JP2006122792A - Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method - Google Patents

Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method Download PDF

Info

Publication number
JP2006122792A
JP2006122792A JP2004313282A JP2004313282A JP2006122792A JP 2006122792 A JP2006122792 A JP 2006122792A JP 2004313282 A JP2004313282 A JP 2004313282A JP 2004313282 A JP2004313282 A JP 2004313282A JP 2006122792 A JP2006122792 A JP 2006122792A
Authority
JP
Japan
Prior art keywords
urea
ammonia
denitration
hydrolysis catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004313282A
Other languages
Japanese (ja)
Other versions
JP4599989B2 (en
Inventor
Susumu Hizuya
進 日数谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004313282A priority Critical patent/JP4599989B2/en
Publication of JP2006122792A publication Critical patent/JP2006122792A/en
Application granted granted Critical
Publication of JP4599989B2 publication Critical patent/JP4599989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a denitration method by selective reduction of nitrogen oxides in a low-temperature automobile exhaust gas such as an exhaust gas discharged from a diesel-engine automobile, an ammonia manufacturing method used for this denitration method, and a urea hydrolysis catalyst to be used for this ammonia manufacturing method. <P>SOLUTION: In the ammonia manufacturing method, ammonia is continuously manufactured by hydrolyzing urea, while making a urea water in a mist state by a pressurized gas or keeping it in a water solution, by bringing the urea water into solid-liquid contact with a urea hydrolysis catalyst having a structure such that a tungstic oxide is added to a titanium oxide carrier, or the tungstic oxide is added to the titanium oxide carrier and further a vanadium pentoxide is supported on the carrier, in the temperature range of 130-200°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼルエンジン自動車から出る排ガスのような低温自動車排ガス中の窒素酸化物の選択的還元による脱硝方法、この脱硝方法に用いるアンモニアの製造方法、およびこのアンモニア製造方法に用いる尿素加水分解触媒に関するものである。   The present invention relates to a denitration method by selective reduction of nitrogen oxides in low-temperature automobile exhaust gas such as exhaust gas emitted from a diesel engine vehicle, a method for producing ammonia used in this denitration method, and a urea hydrolysis catalyst used in this ammonia production method It is about.

従来、排ガスの脱硝技術として、下記(1) 〜(4) の方法が知られている。   Conventionally, the following methods (1) to (4) are known as exhaust gas denitration techniques.

(1) 排気ガスが流通する配管内にゼオライト粒子が充填された気化器容器を配置し、気化器容器内に配管外方より尿素水と水を注入する液送配管と水配管を設け、排気ガスから供給される熱によって尿素を還元剤としてのアンモニアに分解して気化器容器により配管内に排出し、アンモニアと排ガスとを混合した後に脱硝触媒と接触させる方法(特許文献1参照)。 (1) A vaporizer container filled with zeolite particles is placed in a pipe through which exhaust gas flows, and a liquid feed pipe and a water pipe for injecting urea water and water from outside the pipe are installed in the vaporizer container, A method in which urea is decomposed into ammonia as a reducing agent by heat supplied from a gas, discharged into a pipe by a vaporizer vessel, and mixed with ammonia and exhaust gas, and then contacted with a denitration catalyst (see Patent Document 1).

この方法は、尿素水以外に水を必要とし、自動車に適用する場合には脱硝装置の外に水タンクを搭載する必要があり、現実的でない。   This method requires water in addition to urea water, and when applied to an automobile, it is necessary to mount a water tank outside the denitration device, which is not practical.

(2) 脱硝触媒反応器前流側の排ガス煙道に高温ガス供給配管を連結し、高温ガス供給配管に尿素水を注入する手段を設け、高温ガス供給配管の尿素注入手段との連結部の後流に尿素分解触媒反応器を設ける方法(特許文献2参照)。 (2) A high temperature gas supply pipe is connected to the exhaust gas flue upstream of the denitration catalyst reactor, and a means for injecting urea water into the high temperature gas supply pipe is provided. A method of providing a urea decomposition catalyst reactor in the downstream (see Patent Document 2).

この装置では高温ガスの温度が300−500℃であり、この温度域では加水分解反応と共に熱分解反応も進行するため、アンモニアの生成率が悪いばかりか、副生成物の析出による脱硝触媒の目詰まりや配管の閉塞などが起こる。   In this apparatus, the temperature of the high-temperature gas is 300 to 500 ° C., and in this temperature range, the thermal decomposition reaction proceeds together with the hydrolysis reaction. Clogging or piping blockage occurs.

(3) 尿素水と尿素加水分解触媒溶液を混合した後、この混合液を加熱して気液分離を行ない、分離されたアンモニアを含む気体を排ガス中に注入する方法(特許文献3参照)。 (3) A method of mixing urea water and a urea hydrolysis catalyst solution, heating the mixed liquid to perform gas-liquid separation, and injecting the separated ammonia-containing gas into the exhaust gas (see Patent Document 3).

この方法では、気液分離装置を設けるため、装置が複雑となる。また、尿素水と尿素加水分解触媒溶液の混合液を加熱するため、加熱に要するエネルギーが多くなる。   In this method, since the gas-liquid separation device is provided, the device becomes complicated. Moreover, since the liquid mixture of urea water and a urea hydrolysis catalyst solution is heated, the energy required for heating increases.

(4) 尿素水溶液を接触加水分解触媒と200℃以上の温度で接触させ、尿素の接触加水分解によりアンモニアを発生させる方法(特許文献4参照)。 (4) A method in which an aqueous urea solution is brought into contact with a catalytic hydrolysis catalyst at a temperature of 200 ° C. or more, and ammonia is generated by catalytic hydrolysis of urea (see Patent Document 4).

この方法では接触温度が200℃以上であるため、加水分解反応と共に熱分解反応も進行し、アンモニアの生成率が悪くなるばかりか、副生成物の析出による脱硝触媒の目詰まりや配管の閉塞などが起こる。
特開2001−27112号公報 特開平10−H8456号公報 特開平8−71372号公報 特開平11−171535号公報
In this method, since the contact temperature is 200 ° C. or higher, the thermal decomposition reaction proceeds together with the hydrolysis reaction, and not only the ammonia production rate is deteriorated, but also the clogging of the denitration catalyst due to the precipitation of by-products and the blockage of the piping Happens.
JP 2001-271112 A JP-A-10-H8456 JP-A-8-71372 JP 11-171535 A

本発明は、上述した従来技術の問題点を克服することができる、排ガス中の窒素酸化物の選択的還元による脱硝方法、この脱硝方法に用いるアンモニアの製造方法、およびこのアンモニア製造方法に用いる尿素加水分解触媒を提供することを課題とする。   The present invention can overcome the above-mentioned problems of the prior art, a denitration method by selective reduction of nitrogen oxides in exhaust gas, a method for producing ammonia used in this denitration method, and urea used in this ammonia production method It is an object to provide a hydrolysis catalyst.

請求項1に係る発明は、酸化チタン担体に酸化夕ングステンを添加した構造、又は、酸化チタン担体に酸化タングステンを添加し、さらに五酸化バナジウムを担持した構造をなすことを特徴とする、尿素加水分解触媒である。   The invention according to claim 1 is characterized in that it has a structure in which tungsten oxide is added to a titanium oxide support or a structure in which tungsten oxide is added to a titanium oxide support and vanadium pentoxide is supported. It is a decomposition catalyst.

請求項2に係る発明は、尿素水を加圧気体によってミスト状にするかまたは水溶液の状態を保ちつつ130〜200℃の温度範囲で特許請求範囲1記載の尿素加水分解触媒と固液接触させ、尿素を加水分解してアンモニアを連続的に生成させることを特徴とする、尿素の加水分解によるアンモニア製造方法である。   In the invention according to claim 2, the urea water is made into a mist form with a pressurized gas or kept in an aqueous solution state in a solid-liquid contact with the urea hydrolysis catalyst according to claim 1 in a temperature range of 130 to 200 ° C. A method for producing ammonia by hydrolysis of urea, wherein urea is hydrolyzed to produce ammonia continuously.

尿素水の尿素濃度は好ましくは10〜54.7wt%である。加圧気体は、例えば空気をコンプレッサで加圧したものであってよい。   The urea concentration of urea water is preferably 10 to 54.7 wt%. The pressurized gas may be, for example, air compressed by a compressor.

請求項3に係る発明は、還元剤としてアンモニアを用いて窒素酸化物を選択的に還元するNOx選択還元法において、アンモニアとして請求項2記載の方法によって生成させたものを用いることを特徴とする、脱硝方法である。   The invention according to claim 3 is characterized in that, in the NOx selective reduction method for selectively reducing nitrogen oxides using ammonia as a reducing agent, ammonia produced by the method according to claim 2 is used. This is a denitration method.

90℃以上で尿素を加水分解すると、下記の式で示すように、アンモニアと二酸化炭素を生成する。   When urea is hydrolyzed at 90 ° C. or higher, ammonia and carbon dioxide are generated as shown in the following formula.

(NHCO + H0 → 2NH + C0 (NH 2 ) 2 CO + H 2 0 → 2NH 3 + C 0 2

本発明により、ディーゼルエンジン自動車から出る排ガスのような低温自動車排ガス中の窒素酸化物の選択的還元による脱硝方法、この脱硝方法に用いるアンモニアの製造方法、およびこのアンモニア製造方法に用いる尿素加水分解触媒を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, a denitration method by selective reduction of nitrogen oxides in low-temperature automobile exhaust gas such as exhaust gas emitted from a diesel engine vehicle, a method for producing ammonia used in this denitration method, and a urea hydrolysis catalyst used in this ammonia production method Can be provided.

つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。   Next, in order to describe the present invention specifically, examples of the present invention will be given.

実施例1
図1において、低温自動車排ガスの排ガスライン(1) に脱硝触媒(2) が装填されている。この触媒は、例えば酸化チタン(TiO)担体に五酸化バナジウム(V)を担持してなるものであってよい。脱硝触媒はいわゆるハニカム構造の支持体に支持されたものが好ましい。脱硝触媒(2) の装填量はエンジン排気量と同じく14.3リットルである。
Example 1
In FIG. 1, a denitration catalyst (2) is loaded in an exhaust gas line (1) for low-temperature automobile exhaust gas. This catalyst may be formed, for example, by supporting vanadium pentoxide (V 2 O 5 ) on a titanium oxide (TiO 2 ) support. The denitration catalyst is preferably supported on a so-called honeycomb structure support. The amount of the denitration catalyst (2) loaded is 14.3 liters, the same as the engine displacement.

排ガスライン(1) の外部に、尿素加水分解触媒(4) を装填した尿素加水分解反応器(3) が配置されている。同反応器(3) はその先端に、排ガスライン(1) 内の脱硝触媒(2) 装填部の上流に伸びるアンモニア導管(5) を有し、かつ同導管(5) の先端に脱硝触媒(2) 装填部を臨むアンモニアノズル(6) を備えている。尿素加水分解反応器(3) はこれを一定温度に保つ電気ヒータ(7) を外装し、尿素加水分解触媒(4) は酸化チタン(TiO)担体に酸化夕ングステン(WO)を添加した構造をなし、その装填量は6リットルである。尿素加水分解反応器(3) は電気ヒータ(7) で一定温度に保持される。電気ヒータ(7) の代わりにエンジン排熱で温度を保持してもよい。 A urea hydrolysis reactor (3) loaded with a urea hydrolysis catalyst (4) is disposed outside the exhaust gas line (1). The reactor (3) has an ammonia conduit (5) extending upstream of the denitration catalyst (2) loading section in the exhaust gas line (1) at the tip, and a denitration catalyst (5) at the tip of the conduit (5). 2) Equipped with an ammonia nozzle (6) facing the loading section. The urea hydrolysis reactor (3) is equipped with an electric heater (7) for keeping it at a constant temperature, and the urea hydrolysis catalyst (4) is added with tungsten oxide (WO 3 ) to a titanium oxide (TiO 2 ) support. It has a structure and its loading is 6 liters. The urea hydrolysis reactor (3) is maintained at a constant temperature by an electric heater (7). The temperature may be maintained by engine exhaust heat instead of the electric heater (7).

尿素加水分解反応器(3) の内部において尿素加水分解触媒(4) 装填部の上流に、尿素水タンク(8) からポンプ(9) によって圧送された尿素水を噴霧する尿素ノズル(10)が尿素加水分解触媒(4) 装填部を臨むように設けられている。尿素加水分解反応器(3) の内部において尿素ノズル(10)の上流に、コンプレッサ(11)からバルブ(12)を経て圧送された空気を供給する空気供給口(13)が設けられている。尿素水圧送用のポンプ(9) および空気供給量調整用のバルブ(12)は、排ガス量、NOx濃度および温度に関するデータに基づいてコントロールユニット(14)でコントロールされる。   Inside the urea hydrolysis reactor (3), a urea nozzle (10) for spraying urea water pumped by the pump (9) from the urea water tank (8) is disposed upstream of the urea hydrolysis catalyst (4) loading section. The urea hydrolysis catalyst (4) is provided so as to face the loading section. Inside the urea hydrolysis reactor (3), an air supply port (13) for supplying air pumped from the compressor (11) through the valve (12) is provided upstream of the urea nozzle (10). The urea water pump (9) and the air supply amount adjustment valve (12) are controlled by the control unit (14) based on the data on the exhaust gas amount, NOx concentration and temperature.

上記構成の脱硝装置において、尿素加水分解反応器(3) に濃度32.5wt%の尿素水を流量1〜3.5L/hでポンプ(9) で供給すると共に、その上流に、コンプレッサ(11)からバルブ(12)を経て流量8.5Nm/h で加圧空気を供給し、尿素水を加圧空気によってミスト状にする。この尿素ミストを尿素加水分解触媒(4) 装填部に連続的に導入し、尿素加水分解触媒(4) と尿素ミストを固液接触させ、温度170℃で尿素を加水分解し、アンモニアを生成させる。生成したアンモニアをアンモニア導管(5) を経てその先端のアンモニアノズル(6) から脱硝触媒(2) 装填部に噴霧する。尿素水を加圧空気によってミスト状にする代わりに、尿素水を加圧気体によって水溶液の状態を保ちつつ尿素加水分解触媒反応帯域に導入してもよい。 In the denitration apparatus configured as described above, urea water having a concentration of 32.5 wt% is supplied to the urea hydrolysis reactor (3) by a pump (9) at a flow rate of 1 to 3.5 L / h, and a compressor (11 ) Through a valve (12) and pressurized air is supplied at a flow rate of 8.5 Nm 3 / h, and urea water is made mist with pressurized air. This urea mist is continuously introduced into the urea hydrolysis catalyst (4) loading section, the urea hydrolysis catalyst (4) and urea mist are brought into solid-liquid contact, and urea is hydrolyzed at a temperature of 170 ° C. to generate ammonia. . The produced ammonia is sprayed from the ammonia nozzle (6) at the tip of the ammonia through the ammonia conduit (5) to the denitration catalyst (2) loading section. Instead of making the urea water mist with pressurized air, the urea water may be introduced into the urea hydrolysis catalyst reaction zone while maintaining the state of the aqueous solution with the pressurized gas.

脱硝触媒(2) 装填部では、供給されたアンモニアが還元剤として働き、排ガス中の窒素酸化物が選択的に窒素ガスに還元される。   In the denitration catalyst (2) loading section, the supplied ammonia acts as a reducing agent, and nitrogen oxides in the exhaust gas are selectively reduced to nitrogen gas.

実施例2
尿素加水分解触媒(4) を、酸化チタン(TiO)担体に酸化夕ングステン(WO)を添加し、さらに五酸化バナジウム(V)を担持した構造のものに代えた以外、実施例1と同じ操作を行った。
Example 2
The urea hydrolysis catalyst (4) was replaced with a titanium oxide (TiO 2 ) support added with tungsten oxide (WO 3 ), and further replaced with a structure carrying vanadium pentoxide (V 2 O 5 ). The same operation as in Example 1 was performed.

性能試験
実施例1および2の尿素加水分解触媒を用い、尿素加水分解反応器の温度を変え、生成したアンモニアの生成率を求めた。この結果を図2のグラフに示す。生成率(%)はアンモニア生成量(当量)/尿素(当量)×100である。
Performance Test Using the urea hydrolysis catalyst of Examples 1 and 2, the temperature of the urea hydrolysis reactor was changed, and the production rate of produced ammonia was determined. The result is shown in the graph of FIG. The production rate (%) is ammonia production (equivalent) / urea (equivalent) × 100.

尿素加水分解反応器を備えた脱硝装置を概略的に示す断面図である。It is sectional drawing which shows schematically the denitration apparatus provided with the urea hydrolysis reactor. 温度とアンモニア生成率の関係を示すグラフである。It is a graph which shows the relationship between temperature and ammonia production rate.

符号の説明Explanation of symbols

(1) 排ガスライン
(2) 脱硝触媒
(3) 尿素加水分解反応器
(4) 尿素加水分解触媒
(5) アンモニア導管
(6) アンモニアノズル
(7) 電気ヒータ
(8) 尿素水タンク
(9) ポンプ
(10)尿素ノズル
(11)コンプレッサ
(12)バルブ
(13)空気供給口
(14)コントロールユニット
(1) Exhaust gas line
(2) Denitration catalyst
(3) Urea hydrolysis reactor
(4) Urea hydrolysis catalyst
(5) Ammonia conduit
(6) Ammonia nozzle
(7) Electric heater
(8) Urea water tank
(9) Pump
(10) Urea nozzle
(11) Compressor
(12) Valve
(13) Air supply port
(14) Control unit

Claims (3)

酸化チタン担体に酸化夕ングステンを添加した構造、又は、酸化チタン担体に酸化タングステンを添加し、さらに五酸化バナジウムを担持した構造をなすことを特徴とする、尿素加水分解触媒。   A urea hydrolysis catalyst characterized by having a structure in which tungsten oxide is added to a titanium oxide support, or a structure in which tungsten oxide is added to a titanium oxide support and vanadium pentoxide is supported. 尿素水を加圧気体によってミスト状にするかまたは水溶液の状態を保ちつつ130〜200℃の温度範囲で特許請求範囲1記載の尿素加水分解触媒と固液接触させ、尿素を加水分解してアンモニアを連続的に生成させることを特徴とする、尿素の加水分解によるアンモニア製造方法。   The urea water is made into a mist with a pressurized gas, or is kept in an aqueous solution state and brought into solid-liquid contact with the urea hydrolysis catalyst according to claim 1 in a temperature range of 130 to 200 ° C., thereby hydrolyzing urea and ammonia. A process for producing ammonia by hydrolysis of urea, characterized in that 還元剤としてアンモニアを用いて窒素酸化物を選択的に還元するNOx選択還元法において、アンモニアとして請求項2記載の方法によって生成させたものを用いることを特徴とする、脱硝方法。
A NOx selective reduction method for selectively reducing nitrogen oxides using ammonia as a reducing agent, wherein the ammonia produced by the method according to claim 2 is used as ammonia.
JP2004313282A 2004-10-28 2004-10-28 Ammonia production method and denitration method Expired - Fee Related JP4599989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313282A JP4599989B2 (en) 2004-10-28 2004-10-28 Ammonia production method and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313282A JP4599989B2 (en) 2004-10-28 2004-10-28 Ammonia production method and denitration method

Publications (2)

Publication Number Publication Date
JP2006122792A true JP2006122792A (en) 2006-05-18
JP4599989B2 JP4599989B2 (en) 2010-12-15

Family

ID=36718029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313282A Expired - Fee Related JP4599989B2 (en) 2004-10-28 2004-10-28 Ammonia production method and denitration method

Country Status (1)

Country Link
JP (1) JP4599989B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
JP2009262098A (en) * 2008-04-28 2009-11-12 Ne Chemcat Corp Exhaust gas clarifying method using selective reduction catalyst
JP2010514546A (en) * 2006-12-23 2010-05-06 アルツケム トロストベルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Selective catalytic reduction of nitrogen oxides in automobile exhaust
KR101095229B1 (en) 2011-05-23 2011-12-20 (주) 세라컴 Method of preparing vanadium/tungsten/titania-based catalyst
JP2012522158A (en) * 2009-03-27 2012-09-20 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for supplying reducing agent to an exhaust gas system and corresponding exhaust gas system
JP2013528858A (en) * 2010-04-29 2013-07-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Pathway recognition algorithm (PARADIGM) using data integration for genome models
WO2014054607A1 (en) * 2012-10-02 2014-04-10 日揮触媒化成株式会社 Shipboard gas treatment apparatus
WO2014096220A1 (en) * 2012-12-21 2014-06-26 Alzchem Ag Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
WO2015128247A1 (en) * 2014-02-28 2015-09-03 Haldor Topsøe A/S Method for the cleaning of exhaust gas from a compression ignition engine
JP5859101B1 (en) * 2014-11-27 2016-02-10 株式会社タクマ Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
JP2016102432A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN113070054A (en) * 2021-03-02 2021-07-06 中国华电科工集团有限公司 Preparation method of non-supported catalyst, product and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885811B1 (en) * 2014-11-21 2016-03-16 株式会社タクマ Urea hydrolysis apparatus and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004841A (en) * 2000-05-10 2002-01-09 Dmc 2 Degussa Metals Catalysts Cerdec Ag Catalyst constituted for selectively reducing nitrogen oxide contained in lean exhaust gas flow of internal combustion engine
JP2004033991A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Method of denitrifying combustion exhaust gas and denitrification catalyst for the same
JP2005288397A (en) * 2004-04-05 2005-10-20 Shuya Nagayama Tail gas denitrification apparatus using urea water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004841A (en) * 2000-05-10 2002-01-09 Dmc 2 Degussa Metals Catalysts Cerdec Ag Catalyst constituted for selectively reducing nitrogen oxide contained in lean exhaust gas flow of internal combustion engine
JP2004033991A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Method of denitrifying combustion exhaust gas and denitrification catalyst for the same
JP2005288397A (en) * 2004-04-05 2005-10-20 Shuya Nagayama Tail gas denitrification apparatus using urea water

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514546A (en) * 2006-12-23 2010-05-06 アルツケム トロストベルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Selective catalytic reduction of nitrogen oxides in automobile exhaust
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
JP2009262098A (en) * 2008-04-28 2009-11-12 Ne Chemcat Corp Exhaust gas clarifying method using selective reduction catalyst
US9375682B2 (en) 2009-03-27 2016-06-28 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust gas system with a reducing agent supply
JP2012522158A (en) * 2009-03-27 2012-09-20 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for supplying reducing agent to an exhaust gas system and corresponding exhaust gas system
US10770169B2 (en) 2010-04-29 2020-09-08 The Regents Of The University Of California Method of providing a treatment to a subject based on a dynamic pathway map
JP2013528858A (en) * 2010-04-29 2013-07-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Pathway recognition algorithm (PARADIGM) using data integration for genome models
JP2017111830A (en) * 2010-04-29 2017-06-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Pathway recognition algorithm using data integration on genomic models (paradigm)
US10916329B2 (en) 2010-04-29 2021-02-09 The Regents Of The University Of California Method for treating an individual patient
US10991448B2 (en) 2010-04-29 2021-04-27 The Regents Of The University Of California Pathway recognition algorithm using data integration on genomic models (paradigm)
US11043282B2 (en) 2010-04-29 2021-06-22 The Regents Of The Unviersity Of California Pathway analysis computing system and method
US11355218B2 (en) 2010-04-29 2022-06-07 Thf Regents Of The University Of California Patient-specific cellular pathway activity inference computer system
KR101095229B1 (en) 2011-05-23 2011-12-20 (주) 세라컴 Method of preparing vanadium/tungsten/titania-based catalyst
WO2014054607A1 (en) * 2012-10-02 2014-04-10 日揮触媒化成株式会社 Shipboard gas treatment apparatus
JPWO2014054607A1 (en) * 2012-10-02 2016-08-25 日揮触媒化成株式会社 Marine exhaust gas treatment equipment
CN104884388A (en) * 2012-12-21 2015-09-02 澳泽化学股份公司 Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases
CN104797529A (en) * 2012-12-21 2015-07-22 澳泽化学股份公司 Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
WO2014096217A1 (en) * 2012-12-21 2014-06-26 Alzchem Ag Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases
WO2014096220A1 (en) * 2012-12-21 2014-06-26 Alzchem Ag Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
US9687783B2 (en) 2012-12-21 2017-06-27 Alzchem Ag Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases
US9878288B2 (en) 2012-12-21 2018-01-30 Alzchem Ag Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
US10399036B2 (en) 2014-02-28 2019-09-03 Umicore Ag & Co. Kg Method for the cleaning of exhaust gas from a compression ignition engine
WO2015128247A1 (en) * 2014-02-28 2015-09-03 Haldor Topsøe A/S Method for the cleaning of exhaust gas from a compression ignition engine
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
JP2016101537A (en) * 2014-11-27 2016-06-02 株式会社タクマ Urea hydrolyzer and catalyst regeneration method for urea hydrolyzer
JP2016102432A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP5859101B1 (en) * 2014-11-27 2016-02-10 株式会社タクマ Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
CN113070054A (en) * 2021-03-02 2021-07-06 中国华电科工集团有限公司 Preparation method of non-supported catalyst, product and application
CN113070054B (en) * 2021-03-02 2023-07-14 中国华电科工集团有限公司 Preparation method, product and application of non-supported catalyst

Also Published As

Publication number Publication date
JP4599989B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5618543B2 (en) Selective catalytic reduction of nitrogen oxides in exhaust gas
JP4599989B2 (en) Ammonia production method and denitration method
US6878359B1 (en) Process and device for the selective catalytic reduction of nitrogen oxides in an oxygen-containing gaseous medium
DK2726412T5 (en) PROCEDURE FOR PREPARING AMMONIA FROM AN AMMONIA EXPOSURE TO REDUCE NITROGEN OXIDES IN EXHAUST GAS
US7188469B2 (en) Exhaust system and methods of reducing contaminants in an exhaust stream
CN101351629B (en) Process for denitration of exhaust gas
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
WO2012104205A1 (en) Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
CN102356043A (en) Hydrogen generating apparatus and hydrogen generating method
JP2020503467A (en) Formation of ammonium carbamate and reduction of nitrogen oxides
KR20200072609A (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
JP2007145796A (en) Urea water and denitrification apparatus using the same
KR101821096B1 (en) NOx reduction system based on urea solution
JP4309167B2 (en) Exhaust gas denitration method using urea
JP2007182804A (en) Exhaust emission control device
JP2007182805A (en) Exhaust emission control device
JP2005273509A (en) NOx REMOVAL EQUIPMENT AND NOx REMOVING METHOD
JP2007301524A (en) Method and apparatus for denitrification
JP6122283B2 (en) Ammonia generator and exhaust purification device using the same
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
WO2018041754A1 (en) System and method for increasing the urea concentration of an aqueous solution on-board a vehicle
TW561144B (en) Process and device for catalytic conversion of a substance
CN105214456A (en) A kind of SNCR-SCR flue-gas denitration process
KR101047418B1 (en) Selective non-catalytic nitrogen oxide reduction device for diesel vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees