JP2006119424A - Optical element and manufacturing method thereof - Google Patents

Optical element and manufacturing method thereof Download PDF

Info

Publication number
JP2006119424A
JP2006119424A JP2004308019A JP2004308019A JP2006119424A JP 2006119424 A JP2006119424 A JP 2006119424A JP 2004308019 A JP2004308019 A JP 2004308019A JP 2004308019 A JP2004308019 A JP 2004308019A JP 2006119424 A JP2006119424 A JP 2006119424A
Authority
JP
Japan
Prior art keywords
optical element
polymer
mold
manufacturing
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004308019A
Other languages
Japanese (ja)
Inventor
Takashi Kai
丘 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004308019A priority Critical patent/JP2006119424A/en
Publication of JP2006119424A publication Critical patent/JP2006119424A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of an optical element capable of manufacturing a transparent molding in which the curing of the surface of an optical element adequately proceeds and, further, a molding having an excellent releasing property and an excellent transfer property by solving such the problem in the conventional technique that there is a possibility of of causing curing hindrance when using a radical type photopolymerization initiator and the optical element is colored when using a cationic photopolymerization initiator, in manufacturing the optical element using photosetting resin. <P>SOLUTION: A polymer in which the curing sufficiently proceeds is applied to the surface of a die beforehand and, thereafter, the photosetting resin is molded by using the die. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レンズ、プリズム、回折光学素子等の光学素子及びその製造方法に関するものである。   The present invention relates to an optical element such as a lens, a prism, and a diffractive optical element, and a method for manufacturing the same.

従来、光硬化性組成物を用いて成形によって光学素子を製造する方法において、光硬化性組成物の重合を開始させるために、ラジカル系光重合開始剤或いはカチオン系光重合開始剤が用いられている(例えば、特許文献1参照)。
特開2000−336127号公報
Conventionally, in a method for producing an optical element by molding using a photocurable composition, a radical photopolymerization initiator or a cationic photopolymerization initiator is used to initiate polymerization of the photocurable composition. (For example, refer to Patent Document 1).
JP 2000-336127 A

前記光重合開始剤の内、ラジカル系光重合開始剤は、酸素の存在下において硬化阻害が生ずるという特性を有している。このため、型の表面に酸素ガスが吸着していると、型側の樹脂が十分に硬化せず、正確な成形が困難であるという問題があった。特に、光学素子として表面に微小な溝を有する回折格子を製造する場合には、精密な形状の転写が求められる一方で、これらの溝に空気が残りやすく、前記硬化阻害の問題は深刻であった。   Of the photopolymerization initiators, radical photopolymerization initiators have the property that curing inhibition occurs in the presence of oxygen. For this reason, if oxygen gas is adsorbed on the surface of the mold, there is a problem that the resin on the mold side is not sufficiently cured and accurate molding is difficult. In particular, when manufacturing a diffraction grating having fine grooves on the surface as an optical element, precise shape transfer is required, but air tends to remain in these grooves, and the problem of inhibition of curing is serious. It was.

前記の硬化阻害を回避する方法としては、光学素子の成形を窒素ガス雰囲気下で行うことが考えられるが、設備が大型化するといった新たな問題が生じてしまう。   As a method for avoiding the above-described inhibition of curing, it is conceivable that the optical element is molded in a nitrogen gas atmosphere, but a new problem such as an increase in the size of the equipment arises.

これに対して、カチオン系光重合開始剤は、前記のような問題は発生しないが、可視光の波長領域に吸収をもつものが多く、光学素子の製造には適してなかった。特に、50μm以上の厚みを有する光学素子を、カチオン系光重合開始剤を用いて製造した場合、光学素子が着色されてしまい好ましくなかった。   In contrast, cationic photopolymerization initiators do not cause the above-mentioned problems, but many have absorption in the visible light wavelength region, and are not suitable for the production of optical elements. In particular, when an optical element having a thickness of 50 μm or more was produced using a cationic photopolymerization initiator, the optical element was colored, which was not preferable.

一方、特許文献1には、重合阻害を生じさせることなく、十分な硬化速度を得るために、光硬化性樹脂にカチオン系光重合開始剤とラジカル系光重合開始剤とを混合して成る組成物を用いて光ファイバーを被覆した例が記載されている。しかしながら、この例においては、光ファイバーそのものでなく、その被覆材に前記組成物を用いたものなので、光の吸収に関しては考慮されてない。このため、特許文献1に記載された組成物を用いて光学素子を製造した場合には、十分な透明性が得られないことが考えられた。   On the other hand, Patent Document 1 discloses a composition comprising a photocurable resin mixed with a cationic photopolymerization initiator and a radical photopolymerization initiator in order to obtain a sufficient curing rate without causing polymerization inhibition. An example of coating an optical fiber with an object is described. However, in this example, since the composition is used for the coating material, not the optical fiber itself, light absorption is not considered. For this reason, when an optical element was manufactured using the composition described in Patent Document 1, it was considered that sufficient transparency could not be obtained.

本発明の目的は、前記従来技術の問題点を解決し、硬化阻害を生ずることなく精密な形状の製造が可能で、且つ、光の吸収の小さい光学素子及びその製造方法を提供することにある。本発明によれば、型表面において型表面の樹脂は十分に硬化が進んでいるため、離型性が良く、また転写性のよい光学素子を製造することが可能である。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an optical element capable of manufacturing a precise shape without causing curing inhibition and having a small light absorption, and a method for manufacturing the same. . According to the present invention, since the resin on the mold surface is sufficiently cured on the mold surface, it is possible to produce an optical element having good releasability and good transferability.

前記目的を達成するために、本発明に係わる光学素子の製造方法は、光学素子を成形するための型の表面に重合体1を溶解した溶液を塗付する塗布工程と、溶剤を乾燥除去する乾燥工程と、光重合開始剤を含む組成物を前記型の表面に供給する供給工程と、前記組成物に光を照射して硬化させ重合体2を得る硬化工程とから成るものである。   In order to achieve the above object, an optical element manufacturing method according to the present invention includes a coating step of applying a solution in which the polymer 1 is dissolved to the surface of a mold for molding an optical element, and drying and removing the solvent. It comprises a drying step, a supplying step for supplying a composition containing a photopolymerization initiator to the surface of the mold, and a curing step for obtaining the polymer 2 by irradiating the composition with light.

前記の光学素子の製造方法において、更に前記供給工程と硬化工程との間に、前記組成物上に光学素子の母体となる光学素子ブランクを載置する載置工程を備えても良い。   The optical element manufacturing method may further include a mounting step of mounting an optical element blank serving as a base of the optical element on the composition between the supplying step and the curing step.

更に、前記重合体1を溶かした溶液の粘度は5000mPa・s以下であることが良く、又、前記溶剤を乾燥除去後の重合体1の膜の厚さが500μm以下であることが良い。   Furthermore, the viscosity of the solution in which the polymer 1 is dissolved is preferably 5000 mPa · s or less, and the film thickness of the polymer 1 after the solvent is removed by drying is preferably 500 μm or less.

本発明においては、予め型の表面に反応が十分進んだ重合体を塗付しておき、この型を用いて光硬化性樹脂を成形するようにしたので、光学素子表面の強度が増し、離型性が良く、また転写性のよい光学素子を製造することができるものである。   In the present invention, a polymer having a sufficiently advanced reaction is previously applied to the surface of the mold, and the photocurable resin is molded using this mold. An optical element having good moldability and good transferability can be produced.

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

図1乃至図3は、本発明の第1の実施形態における光学素子の製造工程を説明するための側方断面図である。図1乃至図3において、1は回折格子形状が形成された金型、2はレンズブランク、3は金型固定枠をそれぞれ示す。また、4は光硬化性樹脂、5は格子面、6は重合体1をそれぞれ示す。   1 to 3 are side cross-sectional views for explaining a manufacturing process of an optical element in the first embodiment of the present invention. In FIG. 1 to FIG. 3, reference numeral 1 denotes a mold having a diffraction grating shape, 2 denotes a lens blank, and 3 denotes a mold fixing frame. 4 represents a photocurable resin, 5 represents a lattice plane, and 6 represents a polymer 1.

製造工程は、まず図1に示すように格子形状が形成された金型1を用意する。このような金型1は、リン青銅などの金属をダイヤモンドバイト等を用いて切削加工して成形することができる。格子形状としては、階段状(マルチレベル)或いはのこぎり刃状(ブレーズ)上のものが用いられる。また、このような格子形状を有するものに限らず、金型1として表面が球面あるいは非球面の光学面が形成されたものを用いても良い。   In the manufacturing process, first, a mold 1 having a lattice shape as shown in FIG. 1 is prepared. Such a mold 1 can be formed by cutting a metal such as phosphor bronze using a diamond tool or the like. As the lattice shape, a step shape (multi-level) or a saw blade shape (blaze) is used. Further, the mold 1 is not limited to the one having such a lattice shape, and a mold having a spherical or aspherical optical surface may be used.

次に、金型1の表面に重合体1を溶解した溶液をハケ等を用いて塗付する。重合体1は(メタ)アクリロイル基等のエチレン性不飽和基を1分子中に1個有するモノマーを通常の方法で重合して得られ、透明でトルエン、テトラヒドロフラン、クロロホルム、アセトン等の有機溶剤に可溶なものを用いることができる。   Next, a solution in which the polymer 1 is dissolved is applied to the surface of the mold 1 using a brush or the like. The polymer 1 is obtained by polymerizing a monomer having one ethylenically unsaturated group such as a (meth) acryloyl group in one molecule by an ordinary method, and is transparent and in an organic solvent such as toluene, tetrahydrofuran, chloroform or acetone. A soluble material can be used.

例えば、ポリスチレン、ポリメチル(メタ)クリレート、ポリカーボネート、環状オレフィン樹脂、ポリエーテルポリオール系ウレタン樹脂、これらの共重合体、これらの誘導体から派生する重合体もしくは共重合体、これらの混合物などを用いることができる。   For example, polystyrene, polymethyl (meth) acrylate, polycarbonate, cyclic olefin resin, polyether polyol urethane resin, copolymers thereof, polymers or copolymers derived from these derivatives, mixtures thereof, and the like can be used. it can.

重合体1は透明なものであり、光硬化モノマーを硬化して得られる重合体2と屈折率の差が0.01以下のものが好ましい。屈折率の差が0.01以上あると、重合体1と光硬化させてえられる重合体2の間に界面が生じ、光学素子として用いる場合、そこで光の方向が変化するので好ましくない。好ましくはモノマーと化学構造の骨格が同じもの、類似したものがよい。   The polymer 1 is transparent and preferably has a refractive index difference of 0.01 or less from the polymer 2 obtained by curing the photocuring monomer. If the difference in refractive index is 0.01 or more, an interface is formed between the polymer 1 and the polymer 2 obtained by photocuring, and when used as an optical element, the direction of light changes there, which is not preferable. Preferably, the monomer and chemical structure have the same or similar skeleton.

重合体1を溶かした溶液の粘度は5000mPa・s以下であることが好ましく、5000mPa・s以上であると金型表面に流延するとき空気を巻き込みやすくなる。溶液の粘度は溶剤に対する重合体の濃度できまり、重合体1が溶剤に溶解する濃度範囲内で自由に設定できる。   The viscosity of the solution in which the polymer 1 is dissolved is preferably 5000 mPa · s or less, and when it is 5000 mPa · s or more, air is easily trapped when cast on the mold surface. The viscosity of the solution is determined by the polymer concentration with respect to the solvent, and can be freely set within a concentration range in which the polymer 1 is dissolved in the solvent.

続いて、風乾あるいは加熱によって溶剤を蒸発させ、金型壁面に重合体1を付着させる。前記溶剤を乾燥除去後の重合体1の膜の厚さが500μm以下であることを特徴とする。重合体1の膜の厚さが500μm以下であることが好ましく、500μm以上であると乾燥後の膜にヒビ割れが生じやすくなったり、金型1から乾燥中に剥がれたりするので好ましくない。   Subsequently, the solvent is evaporated by air drying or heating to adhere the polymer 1 to the mold wall surface. The film thickness of the polymer 1 after removing the solvent by drying is 500 μm or less. The thickness of the polymer 1 film is preferably 500 μm or less, and if it is 500 μm or more, the film after drying tends to crack, or peels off from the mold 1 during drying.

重合体1の塗付にはスピンコータを用いても良い。この金型1を金型固定枠3に固定し、この上に組成物4を適量滴下し、上からレンズブランク2を重ねて図2のように組成物4を押し広げる。組成物4は光重合開始剤を含む光硬化性モノマーであり、光照射により重合して重合体2となる。   A spin coater may be used for applying the polymer 1. The mold 1 is fixed to the mold fixing frame 3, an appropriate amount of the composition 4 is dropped on the mold 1, and the lens blank 2 is stacked from above to spread the composition 4 as shown in FIG. 2. The composition 4 is a photocurable monomer containing a photopolymerization initiator, and becomes a polymer 2 by being polymerized by light irradiation.

重合体2は光硬化性モノマーを光重合させて得られるものであり、光硬化性モノマーとしては、(メタ)アクリロイル基等のエチレン性不飽和基を1分子中に1〜5個、好ましくは2〜3個有するモノマーを挙げることができる。   The polymer 2 is obtained by photopolymerizing a photocurable monomer. As the photocurable monomer, 1 to 5 ethylenically unsaturated groups such as a (meth) acryloyl group, preferably, The monomer which has 2-3 pieces can be mentioned.

例えば、光重合性モノマーとして、スチレン、メチル(メタ)アクリレート、N−ビニルカルバゾール、N−ビニルピロリドン、N−ビニルカプロラクタム、N−ビニルアセトアミド、N−ビニルホルムアミド、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ブトキシポリエチレングリコール(メタ)アクリレート、アルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。これらのラジカル重合性モノマーは単独に、もしくは2種以上混合して用いることができる。   For example, as a photopolymerizable monomer, styrene, methyl (meth) acrylate, N-vinylcarbazole, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-vinylformamide, methoxyethylene glycol (meth) acrylate, methoxy Polyethylene glycol (meth) acrylate, nonylphenoxyethyl (meth) acrylate, nonylphenoxy polyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, phenoxy polypropylene glycol (meth) acrylate, butoxy polyethylene glycol (meth) acrylate, alkyl Meth) acrylate, cyclohexyl (meth) acrylate. These radically polymerizable monomers can be used alone or in admixture of two or more.

光重合開始剤は、光などのエネルギー線照射により、ラジカルを発生することが可能な化合物であり、このような光ラジカル重合開始剤としては、例えば1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−2−フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4,4’−ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル等が挙げられる。光重合開始剤はモノマーに対して0.05〜10重量%、好ましくは0.1〜5重量%である。   The photopolymerization initiator is a compound capable of generating radicals upon irradiation with energy rays such as light. Examples of such a photoradical polymerization initiator include 1-hydroxycyclohexyl phenyl ketone and 2,2-dimethoxy. 2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, Michler's ketone, Examples include benzoin propyl ether and benzoin ethyl ether. A photoinitiator is 0.05 to 10 weight% with respect to a monomer, Preferably it is 0.1 to 5 weight%.

また、モノマーには、トリエチルアミン、ジエチルアミン、N−メチルジエタノールアミン、エタノールアミン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミルなどの光増感剤を添加してもよい。   Examples of monomers include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and the like. A photosensitizer may be added.

更に、モノマーには、前記成分以外の配合剤を必要に応じて加えてもよい。このような配合剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、熱重合禁止剤、レベリング剤、界面活性剤、保存安定剤、可塑剤、滑剤、溶媒、濡れ性改良剤、フィラーなどが挙げられる。   Furthermore, you may add a compounding agent other than the said component to a monomer as needed. Examples of such compounding agents include antioxidants, ultraviolet absorbers, light stabilizers, thermal polymerization inhibitors, leveling agents, surfactants, storage stabilizers, plasticizers, lubricants, solvents, wettability improvers, fillers. Etc.

以下、本発明の実施形態について、具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

(実施例1)
図1乃至図3は、本発明の実施例1における光学素子の製造工程を示す側断面図である。
Example 1
1 to 3 are side sectional views showing a manufacturing process of the optical element in Embodiment 1 of the present invention.

図1乃至図3において、1は回折格子形状の形成された金型であリ、表面はダイヤモンドバイトを用いて金属を加工し、のこぎり刃状(フレーズ)に格子が形成されている。2は材質BK−7から成るφ26mmのレンズブランクである。金型1とレンズブランク2とは対向配置されている。レンズブランク2の上方には紫外線を発生する高圧水銀ランプ(不図示)が設置されている。   1 to 3, reference numeral 1 denotes a metal mold having a diffraction grating shape, and the surface is processed with a diamond bit to form a saw-toothed (phrase) grating. Reference numeral 2 denotes a lens blank having a diameter of 26 mm made of material BK-7. The mold 1 and the lens blank 2 are arranged to face each other. A high-pressure mercury lamp (not shown) that generates ultraviolet rays is installed above the lens blank 2.

光学素子の製造方法は、まず金型1上にウレタンアクリレート重合体(ポリスチレン換算重量平均分子量:30000)を10重量部含むトルエン溶液(粘度300mPa・s)を0.5cc滴下し、スピンコータで遠心、流延、塗付、乾燥させた。さらに50℃で1時間乾燥させた後、乾燥後のウレタンアクリレート重合体の膜厚は10μmであった。この金型1を金型固定枠3に固定し、金型1上に光重合開始剤であるイルガキュア184(ラジカル系光重合開始剤:チバスペシャリティケミカルズ(株)社製)3重量部を含む多官能ウレタンアクリレート系モノマー4を適量適下し、その上に材質BK−7から成るφ26mmのレンズブランク2を重ね、レンズブランク2の中心軸と金型1の中心軸とが合うようにしながら、多官能ウレタンアクリレート系モノマー4を押し広げた。   First, 0.5 cc of a toluene solution (viscosity 300 mPa · s) containing 10 parts by weight of a urethane acrylate polymer (polystyrene equivalent weight average molecular weight: 30000) was dropped on the mold 1 and centrifuged with a spin coater. Cast, apply and dry. Further, after drying at 50 ° C. for 1 hour, the thickness of the urethane acrylate polymer after drying was 10 μm. The mold 1 is fixed to the mold fixing frame 3, and the mold 1 contains 3 parts by weight of Irgacure 184 (radical photopolymerization initiator: manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator. Appropriate amount of functional urethane acrylate monomer 4 is applied, and a lens blank 2 having a diameter of 26 mm made of material BK-7 is placed thereon, and the center axis of lens blank 2 and the center axis of mold 1 are aligned with each other. The functional urethane acrylate monomer 4 was spread.

しかる後、高圧水銀ランプにより40mW、12Jの条件で紫外線を照射し、樹脂が硬化した後、レンズブランク2と金型1を離型して、レンズブランク2の片面に中心肉厚200μm、最大樹脂厚差50μm、樹脂径φ20mmの回折格子形状の樹脂層が形成された光学素子を得た。   After that, after the resin is cured by irradiating ultraviolet rays with a high pressure mercury lamp under conditions of 40 mW and 12 J, the lens blank 2 and the mold 1 are released, and the central thickness 200 μm on one side of the lens blank 2 is the maximum resin. An optical element was obtained in which a diffraction grating-shaped resin layer having a thickness difference of 50 μm and a resin diameter of 20 mm was formed.

格子面5のピッチに欠けはなくスムーズに脱型できた。また樹脂層は透明なものであった。   The pitch of the lattice plane 5 was not chipped and could be removed smoothly. The resin layer was transparent.

(比較例1)
金型1上にウレタンアクリレート重合体を10重量部含むトルエン溶液を塗付せずに、第1の実施形態と同様に成形を行った。脱型が第1の実施形態と比べて2倍ほどの力を要し、樹脂は透明であったが、格子面5の一部ピッチに欠けが認められた。また格子面5の表面にタック性(ベタツキ)が認められた。
(Comparative Example 1)
Molding was performed in the same manner as in the first embodiment without applying a toluene solution containing 10 parts by weight of a urethane acrylate polymer on the mold 1. Demolding required about twice as much force as in the first embodiment, and the resin was transparent, but some pitches on the lattice plane 5 were found to be chipped. Further, tackiness (stickiness) was recognized on the surface of the lattice plane 5.

(比較例2)
金型1上にイルガキュア261の1重量部を含む多官能ウレタンアクリレート系オリゴマーのトルエン溶液(濃度0.5%、粘度1mPa)を0.5CC適下し、スピンコータで塗付させた。乾燥後のウレタンアクリレート重合体の膜厚は0.1μmであった。第1の実施形態と同様に成形して光学素子を得た。脱型が第1の実施形態と比べて2倍ほどの力を要し、樹脂は透明であったが、格子面5の一部ピッチに欠けが認められた。また格子面5の表面にはややタック性(ベタツキ)が認められた。
(Comparative Example 2)
A toluene solution (concentration: 0.5%, viscosity: 1 mPa) of a polyfunctional urethane acrylate oligomer containing 1 part by weight of Irgacure 261 was appropriately applied on the mold 1 by 0.5 CC and applied with a spin coater. The film thickness of the urethane acrylate polymer after drying was 0.1 μm. An optical element was obtained by molding in the same manner as in the first embodiment. Demolding required about twice as much force as in the first embodiment, and the resin was transparent, but some pitches on the lattice plane 5 were found to be chipped. Further, the surface of the lattice surface 5 was slightly tacky (sticky).

(実施例2)
重合体1としてポリビニルカルバゾール(ACROS ORAGANICS社製)、モノマーとしてN−ビニルカルバゾール(和光純薬株式会社製)、反応温度を80℃と設定した以外は実施例1と同様に製造した。レンズブランク2の片面に中心肉厚200μm、最大樹脂厚差50μm、樹脂径φ20mmの回折格子形状の樹脂層が形成された光学素子を得た。
(Example 2)
The polymer 1 was produced in the same manner as in Example 1 except that polyvinyl carbazole (manufactured by ACROS ORANICS) was used, N-vinyl carbazole (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the monomer, and the reaction temperature was set to 80 ° C. An optical element was obtained in which a diffraction grating-shaped resin layer having a center thickness of 200 μm, a maximum resin thickness difference of 50 μm, and a resin diameter of φ20 mm was formed on one surface of the lens blank 2.

格子面5のピッチに欠けはなくスムーズに脱型できた。また樹脂層は透明なものであった。   The pitch of the lattice plane 5 was not chipped and could be removed smoothly. The resin layer was transparent.

本発明は、以上説明した実施例の他にも様々な変形が可能である。例えば、重合体1を溶解した溶液には、必要に応じて種々の配合剤を添加しても良い。このような配合剤としては、離型剤、界面活性剤、滑剤、酸化防止剤、保存安定剤、紫外線吸収剤、金属酸化物微粒子、無機フィラーなどが挙げられる。本発明は、このような変形例を全て包含するものである。   The present invention can be variously modified in addition to the embodiments described above. For example, you may add various compounding agents to the solution which melt | dissolved the polymer 1 as needed. Examples of such compounding agents include mold release agents, surfactants, lubricants, antioxidants, storage stabilizers, ultraviolet absorbers, metal oxide fine particles, inorganic fillers, and the like. The present invention includes all such modifications.

尚、前記の実施形態では高圧水銀ランプを用いたが、本発明はこれに限定されるものではなく、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ等をも用いることもできる。   Although the high-pressure mercury lamp is used in the above embodiment, the present invention is not limited to this, and a metal halide lamp, an ultra-high pressure mercury lamp, a xenon lamp, or the like can also be used.

また、材料自体やそれらの組合せは、条件を満せば特に制限を受けるものではなく、使用目的に応じて選択できる。   Further, the materials themselves and combinations thereof are not particularly limited as long as the conditions are satisfied, and can be selected according to the purpose of use.

実施例1における光学素子の製造工程を示す側断面図である。FIG. 6 is a side cross-sectional view illustrating a manufacturing process of the optical element in Example 1. 実施例1における光学素子の製造工程を示す側断面図である。FIG. 6 is a side cross-sectional view illustrating a manufacturing process of the optical element in Example 1. 実施例1における光学素子の製造工程を示す側断面図である。FIG. 6 is a side cross-sectional view illustrating a manufacturing process of the optical element in Example 1.

符号の説明Explanation of symbols

1 金型
2 レンズブランク
3 金型固定枠
4 光硬化性樹脂
1 Mold 2 Lens blank 3 Mold fixing frame 4 Photo-curing resin

Claims (5)

光学素子を成形するための型の表面に重合体1を溶解した溶液を塗付する塗布工程と、溶剤を乾燥除去する乾燥工程と、光硬化性組成物を前記型の表面に供給する供給工程と、前記組成物に光を照射して硬化させ重合体2を得る硬化工程とから成ることを特徴とする光学素子の製造方法。   A coating process for applying a solution in which the polymer 1 is dissolved to the surface of a mold for molding an optical element, a drying process for drying and removing the solvent, and a supplying process for supplying a photocurable composition to the surface of the mold And a curing step for obtaining the polymer 2 by irradiating the composition with light to cure the optical element. 更に前記供給工程と硬化工程との間に、前記組成物上に光学素子の母体となる光学素子ブランクを前記組成物の上に載置する載置工程を備えることを特徴とする請求項1に記載の光学素子の製造方法。   Furthermore, it is equipped with the mounting process which mounts the optical element blank used as the base material of an optical element on the said composition on the said composition between the said supply process and a hardening process. The manufacturing method of the optical element of description. 前記重合体1を溶解した溶液の粘度が5000mPa・s以下であることを特徴とする請求項1に記載の光学素子の製造方法。   The method for producing an optical element according to claim 1, wherein the solution in which the polymer 1 is dissolved has a viscosity of 5000 mPa · s or less. 前記溶剤を乾燥除去後の重合体1の膜の厚さが500μm以下であることを特徴とする請求項1に記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the film thickness of the polymer 1 after removing the solvent by drying is 500 μm or less. 請求項1乃至4のいずれか1項に記載の光学素子の製造方法により製造されたことを特徴とする光学素子。   An optical element manufactured by the method for manufacturing an optical element according to claim 1.
JP2004308019A 2004-10-22 2004-10-22 Optical element and manufacturing method thereof Withdrawn JP2006119424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308019A JP2006119424A (en) 2004-10-22 2004-10-22 Optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308019A JP2006119424A (en) 2004-10-22 2004-10-22 Optical element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006119424A true JP2006119424A (en) 2006-05-11

Family

ID=36537357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308019A Withdrawn JP2006119424A (en) 2004-10-22 2004-10-22 Optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006119424A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509645A (en) * 2006-11-03 2010-03-25 トラスティーズ オブ タフツ カレッジ Biopolymer optical device having nano pattern formed thereon and method for producing the same
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9142787B2 (en) 2009-08-31 2015-09-22 Tufts University Silk transistor devices
US9513405B2 (en) 2006-11-03 2016-12-06 Tufts University Biopolymer photonic crystals and method of manufacturing the same
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9802374B2 (en) 2006-11-03 2017-10-31 Tufts University Biopolymer sensor and method of manufacturing the same
US10040834B2 (en) 2006-11-03 2018-08-07 Tufts University Biopolymer optofluidic device and method of manufacturing the same
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040834B2 (en) 2006-11-03 2018-08-07 Tufts University Biopolymer optofluidic device and method of manufacturing the same
JP2014139684A (en) * 2006-11-03 2014-07-31 Trustees Of Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
US9513405B2 (en) 2006-11-03 2016-12-06 Tufts University Biopolymer photonic crystals and method of manufacturing the same
US9802374B2 (en) 2006-11-03 2017-10-31 Tufts University Biopolymer sensor and method of manufacturing the same
US9969134B2 (en) 2006-11-03 2018-05-15 Trustees Of Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
JP2010509645A (en) * 2006-11-03 2010-03-25 トラスティーズ オブ タフツ カレッジ Biopolymer optical device having nano pattern formed thereon and method for producing the same
US10280204B2 (en) 2006-11-03 2019-05-07 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
US9142787B2 (en) 2009-08-31 2015-09-22 Tufts University Silk transistor devices
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10396173B2 (en) 2011-12-01 2019-08-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Similar Documents

Publication Publication Date Title
JP6482591B2 (en) Photocurable composition
US8444907B2 (en) Method for producing patterned materials
JP5453062B2 (en) Photosensitive resin composition for imprinting and method for forming organic film on substrate
EP0226123A2 (en) Method for producing transparent plastic article
CN101160337A (en) Flexible mold comprising cured polymerizable resin composition
JP2009128759A (en) Photosensitive element and method for producing the same
TWI600671B (en) Imprinting photo-curable resin composition, method for producing imprinting mold, and imprinting mold
JP2023164564A (en) Monolithic high refractive index photonic device
JP2006119424A (en) Optical element and manufacturing method thereof
TWI427113B (en) Curable resins and articles made therefrom
JP4619848B2 (en) Curable resin composition and shaped article using the same
JP2003286316A (en) Curable resin composition and microstructural shapes
WO2006009173A1 (en) Polymer optical waveguide and process for production thereof
WO2020196753A1 (en) Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product
JP2006282689A (en) Photo-curing resin composition and three-dimensional shaped product using the same
JP2003286301A (en) Two-stage curing resin composition, finely shaped molded article, its manufacturing method and precision equipment
JPH093486A (en) Detergent for removing deposit to glass forming frame for lens
JP6442602B2 (en) Optical sheet containing nanopattern and method for producing the same
JPH07316245A (en) Ultraviolet-curing resin composition for transmission screen and cured product thereof
JP4588513B2 (en) Curable resin composition and three-dimensional model using the same
JP5371286B2 (en) LAMINATE FOR RESIN MOLD PRODUCING AND METHOD FOR PRODUCING RESIN MOLD
JP2007515522A (en) Process for the production of optical microstructures
JP2009202510A (en) Microprocessed resin sheet
JP2004001341A (en) Optical element and its manufacturing method
JP2010078919A (en) Diffraction optical element and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108