機構とを備えることが好ましい。これは、以下の理由による。光学レンズ系は一般に焦点合わせ機構を含むために、その重量が大きいこと、及び、重心バランスが変化しやすいことなどの理由から、光学レンズ系を微動させる機構には大きな駆動力と高い剛性が要求される。これに対して、反射鏡や撮像素子はこのような問題がなく、これらを微動させる機構の構成を簡単化でき、且つ容易に高い信頼性を得ることができる。   The pixel shifting fine movement mechanism of the present invention preferably includes a mechanism for finely moving the reflecting mirror and a mechanism for finely moving the image sensor, like the first and fourth pixel shifting fine movement mechanisms. This is due to the following reason. Since the optical lens system generally includes a focusing mechanism, the mechanism that finely moves the optical lens system is required to have a large driving force and high rigidity because of its large weight and easily changing the balance of the center of gravity. Is done. On the other hand, the reflecting mirror and the image sensor do not have such a problem, the structure of the mechanism for finely moving them can be simplified, and high reliability can be easily obtained.

以下、本発明の実施形態について図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
本発明の実施の形態1について、以下に説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below.

図1は、本発明の実施の形態1に係る画素ずらし微動機構の概略構成を示した斜視図である。被写体から来る光は、光学レンズ系6を通過して、反射鏡1で反射され、撮像デバイスである撮像素子7に焦点を結び、撮像素子7で電気信号に変換されて、図示しない信号処理部を経て被写体像として認識される。ここで、図示されているように、撮像素子7の法線方向をZ軸、Z軸と直交する2軸をX軸及びY軸とするXYZ直交座標系を定義する。被写体(図示せず)と光学レンズ系6と反射鏡1とを結ぶ光軸はY軸と平行であり、反射鏡1と撮像素子7とを結ぶ光軸はZ軸と平行であり、両光軸は直交している。   FIG. 1 is a perspective view showing a schematic configuration of a pixel shifting fine movement mechanism according to Embodiment 1 of the present invention. The light coming from the subject passes through the optical lens system 6, is reflected by the reflecting mirror 1, focuses on the imaging device 7 that is an imaging device, is converted into an electrical signal by the imaging device 7, and is a signal processing unit (not shown). And is recognized as a subject image. Here, as shown in the drawing, an XYZ orthogonal coordinate system is defined in which the normal direction of the image sensor 7 is the Z axis, and two axes orthogonal to the Z axis are the X axis and the Y axis. The optical axis connecting the subject (not shown), the optical lens system 6 and the reflecting mirror 1 is parallel to the Y axis, and the optical axis connecting the reflecting mirror 1 and the image sensor 7 is parallel to the Z axis. The axes are orthogonal.

図2は、本実施の形態1に係る画素ずらし微動機構のX軸に沿って見た側面図であり、反射鏡1をY軸方向に微動させる機構の概略構成を示している。反射鏡1は、反射鏡保持台2により所定の角度で保持され、反射鏡保持台2は、Y軸方向に伸縮する圧電アクチュエータ3と反射鏡駆動部固定台4とを介して、図示しない電子カメラ本体に固定されている。このようにして、反射鏡1のY軸方向微動機構5が構成されている。圧電アクチュエータ3は、図示しない電気配線を介して、図示しない電圧印加回路と接続されている。圧電アクチュエータ3に電圧を印加することにより、反射鏡1をY軸方向に変位駆動することができる。   FIG. 2 is a side view seen along the X axis of the pixel shifting fine movement mechanism according to the first embodiment, and shows a schematic configuration of the mechanism for finely moving the reflecting mirror 1 in the Y axis direction. The reflecting mirror 1 is held at a predetermined angle by a reflecting mirror holding table 2, and the reflecting mirror holding table 2 is an electronic device (not shown) via a piezoelectric actuator 3 that expands and contracts in the Y-axis direction and a reflecting mirror driving unit fixing table 4. It is fixed to the camera body. In this way, the fine movement mechanism 5 in the Y-axis direction of the reflecting mirror 1 is configured. The piezoelectric actuator 3 is connected to a voltage application circuit (not shown) via an electric wiring (not shown). By applying a voltage to the piezoelectric actuator 3, the reflecting mirror 1 can be driven to be displaced in the Y-axis direction.

図3は本実施の形態1に係る画素ずらし微動機構のY軸に沿って見た側面図であり、撮像素子7をX軸方向に微動させる機構の概略構成を示している。図4は撮像素子7をX軸方向に微動させる機構の斜視図である。撮像素子7は可動部ステージ8に取り付けられており、この可動ステージ8は、X軸方向に伸縮する圧電アクチュエータ10を介して可動ステージ駆動固定台9と接続されている。この可動ステージ駆動固定台9は図示しない電子カメラ本体に固定されている。可動ステージ8をX軸方向に微小駆動する時に、これと垂直なY軸方向に可動ステージ8がぶれるのを防ぐために、可動ステージ駆動固定台9には4本のガイドピン11が設けられている。このようにして、撮像素子7のX軸方向微動機構12が構成されている。圧電アクチュエータ10は、図示しない電気配線を介して、図示しない電圧印加回路と接続されている。圧電アクチュエータ10に電圧を印加することにより、撮像素子7をX軸方向に変位駆動することができる。   FIG. 3 is a side view taken along the Y axis of the pixel shift fine movement mechanism according to the first embodiment, and shows a schematic configuration of the mechanism for finely moving the image sensor 7 in the X axis direction. FIG. 4 is a perspective view of a mechanism for finely moving the image sensor 7 in the X-axis direction. The image sensor 7 is attached to a movable stage 8, and this movable stage 8 is connected to a movable stage drive fixed base 9 via a piezoelectric actuator 10 that expands and contracts in the X-axis direction. This movable stage drive fixed base 9 is fixed to an electronic camera body (not shown). When the movable stage 8 is finely driven in the X-axis direction, four guide pins 11 are provided on the movable stage drive fixed base 9 in order to prevent the movable stage 8 from shaking in the Y-axis direction perpendicular thereto. . Thus, the X-axis direction fine movement mechanism 12 of the image sensor 7 is configured. The piezoelectric actuator 10 is connected to a voltage application circuit (not shown) via an electric wiring (not shown). By applying a voltage to the piezoelectric actuator 10, the image sensor 7 can be driven to be displaced in the X-axis direction.

上記のX軸方向微動機構12とY軸方向微動機構5の2つの微動機構により、本実施の形態の画素ずらし微動機構が構成される。   The two fine movement mechanisms of the X-axis direction fine movement mechanism 12 and the Y-axis direction fine movement mechanism 5 constitute the pixel shifting fine movement mechanism of the present embodiment.

次に、本実施の形態の画素ずらし微動機構の作用について説明する。   Next, the operation of the pixel shifting fine movement mechanism of the present embodiment will be described.

Y軸方向微動機構5の圧電アクチュエータ3に矩形波の電圧を印加すると、圧電アクチュエータ3は伸縮運動を起こす。この伸縮運動は反射鏡保持台2を介して反射鏡1に伝わり、反射鏡1が、例えば、Y軸方向に原点位置と正側位置との2点間で往復運動する。この反射鏡1の往復運動は、圧電アクチュエータ3に印加する矩形波の形状を最適化することにより、往復運動の両端位置での滞在時間を長くし、2点間の移動時間を短くすることができる。これにより、撮像素子7は、光学レンズ系6が撮像素子7上に形成する被写体像を、周期的にY軸方向に微小にずれた2つの像として認識する。圧電アクチュエータ3に印加する矩形波の電圧の大きさを制御することで、反射鏡1の移動量を制御でき、撮像素子7が認識する2つの被写体像のY軸方向のずれ量の大きさを調節できる。   When a rectangular wave voltage is applied to the piezoelectric actuator 3 of the Y-axis direction fine movement mechanism 5, the piezoelectric actuator 3 causes expansion and contraction. This telescopic movement is transmitted to the reflecting mirror 1 via the reflecting mirror holding base 2, and the reflecting mirror 1 reciprocates between two points, for example, an origin position and a positive position in the Y-axis direction. This reciprocating motion of the reflecting mirror 1 can optimize the shape of the rectangular wave applied to the piezoelectric actuator 3, thereby extending the stay time at both end positions of the reciprocating motion and shortening the moving time between the two points. it can. As a result, the image sensor 7 recognizes the subject image formed by the optical lens system 6 on the image sensor 7 as two images periodically shifted slightly in the Y-axis direction. By controlling the magnitude of the voltage of the rectangular wave applied to the piezoelectric actuator 3, the amount of movement of the reflecting mirror 1 can be controlled, and the magnitude of the amount of deviation in the Y-axis direction between the two subject images recognized by the image sensor 7 can be controlled. Can be adjusted.

図4に示すX軸方向微動機構12において、上述のY軸方向微動機構5の圧電アクチュエータ3と同様な矩形波電圧を、圧電アクチュエータ10に印加することにより、圧電アクチュエータ10は伸縮運動を起こす。この伸縮運動は、4本のガイドピン11によりY軸方向のぶれが規制された可動ステージ8を介して撮像素子7に伝わり、撮像素子7が、例えば、X軸方向に原点位置と正側位置との2点間で往復運動する。これにより、上記のY軸方向微動機構5の場合と同様に、撮像素子7は、光学レンズ系6が撮像素子7上に形成する被写体像を、周期的にX軸方向に微小にずれた2つの像として認識する。圧電アクチュエータ10に印加する矩形波の電圧の大きさを制御することで、撮像素子7の移動量を制御でき、撮像素子7が認識する2つの被写体像のX軸方向のずれ量の大きさを調節できる。   In the X-axis fine movement mechanism 12 shown in FIG. 4, by applying a rectangular wave voltage similar to that of the piezoelectric actuator 3 of the Y-axis direction fine movement mechanism 5 to the piezoelectric actuator 10, the piezoelectric actuator 10 causes expansion and contraction. This expansion / contraction motion is transmitted to the image sensor 7 via the movable stage 8 in which the shake in the Y-axis direction is restricted by the four guide pins 11, and the image sensor 7 is, for example, the origin position and the positive side position in the X-axis direction. And reciprocating between two points. Thereby, as in the case of the fine movement mechanism 5 in the Y-axis direction, the image sensor 7 periodically shifts the subject image formed on the image sensor 7 by the optical lens system 6 slightly in the X-axis direction. Recognize as one image. By controlling the magnitude of the voltage of the rectangular wave applied to the piezoelectric actuator 10, the amount of movement of the image sensor 7 can be controlled, and the magnitude of the amount of deviation in the X-axis direction between the two subject images recognized by the image sensor 7 can be controlled. Can be adjusted.

したがって、2つの圧電アクチュエータ3,10に印加する矩形波電圧を最適に制御することによって、撮像素子7を介して、X軸方向及びY軸方向にそれぞれずれた4つの被写体像が得られる。即ち、撮像素子7のX軸方向位置及びY軸方向位置(X,Y)が、(原点位置、原点位置)にあるときに撮像した第1像、(正側位置、原点位置)にあるときに撮像した第2像、(正側位置、正位置)にあるときに撮像した第3像、(原点位置、正側位置)にあるときに撮像した第4像が得られる。   Therefore, by optimally controlling the rectangular wave voltage applied to the two piezoelectric actuators 3 and 10, four subject images that are shifted in the X-axis direction and the Y-axis direction are obtained via the image sensor 7. That is, when the X-axis direction position and the Y-axis direction position (X, Y) of the image sensor 7 are at the (origin position, origin position), the first image is captured (positive side position, origin position). A second image picked up at (3), a third image picked up at (positive position, positive position), and a fourth image picked up at (origin position, positive position) are obtained.

本実施の形態の画素ずらし微動機構では、撮像素子7をX軸方向に駆動し、反射鏡1をY軸方向に駆動した。このように、X軸方向の被駆動部品とY軸方向の被駆動部品とが異なっているので、駆動機構が単純となり、2つの微動機構間で相互干渉が生じない。従って、例えば、1つの撮像素子をX軸方向とY軸方向に2軸駆動する機構に比べて、駆動精度が向上し、高信頼性の画素ずらし微動機構を実現できる。   In the pixel shifting fine movement mechanism of the present embodiment, the image sensor 7 is driven in the X-axis direction, and the reflecting mirror 1 is driven in the Y-axis direction. As described above, since the driven component in the X-axis direction and the driven component in the Y-axis direction are different, the driving mechanism is simplified and no mutual interference occurs between the two fine movement mechanisms. Therefore, for example, compared to a mechanism that drives one image sensor in two axes in the X-axis direction and the Y-axis direction, driving accuracy is improved, and a highly reliable pixel shifting fine movement mechanism can be realized.

(実施の形態2)
本発明の実施の形態2について、以下に説明する。
(Embodiment 2)
A second embodiment of the present invention will be described below.

図5は、本実施の形態2に係る画素ずらし微動機構のX軸に沿って見た側面図であり、反射鏡1をY軸方向に微動させる機構の概略構成を示している。被写体から来る光は、光学レンズ系6を通過して、反射鏡1で反射され、撮像デバイスである撮像素子7に焦点を結び、撮像素子7で電気信号に変換されて、図示しない信号処理部を経て被写体像として認識される。実施の形態1と同様に、撮像素子7の法線方向をZ軸、Z軸と直交する2軸をX軸及びY軸とするXYZ直交座標系を定義する。   FIG. 5 is a side view of the pixel shifting fine movement mechanism according to the second embodiment viewed along the X axis, and shows a schematic configuration of the mechanism for finely moving the reflecting mirror 1 in the Y axis direction. The light coming from the subject passes through the optical lens system 6, is reflected by the reflecting mirror 1, focuses on the imaging device 7 that is an imaging device, is converted into an electrical signal by the imaging device 7, and is a signal processing unit (not shown). And is recognized as a subject image. As in the first embodiment, an XYZ orthogonal coordinate system is defined in which the normal direction of the image sensor 7 is the Z axis, and two axes orthogonal to the Z axis are the X axis and the Y axis.

本実施の形態2では、反射鏡1及びこれをY軸方向に微動させるY軸方向微動機構5は実施の形態1と同様のものを使用する。実施の形態1と同一の構成要素には同一の符号を付してそれらについての説明を省略する。   In the second embodiment, the reflecting mirror 1 and the Y-axis direction fine movement mechanism 5 that finely moves the reflecting mirror 1 in the Y-axis direction are the same as those in the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態2では、実施の形態1と異なり、撮像素子7は固定されており、光学レンズ系6がX軸方向に変位駆動される。   In the second embodiment, unlike the first embodiment, the image sensor 7 is fixed, and the optical lens system 6 is driven to be displaced in the X-axis direction.

図6は、光学レンズ系6をX軸方向に微動させるX軸方向微動機構22の概略構成を示した斜視図である。X軸方向微動機構22は、図4に示したX軸方向微動機構12と類似の構造を有している。光学レンズ系6は可動部ステージ18に取り付けられており、この可動ステージ18は、X軸方向に伸縮する圧電アクチュエータ20を介して可動ステージ駆動固定台19と接続されている。この可動ステージ駆動固定台19は図示しない電子カメラ本体に固定されている。可動ステージ18をX軸方向に微小駆動する時に、これと垂直なZ軸方向に可動ステージ18がぶれるのを防ぐために、可動ステージ駆動固定台19には4本のガイドピン21が設けられている。このようにして、光学レンズ系6のX軸方向微動機構22が構成されている。圧電アクチュエータ20は、図示しない電気配線を介して、図示しない電圧印加回路と接続されている。圧電アクチュエータ20に電圧を印加することにより、光学レンズ系6をX軸方向に変位駆動することができる。圧電アクチュエータ20として、光学レンズ系6の重量を考慮して必要な駆動力を発生するものが使用されている。   FIG. 6 is a perspective view showing a schematic configuration of the X-axis direction fine movement mechanism 22 for finely moving the optical lens system 6 in the X-axis direction. The X-axis direction fine movement mechanism 22 has a similar structure to the X-axis direction fine movement mechanism 12 shown in FIG. The optical lens system 6 is attached to a movable stage 18, and this movable stage 18 is connected to a movable stage drive fixed base 19 via a piezoelectric actuator 20 that expands and contracts in the X-axis direction. This movable stage drive fixed base 19 is fixed to an electronic camera body (not shown). In order to prevent the movable stage 18 from moving in the Z-axis direction perpendicular thereto when the movable stage 18 is finely driven in the X-axis direction, the four guide pins 21 are provided on the movable stage drive fixed base 19. . In this way, the X-axis direction fine movement mechanism 22 of the optical lens system 6 is configured. The piezoelectric actuator 20 is connected to a voltage application circuit (not shown) via an electric wiring (not shown). By applying a voltage to the piezoelectric actuator 20, the optical lens system 6 can be driven to be displaced in the X-axis direction. A piezoelectric actuator 20 that generates a necessary driving force in consideration of the weight of the optical lens system 6 is used.

本実施の形態の画素ずらし微動機構は、上記以外は実施の形態1と同様である。X軸方向微動機構22の圧電アクチュエータ20とY軸方向微動機構5の圧電アクチュエータ3に印加する矩形波電圧を最適に制御することによって、実施の形態1と同様に、撮像素子7を介して、X軸方向及びY軸方向にそれぞれずれた4つの被写体像が得られる。   The pixel shifting fine movement mechanism of the present embodiment is the same as that of the first embodiment except for the above. By optimally controlling the rectangular wave voltage applied to the piezoelectric actuator 20 of the X-axis direction fine movement mechanism 22 and the piezoelectric actuator 3 of the Y-axis direction fine movement mechanism 5, via the image sensor 7 as in the first embodiment, Four subject images that are shifted in the X-axis direction and the Y-axis direction are obtained.

本実施の形態によっても、実施の形態1と同様に、単純な駆動機構により、駆動精度が向上し、高信頼性の画素ずらし微動機構を実現できる。   Also in the present embodiment, as in the first embodiment, the driving accuracy is improved by a simple driving mechanism, and a highly reliable pixel shifting fine movement mechanism can be realized.

(実施の形態3)
本発明の実施の形態3について、以下に説明する。
(Embodiment 3)
Embodiment 3 of the present invention will be described below.

図7は、本実施の形態3に係る画素ずらし微動機構のX軸に沿って見た側面図であり、撮像素子7をY軸方向に微動させるX軸方向微動機構12の概略構成を示している。図示されているように、撮像素子7の法線方向をZ軸、Z軸と直交する2軸をX軸及びY軸とするXYZ直交座標系を定義する。本実施の形態では、実施の形態1,2に示した反射鏡1を備えていない。被写体(図示せず)と光学レンズ系6と撮像素子7とはZ軸に平行な一直線上に並ぶ。被写体から来る光は、光学レンズ系6を通過して、撮像デバイスである撮像素子7に焦点を結び、撮像素子7で電気信号に変換されて、図示しない信号処理部を経て被写体像として認識される。   FIG. 7 is a side view taken along the X axis of the pixel shifting fine movement mechanism according to the third embodiment, and shows a schematic configuration of the X axis direction fine movement mechanism 12 that finely moves the image sensor 7 in the Y axis direction. Yes. As shown in the drawing, an XYZ orthogonal coordinate system is defined in which the normal direction of the image sensor 7 is the Z axis, and two axes orthogonal to the Z axis are the X axis and the Y axis. In the present embodiment, the reflecting mirror 1 shown in the first and second embodiments is not provided. The subject (not shown), the optical lens system 6 and the image sensor 7 are arranged on a straight line parallel to the Z axis. The light coming from the subject passes through the optical lens system 6, is focused on the imaging device 7 that is an imaging device, is converted into an electric signal by the imaging device 7, and is recognized as a subject image through a signal processing unit (not shown). The

撮像素子7は、実施の形態1に示したX軸方向微動機構12によりX軸方向に微小駆動される。光学レンズ系6は、実施の形態2に示したX軸方向微動機構22を駆動方向をY軸方向になるようにして設置されたY軸方向微動機構23によりY軸方向に微小駆動される。   The image sensor 7 is finely driven in the X-axis direction by the X-axis direction fine movement mechanism 12 shown in the first embodiment. The optical lens system 6 is finely driven in the Y-axis direction by the Y-axis direction fine movement mechanism 23 installed so that the X-axis direction fine movement mechanism 22 shown in the second embodiment is driven in the Y-axis direction.

X軸方向微動機構12の圧電アクチュエータとY軸方向微動機構23の圧電アクチュエータに印加する矩形波電圧を最適に制御することによって、実施の形態1,2と同様に、撮像素子7を介して、X軸方向及びY軸方向にそれぞれずれた4つの被写体像が得られる。   By optimally controlling the rectangular wave voltage applied to the piezoelectric actuator of the X-axis direction fine movement mechanism 12 and the piezoelectric actuator of the Y-axis direction fine movement mechanism 23, similarly to the first and second embodiments, the imaging element 7 is used. Four subject images that are shifted in the X-axis direction and the Y-axis direction are obtained.

本実施の形態によっても、実施の形態1,2と同様に、単純な駆動機構により、駆動精度が向上し、高信頼性の画素ずらし微動機構を実現できる。   Also in the present embodiment, as in the first and second embodiments, the driving accuracy is improved by a simple driving mechanism, and a highly reliable pixel shifting fine movement mechanism can be realized.

(実施の形態4)
本発明の実施の形態4について、以下に説明する。
(Embodiment 4)
Embodiment 4 of the present invention will be described below.

図8は、本実施の形態4に係る画素ずらし微動機構のX軸に沿って見た側面図であり、反射鏡1をY軸方向に微動させるX軸方向微動機構5の概略構成を示している。被写体(図示せず)から来る光は、反射鏡1で反射され、光学レンズ系6を通過して、撮像デバイスである撮像素子7に焦点を結び、撮像素子7で電気信号に変換されて、図示しない信号処理部を経て被写体像として認識される。図示したように、撮像素子7の法線方向をZ軸、Z軸と直交する2軸をX軸及びY軸とするXYZ直交座標系を定義する。被写体と反射鏡1とを結ぶ光軸はY軸と平行である。   FIG. 8 is a side view of the pixel shifting fine movement mechanism according to the fourth embodiment viewed along the X axis, and shows a schematic configuration of the X axis direction fine movement mechanism 5 for finely moving the reflecting mirror 1 in the Y axis direction. Yes. Light coming from a subject (not shown) is reflected by the reflecting mirror 1, passes through the optical lens system 6, is focused on the imaging device 7 that is an imaging device, is converted into an electrical signal by the imaging device 7, It is recognized as a subject image through a signal processing unit (not shown). As shown in the drawing, an XYZ orthogonal coordinate system is defined in which the normal direction of the image sensor 7 is the Z axis, and two axes orthogonal to the Z axis are the X axis and the Y axis. The optical axis connecting the subject and the reflecting mirror 1 is parallel to the Y axis.

本実施の形態4では、反射鏡1及びこれをY軸方向に微動させるY軸方向微動機構5と、撮像素子7及びこれをX軸方向に微動させるX軸方向微動機構12とは実施の形態1と同様のものを使用する。本実施の形態が実施の形態1と異なるのは、反射鏡1及びこれを微動させるY軸方向微動機構5と光学レンズ系6との位置関係のみである。実施の形態1と同一の構成要素には同一の符号を付してそれらについての説明を省略する。   In the fourth embodiment, the reflecting mirror 1 and the Y-axis direction fine-movement mechanism 5 that finely moves the reflecting mirror 1 in the Y-axis direction, and the imaging element 7 and the X-axis direction fine-movement mechanism 12 that finely moves the imaging element 7 in the X-axis direction are described in the embodiment. The same as 1 is used. The present embodiment is different from the first embodiment only in the positional relationship between the reflecting mirror 1 and the Y-axis direction fine moving mechanism 5 for finely moving the reflecting mirror 1 and the optical lens system 6. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

X軸方向微動機構12の圧電アクチュエータとY軸方向微動機構5の圧電アクチュエータに印加する矩形波電圧を最適に制御することによって、実施の形態1と同様に、撮像素子7を介して、X軸方向及びY軸方向にそれぞれずれた4つの被写体像が得られる。   By optimally controlling the rectangular wave voltage applied to the piezoelectric actuator of the X-axis direction fine movement mechanism 12 and the piezoelectric actuator of the Y-axis direction fine movement mechanism 5, the X-axis is passed through the image sensor 7 as in the first embodiment. Four subject images shifted in the direction and the Y-axis direction are obtained.

本実施の形態によっても、実施の形態1と同様に、単純な駆動機構により、駆動精度が向上し、高信頼性の画素ずらし微動機構を実現できる。   Also in the present embodiment, as in the first embodiment, the driving accuracy is improved by a simple driving mechanism, and a highly reliable pixel shifting fine movement mechanism can be realized.

(実施の形態5)
本発明の実施の形態5について、以下に説明する。
(Embodiment 5)
Embodiment 5 of the present invention will be described below.

図9は、本実施の形態5に係る画素ずらし微動機構のX軸に沿って見た側面図であり、反射鏡1をY軸方向に微動させるX軸方向微動機構5の概略構成を示している。被写体(図示せず)から来る光は、反射鏡1で反射され、光学レンズ系6を通過して、撮像デバイスである撮像素子7に焦点を結び、撮像素子7で電気信号に変換されて、図示しない信号処理部を経て被写体像として認識される。実施の形態4と同様に、撮像素子7の法線方向をZ軸、Z軸と直交する2軸をX軸及びY軸とするXYZ直交座標系を定義する。被写体と反射鏡1とを結ぶ光軸はY軸と平行である。   FIG. 9 is a side view seen along the X axis of the pixel shifting fine movement mechanism according to the fifth embodiment, and shows a schematic configuration of the X axis direction fine movement mechanism 5 that finely moves the reflecting mirror 1 in the Y axis direction. Yes. Light coming from a subject (not shown) is reflected by the reflecting mirror 1, passes through the optical lens system 6, is focused on the imaging device 7 that is an imaging device, is converted into an electrical signal by the imaging device 7, It is recognized as a subject image through a signal processing unit (not shown). Similar to the fourth embodiment, an XYZ orthogonal coordinate system is defined in which the normal direction of the image sensor 7 is the Z axis, and two axes orthogonal to the Z axis are the X axis and the Y axis. The optical axis connecting the subject and the reflecting mirror 1 is parallel to the Y axis.

本実施の形態5では、反射鏡1及びこれをY軸方向に微動させるY軸方向微動機構5と、光学レンズ系6及びこれをX軸方向に微動させるX軸方向微動機構22とは実施の形態2と同様のものを使用する。本実施の形態が実施の形態2と異なるのは、反射鏡1及びこれを微動させるY軸方向微動機構5と光学レンズ系6及びこれをX軸方向に微動させるX軸方向微動機構22との位置関係のみである。実施の形態2と同一の構成要素には同一の符号を付してそれらについての説明を省略する。   In the fifth embodiment, the reflecting mirror 1 and the Y-axis direction fine movement mechanism 5 that finely moves the reflecting mirror 1 in the Y-axis direction, and the optical lens system 6 and the X-axis direction fine movement mechanism 22 that finely moves this in the X-axis direction are implemented. The thing similar to the form 2 is used. The present embodiment is different from the second embodiment in that the reflecting mirror 1 and the Y-axis direction fine movement mechanism 5 that finely moves the reflecting mirror 1 and the optical lens system 6 and the X-axis direction fine movement mechanism 22 that finely moves this in the X-axis direction are different. Only positional relationship. The same components as those of the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.

X軸方向微動機構22の圧電アクチュエータとY軸方向微動機構5の圧電アクチュエータに印加する矩形波電圧を最適に制御することによって、実施の形態2と同様に、撮像素子7を介して、X軸方向及びY軸方向にそれぞれずれた4つの被写体像が得られる。   By optimally controlling the rectangular wave voltage applied to the piezoelectric actuator of the X-axis direction fine movement mechanism 22 and the piezoelectric actuator of the Y-axis direction fine movement mechanism 5, the X-axis is passed through the image sensor 7 as in the second embodiment. Four subject images shifted in the direction and the Y-axis direction are obtained.

本実施の形態によっても、実施の形態1,2と同様に、単純な駆動機構により、駆動精度が向上し、高信頼性の画素ずらし微動機構を実現できる。   Also in the present embodiment, as in the first and second embodiments, the driving accuracy is improved by a simple driving mechanism, and a highly reliable pixel shifting fine movement mechanism can be realized.

上述の実施の形態1〜5では、反射鏡1、撮像素子7、あるいは光学レンズ系6の微動機構の駆動源として圧電アクチュエータを用いたが、本発明はこれに限定されず、高精度な微小変位駆動が保証されるものであれば、電磁アクチュエータを用いてもよく、あるいは、他種のアクチュエータを用いてもよい。   In the first to fifth embodiments described above, the piezoelectric actuator is used as the drive source of the fine movement mechanism of the reflecting mirror 1, the image pickup device 7, or the optical lens system 6. However, the present invention is not limited to this, and a highly accurate minute As long as displacement driving is guaranteed, an electromagnetic actuator may be used, or another type of actuator may be used.

本発明の利用分野は特に制限はないが、例えば、電子カメラの高精細画像化に必要な画素ずらし微動機構として有用である。また、本発明の画素ずらし微動機構を用いることにより、信頼性の高い高精細画像を得られるので、電子カメラの高性能化以外にも、顕微鏡に搭載される高分解能画像電子撮影装置など科学観察用光学機器にも適用できる。   The field of application of the present invention is not particularly limited. For example, it is useful as a fine pixel shifting mechanism necessary for high-definition imaging of an electronic camera. In addition to the high performance of the electronic camera, scientific observation such as a high resolution image electronic photographing device mounted on a microscope can be obtained by using the pixel shifting fine movement mechanism of the present invention. It can also be applied to industrial optical equipment.

本発明の実施の形態1に係る画素ずらし微動機構の概略構成を示した斜視図である。It is the perspective view which showed schematic structure of the pixel shift fine movement mechanism which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る画素ずらし微動機構のX軸に沿って見た側面図である。It is the side view seen along the X-axis of the pixel shift fine movement mechanism which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る画素ずらし微動機構のY軸に沿って見た側面図である。It is the side view seen along the Y-axis of the pixel shift fine movement mechanism which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る画素ずらし微動機構において、撮像素子をX軸方向に微動させる機構の概略構成を示した斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a mechanism for finely moving an image sensor in the X-axis direction in the pixel shifting fine movement mechanism according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る画素ずらし微動機構のX軸に沿って見た側面図である。It is the side view seen along the X-axis of the pixel shift fine movement mechanism which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る画素ずらし微動機構において、光学レンズ系をX軸方向に微動させる機構の概略構成を示した斜視図である。FIG. 9 is a perspective view showing a schematic configuration of a mechanism for finely moving an optical lens system in an X-axis direction in a pixel shifting fine movement mechanism according to a second embodiment of the present invention. 本発明の実施の形態3に係る画素ずらし微動機構のX軸に沿って見た側面図である。It is the side view seen along the X-axis of the pixel shift fine movement mechanism which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る画素ずらし微動機構のX軸に沿って見た側面図である。It is the side view seen along the X-axis of the pixel shift fine movement mechanism which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る画素ずらし微動機構のX軸に沿って見た側面図である。It is the side view seen along the X-axis of the pixel shift fine movement mechanism which concerns on Embodiment 5 of this invention. 従来の微小変位駆動機構の一例を示した分解斜視図である。It is the disassembled perspective view which showed an example of the conventional minute displacement drive mechanism. 従来の微小変位駆動機構の別の例を示した平面図である。It is the top view which showed another example of the conventional minute displacement drive mechanism.

符号の説明Explanation of symbols

1 反射鏡
2 反射鏡保持台
3 圧電アクチュエータ
4 反射鏡駆動部固定台
5,23 Y軸方向微動機構
6 光学レンズ系
7 撮像素子
8,18 可動ステージ
9,19 可動ステージ駆動固定台
10,20 圧電アクチュエータ
11,21 ガイドピン
12,22 X軸方向微動機構
50 ベース
51 スペーサ
52 垂直方向微小変位板
52a 固定部
52b 可動部
52c 圧電アクチュエーター
53 水平方向微小変位板
53a 固定部
53b 可動部
53c 圧電アクチュエーター
54 ブラケット
55 撮像素子
56 撮像素子基板
60 撮影レンズ系
61 レンズマウント
62 フロントパネル
63a,63b 取付板
110 固定台
111 可動部
112a〜112d 板ばね部
113a〜113d 駆動ばね部
114a〜114d アーム部
115a〜115d ヒンジ部
116a,116d 圧電アクチュエータ
DESCRIPTION OF SYMBOLS 1 Reflective mirror 2 Reflective mirror holding base 3 Piezoelectric actuator 4 Reflective mirror drive part fixed base 5,23 Y-axis direction fine movement mechanism 6 Optical lens system 7 Imaging element 8, 18 Movable stage 9, 19 Movable stage drive fixed base 10, 20 Piezoelectric Actuators 11, 21 Guide pins 12, 22 X-axis fine movement mechanism 50 Base 51 Spacer 52 Vertical minute displacement plate 52a Fixed portion 52b Movable portion 52c Piezo actuator 53 Horizontal minute displacement plate 53a Fixed portion 53b Movable portion 53c Piezo actuator 54 Bracket 55 Image sensor 56 Image sensor substrate 60 Shooting lens system 61 Lens mount 62 Front panel 63a, 63b Mounting plate 110 Fixed base 111 Movable part 112a-112d Leaf spring part 113a-113d Drive spring part 114a-114d Arm part 115a-115d Hinge 116a, 116d piezoelectric actuator

Claims (7)

光学レンズ系と、反射鏡と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過し前記反射鏡で反射されて前記撮像素子上に結像される画素ずらし微動機構であって、
前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、
前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、
前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構と
を更に備えることを特徴とする画素ずらし微動機構。
A pixel shift fine movement mechanism that includes an optical lens system, a reflecting mirror, and an image sensor, and that light from a subject passes through the optical lens system and is reflected by the reflector to form an image on the image sensor. ,
When the optical axis connecting the reflecting mirror and the imaging device is the Z axis,
A Y-axis direction fine movement mechanism that mechanically finely moves the reflecting mirror in the Y-axis direction which is one direction perpendicular to the Z-axis;
A pixel shift fine movement mechanism further comprising: an X-axis direction fine movement mechanism that mechanically finely moves the image sensor in an X-axis direction perpendicular to the Z-axis and the Y-axis.
光学レンズ系と、反射鏡と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過し前記反射鏡で反射されて前記撮像素子上に結像される画素ずらし微動機構であって、
前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、
前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、
前記Z軸及び前記Y軸に垂直なX軸方向に前記光学レンズ系を機械的に微動させるX軸方向微動機構と
を更に備えることを特徴とする画素ずらし微動機構。
A pixel shift fine movement mechanism that includes an optical lens system, a reflecting mirror, and an image sensor, and that light from a subject passes through the optical lens system and is reflected by the reflector to form an image on the image sensor. ,
When the optical axis connecting the reflecting mirror and the imaging device is the Z axis,
A Y-axis direction fine movement mechanism that mechanically finely moves the reflecting mirror in the Y-axis direction which is one direction perpendicular to the Z-axis;
A pixel shift fine movement mechanism further comprising: an X-axis direction fine movement mechanism that mechanically finely moves the optical lens system in an X-axis direction perpendicular to the Z-axis and the Y-axis.
光学レンズ系と、撮像素子とを備え、被写体からの光が前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、
前記光学レンズ系と前記撮像素子とを結ぶ光軸をZ軸としたとき、
前記Z軸に垂直な一方向であるY軸方向に前記光学レンズ系を機械的に微動させるY軸方向微動機構と、
前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構と
を更に備えることを特徴とする画素ずらし微動機構。
A pixel shift fine movement mechanism comprising an optical lens system and an image sensor, wherein light from a subject passes through the optical lens system and is imaged on the image sensor;
When the optical axis connecting the optical lens system and the image sensor is the Z axis,
A Y-axis direction fine movement mechanism that mechanically finely moves the optical lens system in the Y-axis direction which is one direction perpendicular to the Z-axis;
An X-axis direction fine movement mechanism that mechanically finely moves the image sensor in the X-axis direction perpendicular to the Z-axis and the Y-axis.
反射鏡と、光学レンズ系と、撮像素子とを備え、被写体からの光が前記反射鏡で反射され前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、
前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、
前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、
前記Z軸及び前記Y軸に垂直なX軸方向に前記撮像素子を機械的に微動させるX軸方向微動機構と
を更に備えることを特徴とする画素ずらし微動機構。
A pixel shift fine movement mechanism that includes a reflecting mirror, an optical lens system, and an image sensor, and that reflects light from a subject, passes through the optical lens system, and forms an image on the image sensor. ,
When the optical axis connecting the reflecting mirror and the imaging device is the Z axis,
A Y-axis direction fine movement mechanism that mechanically finely moves the reflecting mirror in the Y-axis direction which is one direction perpendicular to the Z-axis;
A pixel shift fine movement mechanism further comprising: an X-axis direction fine movement mechanism that mechanically finely moves the image sensor in an X-axis direction perpendicular to the Z-axis and the Y-axis.
反射鏡と、光学レンズ系と、撮像素子とを備え、被写体からの光が前記反射鏡で反射され前記光学レンズ系を通過して前記撮像素子上に結像される画素ずらし微動機構であって、
前記反射鏡と前記撮像素子とを結ぶ光軸をZ軸としたとき、
前記Z軸に垂直な一方向であるY軸方向に前記反射鏡を機械的に微動させるY軸方向微動機構と、
前記Z軸及び前記Y軸に垂直なX軸方向に前記光学レンズ系を機械的に微動させるX軸方向微動機構と
を更に備えることを特徴とする画素ずらし微動機構。
A pixel shift fine movement mechanism that includes a reflecting mirror, an optical lens system, and an image sensor, and that reflects light from a subject, passes through the optical lens system, and forms an image on the image sensor. ,
When the optical axis connecting the reflecting mirror and the imaging device is the Z axis,
A Y-axis direction fine movement mechanism that mechanically finely moves the reflecting mirror in the Y-axis direction which is one direction perpendicular to the Z-axis;
A pixel shift fine movement mechanism further comprising: an X-axis direction fine movement mechanism that mechanically finely moves the optical lens system in an X-axis direction perpendicular to the Z-axis and the Y-axis.
前記Y軸方向微動機構及び前記X軸方向微動機構が、圧電アクチュエータを備える請求項1〜5のいずれかに記載の画素ずらし微動機構。   The pixel shifting fine movement mechanism according to claim 1, wherein the Y-axis direction fine movement mechanism and the X-axis direction fine movement mechanism include piezoelectric actuators. 前記Y軸方向微動機構及び前記X軸方向微動機構が、電磁アクチュエータを備える請求項1〜5のいずれかに記載の画素ずらし微動機構。
The pixel shifting fine movement mechanism according to claim 1, wherein each of the Y-axis direction fine movement mechanism and the X-axis direction fine movement mechanism includes an electromagnetic actuator.
JP2004326841A 2004-11-10 2004-11-10 Pixel shifting fine movement mechanism Withdrawn JP2006140626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326841A JP2006140626A (en) 2004-11-10 2004-11-10 Pixel shifting fine movement mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326841A JP2006140626A (en) 2004-11-10 2004-11-10 Pixel shifting fine movement mechanism

Publications (1)

Publication Number Publication Date
JP2006140626A true JP2006140626A (en) 2006-06-01

Family

ID=36621135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326841A Withdrawn JP2006140626A (en) 2004-11-10 2004-11-10 Pixel shifting fine movement mechanism

Country Status (1)

Country Link
JP (1) JP2006140626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086387A1 (en) * 2013-12-09 2015-06-18 Carl Zeiss Microscopy Gmbh Image capturing device with a moving device for a digital microscope, and digital microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086387A1 (en) * 2013-12-09 2015-06-18 Carl Zeiss Microscopy Gmbh Image capturing device with a moving device for a digital microscope, and digital microscope
CN105814474A (en) * 2013-12-09 2016-07-27 卡尔蔡司显微镜有限公司 Image capturing device with a moving device for a digital microscope, and digital microscope
JP2016540435A (en) * 2013-12-09 2016-12-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Image pickup apparatus equipped with moving device for digital microscope and digital microscope

Similar Documents

Publication Publication Date Title
US7812507B2 (en) Piezoelectric motor and camera device
JP6289451B2 (en) Shape memory alloy actuator
US8019210B2 (en) Image stabilizing unit, lens unit, and imaging apparatus, having two drive units at an inclined angle to one another for driving an imaging device a direction perpendicular to the optical axis
US7840127B2 (en) Imaging device with T-shaped shake compensation actuator arrangement
US20080198249A1 (en) Image sensor device
WO2021108972A1 (en) Camera module and electronic device
WO2013118601A1 (en) Drive device and lens unit
JP2006350157A (en) Image blur correcting device, lens barrel having the image blur correcting device, and optical equipment
US20110242340A1 (en) Image pickup element unit, autofocus unit, and image pickup apparatus
JP3340773B2 (en) Device for mechanically oscillating an array of charge-coupled devices
KR20080081008A (en) Method and system for image stabilization
JP2006121769A (en) Piezoelectric actuator, device for moving imaging element and imaging apparatus employing it
US8000590B2 (en) Driving apparatus, image capturing unit, and image capturing apparatus
JP4642294B2 (en) Fine movement mechanism
JP4952289B2 (en) DRIVE DEVICE, IMAGING UNIT, AND IMAGING DEVICE
WO2009128463A1 (en) Lens actuator
TWM515654U (en) Camera module
JP2006140626A (en) Pixel shifting fine movement mechanism
JP2010072625A (en) Driving mechanism and optical equipment
JP2005173372A (en) Hand shake correcting device of optical device
CN113950642B (en) Camera module and use method thereof
CN217932225U (en) Lens module, camera module and electronic equipment
JP5677114B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
TWI600939B (en) Camera module
GB2614536A (en) Actuator arrangement

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205