JP2006138846A - Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device - Google Patents

Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device Download PDF

Info

Publication number
JP2006138846A
JP2006138846A JP2005300546A JP2005300546A JP2006138846A JP 2006138846 A JP2006138846 A JP 2006138846A JP 2005300546 A JP2005300546 A JP 2005300546A JP 2005300546 A JP2005300546 A JP 2005300546A JP 2006138846 A JP2006138846 A JP 2006138846A
Authority
JP
Japan
Prior art keywords
nucleic acid
acid detection
fet
molecule
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300546A
Other languages
Japanese (ja)
Inventor
Shinichi Ouchi
真一 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005300546A priority Critical patent/JP2006138846A/en
Publication of JP2006138846A publication Critical patent/JP2006138846A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To significantly enhance sensitivity of a nucleic acid detecting sensor using an FET (field-effect transistor). <P>SOLUTION: In the nucleic acid detecting sensor for detecting a target nucleus acid molecule 109 with a special alignment included in specimen on the basis of the intensity of characteristics modulation of FET, by fixing at least a probe nucleus acid molecule 102 hybridizable with the target nucleus acid molecule to a gate 101 of the aforementioned FET, a gate width of the FET is obtained in the order of (ε<SB>0</SB>ε<SB>r</SB>k<SB>B</SB>T/e<SP>2</SP>n)<SP>1/2</SP>, where ε<SB>0</SB>is the dielectric constant of vacuum, ε<SB>r</SB>the relative permittivity of channel domain, k<SB>B</SB>the Boltzmann constant, T the absolute temperature of the channel domain of FET, e the elementary charge, and n the carrier density. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、FET(field-effect transistor)を用いて、検体中に含まれる標的核酸分子を検出する核酸検出センサ、核酸検出チップ及び核酸検出装置に関する。   The present invention relates to a nucleic acid detection sensor, a nucleic acid detection chip, and a nucleic acid detection device that detect a target nucleic acid molecule contained in a specimen using a field-effect transistor (FET).

従来から、FETを用い検体中に標的核酸分子が含まれるか否かを検出する核酸分子検出のための核酸検出用センサが存在している(例えば、非特許文献1、特許文献1、2参照)。
坂田利弥 他、「遺伝子トランジスタによるDNAハイブリダイゼーションの検出」、第64回応用物理学会講演会予稿集、P.1179(2003) 特開2003−322633公報 特表平2001−511246号公報
Conventionally, there are nucleic acid detection sensors for detecting nucleic acid molecules that detect whether or not a target nucleic acid molecule is contained in a specimen using an FET (see, for example, Non-Patent Document 1, Patent Documents 1 and 2). ).
Toshiya Sakata et al., “Detection of DNA hybridization using gene transistors”, Proc. 1179 (2003) JP 2003-322633 A Japanese National Patent Publication No. 2001-511246

しかし、従来の技術では、FETを使って、核酸分子1個レベルの信号を効率的に検出する方法や、広い範囲の濃度領域での定量分析を行う手法は明示されていない。   However, in the prior art, a method for efficiently detecting a signal at the level of one nucleic acid molecule using an FET and a method for quantitative analysis in a wide concentration range are not clearly described.

本発明は、従来の問題点に鑑み、FETを用いた核酸検出センサにおいて、感度を飛躍的に向上させる核酸検出センサ、核酸検出チップ及び核酸検出装置を提供することを目的とする。   In view of the conventional problems, an object of the present invention is to provide a nucleic acid detection sensor, a nucleic acid detection chip, and a nucleic acid detection device that dramatically improve sensitivity in a nucleic acid detection sensor using an FET.

本発明の核酸検出センサによれば、FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート幅が
(εεT/en)1/2
のオーダとなることを特徴とする。
According to the nucleic acid detection sensor of the present invention, in the nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor), At least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule is immobilized on the gate of the FET, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, and k B is the Boltzmann constant , T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density, the gate width of the FET is
(Ε 0 ε r k B T / e 2 n) 1/2
It is characterized by becoming an order.

本発明の核酸検出センサによれば、FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート長が
(εεT/en)1/2
のオーダとなることを特徴とする。
According to the nucleic acid detection sensor of the present invention, in the nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor), At least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule is immobilized on the gate of the FET, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, and k B is the Boltzmann constant , T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density, the gate length of the FET is
(Ε 0 ε r k B T / e 2 n) 1/2
It is characterized by becoming an order.

本発明の核酸検出チップによれば、FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート幅が
(εεT/en)1/2
のオーダとなる核酸検出センサを複数備える核酸検出チップにおいて、検出時間をt、核酸分子の拡散定数をD=1.6×10−6cm/sとすると、前記核酸検出チップ上での単位面積当りの前記核酸検出センサの個数が、(Dt)−1のオーダとなることを特徴とする。
According to the nucleic acid detection chip of the present invention, in the nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor), At least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule is immobilized on the gate of the FET, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, and k B is the Boltzmann constant , T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density, the gate width of the FET is
(Ε 0 ε r k B T / e 2 n) 1/2
In a nucleic acid detection chip having a plurality of nucleic acid detection sensors of the order of t, a detection time is t and a diffusion constant of a nucleic acid molecule is D = 1.6 × 10 −6 cm 2 / s, the unit on the nucleic acid detection chip The number of the nucleic acid detection sensors per area is on the order of (Dt) -1 .

本発明の核酸検出装置によれば、FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート幅が
(εεT/en)1/2
のオーダとなる核酸検出用センサと、前記核酸検出用センサとは、核酸プローブ分子が異なり、検体に含まれる核酸分子とは相補性のない塩基配列を持った核酸プローブ分子がゲートに固定されたゼロレベル検出用センサと、各前記センサのドレイン端子にそれぞれ接続する2つの容量素子と、予め決められた電圧値で充電された各前記容量素子の電荷を各前記センサに含まれるFETを介して放電し、各前記FETからの放電効率の差を増幅するセンスアンプと、前記放電効率の差に基づいて、核酸検出の有無を判定する判定手段を具備することを特徴とする。
According to the nucleic acid detection apparatus of the present invention, in the nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor), At least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule is immobilized on the gate of the FET, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, and k B is the Boltzmann constant , T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density, the gate width of the FET is
(Ε 0 ε r k B T / e 2 n) 1/2
The nucleic acid detection sensor of the order of the nucleic acid and the nucleic acid detection sensor are different in the nucleic acid probe molecule, and the nucleic acid probe molecule having a base sequence that is not complementary to the nucleic acid molecule contained in the sample is fixed to the gate. Zero level detection sensors, two capacitive elements connected to the drain terminals of the sensors, and charges of the capacitive elements charged at a predetermined voltage value via FETs included in the sensors. A sense amplifier that discharges and amplifies a difference in discharge efficiency from each FET, and a determination unit that determines presence or absence of nucleic acid detection based on the difference in discharge efficiency are provided.

本発明の核酸検出装置によれば、FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート幅が
(εεT/en)1/2
のオーダとなる核酸検出用センサと、前記核酸検出用センサとは、核酸プローブ分子が異なり、検体に含まれる核酸分子とは相補性のない塩基配列を持った核酸プローブ分子がゲートに固定されたゼロレベル検出用センサと、各前記センサに含まれるFETを入力用のトランジスタとして用いる差動対と、前記差動対に対して共通の参照電圧をかけることにより生ずる差動対の出力電圧の大きさに基づいて、核酸検出の有無を判定する判定手段を具備することを特徴とする。
According to the nucleic acid detection apparatus of the present invention, in the nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor), At least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule is immobilized on the gate of the FET, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, and k B is the Boltzmann constant , T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density, the gate width of the FET is
(Ε 0 ε r k B T / e 2 n) 1/2
The nucleic acid detection sensor of the order of the nucleic acid and the nucleic acid detection sensor are different in the nucleic acid probe molecule, and the nucleic acid probe molecule having a base sequence that is not complementary to the nucleic acid molecule contained in the sample is fixed to the gate. Zero level detection sensors, differential pairs using FETs included in the sensors as input transistors, and output voltages of the differential pairs generated by applying a common reference voltage to the differential pairs And determining means for determining the presence or absence of nucleic acid detection.

本発明の核酸検出センサ、核酸検出チップ及び核酸検出装置によれば、感度を飛躍的に向上させることができる。   According to the nucleic acid detection sensor, nucleic acid detection chip, and nucleic acid detection device of the present invention, the sensitivity can be dramatically improved.

以下、図面を参照しながら本発明の実施形態の核酸検出センサ、核酸検出チップ及び核酸検出装置について詳細に説明する。
本発明の本実施形態の核酸検出装置に含まれる核酸検出用センサ100はMOSFET(metal-oxide semiconductor field-effect transistor)、基板とからなり、MOSFETには核酸プローブ(Probe DNA)102が通常、複数取り付けられている。MOSFETは、ゲート(gate)101、ソース(Source)103、ドレイン(Drain)104からなり、核酸プローブ分子102は、ゲート101上に取り付けられる。また、図1に示すように、ソース103とドレイン104とはボディー106を介して接続し、ボディー106上にはゲート酸化膜105を介してゲート101が積層されている。また、ソース103、ドレイン104、ボディー106は、埋め込み酸化膜であるBOX(Buried Oxide)107上に形成されている。図1のように、SOI(Silicon On Insulator)構造のウェハを使ってセンサ100を作製することが可能であるが、もちろんバルクSi基板を用いて同等のものを作製可能であることは、当業者に理解されるであろう。
Hereinafter, a nucleic acid detection sensor, a nucleic acid detection chip, and a nucleic acid detection device according to embodiments of the present invention will be described in detail with reference to the drawings.
The nucleic acid detection sensor 100 included in the nucleic acid detection device of the present embodiment of the present invention includes a MOSFET (metal-oxide semiconductor field-effect transistor) and a substrate, and the MOSFET usually includes a plurality of nucleic acid probes (Probe DNA) 102. It is attached. The MOSFET includes a gate 101, a source 103, and a drain 104, and the nucleic acid probe molecule 102 is attached on the gate 101. As shown in FIG. 1, the source 103 and the drain 104 are connected via a body 106, and a gate 101 is stacked on the body 106 via a gate oxide film 105. The source 103, drain 104, and body 106 are formed on a BOX (Buried Oxide) 107 that is a buried oxide film. As shown in FIG. 1, the sensor 100 can be manufactured using a wafer having an SOI (Silicon On Insulator) structure, but it is obvious that a person skilled in the art can manufacture an equivalent using a bulk Si substrate. Will be understood.

本実施形態の核酸検出装置では、MOSFETの電気的特性の変調の強度に基づいて標的核酸分子を検出したか否かを判定する。本実施形態では、ゲート101の形状をソース103とドレイン104を結ぶ方向に細くする(すなわち、ゲート101のゲート幅Wを細くする)。この場合、ゲート上で生じた少数の電荷数の変化でもMOSFETの電気的特性の変調が大きく生ずるため、少数の標的核酸分子の検出も可能となる。   In the nucleic acid detection device of this embodiment, it is determined whether or not the target nucleic acid molecule has been detected based on the intensity of modulation of the electrical characteristics of the MOSFET. In this embodiment, the shape of the gate 101 is narrowed in the direction connecting the source 103 and the drain 104 (that is, the gate width W of the gate 101 is narrowed). In this case, even a small change in the number of charges generated on the gate greatly modulates the electrical characteristics of the MOSFET, so that a small number of target nucleic acid molecules can be detected.

さらに、本実施形態では、このMOSFETのチャネルの長さ(すなわち、図1のゲート長L)をゲート幅Wと同等若しくはW以上に長くする。この場合、核酸プローブ分子102がゲート長の方向(すなわち、ソース103とドレイン104を結ぶ方向)に多数固定化されるため、ゲート長の方向のどの位置で核酸プローブ分子102と標的核酸分子109との結合が起こっても、確実にMOSFETの変調を誘起することができるようになる。すなわち、多数の核酸プローブ分子102による信号の論理和を取ることと等価な演算をすることになる。また、分析される検体の液滴が接触するチップの表面内に、稠密に配置されることにより、多数のプローブのうちのいずれかに結合する確率が高まるため、検体溶液中に少数しか存在しない核酸分子でも迅速に検出することが可能となる。   Furthermore, in this embodiment, the channel length of the MOSFET (that is, the gate length L in FIG. 1) is made equal to or longer than the gate width W. In this case, since many nucleic acid probe molecules 102 are immobilized in the gate length direction (that is, the direction connecting the source 103 and the drain 104), the nucleic acid probe molecule 102 and the target nucleic acid molecule 109 are located at any position in the gate length direction. Even if this coupling occurs, the modulation of the MOSFET can be surely induced. That is, an operation equivalent to taking a logical sum of signals from a large number of nucleic acid probe molecules 102 is performed. In addition, the presence of a small number in the sample solution increases the probability of binding to any one of a large number of probes due to the dense arrangement within the surface of the chip that contacts the droplets of the sample to be analyzed. Even nucleic acid molecules can be detected rapidly.

さらに具体的に、ゲート101のゲート長及びゲート幅をどの程度に設定するかを説明する。あるプローブ核酸分子102において標的核酸分子109の結合が起こると、このゲート101側で起きた電荷数の変動は、ゲート酸化膜106を介して静電気的にチャネル中の荷電状態の変動を誘起する。いま、ボディー106のうちの、チャネルの形成される領域におけるキャリアのデバイ長は、
(εεT/en)1/2 (式1)
で与えられる。ここで、εは真空の誘電率、εはチャネル領域の比誘電率、kはボルツマン定数、Tはチャネル領域の絶対温度、eは素電荷、nはキャリア密度を示す。ゲート側での1価の電荷の変動に際し、チャネル中において(式1)で与えられる半径内部の領域では荷電状態が大きく変動することが期待される。
More specifically, how much the gate length and gate width of the gate 101 are set will be described. When binding of the target nucleic acid molecule 109 occurs in a certain probe nucleic acid molecule 102, the change in the number of charges generated on the gate 101 side electrostatically induces a change in the charge state in the channel via the gate oxide film 106. Now, the Debye length of the carrier in the region of the body 106 where the channel is formed is
0 ε rk B T / e 2 n) 1/2 (Formula 1)
Given in. Here, ε 0 is the dielectric constant of vacuum, ε r is the relative dielectric constant of the channel region, k B is the Boltzmann constant, T is the absolute temperature of the channel region, e is the elementary charge, and n is the carrier density. When the monovalent charge changes on the gate side, the charge state is expected to change greatly in the region within the radius given by (Equation 1) in the channel.

よって、(式1)により算出される拡散距離と同等のゲート101のゲート幅及びゲート長を決定すれば、少数の標的核酸分子によって大きなFETの特性変調が得られるものと考えられる。すなわち、ゲート幅は(式1)により算出される長さのオーダとし、ゲート長も(式1)により算出される長さとする。すなわち、ゲート幅、ゲート長は、(式1)により算出される長さと同じ桁数程度(すなわち、せいぜい10倍若しくは1/10程度)の長さに設定される。より好ましくは、ゲート幅は(式1)により算出される長さのオーダとなるようにし、ゲート長はこのゲート幅の長さよりも長くなるようにする。   Therefore, if the gate width and gate length of the gate 101 equivalent to the diffusion distance calculated by (Equation 1) are determined, it is considered that large FET characteristic modulation can be obtained with a small number of target nucleic acid molecules. That is, the gate width is on the order of the length calculated by (Expression 1), and the gate length is also the length calculated by (Expression 1). That is, the gate width and gate length are set to the same number of digits as the length calculated by (Equation 1) (that is, at most about 10 times or 1/10). More preferably, the gate width is on the order of the length calculated by (Equation 1), and the gate length is longer than the length of the gate width.

本実施形態においては、通常のMOSFETと同等のキャリア密度を持った材料を仮定すると(式1)により算出される長さは約50nmになるので、この長さを利用して、例えば、ゲート幅を50nmとする。ゲート幅は、100nm程度でも問題はないが、より好ましくは50nm程度若しくはそれ以下の長さである。一方、ゲート長は、ゲート幅と同等かそれより長く設定するので、50nm程度若しくはそれ以上の長さである。   In this embodiment, assuming a material having a carrier density equivalent to that of a normal MOSFET, the length calculated by (Equation 1) is about 50 nm. Therefore, using this length, for example, the gate width Is 50 nm. There is no problem even if the gate width is about 100 nm, but it is more preferably about 50 nm or less. On the other hand, since the gate length is set to be equal to or longer than the gate width, it is about 50 nm or longer.

また、核酸分子の直径はおよそ2nmであるため、核酸プローブ分子102を稠密にゲート幅50nmのゲート101上に貼り付けた場合、核酸プローブ分子102はチャネルに垂直な方向に25個程度ずつ配置されることになる。長さが20塩基対程度の核酸プローブ分子102に対し同程度の標的核酸分子109が核酸プローブ分子102のうちの1つに結合すると、塩基対数と同等の電荷の変化が生じる。この電荷の変化により物理的な特性変化(例えば、MOSFETの閾値電圧の変化)は大きく現れるものと期待される。   Further, since the diameter of the nucleic acid molecule is about 2 nm, when the nucleic acid probe molecules 102 are densely attached on the gate 101 having a gate width of 50 nm, about 25 nucleic acid probe molecules 102 are arranged in a direction perpendicular to the channel. Will be. When a target nucleic acid molecule 109 having the same length as a nucleic acid probe molecule 102 having a length of about 20 base pairs binds to one of the nucleic acid probe molecules 102, a charge change equivalent to the number of base pairs occurs. It is expected that a change in physical characteristics (for example, a change in the threshold voltage of the MOSFET) will appear greatly due to this change in charge.

また、核酸検出用センサ100はチップ上に複数個配置される。チップ上に核酸検出用センサ100がどのように配置されるかによって、標的核酸分子を検出する精度が変化する。例えば、分析される検体の液滴が接触するチップの表面内に、核酸検出用センサ100を稠密に配置することにより、多数のプローブのうちのいずれかに結合する確率が高まるため、検体溶液中に少数しか存在しない核酸分子でも迅速に検出することが可能となる。より好ましくは、このセンサアレイの集積密度は、核酸分子の拡散距離よりも短い間隔でセンサが配置されるように決められる。さらに、標的核酸分子を検出したセンサの個数を集計することにより、標的核酸分子の濃度、あるいは標的核酸分子の分子数を推定することも可能となる。この配置の詳細は後に図5及び図6を参照して説明する。   A plurality of nucleic acid detection sensors 100 are arranged on the chip. The accuracy of detecting the target nucleic acid molecule varies depending on how the nucleic acid detection sensor 100 is arranged on the chip. For example, since the nucleic acid detection sensor 100 is densely arranged in the surface of the chip that comes into contact with the droplet of the analyte to be analyzed, the probability of binding to any one of a large number of probes is increased. Even a small number of nucleic acid molecules can be rapidly detected. More preferably, the integration density of the sensor array is determined so that the sensors are arranged at an interval shorter than the diffusion distance of the nucleic acid molecules. Furthermore, by counting the number of sensors that have detected the target nucleic acid molecule, it is possible to estimate the concentration of the target nucleic acid molecule or the number of molecules of the target nucleic acid molecule. Details of this arrangement will be described later with reference to FIGS.

次に、上述した核酸検出用センサ100を使用して、標的核酸分子109と核酸プローブ分子102との結合により誘起されるMOSFETの電気的特性の変調を検出するための核酸検出装置を説明する。この変調は、例えば、閾値電圧値の変動として現れるので、核酸検出装置はこの閾値電圧値の変動を検出することになる。本実施形態では、以下に示すように、この物理現象を検出するための核酸検出装置を2種類提供する。1つは標的核酸分子109を検出したか否かをディジタル信号に直接変換して出力するタイプの装置(図2、図4)であり、もう1つは閾値電圧値の変動をアナログ電圧値として出力するタイプの装置(図7,8,9)である。これらの装置の特徴は、標的核酸分子109と相補的な塩基配列を持たない核酸プローブ分子を固定したゼロレベル検出用のセンサと核酸検出用センサ100とを比較しつつ判定を行うことである。この特徴により、標的核酸分子109の検出精度を向上することができる。   Next, a nucleic acid detection apparatus for detecting the modulation of the electrical characteristics of the MOSFET induced by the binding between the target nucleic acid molecule 109 and the nucleic acid probe molecule 102 using the above-described nucleic acid detection sensor 100 will be described. Since this modulation appears as, for example, a variation in threshold voltage value, the nucleic acid detection device detects this variation in threshold voltage value. In this embodiment, as shown below, two types of nucleic acid detection devices for detecting this physical phenomenon are provided. One is a device (FIGS. 2 and 4) that directly converts a digital signal to output whether or not the target nucleic acid molecule 109 has been detected, and the other is an analog voltage value based on fluctuations in the threshold voltage value. This is an output type device (FIGS. 7, 8, and 9). A feature of these apparatuses is that the determination is performed by comparing the nucleic acid detection sensor 100 with the zero level detection sensor to which a nucleic acid probe molecule having no base sequence complementary to the target nucleic acid molecule 109 is fixed. With this feature, the detection accuracy of the target nucleic acid molecule 109 can be improved.

次に、図1に示した核酸検出用センサ100を使用して核酸を検出する核酸検出装置の一例を図2を参照して説明する。図2は、クロスカップルドインバータを利用した核酸検出装置の例である。   Next, an example of a nucleic acid detection apparatus that detects nucleic acids using the nucleic acid detection sensor 100 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is an example of a nucleic acid detection apparatus using a cross-coupled inverter.

図2の核酸検出装置は、参照電極201、参照電圧電源202、充電用電圧源入力端子203、充電用スイッチ204、205、制御パルス入力端子206、電源電圧207、基準電位208、センスアンプ制御スイッチ209、蓄積キャパシタ210、211、出力信号増幅器212、213、センスアンプ214、核酸検出用センサ100に含まれるMOSFET215、核酸検出用センサ200に含まれる216、核酸プローブ分子217、核酸検出用センサ200からなる。   2 includes a reference electrode 201, a reference voltage power supply 202, a charging voltage source input terminal 203, charging switches 204 and 205, a control pulse input terminal 206, a power supply voltage 207, a reference potential 208, and a sense amplifier control switch. 209, storage capacitors 210 and 211, output signal amplifiers 212 and 213, sense amplifier 214, MOSFET 215 included in nucleic acid detection sensor 100, 216 included in nucleic acid detection sensor 200, nucleic acid probe molecule 217, and nucleic acid detection sensor 200 Become.

図2に示す装置は、核酸プローブ分子102が取り付けられた核酸検出用センサ100に含まれるMOSFETの閾値電圧の変化が生じたか否かを判定する回路を含むものである。この回路は、フラッシュメモリの読み出し用回路に使われるものと同等の回路であり、フラッシュメモリに用いられるフローティングゲートを有するMOSFETに相当する部分に核酸検出用のMOSFETを用いている。また、この回路は、MOSFETの表面電位を制御するための参照電極を含んでいる。この核酸検出装置では、参照電極201に表面電位を制御される核酸検出用センサ100は標的核酸分子109を結合することが可能な核酸検出用MOSFETであり、このセンサと対になる核酸検出用センサ200は標的核酸分子109を結合することができない核酸プローブ分子217を取り付けているゼロレベル検出用センサである。ゼロレベル検出用センサ200は、核酸プローブ分子102の代わりに核酸プローブ分子217を取り付けていること以外は核酸検出用センサ100と同様である。   The apparatus shown in FIG. 2 includes a circuit that determines whether or not a change in the threshold voltage of the MOSFET included in the nucleic acid detection sensor 100 to which the nucleic acid probe molecule 102 is attached has occurred. This circuit is equivalent to that used in a read circuit of a flash memory, and a nucleic acid detection MOSFET is used in a portion corresponding to a MOSFET having a floating gate used in the flash memory. The circuit also includes a reference electrode for controlling the surface potential of the MOSFET. In this nucleic acid detection apparatus, the nucleic acid detection sensor 100 whose surface potential is controlled by the reference electrode 201 is a MOSFET for nucleic acid detection capable of binding the target nucleic acid molecule 109, and a nucleic acid detection sensor paired with this sensor. Reference numeral 200 denotes a zero-level detection sensor to which a nucleic acid probe molecule 217 that cannot bind the target nucleic acid molecule 109 is attached. The zero level detection sensor 200 is the same as the nucleic acid detection sensor 100 except that a nucleic acid probe molecule 217 is attached instead of the nucleic acid probe molecule 102.

図2の回路では、センスアンプ214が、核酸検出用センサ100上への核酸結合の有無により変化するMOSFETの閾値電圧の変動の結果として変動する飽和電流の大きさが決定するキャパシタ210の放電時間を、ゼロレベル検出用センサ200の閾値電圧値によって決定するキャパシタ210の放電時間と比較する。センスアンプ214は、核酸検出用センサ100とゼロレベル検出用センサ200とのどちらのセンサが先に電圧を下げるかを感受して、各センサの電圧値の相手に対する高低を出力する。すなわち、センスアンプ214は各センサに対応して1、0のディジタル値で出力する。出力された信号は、判定しやすい大きさまで、増幅器212、213によって増幅される。
核酸検出用センサ100における核酸検出の有無を0、1のディジタル値に対応させるために、蓄積キャパシタ210と蓄積キャパシタ211との比は、核酸検出用センサ200の放電時間が、核酸検出用センサ100に標的核酸分子109が結合した場合としなかった場合の両放電時間のちょうど半分になるように予め設定される。また、放電時間は参照電極電位に依存するので、参照電圧電源202も予め設定されなければならない。すなわち、図2の回路を動作させるにあたっては、予め、以下のパラメータを決めておく必要がある。
(1)蓄積キャパシタ210と蓄積キャパシタ211のキャパシタンスの比
(2)基準電位208に対して参照電極201の電位を決める参照電圧電源202の電圧値
(1)をより詳細に述べると、ハイブリダイゼーション(hybridization、二本鎖形成)が検出される場合の蓄積キャパシタ210の放電時間の時定数をτ’、ハイブリダイゼーションが検出されない場合の蓄積キャパシタ210の放電時間の時定数をτ、蓄積キャパシタ211の放電時間の時定数をτとおくと、
τ’<τ<τ (式2)
が成立すべきである。ただし、この(式2)は核酸検出用センサ100のMOSFETがn型でありハイブリダイゼーションによりMOSFETの閾値電圧値が正の電荷を帯びた挿入剤等の効果により減少する場合を仮定している。挿入剤を用いない場合はn型MOSFETの閾値は上がることになるため、(式2)の不等号は逆符号となる。さらに好ましくは、τがτ及びτ’の中間値、
τ=(τ+τ’)/2 (式3)
となるように設定するのが望ましい。
In the circuit of FIG. 2, the discharge time of the capacitor 210 in which the sense amplifier 214 determines the amount of saturation current that varies as a result of variation in the threshold voltage of the MOSFET that varies depending on the presence or absence of nucleic acid binding on the nucleic acid detection sensor 100. Is compared with the discharge time of the capacitor 210 determined by the threshold voltage value of the sensor 200 for detecting the zero level. The sense amplifier 214 senses which one of the nucleic acid detection sensor 100 and the zero level detection sensor 200 lowers the voltage first, and outputs the voltage value of each sensor relative to the counterpart. That is, the sense amplifier 214 outputs a digital value of 1 or 0 corresponding to each sensor. The output signal is amplified by the amplifiers 212 and 213 to a size that can be easily determined.
In order to make the presence or absence of nucleic acid detection in the nucleic acid detection sensor 100 correspond to a digital value of 0 or 1, the ratio between the storage capacitor 210 and the storage capacitor 211 is the discharge time of the nucleic acid detection sensor 200 and the nucleic acid detection sensor 100. Is set in advance to be exactly half of both discharge times when the target nucleic acid molecule 109 is bound and not. In addition, since the discharge time depends on the reference electrode potential, the reference voltage power source 202 must also be set in advance. That is, to operate the circuit of FIG. 2, it is necessary to determine the following parameters in advance.
(1) Ratio of capacitance of storage capacitor 210 and storage capacitor 211
(2) Voltage value of the reference voltage power source 202 that determines the potential of the reference electrode 201 with respect to the reference potential 208
Describing in more detail (1), the time constant of the discharge time of the storage capacitor 210 when hybridization (double strand formation) is detected is τ 1 ′, and the storage capacitor 210 when hybridization is not detected Is set to τ 1 , and the discharge time constant of the storage capacitor 211 is set to τ 2 .
τ 1 ′ <τ 21 (Formula 2)
Should be established. However, this (Equation 2) assumes a case where the MOSFET of the nucleic acid detection sensor 100 is n-type and the threshold voltage value of the MOSFET decreases due to the effect of a positively charged intercalating agent due to hybridization. When no intercalating agent is used, the threshold value of the n-type MOSFET is raised, so that the inequality sign in (Equation 2) is reversed. More preferably, τ 2 is an intermediate value between τ 1 and τ 1 ′,
τ 2 = (τ 1 + τ 1 ′) / 2 (Formula 3)
It is desirable to set so that

これらの(式2)及び(式3)をキャパシタンスの比に換算する。いま、核酸検出用センサ100とゼロレベル検出用センサ200のMOSFETが飽和領域で動作していると仮定すると、核酸検出用センサ100を流れる電流は、
i=μCW(VGS−Vth/L (式4)
と表される。ここで、CはMOSFET酸化膜の容量、μは表面チャネル移動度、Wはゲート幅、Lはゲート長、VGSはゲート・ソース間、すなわちここでは参照電極3とソース103の間の電圧を示す。VthはMOSFETの閾値電圧値を示すが、この閾値電圧値はハイブリダイゼーションを生じている場合であるか否かで変動する。ハイブリダイゼーションが検出される場合の閾値電圧値をVth’、検出されない場合の閾値電圧値をVthとし、それぞれの電圧値に対応する電流をi’、iとすると、τ’,τ,τはそれぞれ近似的に、
τ’=C10pre/i’
τ=C10pre/i (式5)
τ=C11pre/i
と表現される。ここで、C10、C11はそれぞれ蓄積キャパシタ210、蓄積キャパシタ211の容量を表し、VPreは充電用電圧源入力端子203から入力される電圧値を示す。(式2)に(式4)、(式5)を代入することにより、C10とC11が満たすべき条件は次のように定まる。すなわち、
1<C10/C11<(VGS−Vth’)/(VGS−Vth (式6)
である。また、より望ましい(式3)で表される条件は、(式4)及び(式5)を利用すると、
10/(2C11−C10)=(VGS−Vth’)/(VGS−Vth (式7)
のように定まる。
These (Equation 2) and (Equation 3) are converted into a capacitance ratio. Assuming that the MOSFETs of the nucleic acid detection sensor 100 and the zero level detection sensor 200 are operating in the saturation region, the current flowing through the nucleic acid detection sensor 100 is:
i = μCW (V GS −V th ) 2 / L (Formula 4)
It is expressed. Here, C is the capacitance of the MOSFET oxide film, μ is the surface channel mobility, W is the gate width, L is the gate length, V GS is the gate-source voltage, that is, the voltage between the reference electrode 3 and the source 103 in this case. Show. Vth indicates the threshold voltage value of the MOSFET, and this threshold voltage value varies depending on whether or not hybridization occurs. If the threshold voltage value when hybridization is detected is V th ′, the threshold voltage value when it is not detected is V th, and the currents corresponding to the respective voltage values are i ′ and i, τ ′ 1 , τ 1 , Τ 2 are approximately,
τ 1 '= C 10 V pre / i'
τ 1 = C 10 V pre / i (Formula 5)
τ 2 = C 11 V pre / i
It is expressed. Here, C 10 and C 11 represent capacitances of the storage capacitor 210 and the storage capacitor 211, respectively, and V Pre represents a voltage value input from the charging voltage source input terminal 203. By substituting (Equation 4) and (Equation 5) into (Equation 2), the conditions to be satisfied by C 10 and C 11 are determined as follows. That is,
1 <C 10 / C 11 <(V GS −V th ′) 2 / (V GS −V th ) 2 (Formula 6)
It is. Further, the more desirable condition represented by (Expression 3) is that (Expression 4) and (Expression 5) are used.
C 10 / (2C 11 −C 10 ) = (V GS −V th ′) 2 / (V GS −V th ) 2 (Expression 7)
It is determined as follows.

次に、図2に示した回路を使用して核酸の検出を行う手順を図3を参照して説明する。
まず、制御部(図示せず)が、蓄積キャパシタ210、211に充電をするか否かを切り換える充電用スイッチ204及び205をオフにする(ステップS301)。また、センスアンプ214を制御するセンスアンプ制御スイッチ209をオフにする(ステップS301)。さらに、初期設定として参照電圧電源202を調整し、参照電極201と核酸検出用センサ100のソース103との間の電圧を上記の(式6)又は(式7)を満たすようにする(ステップS301)。
Next, a procedure for detecting a nucleic acid using the circuit shown in FIG. 2 will be described with reference to FIG.
First, the control unit (not shown) turns off the charging switches 204 and 205 for switching whether or not the storage capacitors 210 and 211 are charged (step S301). Further, the sense amplifier control switch 209 that controls the sense amplifier 214 is turned off (step S301). Further, the reference voltage power source 202 is adjusted as an initial setting so that the voltage between the reference electrode 201 and the source 103 of the nucleic acid detection sensor 100 satisfies the above (Expression 6) or (Expression 7) (Step S301). ).

次に、充電用スイッチ204、205をオンにして、蓄積キャパシタ210、211に充電用電圧源入力端子203を介して充電用電圧を印加する(ステップS302)。蓄積キャパシタ210、211には同一の電圧値が印加されるので、同量の電荷が蓄積キャパシタ210、211に蓄電される。その後、センスアンプ制御スイッチ209をオンにして、センスアンプ214を作動させる(ステップS303)。   Next, the charging switches 204 and 205 are turned on, and the charging voltage is applied to the storage capacitors 210 and 211 via the charging voltage source input terminal 203 (step S302). Since the same voltage value is applied to the storage capacitors 210 and 211, the same amount of charge is stored in the storage capacitors 210 and 211. Thereafter, the sense amplifier control switch 209 is turned on to operate the sense amplifier 214 (step S303).

そして、充電用スイッチ204、205をオフにし(ステップS304)、所定の時間経過した後にセンスアンプ214が検出する0又は1のディジタル値から核酸検出の有無を判定する。なお、ステップS303とステップS304の順序は逆にしても正しく動作する。   Then, the charging switches 204 and 205 are turned off (step S304), and the presence or absence of nucleic acid detection is determined from a digital value of 0 or 1 detected by the sense amplifier 214 after a predetermined time has elapsed. Even if the order of step S303 and step S304 is reversed, the operation is correct.

次に、図2の回路を変形した一例を図4を参照して説明する。図2に示した部分と同一部分は同一符号を付してその説明を省略する。
図4の変形例では、センスアンプ214をnMOSだけで形成したセンスアンプ401を使用する場合である。動作原理は基本的に図2の場合と同様であるが、差動増幅器402を追加する必要がある。この回路では、蓄積キャパシタ210、211が接続された各ノードは、充電用電圧源入力端子203から入力される電圧値であるVpreと基準電位208との間のある電位に収束していく。このノード間の差異を差動増幅器402で増幅し、さらに出力増幅器403で増幅し、最終的に検出可能な大きさを有する0又は1のディジタル値を出力信号端子405から得ることができる。
Next, an example in which the circuit of FIG. 2 is modified will be described with reference to FIG. The same parts as those shown in FIG.
The modification of FIG. 4 is a case where a sense amplifier 401 in which the sense amplifier 214 is formed only by an nMOS is used. The operation principle is basically the same as in FIG. 2, but a differential amplifier 402 needs to be added. In this circuit, each node to which the storage capacitors 210 and 211 are connected converges to a certain potential between V pre that is a voltage value input from the charging voltage source input terminal 203 and the reference potential 208. The difference between the nodes is amplified by the differential amplifier 402 and further amplified by the output amplifier 403, and a digital value of 0 or 1 having a finally detectable magnitude can be obtained from the output signal terminal 405.

また、核酸検出用センサ100をチップ基板上に稠密に配置しておくことにより、濃度の分析も可能となる。検出時間としてtが与えられた場合、Dを核酸分子の拡散定数(1.6×10−6cm/s)とすると、核酸検出用センサ100の面密度を(Dt)−1以上にすれば検出時間t以内で核酸分子を検出することができる。言い換えれば、核酸検出用センサ100の面密度としては、核酸分子の拡散距離を半径とする円の中にMOSFETの核酸検出用センサ100が少なくとも1個入るよりも高い密度で検体の液滴が導入される領域に存在するような集積密度で核酸検出用センサ100のアレイを形成させる。 Further, by arranging the nucleic acid detection sensor 100 densely on the chip substrate, the concentration can be analyzed. When t is given as the detection time, the surface density of the nucleic acid detection sensor 100 is set to (Dt) −1 or more when D is the diffusion constant of the nucleic acid molecule (1.6 × 10 −6 cm 2 / s). For example, the nucleic acid molecule can be detected within the detection time t. In other words, the surface density of the nucleic acid detection sensor 100 is such that the sample droplets are introduced at a higher density than at least one MOSFET nucleic acid detection sensor 100 in a circle whose radius is the diffusion distance of nucleic acid molecules. An array of nucleic acid detection sensors 100 is formed at an integrated density such that it exists in the region to be formed.

例えば、核酸検出用センサ100の面密度を10/cmでチップ基板上に作成した場合、隣り合うセンサ間の距離は10μm程度となる。このとき、核酸分子の拡散距離を表す尺度lとして、
l=(Dt)1/2 (式8)
を計算すると、tは数秒と計算されるため、少なくとも数分での検出が可能になる。すなわち、数分で核酸分子は多数存在するセンサのいずれかに結合するものと考えられる。もちろん、さらにセンサ数の面密度を高めれば、検出の高速化も期待できる。
For example, when the area density of the nucleic acid detection sensor 100 is 10 6 / cm 2 on a chip substrate, the distance between adjacent sensors is about 10 μm. At this time, as a scale l representing the diffusion distance of the nucleic acid molecule,
l = (Dt) 1/2 (Formula 8)
Since t is calculated as several seconds, detection in at least several minutes is possible. That is, in a few minutes, the nucleic acid molecule is considered to bind to any of a large number of existing sensors. Of course, if the surface density of the number of sensors is further increased, an increase in detection speed can be expected.

この核酸検出用センサ100を稠密に配置したチップを用いて、高速な定量分析を行うことも可能である。これまで提案された手法としては、特開2004−309462公報に記述されているような手法がある。この方法によれば、図5の上段に示すように大きなセンサ面積に多数の核酸プローブ分子が存在しその1部だけが標的核酸分子と結合することによって得られる信号がバックグラウンド信号に埋もれてしまうことを防止するために、図5の中段に示すように面積の小さな電極を用いて、ここに核酸分子が集中して結合するようにすることが提案されている。この方法でも高感度な核酸の検出は可能であるが、感度を高めるために反応時間を長くしなければならないという欠点がある。   It is also possible to perform high-speed quantitative analysis using a chip in which the nucleic acid detection sensors 100 are densely arranged. As a method proposed so far, there is a method as described in JP-A-2004-309462. According to this method, as shown in the upper part of FIG. 5, a large number of nucleic acid probe molecules exist in a large sensor area, and a signal obtained by binding only a part of the nucleic acid probe molecule to the target nucleic acid molecule is buried in the background signal. In order to prevent this, it has been proposed to use an electrode with a small area as shown in the middle part of FIG. Although this method can also detect nucleic acids with high sensitivity, there is a drawback that the reaction time must be lengthened to increase sensitivity.

一方、本発明の実施形態では、この手法とは異なり、図5の下段に示すように多数のセンサのいずれかに核酸が結合すればよいため、高速化を期待することができる。定量分析をする場合には、ディジタル値によって核酸が検出されたと判定されたセンサの数をカウントする。核酸の濃度が濃ければ濃いほど、核酸を検出したセンサの数が増加する。全核酸検出センサ数に対する核酸を検出した核酸検出センサの数の割合に基づいて、検体中に含まれる標的核酸分子の核酸濃度を推定する。   On the other hand, in the embodiment of the present invention, unlike this method, as shown in the lower part of FIG. 5, it is only necessary to bind a nucleic acid to any one of a large number of sensors. In the case of quantitative analysis, the number of sensors determined to have detected nucleic acids by digital values is counted. The higher the concentration of nucleic acid, the greater the number of sensors that have detected the nucleic acid. Based on the ratio of the number of nucleic acid detection sensors that have detected nucleic acids to the total number of nucleic acid detection sensors, the nucleic acid concentration of the target nucleic acid molecule contained in the sample is estimated.

さらに、多種類の核酸を定量分析する場合には、図6のように、ある塩基配列を持った核酸プローブが固定されたセンサのアレイを複数チップ基板表面上に配置し、ここに検体を導入すればよい。   Furthermore, in the case of quantitative analysis of many types of nucleic acids, as shown in FIG. 6, an array of sensors to which a nucleic acid probe having a certain base sequence is fixed is arranged on the surface of a plurality of chips, and a sample is introduced here. do it.

もちろん、同一種類の核酸プローブ分子102をまとめて1箇所に配置する必要は無く、規則正しく並べても、ランダムでも、その面密度が一定であれば核酸の定量分析は可能である。   Of course, it is not necessary to arrange the nucleic acid probe molecules 102 of the same type together at one place. Even if they are arranged regularly or randomly, quantitative analysis of nucleic acids is possible if the surface density is constant.

(本実施形態の変形例)
図2及び図4とは異なり、差動対を利用した場合の核酸検出装置を図7及び図8を参照して説明する。
図7及び図8に示す装置は、差動対を用いて、核酸プローブ分子102が取り付けられた核酸検出用センサ100に含まれるMOSFETの閾値電圧の変化が生じた否かを判定する回路を含むものである。本実施形態で提供される核酸検出用センサ100において核酸が検出されたか否かの判定は、この差動対を用いた回路を用いても可能である。すなわち、核酸検出用センサ100として用いられるMOSFETとゼロレベル検出用センサ200として用いられるMOSFETを差動対の中に配置する。
(Modification of this embodiment)
Unlike FIGS. 2 and 4, a nucleic acid detection apparatus using a differential pair will be described with reference to FIGS.
The apparatus shown in FIGS. 7 and 8 includes a circuit that uses a differential pair to determine whether or not a change in the threshold voltage of the MOSFET included in the nucleic acid detection sensor 100 to which the nucleic acid probe molecule 102 is attached has occurred. It is a waste. Whether or not a nucleic acid is detected in the nucleic acid detection sensor 100 provided in the present embodiment can also be determined using a circuit using this differential pair. That is, the MOSFET used as the nucleic acid detection sensor 100 and the MOSFET used as the zero level detection sensor 200 are arranged in the differential pair.

例えば、図8に示すように参照電極201の電位を所定の値に設定することによって生ずる出力電圧そのものを測定するか、あるいは図7に示すように、図8よりも2つ余計にトランジスタを挿入し、これによって形成される電圧フォロア回路のオフセット電圧の変動として核酸の検出を行えばよい。   For example, as shown in FIG. 8, the output voltage itself generated by setting the potential of the reference electrode 201 to a predetermined value is measured, or, as shown in FIG. 7, two more transistors are inserted than in FIG. Then, the nucleic acid may be detected as a change in the offset voltage of the voltage follower circuit formed thereby.

さらに、例えば、図9に示すように、バックゲートの電位制御も可能にしたダブルゲートMOS構造の素子を使用しても、核酸プローブ分子102が取り付けられた核酸検出用センサ100に含まれるMOSFETの閾値電圧の変化が生じた否かを判定することができる。すなわち、参照電極201を介して核酸プローブ分子102の固定化された核酸検出用センサ100、およびゼロレベル検出用センサ200の電位をコントロールし、図7と同様に、電圧フォロア回路のオフセット電圧の変動を測定すればよい。   Further, for example, as shown in FIG. 9, even if a double-gate MOS structure element capable of controlling the potential of the back gate is used, the MOSFET included in the nucleic acid detection sensor 100 to which the nucleic acid probe molecule 102 is attached is used. It can be determined whether or not a threshold voltage change has occurred. That is, the potential of the nucleic acid detection sensor 100 to which the nucleic acid probe molecule 102 is immobilized and the zero level detection sensor 200 are controlled via the reference electrode 201, and the fluctuation of the offset voltage of the voltage follower circuit is controlled as in FIG. Can be measured.

以上に示した実施形態によれば、検出用センサのFETのゲート幅をチャネル領域の電子のデバイ長程度以下にして、ゲート長をチャネル領域の電子のデバイ長程度以上にすることにより、感度を飛躍的に向上させることができる。さらには核酸分子1個を非常に高速に検出を可能にすることができる。また、検出用チップ上にこの検出用センサを複数個、稠密に配置することにより、非常に広い範囲の濃度領域での定量分析手法も同時に提供することが可能になる。また、標的核酸の標識や、PCR(polymerase chain reaction)等の核酸の増幅を行うことなく、短時間で高精度な測定が可能となる。   According to the above-described embodiment, the sensitivity is improved by setting the gate width of the FET of the detection sensor to about the Debye length of the electron in the channel region and setting the gate length to about the Debye length of the electron in the channel region. It can be improved dramatically. Furthermore, it is possible to detect one nucleic acid molecule at a very high speed. In addition, by arranging a plurality of detection sensors densely on the detection chip, it is possible to simultaneously provide a quantitative analysis technique in a very wide concentration range. In addition, high-precision measurement can be performed in a short time without performing labeling of the target nucleic acid or amplification of nucleic acid such as PCR (polymerase chain reaction).

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の本実施形態にかかる核酸検出チップに複数個配置される核酸検出用センサの1つを示す図。The figure which shows one of the sensors for nucleic acid detection arrange | positioned in multiple numbers by the nucleic acid detection chip concerning this embodiment of this invention. 図1の核酸検出用センサを使用して核酸を検出する核酸検出装置の一例を示す図。The figure which shows an example of the nucleic acid detection apparatus which detects a nucleic acid using the nucleic acid detection sensor of FIG. 図2の核酸検出装置の動作を示すフローチャート。The flowchart which shows operation | movement of the nucleic acid detection apparatus of FIG. 図2の変形例である核酸検出装置を示す図。The figure which shows the nucleic acid detection apparatus which is a modification of FIG. 定量分析の原理を示す図。The figure which shows the principle of quantitative analysis. 他種類の核酸を定量分析する場合を示す図。The figure which shows the case where the quantitative analysis of the nucleic acid of another kind is carried out. 図2の変形例であって、差動対を使用する核酸検出装置の一例を示す図。It is a modification of FIG. 2, Comprising: The figure which shows an example of the nucleic acid detection apparatus which uses a differential pair. 図2の変形例であって、差動対を使用する核酸検出装置の図7の別例を示す図。FIG. 9 is a diagram showing another example of the nucleic acid detection apparatus in FIG. 7 which is a modification of FIG. 2 and uses a differential pair. 図2の変形例であって、ダブルゲートMOSを使用する核酸検出装置の一例を示す図。FIG. 5 is a diagram showing an example of a nucleic acid detection apparatus using a double gate MOS, which is a modification of FIG. 2.

符号の説明Explanation of symbols

100・・・核酸検出用センサ、101・・・ゲート、102、217・・・核酸プローブ分子、103・・・ソース、104・・・ドレイン、105・・・ゲート酸化膜、106・・・SOI、107・・・埋め込み酸化膜(BOX)、108・・・シリコン基板、109・・・標的核酸分子、200・・・ゼロレベル検出用センサ、201・・・参照電極、202・・・参照電圧電源、203・・・充電用電圧源入力端子、204、205・・・充電用スイッチ、206・・・制御パルス入力端子、207・・・電源電圧、208・・・基準電位、209・・・センスアンプ制御スイッチ、210、211・・・蓄積キャパシタ、212、213・・・増幅器、214、401・・・センスアンプ、215、216・・・MOSFET、402・・・差動増幅器、403・・・出力増幅器、405・・・出力信号端子。 DESCRIPTION OF SYMBOLS 100 ... Sensor for nucleic acid detection, 101 ... Gate, 102, 217 ... Nucleic acid probe molecule, 103 ... Source, 104 ... Drain, 105 ... Gate oxide film, 106 ... SOI 107 ... buried oxide film (BOX), 108 ... silicon substrate, 109 ... target nucleic acid molecule, 200 ... sensor for zero level detection, 201 ... reference electrode, 202 ... reference voltage Power source, 203 ... charging voltage source input terminal, 204, 205 ... charging switch, 206 ... control pulse input terminal, 207 ... power supply voltage, 208 ... reference potential, 209 ... Sense amplifier control switch, 210, 211 ... Storage capacitor, 212, 213 ... Amplifier, 214, 401 ... Sense amplifier, 215, 216 ... MOSFET, 02 ... differential amplifier, 403 ... output amplifier, 405 ... output signal terminal.

Claims (8)

FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、
前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、
εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート幅が
(εεT/en)1/2
のオーダとなることを特徴とする核酸検出センサ。
In a nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor),
Immobilizing at least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule to the gate of the FET;
ε 0 is the vacuum dielectric constant, ε r is the relative dielectric constant of the channel region, k B is the Boltzmann constant, T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density. width (ε 0 ε r k B T / e 2 n) 1/2
Nucleic acid detection sensor, characterized in that
前記FETのゲート長は、前記FETのゲート幅と同様のオーダであり、かつ、前記ゲート幅よりも大きいことを特徴とする請求項1に記載の核酸検出センサ。   The nucleic acid detection sensor according to claim 1, wherein the gate length of the FET is on the same order as the gate width of the FET and is larger than the gate width. FET(field-effect transistor)の特性変調の強度に基づいて検体中に含まれる特定の配列を有した標的核酸分子を検出するための核酸検出センサにおいて、
前記FETのゲートに、前記標的核酸分子とハイブリダイゼーションすることが可能なプローブ核酸分子を少なくとも1つ固定化し、
εを真空の誘電率、εをチャネル領域の比誘電率、kをボルツマン定数、TをFETのチャネル領域の絶対温度、eを素電荷、nをキャリア密度とすると、前記FETのゲート長が
(εεT/en)1/2
のオーダとなることを特徴とする核酸検出センサ。
In a nucleic acid detection sensor for detecting a target nucleic acid molecule having a specific sequence contained in a specimen based on the intensity of characteristic modulation of an FET (field-effect transistor),
Immobilizing at least one probe nucleic acid molecule capable of hybridizing with the target nucleic acid molecule to the gate of the FET;
ε 0 is the vacuum dielectric constant, ε r is the relative dielectric constant of the channel region, k B is the Boltzmann constant, T is the absolute temperature of the channel region of the FET, e is the elementary charge, and n is the carrier density. long, (ε 0 ε r k B T / e 2 n) 1/2
Nucleic acid detection sensor, characterized in that
請求項1から請求項3のいずれか1項に記載の核酸検出センサを複数備える核酸検出チップにおいて、
検出時間をt、核酸分子の拡散定数をD=1.6×10−6cm/sとすると、前記核酸検出チップ上での単位面積当りの前記核酸検出センサの個数が、
1/Dt
のオーダかそれ以上となることを特徴とする核酸検出チップ。
In a nucleic acid detection chip comprising a plurality of nucleic acid detection sensors according to any one of claims 1 to 3,
When the detection time is t and the diffusion constant of the nucleic acid molecule is D = 1.6 × 10 −6 cm 2 / s, the number of the nucleic acid detection sensors per unit area on the nucleic acid detection chip is
1 / Dt
A nucleic acid detection chip characterized by being on the order of or higher.
全核酸検出センサ数に対する核酸を検出した核酸検出センサの数の割合に基づいて、前記検体中に含まれる標的核酸分子の核酸濃度を推定することを特徴とする請求項4に記載の核酸検出チップ。   5. The nucleic acid detection chip according to claim 4, wherein the nucleic acid concentration of a target nucleic acid molecule contained in the sample is estimated based on a ratio of the number of nucleic acid detection sensors that detect nucleic acids to the total number of nucleic acid detection sensors. . 請求項1から請求項3のいずれか1項に記載の核酸検出用センサと、
前記核酸検出用センサとは、核酸プローブ分子が異なり、検体に含まれる核酸分子とは相補性のない塩基配列を持った核酸プローブ分子がゲートに固定されたゼロレベル検出用センサと、
各前記センサのドレイン端子にそれぞれ接続する2つの容量素子と、
予め決められた電圧値で充電された各前記容量素子の電荷を各前記センサに含まれるFETを介して放電し、その際の各前記FETからの放電効率の差を増幅するセンスアンプと、
前記放電効率の差に基づいて、核酸検出の有無を判定する判定手段を具備することを特徴とする核酸検出装置。
A nucleic acid detection sensor according to any one of claims 1 to 3,
A nucleic acid probe molecule is different from the nucleic acid probe molecule, and a zero level detection sensor in which a nucleic acid probe molecule having a base sequence that is not complementary to a nucleic acid molecule contained in a specimen is fixed to a gate;
Two capacitive elements respectively connected to the drain terminals of the sensors;
A sense amplifier that discharges the charge of each capacitive element charged at a predetermined voltage value through an FET included in each sensor, and amplifies a difference in discharge efficiency from each FET at that time,
A nucleic acid detection apparatus comprising: determination means for determining presence or absence of nucleic acid detection based on the difference in discharge efficiency.
請求項1から請求項3のいずれか1項に記載の核酸検出用センサと、
前記核酸検出用センサとは、核酸プローブ分子が異なり、検体に含まれる核酸分子とは相補性のない塩基配列を持った核酸プローブ分子がゲートに固定されたゼロレベル検出用センサと、
各前記センサに含まれるFETを入力用のトランジスタとして用いる差動対と、
前記差動対に対して共通の参照電圧をかけることにより生ずる差動対の出力電圧の大きさに基づいて、核酸検出の有無を判定する判定手段を具備することを特徴とする核酸検出装置。
A nucleic acid detection sensor according to any one of claims 1 to 3,
A nucleic acid probe molecule is different from the nucleic acid probe molecule, and a zero level detection sensor in which a nucleic acid probe molecule having a base sequence that is not complementary to a nucleic acid molecule contained in a specimen is fixed to a gate;
A differential pair using an FET included in each sensor as an input transistor;
A nucleic acid detection apparatus comprising: a determination unit that determines whether or not nucleic acid is detected based on a magnitude of an output voltage of a differential pair generated by applying a common reference voltage to the differential pair.
請求項1から請求項3のいずれか1項に記載の核酸検出センサを複数備える核酸検出チップにおいて、
検出時間をt、核酸分子の拡散定数をDとすると、前記核酸検出チップ上での単位面積当りの前記核酸検出センサの個数が、
1/Dt
のオーダかそれ以上となることを特徴とする核酸検出チップ。
In a nucleic acid detection chip comprising a plurality of nucleic acid detection sensors according to any one of claims 1 to 3,
When the detection time is t and the diffusion constant of the nucleic acid molecule is D, the number of the nucleic acid detection sensors per unit area on the nucleic acid detection chip is
1 / Dt
A nucleic acid detection chip characterized by being on the order of or higher.
JP2005300546A 2004-10-14 2005-10-14 Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device Pending JP2006138846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300546A JP2006138846A (en) 2004-10-14 2005-10-14 Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004300267 2004-10-14
JP2005300546A JP2006138846A (en) 2004-10-14 2005-10-14 Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device

Publications (1)

Publication Number Publication Date
JP2006138846A true JP2006138846A (en) 2006-06-01

Family

ID=36619756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300546A Pending JP2006138846A (en) 2004-10-14 2005-10-14 Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device

Country Status (1)

Country Link
JP (1) JP2006138846A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903526B1 (en) 2007-10-19 2009-06-19 재단법인대구경북과학기술원 Biosensor using a field effect transistor
JP2012047612A (en) * 2010-08-27 2012-03-08 Dainippon Printing Co Ltd Current mirror type biosensor
JP2013064744A (en) * 2006-12-14 2013-04-11 Life Technologies Corp Method and apparatus for measuring analyte using large scale fet arrays
US8912005B1 (en) 2010-09-24 2014-12-16 Life Technologies Corporation Method and system for delta double sampling
US8912580B2 (en) 2009-05-29 2014-12-16 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
KR20170130607A (en) * 2015-07-29 2017-11-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. The surface enhancement type luminescence field generating base
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US9944981B2 (en) 2008-10-22 2018-04-17 Life Technologies Corporation Methods and apparatus for measuring analytes
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816506B2 (en) 2006-12-14 2020-10-27 Life Technologies Corporation Method for measuring analytes using large scale chemfet arrays
US10633699B2 (en) 2006-12-14 2020-04-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11435314B2 (en) 2006-12-14 2022-09-06 Life Technologies Corporation Chemically-sensitive sensor array device
JP2013081464A (en) * 2006-12-14 2013-05-09 Life Technologies Corp Method and apparatus for measuring analyte using large scale fet array
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US20220340965A1 (en) * 2006-12-14 2022-10-27 Life Technologies Corporation Methods and Apparatus for Measuring Analytes Using Large Scale FET Arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
JP2013064744A (en) * 2006-12-14 2013-04-11 Life Technologies Corp Method and apparatus for measuring analyte using large scale fet arrays
US10502708B2 (en) 2006-12-14 2019-12-10 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11732297B2 (en) * 2006-12-14 2023-08-22 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
KR100903526B1 (en) 2007-10-19 2009-06-19 재단법인대구경북과학기술원 Biosensor using a field effect transistor
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11137369B2 (en) 2008-10-22 2021-10-05 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9944981B2 (en) 2008-10-22 2018-04-17 Life Technologies Corporation Methods and apparatus for measuring analytes
US11448613B2 (en) 2008-10-22 2022-09-20 Life Technologies Corporation ChemFET sensor array including overlying array of wells
US11874250B2 (en) 2008-10-22 2024-01-16 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8912580B2 (en) 2009-05-29 2014-12-16 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US10809226B2 (en) 2009-05-29 2020-10-20 Life Technologies Corporation Methods and apparatus for measuring analytes
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US11692964B2 (en) 2009-05-29 2023-07-04 Life Technologies Corporation Methods and apparatus for measuring analytes
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
US11768171B2 (en) 2009-05-29 2023-09-26 Life Technologies Corporation Methods and apparatus for measuring analytes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US10481123B2 (en) 2010-06-30 2019-11-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
JP2012047612A (en) * 2010-08-27 2012-03-08 Dainippon Printing Co Ltd Current mirror type biosensor
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9958415B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation ChemFET sensor including floating gate
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US8912005B1 (en) 2010-09-24 2014-12-16 Life Technologies Corporation Method and system for delta double sampling
US10365321B2 (en) 2011-12-01 2019-07-30 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10598723B2 (en) 2011-12-01 2020-03-24 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11774401B2 (en) 2013-06-10 2023-10-03 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10816504B2 (en) 2013-06-10 2020-10-27 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11499938B2 (en) 2013-06-10 2022-11-15 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10767224B2 (en) 2014-12-18 2020-09-08 Life Technologies Corporation High data rate integrated circuit with power management
KR20170130607A (en) * 2015-07-29 2017-11-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. The surface enhancement type luminescence field generating base
KR102031608B1 (en) 2015-07-29 2019-10-14 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Surface Enhanced Luminance Field Generation Base
JP2018515767A (en) * 2015-07-29 2018-06-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Surface-enhanced light-emitting electric field generating substrate
US10444151B2 (en) 2015-07-29 2019-10-15 Hewlett-Packard Development Company, L.P. Surface enhanced luminescence electric field generating base

Similar Documents

Publication Publication Date Title
JP2006138846A (en) Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting device
US20060147983A1 (en) Nucleic acid detecting sensor, nucleic acid detecting chip, and nucleic acid detecting circuit
JP6438420B2 (en) Transistor circuits for chemical reaction and compound detection and measurement
JP5890423B2 (en) ISFET device
US11008611B2 (en) Double gate ion sensitive field effect transistor
JP4883812B2 (en) Substance detection device
CN105911126B (en) Matched transistor pair circuit
JP5876044B2 (en) Chemically sensitive sensor with lightly doped drain
EP2521909B1 (en) Ultra low-power cmos based bio-sensor circuit
CN101896814A (en) A sensor, a sensor array, and a method of operating a sensor
US10302590B2 (en) Integrated circuit with sensing transistor array, sensing apparatus and measuring method
Nakazato et al. CMOS cascode source-drain follower for monolithically integrated biosensor array
EP1452867B1 (en) DNA specific capacity affinity sensor
US20230133476A1 (en) Time-Resolved Multi-Gate Ion Sensitive Field Effect Transducer and System and Method of Operating the Same
Gupta et al. Device-to-circuit integrated design of DMFET biosensor and its readout using CMOS pre-charge amplifier
Sonedda et al. A CMOS Lab-on-a-Chip for Fully Automated Telomerase Activity Detection
Nakazato et al. Source-drain follower for monolithically integrated sensor array
CN116973423A (en) Solution detection circuit, solution detection device, solution detection method, and solution detection method
JP2009135967A (en) Electronic apparatus, driving method for same, and driving method for electronic circuit
Hwan et al. Design of Low Power Integrated CMOS Potentiometric Biosensor for Direct Electronic Detection of DNA Hybridization
Temple-Boyer et al. Amplifying structure for the development of field-effect capacitive sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126