JP2006138545A - Air conditioner, and its operation method - Google Patents

Air conditioner, and its operation method Download PDF

Info

Publication number
JP2006138545A
JP2006138545A JP2004328741A JP2004328741A JP2006138545A JP 2006138545 A JP2006138545 A JP 2006138545A JP 2004328741 A JP2004328741 A JP 2004328741A JP 2004328741 A JP2004328741 A JP 2004328741A JP 2006138545 A JP2006138545 A JP 2006138545A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
temperature
cycle operation
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328741A
Other languages
Japanese (ja)
Inventor
Toshiichi Tomioka
冨岡  敏一
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004328741A priority Critical patent/JP2006138545A/en
Publication of JP2006138545A publication Critical patent/JP2006138545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner not causing cost increase, and capable of carrying out wet heating against microorganisms adhered to and growing on an indoor heat exchanger surface during a stopped state of the air conditioner or during heating cycle operation without requiring a humidifying means in an indoor unit casing. <P>SOLUTION: During the stopped state of the air conditioner, or when carrying out the heating cycle operation, when an instruction for inactivation operation is outputted, dehumidification cycle operation is carried out, and it is confirmed by a dew formation sensor whether the indoor heat exchanger surface is covered by dew water. If it is covered by dew water, high temperature heating cycle operation with a higher heat dissipation temperature than the normal heating cycle operation is carried out, and a temperature of an indoor heat exchanger is raised. A surface temperature of the indoor heat exchanger is measured by a temperature sensor, and when the temperature arrives at a protein denaturation temperature of the microorganisms, the indoor heat exchanger is maintained at the temperature or more for a predetermined time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空気調和機とその運転方法に関し、特に空気調和機の室内熱交換器表面に付着、生育する微生物の数を減じる不活化に関する。   The present invention relates to an air conditioner and a method for operating the same, and more particularly to inactivation to reduce the number of microorganisms that adhere to and grow on the indoor heat exchanger surface of the air conditioner.

微生物の不活化方法としては加熱処理があるが、微生物を加熱空気による乾熱加熱を行う場合と、蒸気や熱水による湿熱加熱を行う場合とで不活化効果は大きく異なる。すなわち、湿熱加熱は乾熱加熱に比べて不活化効果が大きいことが知られている(例えば、非特許文献1)。この理由としては、微生物の生育培地の水分量が多くなるほど、微生物への伝熱量も大きく加熱効果が高くなり、微生物を構成する蛋白質、および核酸が熱変性しやすくなるためと考えられる。   As a method for inactivating microorganisms, there is a heat treatment, but the inactivation effect is greatly different between when the microorganisms are heated by dry heat using heated air and when the microorganisms are heated by wet heat using steam or hot water. That is, it is known that wet heat heating has a greater inactivation effect than dry heat heating (for example, Non-Patent Document 1). The reason for this is considered that as the amount of water in the growth medium of the microorganism increases, the amount of heat transfer to the microorganism increases and the heating effect increases, and the proteins and nucleic acids constituting the microorganism are more likely to be thermally denatured.

そこで空気調和機の室内機に付着、生育する微生物の不活化方法としても、湿熱加熱による方法が開示されている(例えば、特許文献1)。これは、空気調和機の室内機筐体内部に加湿器で水分を供給するとともに、室内熱交換器で加熱する方法である。
特開平9−229456号公報 芝崎勲監修「殺菌・除菌応用ハンドブック」(株)サイエンスフォーラム、昭和60年9月25日、p22−25
Therefore, as a method for inactivating microorganisms that adhere to and grow in the indoor unit of an air conditioner, a method using wet heat heating is disclosed (for example, Patent Document 1). This is a method of supplying moisture to the inside of the indoor unit casing of the air conditioner with a humidifier and heating with an indoor heat exchanger.
JP-A-9-229456 "Handbook for sterilization and sterilization" supervised by Isao Shibazaki, Science Forum, September 25, 1985, p22-25

このように、従来の空気調和機の室内機に付着、生育する微生物の不活化方法は、室内機筐体内全体を加湿、昇温するものであった。これは、従来の空気調和機では室内機筐体内全体を昇温させる速度が遅く、不活化するのに必要な温度に上昇させるまでに室内機筐体内の水分が蒸発するため、湿熱加熱を行うには加湿手段が必要となっていた。その結果、加湿手段が空気調和機のコストアップを引き起こすという課題があった。   As described above, the conventional method for inactivating microorganisms that adhere to and grow on the indoor unit of an air conditioner humidifies and heats up the entire interior of the indoor unit casing. This is because the conventional air conditioner has a slow rate of heating the entire interior of the indoor unit casing, and the moisture in the indoor unit casing evaporates before the temperature rises to the temperature required for inactivation. Needed to be humidified. As a result, there has been a problem that the humidifying means increases the cost of the air conditioner.

そこで、本発明はこのような従来の課題を解決するためになされたものであり、空気調和機の停止状態、または暖房サイクル運転時に室内熱交換器表面に付着、生育する微生物に対して、室内機筐体内に加湿手段を必要とすることなく湿熱加熱が行え、コストアップを引き起こさない空気調和機を提供することを目的とする。   Therefore, the present invention has been made in order to solve such a conventional problem, and it is possible to prevent microorganisms that adhere to and grow on the surface of the indoor heat exchanger when the air conditioner is stopped or during a heating cycle operation. It is an object of the present invention to provide an air conditioner that can perform wet heat heating without requiring humidification means in the machine casing and does not cause an increase in cost.

本発明は、二酸化炭素を冷媒とし冷媒を室内熱交換器で放熱させ室外熱交換器で蒸発させて室内熱交換器で加熱された室内空気を室内機吹出口からファンで室内に送風する暖房サイクル運転と、冷媒を室内熱交換器で蒸発させ室外熱交換器で放熱させて室内熱交換器表面に結露水を生じさせる除湿サイクル運転とを切り替える制御部を備えた空気調和機であって、制御部は、空気調和機の停止状態または暖房サイクル運転から除湿サイクル運転に切り替えて室内熱交換器の表面に結露水を付着させ、除湿サイクル運転から暖房サイクル運転より室内熱交換器での放熱温度を高温にする高温暖房サイクル運転に切り替えて室内熱交換器表面を微生物の蛋白質変性温度以上にし、室内熱交換器表面を微生物の蛋白質変性温度以上で所定時間保持することである。   The present invention relates to a heating cycle in which carbon dioxide is used as a refrigerant, the refrigerant is radiated by an indoor heat exchanger, evaporated by an outdoor heat exchanger, and indoor air heated by the indoor heat exchanger is blown from the indoor unit outlet into the room by a fan. An air conditioner equipped with a control unit that switches between operation and dehumidification cycle operation that evaporates refrigerant in an indoor heat exchanger and dissipates heat in an outdoor heat exchanger to generate condensed water on the surface of the indoor heat exchanger. Switch from the air conditioner stopped state or heating cycle operation to dehumidification cycle operation to attach dew condensation water to the surface of the indoor heat exchanger, and the heat release temperature in the indoor heat exchanger from the dehumidification cycle operation to the heating cycle operation. Switch to high-temperature heating cycle operation to raise the temperature to bring the indoor heat exchanger surface above the microbial protein denaturation temperature and hold the indoor heat exchanger surface above the microbial protein denaturation temperature for a predetermined time. It is.

冷媒として二酸化炭素を用いることにより容易に高い冷媒温度を得られるため、室内熱交換器表面の温度上昇を急速にできる。その結果、除湿サイクル運転から高温暖房サイクル運転に切り替えると、室内熱交換器表面を結露水が蒸発する以前に微生物の蛋白質変性温度以上とすることができる。ここで微生物を不活化させるには、加熱温度が高温では短時間でよいが低温では長時間の加熱が必要となる。また、微生物を不活化させるには、微生物を構成している蛋白質を変性させる必要がある。そのため、微生物を不活化させるための加熱温度は、微生物の蛋白質変性温度以上にする必要があり、その温度以上で所定時間保持することで微生物を不活化できる。このように、室内熱交換器表面で生育する微生物に対して、室内熱交換器表面での湿熱加熱が加湿手段を必要とすることなく可能となるため、空気調和機のコストアップにつながることもない。   By using carbon dioxide as the refrigerant, a high refrigerant temperature can be easily obtained, so that the temperature of the indoor heat exchanger surface can be rapidly increased. As a result, when the dehumidification cycle operation is switched to the high-temperature heating cycle operation, the surface of the indoor heat exchanger can be made higher than the protein denaturation temperature of the microorganisms before the condensed water evaporates. Here, in order to inactivate microorganisms, a short time is sufficient at a high heating temperature, but a long time heating is necessary at a low temperature. Moreover, in order to inactivate microorganisms, it is necessary to denature the protein which comprises microorganisms. Therefore, the heating temperature for inactivating the microorganism needs to be equal to or higher than the protein denaturation temperature of the microorganism, and the microorganism can be inactivated by maintaining the temperature at the temperature or higher for a predetermined time. In this way, for microorganisms growing on the surface of the indoor heat exchanger, it is possible to heat and heat the surface of the indoor heat exchanger without requiring a humidifying means, which may lead to an increase in the cost of the air conditioner. Absent.

また本発明の空気調和機は、室内熱交換器の表面に接して温度センサおよび結露センサを備えた構成としてもよい。このような構成により、より確実に室内熱交換器表面の温度および結露水が蒸発していないかを確認でき、微生物の不活化をより確実にできる。   Moreover, the air conditioner of this invention is good also as a structure provided with the temperature sensor and the dew condensation sensor in contact with the surface of an indoor heat exchanger. With such a configuration, the temperature of the indoor heat exchanger surface and whether condensed water has evaporated can be confirmed more reliably, and microorganisms can be inactivated more reliably.

本発明の空気調和機の運転方法は、二酸化炭素を冷媒とし冷媒を室内熱交換器で放熱させ室外熱交換器で蒸発させて室内熱交換器で加熱された室内空気を室内機吹出口からファンで室内に送風する暖房サイクル運転と、冷媒を室内熱交換器で蒸発させ室外熱交換器で放熱させて室内熱交換器表面に結露水を生じさせる除湿サイクル運転とが切り替え可能であって、空気調和機の停止状態または暖房サイクル運転から除湿サイクル運転に切り替えて室内熱交換器の表面に結露水を付着させる第1ステップと、除湿サイクル運転から暖房サイクル運転より室内熱交換器での放熱温度を高温にする高温暖房サイクル運転に切り替えて結露水が蒸発する以前に室内熱交換器表面を微生物の蛋白質変性温度以上にする第2ステップと、室内熱交換器表面を微生物の蛋白質変性温度以上で所定時間保持する第3ステップとを含む不活化運転を行うことである。このような運転方法により、室内機内に加湿手段を必要とすることなく、室内熱交換器の表面の微生物を不活化できる。   The operation method of the air conditioner according to the present invention is such that the indoor air heated by the indoor heat exchanger is heated from the indoor unit outlet through the fan by using carbon dioxide as a refrigerant, radiating the refrigerant with the indoor heat exchanger, evaporating with the outdoor heat exchanger. Between the heating cycle operation that blows the air in the room and the dehumidification cycle operation that causes the refrigerant to evaporate in the indoor heat exchanger and dissipate heat in the outdoor heat exchanger to generate condensed water on the surface of the indoor heat exchanger. The first step of switching from the condition where the conditioner is stopped or from the heating cycle operation to the dehumidification cycle operation to attach condensed water to the surface of the indoor heat exchanger, and the heat radiation temperature in the indoor heat exchanger from the dehumidification cycle operation to the heating cycle operation Switch to high temperature heating cycle operation to raise the temperature, and before the condensed water evaporates, the second step to bring the surface of the indoor heat exchanger above the protein denaturation temperature of the microorganism, and the surface of the indoor heat exchanger It is to perform the inactivation operation and a third step of holding a predetermined time at the protein denaturation temperature or more microorganisms. By such an operation method, the microorganisms on the surface of the indoor heat exchanger can be inactivated without requiring humidification means in the indoor unit.

また、本発明の空気調和機の運転方法の第3ステップの室内熱交換器表面の温度および所定時間を、75℃以上で5分以上としてもよい。このような温度、時間条件では、空中浮遊細菌および真菌を不活化できる。   In addition, the temperature of the indoor heat exchanger surface and the predetermined time in the third step of the operation method of the air conditioner of the present invention may be 75 ° C. or more and 5 minutes or more. Under such temperature and time conditions, airborne bacteria and fungi can be inactivated.

また、本発明の空気調和機の運転方法の第3ステップの室内熱交換器表面の温度および所定時間を、85℃以上で10分以上としてもよい。このような温度、時間条件では、ウエルシ菌を不活化できる。   Further, the temperature of the indoor heat exchanger surface and the predetermined time in the third step of the operation method of the air conditioner of the present invention may be 85 ° C. or more and 10 minutes or more. Such temperature and time conditions can inactivate C. perfringens.

本発明の空気調和機とその運転方法によれば、空気調和機が停止状態あるいは暖房サイクル運転時に室内熱交換器表面に付着、生育する微生物の湿熱加熱を、空気調和機の室内機内に加湿手段を必要とすることなく行えるため、空気調和機のコストアップを引き起こすことがない。   According to the air conditioner of the present invention and the operation method thereof, humidifying means for heating the microorganisms that adhere to and grow on the surface of the indoor heat exchanger when the air conditioner is stopped or in the heating cycle operation is humidified in the indoor unit of the air conditioner. Therefore, the cost of the air conditioner is not increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
図1は、本発明の実施の形態の空気調和機の概略構成図である。空気調和機は室内機10と室外機20とにより構成されている。そして室内機10には、室内熱交換器14および室内制御部16が備えられている。室内熱交換器14には、室内熱交換器14の表面に水分が付着しているかを検出する結露センサ12および、室内熱交換器14の表面温度を検出する温度センサ13を備えられている。また、室外機20には室外熱交換器22、膨張弁24、圧縮機26、四方弁28、室外制御部30が備えられている。さらに、図1に示すように、室内熱交換器14、膨張弁24、室外熱交換器22、四方弁28および圧縮機26は冷媒配管34で接続され、冷凍サイクルを構成している。冷媒としては二酸化炭素が充填されている。
(Embodiment)
FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. The air conditioner includes an indoor unit 10 and an outdoor unit 20. The indoor unit 10 includes an indoor heat exchanger 14 and an indoor control unit 16. The indoor heat exchanger 14 includes a dew condensation sensor 12 that detects whether moisture is attached to the surface of the indoor heat exchanger 14, and a temperature sensor 13 that detects the surface temperature of the indoor heat exchanger 14. The outdoor unit 20 includes an outdoor heat exchanger 22, an expansion valve 24, a compressor 26, a four-way valve 28, and an outdoor control unit 30. Further, as shown in FIG. 1, the indoor heat exchanger 14, the expansion valve 24, the outdoor heat exchanger 22, the four-way valve 28, and the compressor 26 are connected by a refrigerant pipe 34 to constitute a refrigeration cycle. Carbon dioxide is filled as the refrigerant.

次に、このような空気調和機の冷凍サイクルにおける動作を説明する。図1において除湿サイクル運転では、冷媒は実線矢印Aのように流れ、室内熱交換器14で蒸発し室内熱交換器14表面を低温にする。そして室内熱交換器14表面で、室内空気を結露させて除湿し、室外熱交換器22で放熱する。また、暖房サイクル運転および高温暖房サイクル運転では、冷媒は破線矢印Bのように流れ、室外熱交換器22で蒸発し、室内熱交換器14で放熱する。なお、このような冷媒の流れの切り替えは四方弁28で行われ、圧縮機26は冷媒を高温、高圧にして放熱しやすくし、膨張弁24では冷媒の圧力を低下させて蒸発させやすくしている。   Next, the operation | movement in the refrigerating cycle of such an air conditioner is demonstrated. In the dehumidification cycle operation in FIG. 1, the refrigerant flows as indicated by a solid arrow A, evaporates in the indoor heat exchanger 14, and lowers the surface of the indoor heat exchanger 14. Then, the indoor air is condensed on the surface of the indoor heat exchanger 14 to dehumidify, and the outdoor heat exchanger 22 radiates heat. Further, in the heating cycle operation and the high-temperature heating cycle operation, the refrigerant flows as indicated by a broken line arrow B, evaporates in the outdoor heat exchanger 22, and dissipates heat in the indoor heat exchanger 14. The switching of the refrigerant flow is performed by the four-way valve 28. The compressor 26 makes it easy to dissipate heat by setting the refrigerant to a high temperature and high pressure, and the expansion valve 24 reduces the refrigerant pressure to facilitate evaporation. Yes.

図2は、本発明の実施の形態の空気調和機における室内熱交換器の斜視図である。室内熱交換器14は、例えば冷媒が通る銅管36とアルミ製のフィン38で構成されるフィンチューブ型で、その表面に結露センサ12および温度センサ13が備えられている。温度センサ13の取り付け位置は室内熱交換器14表面を平均する温度を計測できるように、銅管36とフィン38辺縁の中央がよい。   FIG. 2 is a perspective view of the indoor heat exchanger in the air conditioner according to the embodiment of the present invention. The indoor heat exchanger 14 is, for example, a fin tube type composed of a copper pipe 36 through which a refrigerant passes and aluminum fins 38, and the condensation sensor 12 and the temperature sensor 13 are provided on the surface thereof. The temperature sensor 13 is preferably attached at the center of the edges of the copper pipe 36 and the fin 38 so that the average temperature of the surface of the indoor heat exchanger 14 can be measured.

上述したように除湿サイクル運転では、室内熱交換器14で冷媒が蒸発し、その表面が低温になるため結露して結露水40に覆われた状態になっている。ここでフィン38の表面は一様に水膜に覆われているが、フィン38の上端から下端にかけて水滴を形成し、ドレンパン44に流下する。従ってフィン38の下端が最も濡れた状態になっている。そのため図2に示すように、高温暖房サイクル運転時の圧縮機からの高温冷媒を室内熱交換器14の下部から上部に向けて循環させると、最も微生物42が生育しやすい箇所から高温加熱できるので効果的である。   As described above, in the dehumidification cycle operation, the refrigerant evaporates in the indoor heat exchanger 14 and the surface thereof is at a low temperature, so that condensation occurs and the dew condensation water 40 covers the surface. Here, the surface of the fin 38 is uniformly covered with a water film, but water droplets are formed from the upper end to the lower end of the fin 38 and flow down to the drain pan 44. Accordingly, the lower end of the fin 38 is most wet. Therefore, as shown in FIG. 2, when the high-temperature refrigerant from the compressor during the high-temperature heating cycle operation is circulated from the lower part to the upper part of the indoor heat exchanger 14, it can be heated at a high temperature from the place where the microorganisms 42 are most likely to grow. It is effective.

次に、空気調和機が停止状態または暖房サイクル運転から除湿サイクル運転を経て、結露水40で覆われた室内熱交換器14上の微生物を不活化する不活化運転を説明する。なお、この不活化運転を記憶している制御部は、図1の信号線32で接続された室内制御部16と室外制御部30とで構成されている。   Next, the inactivation operation in which the air conditioner inactivates microorganisms on the indoor heat exchanger 14 covered with the condensed water 40 through the dehumidification cycle operation from the stopped state or the heating cycle operation will be described. In addition, the control part which memorize | stores this inactivation driving | operation is comprised by the indoor control part 16 and the outdoor control part 30 which were connected by the signal wire | line 32 of FIG.

図3は、本発明の実施の形態の空気調和機の運転方法である微生物の不活化運転のフローチャートである。空気調和機が停止状態または暖房サイクル運転を行っているときに、不活化運転の指示が出されると、第1ステップでは除湿サイクル運転を行い、結露センサにより室内熱交換器表面が結露水で覆われているかを確認する。結露水で覆われていないと、室内熱交換器表面が結露水で覆われるまで除湿サイクル運転を続ける。結露水で覆われるとファンを停止し、室内熱交換器の急速な昇温を図るために室内機吹出口を閉鎖してもよい。第2ステップでは高温暖房サイクル運転を行い、室内熱交換器を昇温させる。そして室内熱交換器の表面温度を温度センサで計測し、微生物の蛋白質変性温度に達しているか確認する。微生物の蛋白質変性温度に達していないと、高温暖房サイクル運転を続ける。第3ステップでは室内熱交換器表面の温度が微生物の蛋白質変性温度に達すると、室内熱交換器をその温度以上で所定時間保持する。   FIG. 3 is a flowchart of the inactivation operation of microorganisms, which is an operation method of the air conditioner according to the embodiment of the present invention. When the air conditioner is in a stopped state or performing a heating cycle operation, if an inactivation operation instruction is issued, the dehumidification cycle operation is performed in the first step, and the surface of the indoor heat exchanger is covered with dew condensation water by the dew condensation sensor. Make sure that If it is not covered with condensed water, the dehumidification cycle operation is continued until the indoor heat exchanger surface is covered with condensed water. When covered with dew condensation water, the fan may be stopped and the indoor unit outlet may be closed in order to quickly raise the temperature of the indoor heat exchanger. In the second step, a high-temperature heating cycle operation is performed to raise the temperature of the indoor heat exchanger. Then, the surface temperature of the indoor heat exchanger is measured with a temperature sensor to check whether the protein denaturation temperature of the microorganism has been reached. If the protein denaturation temperature of the microorganism is not reached, the high-temperature heating cycle operation is continued. In the third step, when the temperature of the surface of the indoor heat exchanger reaches the protein denaturation temperature of the microorganism, the indoor heat exchanger is held at the temperature or higher for a predetermined time.

ここで室内熱交換器表面の結露水の蒸発能力は、室内熱交換器の周囲の空気の温度における飽和蒸気圧と絶対湿度の差である。室内熱交換器に高温冷媒が流入して加熱されると、室内熱交換器表面の温度は急速に上昇するものの、周囲の空気への熱伝達は遅れがあるため、結露水の蒸発も遅れて促進される。そのため、室内熱交換器表面の結露水が蒸発する以前にその表面温度を微生物の蛋白質変性温度より高くすることができ、その温度以上で所定時間保持する湿熱加熱を行え、室内熱交換器表面に付着、生育する微生物を不活化できる。   Here, the evaporation capacity of the dew condensation water on the surface of the indoor heat exchanger is the difference between the saturated vapor pressure and the absolute humidity at the temperature of the air around the indoor heat exchanger. When high-temperature refrigerant flows into the indoor heat exchanger and is heated, the temperature on the surface of the indoor heat exchanger rises rapidly, but heat transfer to the surrounding air is delayed, so evaporation of condensed water is also delayed. Promoted. Therefore, before the condensed water on the surface of the indoor heat exchanger evaporates, the surface temperature can be made higher than the protein denaturation temperature of the microorganism, and moist heat heating can be performed for a predetermined time above that temperature, and the surface of the indoor heat exchanger is Microbes that attach and grow can be inactivated.

このように、空気調和機の室内機に付着した微生物を湿熱加熱で効率的に不活化できるため、室内機内全体を加湿する装置も必要なくコストアップにつながることはない。   Thus, since the microorganisms adhering to the indoor unit of the air conditioner can be efficiently inactivated by wet heat heating, an apparatus for humidifying the entire interior of the indoor unit is not necessary, and the cost is not increased.

次に二酸化炭素を冷媒とし、除湿サイクル運転から高温暖房サイクル運転に切り替える時の運転条件の一例について説明する。図1に示すように除湿サイクル運転から冷媒の流れを矢印Aから、四方弁28で矢印Bに切り替え、例えばインバータ式の圧縮機26を最大周波数である100Hzで運転させた。図4は、このときの冷凍サイクルをモリエ線図で示したものである。冷媒が放熱する高圧圧力が11MPa、蒸発する低圧圧力が3.5MPaで室内熱交換器の表面温度は90℃以上となった。このように二酸化炭素を冷媒とすると高圧圧力と低圧圧力の比である圧縮比が3.1で90℃以上の室内熱交換器の表面温度、すなわち90℃以上の高温冷媒となる。従来のフロン系冷媒であるR−12では、例えば低圧圧力は0℃で蒸発させると0.32MPaで、高圧圧力は90℃で凝縮させても2.87MPaとなり圧縮比は9.0となり、圧縮機に過重な負担がかかってしまう。しかし、二酸化炭素を冷媒とすると、圧縮比が小さく圧縮機に過重な負担がかからない範囲で容易に高温冷媒が得られる。   Next, an example of operating conditions when switching from dehumidification cycle operation to high-temperature heating cycle operation using carbon dioxide as a refrigerant will be described. As shown in FIG. 1, the flow of the refrigerant from the dehumidification cycle operation is switched from the arrow A to the arrow B by the four-way valve 28, and for example, the inverter type compressor 26 is operated at a maximum frequency of 100 Hz. FIG. 4 is a Mollier diagram showing the refrigeration cycle at this time. The surface pressure of the indoor heat exchanger was 90 ° C. or higher with a high pressure of 11 MPa for releasing heat from the refrigerant and a low pressure of 3.5 MPa for evaporating. Thus, if carbon dioxide is used as the refrigerant, the surface temperature of the indoor heat exchanger having a compression ratio of 3.1, which is the ratio of the high pressure to the low pressure, is 90 ° C. or higher, that is, a high temperature refrigerant of 90 ° C. or higher. For R-12, which is a conventional fluorocarbon refrigerant, for example, the low pressure is 0.32 MPa when evaporated at 0 ° C., and the high pressure is 2.87 MPa even when condensed at 90 ° C., and the compression ratio is 9.0. The machine will be overloaded. However, when carbon dioxide is used as a refrigerant, a high-temperature refrigerant can be easily obtained within a range where the compression ratio is small and an excessive load is not imposed on the compressor.

次に、本発明の実施の形態の空気調和機の運転方法での微生物の不活化条件についての実験方法について説明する。除湿サイクル運転から高温暖房サイクル運転に切り替え結露水が蒸発しない条件で、到達させる室内熱交換器表面温度とその温度で保持する時間を変えた。そして、それぞれの温度と時間の組み合わせにおける室内熱交換器14のアルミフィン上の微生物が死滅せずに残っている生残菌数を計測した。その計測の試験方法は菌転写法を、菌数の測定方法は平板混釈法を用いた。   Next, an experimental method for inactivation conditions of microorganisms in the operation method of the air conditioner according to the embodiment of the present invention will be described. Switching from dehumidification cycle operation to high-temperature heating cycle operation, the condition that the surface temperature of the indoor heat exchanger to reach and the temperature held at that temperature were changed under the condition that the condensed water did not evaporate. And the number of surviving bacteria which the microorganisms on the aluminum fin of the indoor heat exchanger 14 in each combination of temperature and time remained without being killed was measured. The test method for the measurement was a bacterial transcription method, and the method for measuring the number of bacteria was a plate pour method.

具体的には室内熱交換器の表面温度と、その温度で保持する時間を変えたそれぞれの条件および高温暖房サイクル運転前の室内熱交換器表面が15℃のとき、室内熱交換器下部から5mm×5mmのアルミ片をそれぞれ切り出した。   Specifically, when the surface temperature of the indoor heat exchanger, the conditions for changing the holding time at that temperature, and the surface of the indoor heat exchanger before the high-temperature heating cycle operation are 15 ° C., 5 mm from the bottom of the indoor heat exchanger Each piece of × 5 mm aluminum was cut out.

そして、切り出したアルミ片を滅菌処理し、JIS Z 2801に基づき作製したリン酸緩衝生理食塩水10×10−3L(リットル)が入った試験管に浸漬後、よく振とうすることで表面に付着した菌を液中に分散させた。次に、シャーレにピペットでその試験管から液0.1×10−3L採り、45〜46℃に保温した普通寒天培地(肉エキス5.0g、ペプトン10.0g、塩化ナトリウム5.0g、寒天15.0gを1Lの水に溶かし、pH=7に調整してある)約15×10−3Lをシャーレに加え室温で放置し、培地が固まった後シャーレを倒置し、温度34℃〜36℃で40時間〜48時間培養した。その後、寒天培地1枚当たりの微生物の群落であるコロニー数を計数することでアルミ片上の生残菌数を計測した。 Then, the cut aluminum piece is sterilized, immersed in a test tube containing phosphate buffered saline 10 × 10 −3 L (liter) prepared based on JIS Z 2801, and then shaken well to the surface. The attached bacteria were dispersed in the liquid. Next, pipette into a petri dish and take 0.1 × 10 −3 L of liquid from the test tube, and keep it at 45 to 46 ° C. A normal agar medium (meat extract 5.0 g, peptone 10.0 g, sodium chloride 5.0 g, (15.0 g of agar is dissolved in 1 L of water and adjusted to pH = 7) About 15 × 10 −3 L is added to the petri dish and allowed to stand at room temperature. The cells were cultured at 36 ° C. for 40 hours to 48 hours. Thereafter, the number of surviving bacteria on the aluminum piece was counted by counting the number of colonies that were a community of microorganisms per agar medium.

(実験1)
高温暖房サイクル運転で到達させる室内熱交換器表面温度を65℃、75℃、85℃とし、それぞれの温度で保持する時間を3分、5分、10分とした。そして上述の実験方法に従い生残菌数を計測した。その結果を(表1)に示す。
(Experiment 1)
The indoor heat exchanger surface temperature reached by the high-temperature heating cycle operation was 65 ° C., 75 ° C., and 85 ° C., and the holding time at each temperature was 3 minutes, 5 minutes, and 10 minutes. And the number of surviving bacteria was measured according to the above-mentioned experimental method. The results are shown in (Table 1).

Figure 2006138545
Figure 2006138545

(表1)からわかるように、室内熱交換器表面温度を75℃以上で、5分以上保持する条件で微生物の生残菌数が、高温暖房サイクル運転前で15℃の室内熱交換器での生残菌数の1000分の1未満に減少している。また、このときの微生物の種類を調べると空中浮遊細菌および真菌であった。従って、室内熱交換器の表面温度を少なくとも75℃で5分保持すると、空中浮遊細菌および真菌を不活化できる。   As can be seen from (Table 1), the number of surviving microorganisms in the indoor heat exchanger is 15 ° C. before the high-temperature heating cycle operation under the condition that the surface temperature of the indoor heat exchanger is 75 ° C. or higher and maintained for 5 minutes or more. The number of surviving bacteria has been reduced to less than 1/1000. Moreover, when the kind of microorganisms at this time was investigated, they were airborne bacteria and fungi. Therefore, airborne bacteria and fungi can be inactivated by maintaining the surface temperature of the indoor heat exchanger at least at 75 ° C. for 5 minutes.

なお、空中浮遊粉塵からまれに発見されるウイルスについても、同様の温度、時間条件で実験を行ったが、室内熱交換器表面を75℃以上で5分以上保持すると不活化できた。   In addition, about the virus rarely discovered from airborne dust, it experimented on the same temperature and time conditions, but it was able to be inactivated when the indoor heat exchanger surface was hold | maintained at 75 degreeC or more for 5 minutes or more.

(実験2)
次に実験1で求められた不活化条件である、室内熱交換器の表面温度を75℃で5分以上保持する実験を繰り返し行った。そして、高温暖房サイクル運転前の15℃での室内熱交換器表面の生残菌数に対して、75℃で5分保持したときの生残菌数の割合を減菌率と定義し、その減菌率を実施例1も含めた26件で調べた。(表2)にその結果を示す。
(Experiment 2)
Next, an experiment was repeated in which the surface temperature of the indoor heat exchanger, which was the inactivation condition determined in Experiment 1, was maintained at 75 ° C. for 5 minutes or more. And, with respect to the number of surviving bacteria on the surface of the indoor heat exchanger at 15 ° C before the high-temperature heating cycle operation, the ratio of the number of surviving bacteria when held at 75 ° C for 5 minutes is defined as the sterilization rate, The sterilization rate was examined in 26 cases including Example 1. The results are shown in (Table 2).

Figure 2006138545
Figure 2006138545

(表2)に示すように26件中、20件は75℃、5分保持で減菌率が1000分の1未満となっているが、減菌率が100分の1、10分の1未満の場合が6例あり、それらの場合について、以下の条件で生残菌数を調べた。高温暖房サイクル運転で室内熱交換器表面の温度を75℃、85℃、95℃とし、それぞれの温度で保持する時間を5分、10分、15分とした。また、高温暖房サイクル運転前の表面温度が15℃の室内熱交換器の生残菌数も調べた。そして、実施例1と同様の実験を行い寒天培地1枚当たりの生残菌数を計測した。その結果を(表3)に示す。   As shown in (Table 2), among 26 cases, 20 cases are maintained at 75 ° C. for 5 minutes and the sterilization rate is less than 1/1000, but the sterilization rate is 1/100 and 1/10. There were 6 cases of less than those, and in those cases, the number of surviving bacteria was examined under the following conditions. The temperature of the surface of the indoor heat exchanger was set to 75 ° C., 85 ° C., and 95 ° C. in the high-temperature heating cycle operation, and the holding time at each temperature was set to 5 minutes, 10 minutes, and 15 minutes. Moreover, the survival cell count of the indoor heat exchanger whose surface temperature before a high-temperature heating cycle operation was 15 degreeC was investigated. And the experiment similar to Example 1 was performed, and the number of surviving bacteria per one agar medium was measured. The results are shown in (Table 3).

Figure 2006138545
Figure 2006138545

(表3)からわかるように、室内熱交換器表面温度を85℃以上で、10分以上保持する条件で微生物の生残菌数が、高温暖房サイクル運転前で15℃の室内熱交換器での生残菌数の10−3未満に減少している。また、このときの微生物の種類を調べるとウエルシ菌であった。従って表3からわかるように、室内熱交換器表面温度を少なくとも85℃で、10分保持するとウエルシ菌の生残菌数が減少し、不活化できることがわかる。このように不活化運転の温度、時間条件を異ならせることで、室内熱交換器の表面で生育する微生物を選択的に不活化することもできる。具体的には、高温暖房サイクル運転で到達させる室内熱交換器表面の温度を複数に変えるようにすればよい。例えば2段階に変え、「不活化ノーマル運転」は、空中浮遊細菌および真菌を不活化する。これらの微生物を不活化させる条件は、室内熱交換器の表面温度を75℃以上で5分以上保持すれば不活化できる。「不活化強運転」は、ウエルシ菌を不活化する。この微生物を不活化させる条件は、室内熱交換器の表面温度を85℃以上で10分以上保持すれば不活化できる。 As can be seen from (Table 3), the number of surviving microorganisms on the condition that the indoor heat exchanger surface temperature is 85 ° C. or higher and maintained for 10 minutes or longer is 15 ° C. in the indoor heat exchanger before high-temperature heating cycle operation. The number of surviving bacteria is less than 10 −3 . Further, when the type of microorganism at this time was examined, it was found to be Clostridium perfringens. Therefore, as can be seen from Table 3, when the indoor heat exchanger surface temperature is kept at at least 85 ° C. for 10 minutes, the number of surviving B. perfringens bacteria is reduced and can be inactivated. Thus, the microorganisms growing on the surface of the indoor heat exchanger can be selectively inactivated by changing the temperature and time conditions of the inactivation operation. Specifically, the temperature of the surface of the indoor heat exchanger that is reached in the high-temperature heating cycle operation may be changed to a plurality. For example, in two steps, “inactivated normal operation” inactivates airborne bacteria and fungi. Conditions for inactivating these microorganisms can be inactivated by maintaining the surface temperature of the indoor heat exchanger at 75 ° C. or more for 5 minutes or more. “Inactivated strong operation” inactivates C. perfringens. Conditions for inactivating the microorganism can be inactivated by maintaining the surface temperature of the indoor heat exchanger at 85 ° C. or higher for 10 minutes or longer.

なお、不活化運転の指示は図1に示すように、リモコン35から行うようにすればよい。このようにすれば、不活化運転を行うタイミングを選択でき、冷房運転を終了し無人となった室内で不活化運転を行えるため、高温気流による不快を感じることもないし、毎日繰返して行う等の不活化運転の効果的な運転方法も選択できる。   The inactivation operation may be instructed from the remote controller 35 as shown in FIG. In this way, the timing for performing the inactivation operation can be selected, and the inactivation operation can be performed in the room where the cooling operation is terminated and unattended, so there is no discomfort due to the high temperature air flow, and it is performed repeatedly every day. An effective driving method for inactivation can also be selected.

また、本発明の実施の形態では室内用の空気調和機で説明したが、自動車車内の空気調和機として使用しても、同様の効果が得られる。   In the embodiment of the present invention, the indoor air conditioner has been described. However, the same effect can be obtained even when used as an air conditioner in an automobile.

本発明の空気調和機とその運転方法によれば、加湿手段を有することなく湿熱加熱が可能となり、室内や自動車内等の室内熱交換器表面に生育する微生物の不活化の用途に適用できる。   According to the air conditioner and the operation method of the present invention, it is possible to heat and heat without having a humidifying means, and it can be applied to inactivation of microorganisms growing on the surface of an indoor heat exchanger such as indoors or in an automobile.

本発明の実施の形態の空気調和機の概略構成図The schematic block diagram of the air conditioner of embodiment of this invention 同実施の形態の空気調和機における室内熱交換器の斜視図The perspective view of the indoor heat exchanger in the air conditioner of the embodiment 同実施の形態の微生物の不活化運転のフローチャートFlow chart of microorganism inactivation operation of the embodiment 同実施の形態の二酸化炭素が冷媒の冷凍サイクルのモリエ線図Mollier diagram of refrigeration cycle of carbon dioxide refrigerant in the embodiment

符号の説明Explanation of symbols

10 室内機
12 結露センサ
13 温度センサ
14 室内熱交換器
16 室内制御部
20 室外機
22 室外熱交換器
24 膨張弁
26 圧縮機
28 四方弁
30 室外制御部
32 信号線
34 冷媒配管
35 リモコン
36,50 銅管
38 フィン
40 結露水
42 微生物
44 ドレンパン
DESCRIPTION OF SYMBOLS 10 Indoor unit 12 Condensation sensor 13 Temperature sensor 14 Indoor heat exchanger 16 Indoor control part 20 Outdoor unit 22 Outdoor heat exchanger 24 Expansion valve 26 Compressor 28 Four-way valve 30 Outdoor control part 32 Signal line 34 Refrigerant piping 35 Remote control 36,50 Copper tube 38 Fin 40 Condensed water 42 Microorganism 44 Drain pan

Claims (5)

二酸化炭素を冷媒とし前記冷媒を室内熱交換器で放熱させ室外熱交換器で蒸発させて前記室内熱交換器で加熱された室内空気を室内機吹出口からファンで室内に送風する暖房サイクル運転と、
前記冷媒を前記室内熱交換器で蒸発させ前記室外熱交換器で放熱させて前記室内熱交換器表面に結露水を生じさせる除湿サイクル運転と
を切り替える制御部を備えた空気調和機であって、
前記制御部は、
前記空気調和機の停止状態または前記暖房サイクル運転から前記除湿サイクル運転に切り替えて前記室内熱交換器の表面に結露水を付着させ、前記除湿サイクル運転から前記暖房サイクル運転より前記室内熱交換器での放熱温度を高温にする高温暖房サイクル運転に切り替えて前記室内熱交換器表面を前記微生物の蛋白質変性温度以上にし、前記室内熱交換器表面を前記微生物の蛋白質変性温度以上で所定時間保持することを特徴とする空気調和機。
Heating cycle operation in which carbon dioxide is used as a refrigerant, the refrigerant is radiated by an indoor heat exchanger, evaporated by an outdoor heat exchanger, and indoor air heated by the indoor heat exchanger is blown indoors from an indoor unit outlet through a fan; ,
An air conditioner comprising a control unit that switches between a dehumidification cycle operation that evaporates the refrigerant in the indoor heat exchanger and dissipates heat in the outdoor heat exchanger to generate condensed water on the surface of the indoor heat exchanger,
The controller is
Switch from the air conditioner stopped state or the heating cycle operation to the dehumidification cycle operation to attach condensed water to the surface of the indoor heat exchanger, and from the dehumidification cycle operation to the indoor heat exchanger from the heating cycle operation Switching to a high-temperature heating cycle operation in which the heat radiation temperature of the microorganism is increased to bring the surface of the indoor heat exchanger to a temperature higher than the protein denaturation temperature of the microorganism, and holding the surface of the indoor heat exchanger at a temperature equal to or higher than the protein denaturation temperature of the microorganism for a predetermined time. Air conditioner characterized by.
前記室内熱交換器の表面に接して温度センサおよび結露センサを備えたことを特徴とする請求項1記載の空気調和機。 The air conditioner according to claim 1, further comprising a temperature sensor and a dew condensation sensor in contact with a surface of the indoor heat exchanger. 二酸化炭素を冷媒とし前記冷媒を室内熱交換器で放熱させ室外熱交換器で蒸発させて前記室内熱交換器で加熱された室内空気を室内機吹出口からファンで室内に送風する暖房サイクル運転と、
前記冷媒を前記室内熱交換器で蒸発させ前記室外熱交換器で放熱させて前記室内熱交換器表面に結露水を生じさせる除湿サイクル運転と
が切り替え可能であって、
前記空気調和機の停止状態または前記暖房サイクル運転から前記除湿サイクル運転に切り替えて前記室内熱交換器の表面に結露水を付着させる第1ステップと、
前記除湿サイクル運転から前記暖房サイクル運転より前記室内熱交換器での放熱温度を高温にする高温暖房サイクル運転に切り替えて前記結露水が蒸発する以前に前記室内熱交換器表面を前記微生物の蛋白質変性温度以上にする第2ステップと、
前記室内熱交換器表面を前記微生物の蛋白質変性温度以上で所定時間保持する第3ステップと
を含む不活化運転を行うことを特徴とする空気調和機の運転方法。
Heating cycle operation in which carbon dioxide is used as a refrigerant, the refrigerant is radiated by an indoor heat exchanger, evaporated by an outdoor heat exchanger, and indoor air heated by the indoor heat exchanger is blown indoors from an indoor unit outlet through a fan; ,
Dehumidification cycle operation that evaporates the refrigerant in the indoor heat exchanger and dissipates heat in the outdoor heat exchanger to generate condensed water on the indoor heat exchanger surface can be switched,
A first step of switching the air conditioner from a stopped state or the heating cycle operation to the dehumidification cycle operation and attaching condensed water to the surface of the indoor heat exchanger;
The dehumidification cycle operation is switched from the heating cycle operation to a high-temperature heating cycle operation in which the heat radiation temperature in the indoor heat exchanger is increased, and the surface of the indoor heat exchanger is denatured before the condensed water evaporates. A second step of making the temperature or higher;
A method for operating an air conditioner, comprising performing an inactivation operation including a third step of maintaining the surface of the indoor heat exchanger at a temperature equal to or higher than a protein denaturation temperature of the microorganism for a predetermined time.
前記第3ステップの室内熱交換器表面の温度および所定時間を75℃以上で5分以上とすることを特徴とする請求項3記載の空気調和機の運転方法。 The method of operating an air conditioner according to claim 3, wherein the temperature and the predetermined time of the indoor heat exchanger surface in the third step are set to 75 ° C or more and 5 minutes or more. 前記第3ステップの室内熱交換器表面の温度および所定時間を85℃以上で10分以上とすることを特徴とする請求項4記載の空気調和機の運転方法。 The method of operating an air conditioner according to claim 4, wherein the temperature and the predetermined time of the indoor heat exchanger surface in the third step are set to 85 ° C or more and 10 minutes or more.
JP2004328741A 2004-11-12 2004-11-12 Air conditioner, and its operation method Pending JP2006138545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328741A JP2006138545A (en) 2004-11-12 2004-11-12 Air conditioner, and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328741A JP2006138545A (en) 2004-11-12 2004-11-12 Air conditioner, and its operation method

Publications (1)

Publication Number Publication Date
JP2006138545A true JP2006138545A (en) 2006-06-01

Family

ID=36619478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328741A Pending JP2006138545A (en) 2004-11-12 2004-11-12 Air conditioner, and its operation method

Country Status (1)

Country Link
JP (1) JP2006138545A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209013A (en) * 2010-03-29 2011-10-20 Denso Corp Condensation sensor
JP2011209012A (en) * 2010-03-29 2011-10-20 Denso Corp Condensation sensor
WO2018159446A1 (en) * 2017-02-28 2018-09-07 株式会社富士通ゼネラル Air conditioner
WO2018159442A1 (en) * 2017-02-28 2018-09-07 株式会社富士通ゼネラル Mold prevention method for air conditioner, and air conditioner using mold prevention method
JP6399181B1 (en) * 2017-09-26 2018-10-03 株式会社富士通ゼネラル Air conditioner
CN110094840A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110094854A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110094839A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110107990A (en) * 2018-01-31 2019-08-09 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN111380179A (en) * 2020-03-27 2020-07-07 广东美的制冷设备有限公司 Air conditioner high-temperature disinfection frequency-limiting protection method, air conditioner, storage medium and device
CN111692725A (en) * 2020-03-13 2020-09-22 广东美的制冷设备有限公司 Control method of air conditioner and air conditioner
EP3591307A4 (en) * 2017-02-28 2020-12-23 Fujitsu General Limited Air conditioner
WO2021223495A1 (en) * 2020-07-31 2021-11-11 青岛海尔空调器有限总公司 Method and device used to control air conditioner heating sterilization, and air conditioner
WO2021223496A1 (en) * 2020-07-31 2021-11-11 青岛海尔空调器有限总公司 Method and apparatus for controlling temperature increase and sterilization of air conditioner, and air conditioner

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209013A (en) * 2010-03-29 2011-10-20 Denso Corp Condensation sensor
JP2011209012A (en) * 2010-03-29 2011-10-20 Denso Corp Condensation sensor
EP3591305A4 (en) * 2017-02-28 2020-12-23 Fujitsu General Limited Mold prevention method for air conditioner, and air conditioner using mold prevention method
CN110382970B (en) * 2017-02-28 2021-06-08 富士通将军股份有限公司 Air conditioner
WO2018159442A1 (en) * 2017-02-28 2018-09-07 株式会社富士通ゼネラル Mold prevention method for air conditioner, and air conditioner using mold prevention method
AU2018228986B2 (en) * 2017-02-28 2021-02-25 Fujitsu General Limited Air conditioner
AU2018226754B2 (en) * 2017-02-28 2020-10-29 Fujitsu General Limited Mold prevention method for air conditioner, and air conditioner using mold prevention method
WO2018159446A1 (en) * 2017-02-28 2018-09-07 株式会社富士通ゼネラル Air conditioner
EP3591307A4 (en) * 2017-02-28 2020-12-23 Fujitsu General Limited Air conditioner
EP3591306A4 (en) * 2017-02-28 2020-12-23 Fujitsu General Limited Air conditioner
JP2018141597A (en) * 2017-02-28 2018-09-13 株式会社富士通ゼネラル Mold prevention method of air conditioner and air conditioner using the same
CN110382968A (en) * 2017-02-28 2019-10-25 富士通将军股份有限公司 The mold-proof method of air regulator and the air regulator for using it
CN110382970A (en) * 2017-02-28 2019-10-25 富士通将军股份有限公司 Air regulator
JP2019060528A (en) * 2017-09-26 2019-04-18 株式会社富士通ゼネラル Air conditioner
JP6399181B1 (en) * 2017-09-26 2018-10-03 株式会社富士通ゼネラル Air conditioner
CN110107990B (en) * 2018-01-31 2021-05-25 青岛海尔智能技术研发有限公司 Sterilization method for indoor unit of air conditioner and sterilization air conditioner
CN110094839A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110094854A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110107990A (en) * 2018-01-31 2019-08-09 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110094840A (en) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 A kind of method for disinfection and disinfection air conditioner of air conditioner indoor unit
CN110094839B (en) * 2018-01-31 2021-08-24 青岛海尔智能技术研发有限公司 Sterilization method for indoor unit of air conditioner and sterilization air conditioner
CN110094854B (en) * 2018-01-31 2021-08-24 青岛海尔智能技术研发有限公司 Sterilization method for indoor unit of air conditioner and sterilization air conditioner
CN111692725A (en) * 2020-03-13 2020-09-22 广东美的制冷设备有限公司 Control method of air conditioner and air conditioner
CN111692725B (en) * 2020-03-13 2022-07-05 广东美的制冷设备有限公司 Control method of air conditioner and air conditioner
CN111380179A (en) * 2020-03-27 2020-07-07 广东美的制冷设备有限公司 Air conditioner high-temperature disinfection frequency-limiting protection method, air conditioner, storage medium and device
WO2021223495A1 (en) * 2020-07-31 2021-11-11 青岛海尔空调器有限总公司 Method and device used to control air conditioner heating sterilization, and air conditioner
WO2021223496A1 (en) * 2020-07-31 2021-11-11 青岛海尔空调器有限总公司 Method and apparatus for controlling temperature increase and sterilization of air conditioner, and air conditioner

Similar Documents

Publication Publication Date Title
JP2006138545A (en) Air conditioner, and its operation method
JP3852014B1 (en) Air conditioning system
JP4052318B2 (en) Air conditioning system
US8161761B2 (en) Method and apparatus for wine cellar temperature and humidity control
CN106225176A (en) Operation of air conditioner control method
US20170159964A1 (en) Ventilation device
JP4525465B2 (en) Air conditioning system
US20220211893A1 (en) Air conditioner
JP2006329469A (en) Humidity controller
WO2021221152A1 (en) Method for controlling air conditioning system
JP3448686B2 (en) Mold control method and air conditioner
JP2006125801A (en) Air conditioner and operation method therefor
JP7248940B2 (en) Air conditioning system control method
JP2000213795A (en) Air conditioner
JP2004085020A (en) Air conditioner
JP2003329288A (en) Mildew restraining method and air conditioner
JP2007255846A (en) Air conditioner
KR100813555B1 (en) Thermo-hygrostat
KR100200785B1 (en) Sterilization control method of airconditioner
JP2000179914A (en) Air conditioning device
JP2002130773A (en) Controller for air conditioner
WO2022190888A1 (en) Adsorption system
JP2017146037A (en) Radiant heating and cooling system and radiant heating and cooling method
Tsay et al. Study on noncondensing air-conditioning system performance when combining a desiccant cooling system with a CO2 heat pump
KR20030052302A (en) Evaporator heating device and it&#39;s control method of air conditioner system