JP2006140424A - Vapor growth apparatus - Google Patents

Vapor growth apparatus Download PDF

Info

Publication number
JP2006140424A
JP2006140424A JP2004331129A JP2004331129A JP2006140424A JP 2006140424 A JP2006140424 A JP 2006140424A JP 2004331129 A JP2004331129 A JP 2004331129A JP 2004331129 A JP2004331129 A JP 2004331129A JP 2006140424 A JP2006140424 A JP 2006140424A
Authority
JP
Japan
Prior art keywords
supply unit
gas supply
substrate
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004331129A
Other languages
Japanese (ja)
Other versions
JP4515227B2 (en
Inventor
Atsunori Yamauchi
敦典 山内
Toshiharu Matsueda
敏晴 松枝
Kazuto Mita
一登 三田
Haruo Sunakawa
晴夫 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2004331129A priority Critical patent/JP4515227B2/en
Publication of JP2006140424A publication Critical patent/JP2006140424A/en
Application granted granted Critical
Publication of JP4515227B2 publication Critical patent/JP4515227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the utility efficiency of a raw material to grow a high-quality compound semiconductor. <P>SOLUTION: The vapor growth apparatus comprises a rotatable substrate holder 2 for holding a substrate SB in a growth chamber 1, a means 3 for heating the substrate holder 2, a gas feeder 4 for feeding a reaction gas on the substrate SB, and an exhaust port 9 for exhausting the waste gas outside the growth chamber 1. The side wall 10 outer diameter of the growth chamber 1 is made approximately equal to that of the substrate holder 2 to form a reaction space RS in the growth chamber 1. A gas feeder 4 is composed of a first and second raw materials feeders 5, 6 remotely from each other, and a dopant gas feeder 8. An exhaust inlet pipe 11 having a square opening face 11a perpendicular to the normal on the turn locus of the substrate SB the lower side 11b parallel and proximate to the substrate holder 2 is connected to the exhaust port 9. The first and second raw materials feeders 5, 6, the dopant gas feeder 8, and the opening face 11a are so disposed to move the substrate SB to them one after another with rotation of the substrate holder 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化合物半導体を成長させる有機金属気相成長装置(MOCVD装置)に関するものである。   The present invention relates to a metal organic chemical vapor deposition apparatus (MOCVD apparatus) for growing a compound semiconductor.

従来の気相成長装置としては、例えば図7に示すMOCVD装置がある(特許文献1参照)。このMOCVD装置100は、成長チャンバー101の上部に第一ガス供給部102、第二ガス供給部103、キャリアガス供給部104、およびドーパントガス供給部105からなるガス供給部106を備えており、成長チャンバー101内に基板SBを取付ける基板保持台107が回転自在に設けられている。   As a conventional vapor phase growth apparatus, for example, there is an MOCVD apparatus shown in FIG. 7 (see Patent Document 1). The MOCVD apparatus 100 includes a gas supply unit 106 including a first gas supply unit 102, a second gas supply unit 103, a carrier gas supply unit 104, and a dopant gas supply unit 105 on a growth chamber 101. A substrate holder 107 for mounting the substrate SB is rotatably provided in the chamber 101.

基板保持台107には加熱手段108が設けられており、ガス供給部106と基板保持台107との間にはガス冷却部109が介設されている。成長チャンバー101の側壁と基板保持台107との間には、基板保持台107上に供給された各種ガスを排出口110へと導く排ガス通過空間111が設けられている。
基板保持台107とガス冷却部109の間隔は大きく、両者間では比較的緩やかな温度勾配が形成されている。この温度勾配と、ガス供給部106から供給される各種ガスのダウンフローと、基板保持台107の高速回転による遠心力によって、成長チャンバー101内には、ガス供給部106から基板保持台107、排ガス通過空間111を経て排出口110へ至るガスの流れを形成し、基板SB上で気相成長を行う。
特表2001−506803号公報
The substrate holding table 107 is provided with a heating means 108, and a gas cooling unit 109 is interposed between the gas supply unit 106 and the substrate holding table 107. Between the side wall of the growth chamber 101 and the substrate holder 107, an exhaust gas passage space 111 is provided for guiding various gases supplied on the substrate holder 107 to the discharge port 110.
The distance between the substrate holder 107 and the gas cooling unit 109 is large, and a relatively gentle temperature gradient is formed between them. Due to the temperature gradient, the downflow of various gases supplied from the gas supply unit 106, and the centrifugal force generated by the high-speed rotation of the substrate holding table 107, the substrate holding table 107 and the exhaust gas are formed in the growth chamber 101. A gas flow reaching the discharge port 110 through the passage space 111 is formed, and vapor phase growth is performed on the substrate SB.
JP 2001-506803 A

しかしながら、特許文献1に記載の気相成長装置は、基板上は常に各種ガスが存在しており、その中には基板に到達する前に第一原料ガスと第二原料ガスとが混合して生成した附加化合物(adduct)も含まれており、これらのガスが基板保持台に随伴して回転し基板上に滞留する傾向がある。このように、基板付近に気相成長に寄与しない附加化合物が滞留すると原料ガスの濃度が低下するので原料の利用効率が悪くなる。ここで、附加化合物とは、2種類の有機化合物が弱く結合したもの、あるいは不飽和結合の原子に他の原子団が結合したもの(例えば、トリメチルインジウム(TMI)のインジウム(In)にホスフィン(PH3 )が結合した(PH3 3 In・PH3 )を指す。 However, in the vapor phase growth apparatus described in Patent Document 1, various gases are always present on the substrate, in which the first source gas and the second source gas are mixed before reaching the substrate. The added compounds produced are also included, and these gases tend to rotate along with the substrate holder and stay on the substrate. As described above, when an additive compound that does not contribute to vapor phase growth stays in the vicinity of the substrate, the concentration of the source gas is lowered, and the utilization efficiency of the source material is deteriorated. Here, the additive compound is a compound in which two kinds of organic compounds are weakly bonded, or a compound in which another atomic group is bonded to an unsaturated bond atom (for example, phosphine (In) of trimethylindium (TMI)). (PH 3 ) 3 In · PH 3 ) in which PH 3 ) is bonded.

附加化合物は基板の気相成長に寄与せず異物として基板に混入し品質の低下を招く場合がある。
また、基板保持台とガス供給部の間隔が大きいため第一原料ガスと第二原料ガスとが基板に到達する前に互いに混合する割合が相対的に大きく、これらのガスは基板上での気相成長には寄与しないので、原料の利用効率は低い。
The additive compound does not contribute to the vapor phase growth of the substrate and may be mixed into the substrate as a foreign substance, leading to a decrease in quality.
Further, since the distance between the substrate holder and the gas supply unit is large, the ratio of the first raw material gas and the second raw material gas mixed with each other before reaching the substrate is relatively large. Since it does not contribute to phase growth, the utilization efficiency of raw materials is low.

さらには、排ガス通過空間が基板保持台の周囲に配置されているので、相当量の原料ガスが基板上に滞留した原料ガスの上面を掠めるように流れて排ガス通過空間へと導かれ、そのまま排気されるため原料の利用効率が低いといった問題があった。
本発明は、気相成長装置における上記問題を解決するものであって、原料の利用効率が高く、高品質の化合物半導体を成長させることのできる気相成長装置を提供することを目的とする。
Further, since the exhaust gas passage space is arranged around the substrate holding table, a considerable amount of the source gas flows so as to give up the upper surface of the source gas staying on the substrate and is led to the exhaust gas passage space, and is exhausted as it is. Therefore, there is a problem that the utilization efficiency of raw materials is low.
An object of the present invention is to solve the above problems in a vapor phase growth apparatus, and to provide a vapor phase growth apparatus that can grow a high-quality compound semiconductor with high utilization efficiency of raw materials.

本発明では、上記課題を解決するため、成長室内に、基板を保持する回転自在な基板保持台と、基板保持台を加熱する加熱手段と、基板保持台と対向する面に設けられ基板に向けて反応ガスを供給するガス供給部と、成長室内の排ガスを成長室外へ排出する排気口とを備えた気相成長装置において、成長室の側壁の内径を基板保持台の外径と略同じとすることで成長室内に反応空間を形成し、ガス供給部を互いに離隔して配置された少なくとも第一原料ガス供給部及び第二原料ガス供給部で構成し、基板の回転軌跡の法線方向と直交し、基板保持台側の辺が基板保持台と平行で且つ近接する方形の開口面を有する排気導入管を排気口に接続し、第一原料ガス供給部、第二原料ガス供給部、及び排気導入管の開口面を、基板保持台の回転により基板が第一原料ガス供給部、第二原料ガス供給部、排気導入管の開口面と順次遷移するように配設している。   In the present invention, in order to solve the above-mentioned problem, a rotatable substrate holding table for holding a substrate, a heating means for heating the substrate holding table, and a substrate provided on a surface facing the substrate holding table are directed to the substrate. In the vapor phase growth apparatus having a gas supply unit for supplying the reaction gas and an exhaust port for discharging the exhaust gas in the growth chamber to the outside of the growth chamber, the inner diameter of the side wall of the growth chamber is substantially the same as the outer diameter of the substrate holder. A reaction space is formed in the growth chamber, and the gas supply unit is composed of at least a first source gas supply unit and a second source gas supply unit that are spaced apart from each other, and the normal direction of the rotation trajectory of the substrate and An exhaust introduction pipe having a rectangular opening surface that is orthogonal and has a side that is parallel to and close to the substrate holding table is connected to the exhaust port, and the first source gas supply unit, the second source gas supply unit, and The opening surface of the exhaust pipe is rotated by the rotation of the substrate holder. Plates first material gas supply unit, the second raw material gas supply unit, and arranged to sequentially transition the opening surface of the exhaust inlet pipe.

この気相成長装置によれば、反応空間に各種原料ガスが安定して分布した状態の中を基板が通過していくので、付加反応物の生成は極めて少なく、原料の利用効率も高い。また、基板に到達した各種原料ガスは1サイクルごとに排出され、基板上は附加化合物も常に除去されて清浄な状態が保たれるので、原料の利用効率が高く、品質の劣化が抑えられて高い品質の化合物半導体を成長させることができる。   According to this vapor phase growth apparatus, since the substrate passes through a state in which various source gases are stably distributed in the reaction space, the production of additional reactants is extremely small and the utilization efficiency of the source is high. In addition, various source gases that reach the substrate are exhausted every cycle, and additional compounds are always removed on the substrate to maintain a clean state, so that the use efficiency of the source is high and quality deterioration is suppressed. High quality compound semiconductors can be grown.

ガス供給部を、全域に亙ってキャリアガスを供給するキャリアガス供給部と、キャリアガス供給部に互いに離隔して挿入された少なくとも第一原料ガス供給部及び第二原料ガス供給部で構成すると、原料ガス同志の分離状態を安定して保持できるので、付加反応物の生成をさらに低減することができる。
反応空間の高さを、反応空間のガス分布状態が、ガス供給部側に形成されるキャリアガスが主体的に存在するフレッシュキャリア層、基板保持台側に形成される実反応層、及びフレッシュキャリア層と実反応層を共存させるために最低限必要となるバッファ層の三層構造となるように設定すると、基板上の原料ガス濃度が最適化され、原料の利用効率が向上する。
The gas supply unit includes a carrier gas supply unit that supplies a carrier gas over the entire region, and at least a first source gas supply unit and a second source gas supply unit that are inserted into the carrier gas supply unit at a distance from each other. Since the separation state of the raw material gases can be stably maintained, the production of the addition reaction product can be further reduced.
The height of the reaction space, the gas distribution state of the reaction space is a fresh carrier layer in which the carrier gas formed mainly on the gas supply unit side is present, the actual reaction layer formed on the substrate holder side, and the fresh carrier If the buffer layer is set to have a minimum three-layer structure necessary for the coexistence of the actual reaction layer and the actual reaction layer, the concentration of the source gas on the substrate is optimized, and the utilization efficiency of the source is improved.

排気導入管の開口面の基板保持台側の辺が、実反応層とバッファ層の界面に位置していると、基板上に分布する全てのガスを排出するのではなく、気相成長に有効な反応ガスを基板に随伴させることができるので、原料の利用効率が向上する。
排気導入管と基板保持台との間に形成された空間に、基板保持台に向けてキャリアガスあるいは原料ガス、又はキャリアガスと原料ガスの両方を供給する第二ガス供給部を設けると、キャリアガスを供給することで排気導入管への原料の付着が防止でき、原料ガスを供給することで一旦基板上で成長した元素が離脱するのを防止することができる。
If the side of the opening side of the exhaust pipe that faces the substrate holder is located at the interface between the actual reaction layer and the buffer layer, it is effective for vapor phase growth rather than exhausting all the gas distributed on the substrate. Since a reactive gas can accompany the substrate, the utilization efficiency of the raw material is improved.
When a second gas supply unit that supplies carrier gas or source gas or both carrier gas and source gas toward the substrate holding table is provided in a space formed between the exhaust introduction pipe and the substrate holding table, the carrier By supplying the gas, adhesion of the raw material to the exhaust introduction pipe can be prevented, and by supplying the raw material gas, the element once grown on the substrate can be prevented from being detached.

ドーパントガス供給部を第一原料ガス供給部及び第二原料ガス供給部と離隔してガス供給部あるいは第二ガス供給部に配設すると、例えば、ドーパントガス供給箇所をIII族ガスとV族ガスの間に設定したり、V族ガスの後段に設定するといったようにドーパントガス供給順序を選択でき、化合物半導体の物性を変化させることが可能となる。
反応空間を取り巻く各構成要素のうち基板保持台を除くすべての構成要素をそれぞれ冷却する冷却手段を設けると、構成要素の部材の保護と最適な温度勾配を安定して保持することが可能となる。
When the dopant gas supply unit is separated from the first source gas supply unit and the second source gas supply unit and disposed in the gas supply unit or the second gas supply unit, for example, the dopant gas supply location is set to the group III gas and the group V gas. It is possible to select the dopant gas supply order such as setting between the two or a group V gas, and to change the physical properties of the compound semiconductor.
Providing cooling means for cooling all of the components surrounding the reaction space except for the substrate holding table, it is possible to protect the components of the components and stably maintain the optimum temperature gradient. .

基板保持台が基板を円筒外周に保持する基板保持筒であって、成長室側壁が基板保持筒の両端面に近接して配設され、反応空間が基板保持筒の外側に円環状に形成されていると、多数の基板を一度に処理することが可能である。また、基板保持台が円盤状の場合では中心付近と外周側とは周速の違いにより化合物半導体の品質に多少差が生じる可能性があるが、円筒状であれば基板の取付箇所にかかわらず化合物半導体の品質を均一にすることができる。   The substrate holding table is a substrate holding cylinder for holding the substrate on the outer periphery of the cylinder, the growth chamber side walls are disposed close to both end faces of the substrate holding cylinder, and the reaction space is formed in an annular shape outside the substrate holding cylinder. A large number of substrates can be processed at once. In addition, when the substrate holder is disk-shaped, there may be some difference in the quality of the compound semiconductor due to the difference in peripheral speed between the vicinity of the center and the outer peripheral side. The quality of the compound semiconductor can be made uniform.

本発明によれば、原料の利用効率が高く、高品質の化合物半導体を成長させることのできる気相成長装置を実現できる。   According to the present invention, it is possible to realize a vapor phase growth apparatus that can grow a high-quality compound semiconductor with high utilization efficiency of raw materials.

図1は本発明の実施の一形態を示す気相成長装置の構成図、図2はガス供給部と排気導入管の平面上の配置の一例を示す説明図、図3は気相成長装置の成長室を基板保持台の回転方向に展開した反応空間の説明図、図4は反応空間のガス分布状態の説明図である。
この気相成長装置は、縦長で円筒状の成長室1内に、複数枚の基板SBを載置する回転自在な基板保持台2と、基板保持台2を加熱する加熱手段3と、基板保持台2と対向する面に設けられ基板SBに向けて反応ガスを供給するガス供給部4と、成長室1内の排ガスを成長室1外へ排出する排気口9とを備えている。
FIG. 1 is a configuration diagram of a vapor phase growth apparatus showing an embodiment of the present invention, FIG. 2 is an explanatory view showing an example of a plane arrangement of a gas supply unit and an exhaust introduction pipe, and FIG. FIG. 4 is an explanatory diagram of a gas distribution state in the reaction space, and FIG. 4 is an explanatory diagram of the reaction space in which the growth chamber is developed in the rotation direction of the substrate holder.
The vapor phase growth apparatus includes a rotatable substrate holding table 2 on which a plurality of substrates SB are placed, a heating unit 3 for heating the substrate holding table 2, and a substrate holding device in a vertically long cylindrical growth chamber 1. A gas supply unit 4 that is provided on a surface facing the table 2 and supplies a reactive gas toward the substrate SB, and an exhaust port 9 that discharges the exhaust gas in the growth chamber 1 to the outside of the growth chamber 1 are provided.

成長室1の側壁10は、その内径を円盤状の基板保持台2の外径と略同じ径に設定されており、基板保持台2とガス供給部4と側壁10とによって、成長室1内に閉ざされた反応空間RSが形成されている。
ガス供給部4は、全域に亙ってキャリアガスを供給するキャリアガス供給部7と、キャリアガス供給部7に互いに離隔して挿入された第一原料ガス供給部5、第二原料ガス供給部6及びドーパントガス供給部8で構成されている。
The side wall 10 of the growth chamber 1 is set to have an inner diameter that is substantially the same as the outer diameter of the disk-shaped substrate holding table 2, and the growth chamber 1 includes the substrate holding table 2, the gas supply unit 4, and the side wall 10. The reaction space RS closed by the is formed.
The gas supply unit 4 includes a carrier gas supply unit 7 for supplying a carrier gas over the entire area, a first source gas supply unit 5 and a second source gas supply unit inserted in the carrier gas supply unit 7 at a distance from each other. 6 and a dopant gas supply unit 8.

キャリアガス供給部7は、多数のノズル7bを基板保持台2に対して同心円状且つ放射状に隈なく配置して各ノズル7bを連通し、1箇所もしくは数箇所に供給管7a を接続している。これによりキャリアガスは基板SBにシャワーのように供給される。
第一原料ガス供給部5は、供給管5aとノズル5bの対が基板保持台2の半径方向に5対並んで設けられており、各ノズル5bからの原料ガスの供給量は図示しないマスフローコントローラによって調整している。各ノズル5bはキャリアガス供給部7のノズル7bとの干渉を避けるように配置されている。
The carrier gas supply unit 7 has a large number of nozzles 7b arranged concentrically and radially with respect to the substrate holder 2 and communicates with the nozzles 7b, and is connected to a supply pipe 7a at one place or several places. . As a result, the carrier gas is supplied to the substrate SB like a shower.
The first source gas supply unit 5 is provided with five pairs of supply pipes 5a and nozzles 5b arranged in the radial direction of the substrate holder 2, and the amount of source gas supplied from each nozzle 5b is a mass flow controller (not shown). It is adjusted by. Each nozzle 5 b is arranged so as to avoid interference with the nozzle 7 b of the carrier gas supply unit 7.

第二原料ガス供給部6、ドーパントガス供給部8も第一原料ガス供給部5と同様に構成されている。
通常、第一原料ガス供給部5からはIII族ガスが、第二原料ガス供給部6からはV族ガスがそれぞれ供給される。
排気口9には、排気導入管11が接続されている。排気導入管11は反応空間RSに開口する方形の開口面11aを有しており、この開口面11aは基板SBの回転軌跡の法線方向と直交し、円盤状の基板保持台2の半径方向と一致している。開口面11aの下辺11bは基板保持台2と平行で且つ基板保持台2に近接しており、後述する実反応層RLに相当する高さに設定されている。
The second source gas supply unit 6 and the dopant gas supply unit 8 are configured in the same manner as the first source gas supply unit 5.
Usually, group III gas is supplied from the first source gas supply unit 5, and group V gas is supplied from the second source gas supply unit 6.
An exhaust introduction pipe 11 is connected to the exhaust port 9. The exhaust introduction pipe 11 has a rectangular opening surface 11a that opens into the reaction space RS. This opening surface 11a is orthogonal to the normal direction of the rotation locus of the substrate SB, and is in the radial direction of the disk-shaped substrate holding table 2. Is consistent with The lower side 11b of the opening surface 11a is parallel to the substrate holder 2 and close to the substrate holder 2, and is set to a height corresponding to an actual reaction layer RL described later.

排気導入管11の底板11c、天板11dは、上り傾斜で開口面11aから排気口9へ連なっている。
排気導入管11と第一原料ガス供給部5の境界には、反応空間RSの半径方向の全面を遮断する隔壁14が設けられており、この隔壁14が排気導入管11の側板も兼ねている。排気口9の後段には、公知の排ガス除害装置(図示略)が接続されている。
The bottom plate 11c and the top plate 11d of the exhaust introduction pipe 11 are connected to the exhaust port 9 from the opening surface 11a with upward inclination.
A partition wall 14 is provided at the boundary between the exhaust introduction pipe 11 and the first source gas supply unit 5 to block the entire radial direction of the reaction space RS. The partition wall 14 also serves as a side plate of the exhaust introduction pipe 11. . A known exhaust gas abatement device (not shown) is connected to the rear stage of the exhaust port 9.

第一原料ガス供給部5、第二原料ガス供給部6、ドーパントガス供給部8、及び排気導入管11の開口面11aは、基板保持台2の回転により基板SBが第一原料ガス供給部5、第二原料ガス供給部6、ドーパントガス供給部8、排気導入管11の開口面11aと順次遷移するように配設されている。
なお、この各種反応ガス供給部の配置は、処理対象物によって第三原料ガス供給部を挿入したり、それぞれのガス供給部に供給する反応ガスの順序を入れ替えたり、同じ反応ガスを二度供給するというように設定を変更しても差し支えない。
The first source gas supply unit 5, the second source gas supply unit 6, the dopant gas supply unit 8, and the opening surface 11 a of the exhaust introduction pipe 11 are arranged so that the substrate SB is rotated by the rotation of the substrate holder 2. The second raw material gas supply unit 6, the dopant gas supply unit 8, and the opening surface 11 a of the exhaust introduction pipe 11 are arranged so as to sequentially transition.
The various reaction gas supply units are arranged in such a manner that the third raw material gas supply unit is inserted depending on the object to be processed, the order of the reaction gas supplied to each gas supply unit is changed, or the same reaction gas is supplied twice. It is safe to change the setting.

排気導入管11の底板11cの下方には、基板保持台2に向けてキャリアガスあるいは原料ガス、又はキャリアガスと原料ガスの両方を供給する第二ガス供給部12が設けられている。第二ガス供給部12のノズル12b等の構成は、ガス供給部4のものと基本的に共通している。
加熱手段3は、円盤状の基板保持台2の中心付近と外周側とを別個に加熱して温度を均一化するため、中心側ヒータ3aと外周側ヒータ3bとで構成されている。
Below the bottom plate 11 c of the exhaust introduction pipe 11, a second gas supply unit 12 that supplies carrier gas or source gas, or both carrier gas and source gas toward the substrate holder 2 is provided. The configuration of the nozzle 12b and the like of the second gas supply unit 12 is basically the same as that of the gas supply unit 4.
The heating means 3 includes a central heater 3a and an outer heater 3b in order to uniformly heat the vicinity of the center and the outer peripheral side of the disc-shaped substrate holding table 2 to make the temperature uniform.

反応空間RSを取り巻く各構成要素のうち基板保持台2を除くすべての構成要素には、冷却手段13が設けられている。ガス供給部4の各ノズルの上方には第一冷却管13aが設けられ、第二ガス供給部12と排気導入管11との間には第二冷却管13bが設けられ、この他に側壁10の外周と排気導入管11の天板11dの上面には図示しない冷却管が設けられており、冷媒が供給されている。この冷却手段13によって、構成要素の部材が保護され、最適な温度勾配を安定して保持することが可能となる。   All the constituent elements surrounding the reaction space RS except the substrate holder 2 are provided with a cooling means 13. A first cooling pipe 13 a is provided above each nozzle of the gas supply unit 4, a second cooling pipe 13 b is provided between the second gas supply unit 12 and the exhaust introduction pipe 11, and in addition to this, the side wall 10. A cooling pipe (not shown) is provided on the outer periphery of the exhaust pipe 11 and the top surface of the top plate 11d of the exhaust introduction pipe 11 and is supplied with a refrigerant. The cooling means 13 protects the constituent members and makes it possible to stably maintain an optimum temperature gradient.

この気相成長装置において、基板保持台2が回転すると載置されている基板SBは、図3に示す隔壁14に相当するA点から第一原料ガス供給部5と第二原料ガス供給部6の中間となるB点、第二原料ガス供給部6とドーパントガス供給部8の中間となるC点、排気導入管11の開口面11aに相当するD点へと遷移する。
反応空間RSには各種原料ガスが安定して分布しており、この状態の中を基板SBが通過していくので、附加化合物の生成は極めて少なく、原料の利用効率も高い。また、基板に到達した各種原料ガスは1サイクルごとに排出され、基板2上の附加化合物も常に除去されて清浄な状態が保たれるので、原料の利用効率が高く、品質の劣化が抑えられて高品質の化合物半導体を成長させることができる。
In this vapor phase growth apparatus, when the substrate holder 2 rotates, the substrate SB placed on the first source gas supply unit 5 and the second source gas supply unit 6 from the point A corresponding to the partition wall 14 shown in FIG. Transition to point B, which is in the middle, point C, which is between the second source gas supply unit 6 and dopant gas supply unit 8, and point D corresponding to the opening surface 11a of the exhaust introduction pipe 11.
Various source gases are stably distributed in the reaction space RS, and the substrate SB passes through this state. Therefore, the production of the additive compound is extremely small, and the utilization efficiency of the source is high. In addition, the various source gases that have reached the substrate are discharged every cycle, and the additional compounds on the substrate 2 are always removed to maintain a clean state, so that the use efficiency of the source material is high and the deterioration of the quality is suppressed. High quality compound semiconductors.

ガス供給部4は、全域に亙ってキャリアガスを供給するキャリアガス供給部7と、キャリアガス供給部7に互いに離隔して挿入された第一原料ガス供給部5、第二原料ガス供給部6、及びドーパントガス供給部で構成されており、原料ガス同士の分離状態を安定して保持できるので、附加化合物の生成をさらに低減することができる。
反応空間RSが適正な高さの場合の反応空間RSの高さ方向のガス分布状態を見ると、図4(b)に示すようにガス供給部4側に原料濃度が低くキャリアガスが主体的に存在するフレッシュキャリア層FL、基板保持台2側に原料濃度の高い実反応層RL、その中間にフレッシュキャリア層FLと実反応層RLとを共存させるために最低限必要なバッファ層BLが形成されている。
The gas supply unit 4 includes a carrier gas supply unit 7 for supplying a carrier gas over the entire area, a first source gas supply unit 5 and a second source gas supply unit inserted in the carrier gas supply unit 7 at a distance from each other. 6 and the dopant gas supply unit, and the separation state between the source gases can be stably maintained, so that the production of the additive compound can be further reduced.
Looking at the gas distribution state in the height direction of the reaction space RS when the reaction space RS is at an appropriate height, as shown in FIG. 4B, the raw material concentration is low and the carrier gas is mainly on the gas supply unit 4 side. A fresh carrier layer FL present in the substrate, an actual reaction layer RL having a high raw material concentration on the substrate holder 2 side, and a buffer layer BL that is minimum necessary for coexisting the fresh carrier layer FL and the actual reaction layer RL in the middle Has been.

このガス分布状態におけるフレッシュキャリア層FLと実反応層RLは、キャリアガスがガス供給部4の全面に亙って供給されていること、キャリアガスの流量が原料ガスの流量よりも少ないこと、原料ガスが基板SBへと到達するだけの十分な流量を有することを条件として反応空間RS内で形成される。
この状態では、基板2上の原料ガス濃度が最適化されているので、原料の利用効率が高く、高品質の化合物半導体を成長させることができる。
In the fresh carrier layer FL and the actual reaction layer RL in this gas distribution state, the carrier gas is supplied over the entire surface of the gas supply unit 4, the flow rate of the carrier gas is less than the flow rate of the source gas, It is formed in the reaction space RS on condition that the gas has a flow rate sufficient to reach the substrate SB.
In this state, since the source gas concentration on the substrate 2 is optimized, the utilization efficiency of the source material is high, and a high-quality compound semiconductor can be grown.

排気導入管11は開口面11aの下辺11bが、実反応層RLとバッファ層BLの界面に位置しており、基板SB上に分布する全てのガスを排出するのではなく、気相成長に有効な反応ガスを基板SBに随伴させることができるので、原料の利用効率が向上する。
なお、反応空間RSの高さの設定が図4(a)に示すように高い場合には、各層の間隔が広がり基板SB付近の原料ガスの濃度が低くなり、基板に到達せずにそのまま排出される原料ガスが多くなり原料の利用効率が低下する。
The lower side 11b of the opening 11a of the exhaust introduction pipe 11 is located at the interface between the actual reaction layer RL and the buffer layer BL, and is effective for vapor phase growth rather than exhausting all the gas distributed on the substrate SB. Since a reactive gas can accompany the substrate SB, the utilization efficiency of the raw material is improved.
In addition, when the setting of the height of the reaction space RS is high as shown in FIG. 4A, the interval between the layers is widened and the concentration of the source gas in the vicinity of the substrate SB is reduced, and the material gas is discharged as it is without reaching the substrate. As a result, the raw material gas is increased and the utilization efficiency of the raw material is lowered.

反応空間RSの高さの設定を低くしていくとやがて反応空間RSは図4(c)に示すように実反応層RLだけで構成されるようになり、反応空間RS(=実反応層RL)内で原料ガスが攪拌されてしまうため付加反応物が生成してしまう。また、原料ガスの濃度分布も高さ方向で均一化されるので結果として適正なバッファ層BLが存在する場合と比較すると基板SB付近のガス濃度は低下する。   As the setting of the height of the reaction space RS is lowered, the reaction space RS will eventually be composed of only the actual reaction layer RL as shown in FIG. 4C, and the reaction space RS (= actual reaction layer RL). ), The source gas is agitated, and an addition reaction product is generated. Further, since the concentration distribution of the source gas is also made uniform in the height direction, as a result, the gas concentration in the vicinity of the substrate SB is reduced as compared with the case where an appropriate buffer layer BL is present.

排気導入管11と基板保持台2との間には、基板保持台2に向けてキャリアガスあるいは原料ガス、又はキャリアガスと原料ガスの両方を供給する第二ガス供給部12を設けているので、キャリアガスを供給することにより排気導入管11への原料の付着が防止でき、原料ガスを供給することにより一旦基板2上で成長した元素が離脱するのを防止することができる。   Since the second gas supply unit 12 for supplying the carrier gas or the raw material gas or both the carrier gas and the raw material gas to the substrate holding table 2 is provided between the exhaust introduction pipe 11 and the substrate holding table 2. By supplying the carrier gas, adhesion of the raw material to the exhaust introduction pipe 11 can be prevented, and by supplying the raw material gas, the element once grown on the substrate 2 can be prevented from being detached.

図5は本発明の他の実施の形態を示す気相成長装置の構成図、図6は一部を破断して示す気相成長装置の下面図である。
この気相成長装置は、成長室51内に、複数枚の基板SBを円筒外周に保持し回転自在な基板保持筒52と、基板保持筒52を加熱する加熱手段53と、基板保持筒52と対向する面に設けられ基板SBに向けて反応ガスを供給するガス供給部54と、成長室51内の排ガスを成長室51外へ排出する排気口59とを備えている。
FIG. 5 is a block diagram of a vapor phase growth apparatus showing another embodiment of the present invention, and FIG. 6 is a bottom view of the vapor phase growth apparatus shown with a part broken away.
This vapor phase growth apparatus includes a growth chamber 51 in which a plurality of substrates SB are held on the outer circumference of a cylinder and rotatable, a substrate holding cylinder 52, a heating means 53 for heating the substrate holding cylinder 52, a substrate holding cylinder 52, A gas supply unit 54 that is provided on the opposite surface and supplies a reactive gas toward the substrate SB, and an exhaust port 59 that discharges the exhaust gas in the growth chamber 51 to the outside of the growth chamber 51 are provided.

成長室51の側壁60は、基板保持筒52の両側面に近接して配設され、基板保持筒52と、基板保持筒52に対向するガス供給部54と側壁60とによって、基板保持筒52の外側に閉ざされた円環状の反応空間RSが形成されている。
ガス供給部54は、全域に亙ってキャリアガスを供給するキャリアガス供給部57と、キャリアガス供給部57に互いに離隔して挿入された第一原料ガス供給部55、第二原料ガス供給部56、及びドーパントガス供給部58で構成されている。通常、第一原料ガス供給部55からはIII族ガスが、第二原料ガス供給部56からはV族ガスがそれぞれ供給される。なお、ガス供給部54のノズル等の具体的な構成は、図1、図2に示すガス供給部4のものと略共通しているので、説明を省略する。
The side wall 60 of the growth chamber 51 is disposed close to both side surfaces of the substrate holding cylinder 52, and the substrate holding cylinder 52 is constituted by the substrate holding cylinder 52, the gas supply unit 54 facing the substrate holding cylinder 52, and the side wall 60. An annular reaction space RS closed to the outside is formed.
The gas supply unit 54 includes a carrier gas supply unit 57 that supplies a carrier gas over the entire area, a first source gas supply unit 55 and a second source gas supply unit that are inserted in the carrier gas supply unit 57 at a distance from each other. 56 and a dopant gas supply unit 58. Usually, group III gas is supplied from the first source gas supply unit 55, and group V gas is supplied from the second source gas supply unit 56. The specific configuration of the nozzle of the gas supply unit 54 is substantially the same as that of the gas supply unit 4 shown in FIG. 1 and FIG.

排気口59には、排気導入管61が接続されている。排気導入管61は反応空間RSに開口する方形の開口面61aを有しており、この開口面61aは基板SBの回転軌跡の法線方向と直交し、基板保持筒52の半径方向と一致している。開口面61aの上辺11bは基板保持筒52と平行で且つ基板保持筒52に近接しており、実反応層RLに相当する高さに設定されている。   An exhaust introduction pipe 61 is connected to the exhaust port 59. The exhaust introduction pipe 61 has a rectangular opening surface 61 a that opens into the reaction space RS. The opening surface 61 a is orthogonal to the normal direction of the rotation locus of the substrate SB and coincides with the radial direction of the substrate holding cylinder 52. ing. The upper side 11b of the opening surface 61a is parallel to the substrate holding cylinder 52 and close to the substrate holding cylinder 52, and is set to a height corresponding to the actual reaction layer RL.

排気導入管61の底板61cは下り傾斜、天板61dは略水平で、開口面61aから排気口59へ連なっている。
排気導入管61と第一原料ガス供給部55及びドーパントガス供給部58との境界には、反応空間RSの半径方向に延びる隔壁64が設けられている。排気口59の後段には、公知の排ガス除害装置(図示略)が接続されている。
The bottom plate 61 c of the exhaust introduction pipe 61 is inclined downward, the top plate 61 d is substantially horizontal, and is continuous from the opening surface 61 a to the exhaust port 59.
A partition wall 64 extending in the radial direction of the reaction space RS is provided at the boundary between the exhaust introduction pipe 61 and the first source gas supply unit 55 and the dopant gas supply unit 58. A known exhaust gas abatement device (not shown) is connected to the rear stage of the exhaust port 59.

第一原料ガス供給部55、第二原料ガス供給部56、ドーパントガス供給部58、及び排気導入管61の開口面61aは、基板保持筒52の回転により基板SBが第一原料ガス供給部55、第二原料ガス供給部56、ドーパントガス供給部58、排気導入管61の開口面61aと順次遷移するように配設されている。
なお、この各種反応ガス供給部の配置は、処理対象物によって第三原料ガス供給部を挿入したり、それぞれのガス供給部に供給する反応ガスの順序を入れ替えたり、同じ反応ガスを二度供給するというように設定を変更しても差し支えない。
The first source gas supply unit 55, the second source gas supply unit 56, the dopant gas supply unit 58, and the opening surface 61 a of the exhaust introduction pipe 61 are arranged so that the substrate SB is rotated by the rotation of the substrate holding cylinder 52. The second source gas supply unit 56, the dopant gas supply unit 58, and the opening surface 61 a of the exhaust introduction pipe 61 are arranged so as to sequentially transition.
The various reaction gas supply units are arranged in such a manner that the third raw material gas supply unit is inserted depending on the object to be processed, the order of the reaction gas supplied to each gas supply unit is changed, or the same reaction gas is supplied twice. It is safe to change the setting.

排気導入管61の天板11dの上方には、基板保持筒52に向けてキャリアガスあるいは原料ガス、又はキャリアガスと原料ガスの両方を供給する第二ガス供給部62が設けられている。第二ガス供給部62のノズル等の構成も、図1、図2に示すガス供給部4のものと略共通している。
反応空間RSを取り巻く各構成要素のうち基板保持筒52を除くすべての構成要素には、冷却手段63が設けられている。
Above the top plate 11 d of the exhaust introduction pipe 61, a second gas supply unit 62 that supplies carrier gas or source gas, or both carrier gas and source gas toward the substrate holding cylinder 52 is provided. The configuration of the nozzle and the like of the second gas supply unit 62 is also substantially the same as that of the gas supply unit 4 shown in FIGS.
All the constituent elements surrounding the reaction space RS except the substrate holding cylinder 52 are provided with a cooling means 63.

この気相成長装置では反応空間RSが円環状であるが、反応空間RSを基板保持筒52の回転方向に展開すると、ガス分布は図3、図4に示すものと同様であり、従って、基板SB上の原料ガス濃度が最適化されているので、原料の利用効率が高く、高品質の化合物半導体を成長させることができる。
しかも、基板保持筒52が円筒状であるので、多数の基板SBを一度に処理することが可能であり、基板SBの取付位置によって化合物半導体の品質がばらつくことを防止できる。
In this vapor phase growth apparatus, the reaction space RS is annular, but when the reaction space RS is expanded in the rotation direction of the substrate holding cylinder 52, the gas distribution is the same as that shown in FIGS. Since the source gas concentration on the SB is optimized, the raw material utilization efficiency is high, and a high-quality compound semiconductor can be grown.
Moreover, since the substrate holding cylinder 52 is cylindrical, it is possible to process a large number of substrates SB at a time, and it is possible to prevent the quality of the compound semiconductor from being varied depending on the mounting position of the substrate SB.

本発明の実施の一形態を示す気相成長装置の構成図である。It is a block diagram of the vapor phase growth apparatus which shows one Embodiment of this invention. ガス供給部と排気導入管の平面上の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning on the plane of a gas supply part and an exhaust introduction pipe | tube. 気相成長装置の成長室を基板保持台の回転方向に展開した反応空間の説明図である。It is explanatory drawing of the reaction space which expand | deployed the growth chamber of the vapor phase growth apparatus in the rotation direction of the substrate holding stand. 反応空間のガス分布状態の説明図である。It is explanatory drawing of the gas distribution state of reaction space. 本発明の他の実施の形態を示す気相成長装置の構成図である。It is a block diagram of the vapor phase growth apparatus which shows other embodiment of this invention. 一部を破断して示す気相成長装置の下面図である。It is a bottom view of the vapor phase growth apparatus shown partially broken. 従来の気相成長装置の構成図である。It is a block diagram of the conventional vapor phase growth apparatus.

符号の説明Explanation of symbols

1 成長室
2 基板保持台
3 加熱手段
4 ガス供給部
5 第一原料ガス供給部
6 第二原料ガス供給部
7 キャリアガス供給部
8 ドーパントガス供給部
9 排気口
10 側壁
11 排気導入管
11a 開口面
12 第二ガス供給部
13 冷却手段
14 隔壁
51 成長室
52 基板保持筒
53 加熱手段
54 ガス供給部
55 第一原料ガス供給部
56 第二原料ガス供給部
57 キャリアガス供給部
58 ドーパントガス供給部
59 排気口
60 側壁
61 排気導入管
61a 開口面
62 第二ガス供給部
63 冷却手段
64 隔壁
BL バッファ層
FL フレッシュキャリア層
RL 実反応層
RS 反応空間
SB 基板
DESCRIPTION OF SYMBOLS 1 Growth chamber 2 Substrate holder 3 Heating means 4 Gas supply part 5 First raw material gas supply part 6 Second raw material gas supply part 7 Carrier gas supply part 8 Dopant gas supply part 9 Exhaust port 10 Side wall 11 Exhaust introduction pipe 11a Opening surface 12 Second gas supply unit 13 Cooling unit 14 Partition wall 51 Growth chamber 52 Substrate holding cylinder 53 Heating unit 54 Gas supply unit 55 First source gas supply unit 56 Second source gas supply unit 57 Carrier gas supply unit 58 Dopant gas supply unit 59 Exhaust port 60 Side wall 61 Exhaust introduction pipe 61a Opening surface 62 Second gas supply part 63 Cooling means 64 Partition BL Buffer layer FL Fresh carrier layer RL Actual reaction layer RS Reaction space SB Substrate

Claims (8)

成長室内に、基板を保持する回転自在な基板保持台と、基板保持台を加熱する加熱手段と、基板保持台と対向する面に設けられ基板に向けて反応ガスを供給するガス供給部と、成長室内の排ガスを成長室外へ排出する排気口とを備えた気相成長装置であって、
成長室の側壁の内径を基板保持台の外径と略同じとすることで成長室内に反応空間を形成し、
ガス供給部を互いに離隔して配置された少なくとも第一原料ガス供給部及び第二原料ガス供給部で構成し、
基板の回転軌跡の法線方向と直交し、基板保持台側の辺が基板保持台と平行で且つ近接する方形の開口面を有する排気導入管を排気口に接続し、
第一原料ガス供給部、第二原料ガス供給部、及び排気導入管の開口面を、基板保持台の回転により基板が第一原料ガス供給部、第二原料ガス供給部、排気導入管の開口面と順次遷移するように配設したことを特徴とする気相成長装置。
In the growth chamber, a rotatable substrate holding table for holding the substrate, a heating means for heating the substrate holding table, a gas supply unit that is provided on a surface facing the substrate holding table and supplies a reactive gas toward the substrate, A vapor phase growth apparatus provided with an exhaust port for discharging exhaust gas in the growth chamber to the outside of the growth chamber,
A reaction space is formed in the growth chamber by making the inner diameter of the side wall of the growth chamber substantially the same as the outer diameter of the substrate holder,
The gas supply unit is composed of at least a first source gas supply unit and a second source gas supply unit that are arranged apart from each other,
An exhaust inlet pipe having a rectangular opening surface that is orthogonal to the normal direction of the rotation locus of the substrate and whose side on the substrate holder is parallel and close to the substrate holder is connected to the exhaust port;
The opening of the first source gas supply unit, the second source gas supply unit, and the exhaust introduction pipe is opened by opening the first source gas supply unit, the second source gas supply unit, and the exhaust introduction pipe by rotating the substrate holder. A vapor phase growth apparatus, which is arranged so as to sequentially transition with a surface.
ガス供給部を、全域に亙ってキャリアガスを供給するキャリアガス供給部と、キャリアガス供給部に互いに離隔して挿入された少なくとも第一原料ガス供給部及び第二原料ガス供給部で構成したことを特徴とする請求項1記載の気相成長装置。   The gas supply unit includes a carrier gas supply unit that supplies a carrier gas over the entire region, and at least a first source gas supply unit and a second source gas supply unit that are inserted into the carrier gas supply unit at a distance from each other. The vapor phase growth apparatus according to claim 1. 反応空間の高さを、反応空間のガス分布状態が、ガス供給部側に形成されるキャリアガスが主体的に存在するフレッシュキャリア層、基板保持台側に形成される実反応層、及びフレッシュキャリア層と実反応層を共存させるために最低限必要となるバッファ層の三層構造となるように設定したことを特徴とする請求項2記載の気相成長装置。   The height of the reaction space, the gas distribution state of the reaction space is a fresh carrier layer in which the carrier gas formed mainly on the gas supply unit side is present, the actual reaction layer formed on the substrate holder side, and the fresh carrier 3. The vapor phase growth apparatus according to claim 2, wherein the vapor phase growth apparatus is set so as to have a three-layer structure of a buffer layer which is at least necessary for coexistence of the layer and the actual reaction layer. 排気導入管の開口面の基板保持台側の辺が、実反応層とバッファ層の界面に位置することを特徴とする請求項3記載の気相成長装置。   4. The vapor phase growth apparatus according to claim 3, wherein the side of the opening surface of the exhaust introduction pipe on the substrate holding table side is located at the interface between the actual reaction layer and the buffer layer. 排気導入管と基板保持台との間に形成された空間に、基板保持台に向けてキャリアガスあるいは原料ガス、又はキャリアガスと原料ガスの両方を供給する第二ガス供給部を設けたことを特徴とする請求項1〜4の何れか1項に記載の気相成長装置。   In the space formed between the exhaust introduction pipe and the substrate holder, a second gas supply unit that supplies carrier gas or source gas or both carrier gas and source gas toward the substrate holder is provided. The vapor phase growth apparatus according to any one of claims 1 to 4, wherein the vapor phase growth apparatus is characterized. ドーパントガス供給部を第一原料ガス供給部及び第二原料ガス供給部と離隔してガス供給部あるいは第二ガス供給部に配設したことを特徴とする請求項1〜5の何れか1項に記載の気相成長装置。   The dopant gas supply unit is disposed in the gas supply unit or the second gas supply unit so as to be separated from the first source gas supply unit and the second source gas supply unit. The vapor phase growth apparatus described in 1. 反応空間を取り巻く各構成要素のうち基板保持台を除くすべての構成要素をそれぞれ冷却する冷却手段を設けたことを特徴とする請求項1〜6の何れか1項に記載の気相成長装置。   The vapor phase growth apparatus according to any one of claims 1 to 6, further comprising a cooling unit that cools all of the components surrounding the reaction space except the substrate holder. 基板保持台が基板を円筒外周に保持する基板保持筒であって、成長室側壁が基板保持筒の両端面に近接して配設され、反応空間が基板保持筒の外側に円環状に形成されていることを特徴とする請求項1〜7の何れか1項に記載の気相成長装置。
The substrate holding table is a substrate holding cylinder for holding the substrate on the outer periphery of the cylinder, the growth chamber side walls are disposed close to both end faces of the substrate holding cylinder, and the reaction space is formed in an annular shape outside the substrate holding cylinder. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is provided.
JP2004331129A 2004-11-15 2004-11-15 Vapor growth equipment Expired - Fee Related JP4515227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331129A JP4515227B2 (en) 2004-11-15 2004-11-15 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331129A JP4515227B2 (en) 2004-11-15 2004-11-15 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2006140424A true JP2006140424A (en) 2006-06-01
JP4515227B2 JP4515227B2 (en) 2010-07-28

Family

ID=36621013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331129A Expired - Fee Related JP4515227B2 (en) 2004-11-15 2004-11-15 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP4515227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190136140A (en) * 2010-12-20 2019-12-09 주식회사 엘지화학 Electroactive compositions for electronic applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112A (en) * 1986-06-19 1988-01-05 Rohm Co Ltd Semiconductor manufacture device
JPH01249694A (en) * 1988-03-31 1989-10-04 Asahi Glass Co Ltd Vapor growth device and vapor growth method of compound semiconductor
JPH01259530A (en) * 1988-04-11 1989-10-17 Tokyo Electron Ltd Processing apparatus
JPH03177576A (en) * 1989-08-10 1991-08-01 Anelva Corp Method and device for cvd
JPH08181076A (en) * 1994-10-26 1996-07-12 Fuji Xerox Co Ltd Thin film forming method and device
JP2001081569A (en) * 1999-09-16 2001-03-27 Toshiba Corp Vapor phase growth system
JP2001506803A (en) * 1996-11-27 2001-05-22 エムコア・コーポレイション Chemical vapor deposition equipment
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method
JP2004172386A (en) * 2002-11-20 2004-06-17 Furukawa Co Ltd Gas blowoff portion of vapor growing equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112A (en) * 1986-06-19 1988-01-05 Rohm Co Ltd Semiconductor manufacture device
JPH01249694A (en) * 1988-03-31 1989-10-04 Asahi Glass Co Ltd Vapor growth device and vapor growth method of compound semiconductor
JPH01259530A (en) * 1988-04-11 1989-10-17 Tokyo Electron Ltd Processing apparatus
JPH03177576A (en) * 1989-08-10 1991-08-01 Anelva Corp Method and device for cvd
JPH08181076A (en) * 1994-10-26 1996-07-12 Fuji Xerox Co Ltd Thin film forming method and device
JP2001506803A (en) * 1996-11-27 2001-05-22 エムコア・コーポレイション Chemical vapor deposition equipment
JP2001081569A (en) * 1999-09-16 2001-03-27 Toshiba Corp Vapor phase growth system
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method
JP2004172386A (en) * 2002-11-20 2004-06-17 Furukawa Co Ltd Gas blowoff portion of vapor growing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190136140A (en) * 2010-12-20 2019-12-09 주식회사 엘지화학 Electroactive compositions for electronic applications
KR102158326B1 (en) * 2010-12-20 2020-09-21 주식회사 엘지화학 Electroactive compositions for electronic applications

Also Published As

Publication number Publication date
JP4515227B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
TWI482205B (en) MOCVD reactor with cylindrical air intake mechanism
JP4958798B2 (en) Chemical vapor deposition reactor and chemical vapor deposition method
CN101772833B (en) Gas supply device
JP5873491B2 (en) Exhaust system for CVD reactor
JP4546700B2 (en) Apparatus for depositing a crystal layer from a gas phase on a crystal substrate
KR100996210B1 (en) Gas injection unit and apparatus and method for depositing thin layer with the same
TWI537416B (en) A CVD reactor with a strip inlet region and a method of depositing a layer on the substrate in such a CVD reactor
JP2011233865A (en) Metal-organic chemical vapor deposition apparatus
US20090260572A1 (en) Chemical vapor deposition apparatus
JP2011233866A (en) Metal-organic chemical vapor deposition apparatus
JP4600820B2 (en) Epitaxial growth equipment
JP5015085B2 (en) Vapor growth equipment
JP2007294545A (en) Epitaxial growth device
JP5409413B2 (en) III-nitride semiconductor vapor phase growth system
JP4515227B2 (en) Vapor growth equipment
JP5257424B2 (en) Epitaxial growth equipment
JP2010245135A (en) Vapor growth device
JP2011151118A (en) Apparatus and method for manufacturing semiconductor
KR20120008795A (en) Apparatus for chemical vapor deposition
JP2009135238A (en) Vapor deposition apparatus and vapor deposition method
JP5493062B2 (en) Metalorganic vapor phase epitaxy system
KR20090058769A (en) Chemical vapor deposition apparatus
JP4961817B2 (en) Epitaxial growth equipment
KR101135083B1 (en) Apparatus and method for depositing thin layer
KR101455737B1 (en) apparatus for treating substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees