JP2006113874A - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
JP2006113874A
JP2006113874A JP2004301514A JP2004301514A JP2006113874A JP 2006113874 A JP2006113874 A JP 2006113874A JP 2004301514 A JP2004301514 A JP 2004301514A JP 2004301514 A JP2004301514 A JP 2004301514A JP 2006113874 A JP2006113874 A JP 2006113874A
Authority
JP
Japan
Prior art keywords
movable member
positioning
drive
magnetic field
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301514A
Other languages
Japanese (ja)
Inventor
Takayuki Hoshino
隆之 干野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004301514A priority Critical patent/JP2006113874A/en
Publication of JP2006113874A publication Critical patent/JP2006113874A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning device that can position a movable member while suppressing its inclination in a simple and low cost structure. <P>SOLUTION: The positioning device 10 comprises: a piezoelectric actuator 20 comprising a piezoelectric element 14, a drive member 16 fixed to one end of the piezoelectric element 14, and the movable member 18 movably frictionally held on the drive member 16; a drive circuit 21 for driving the piezoelectric element 14; a position sensor 25 for detecting the position of the movable member 18; a detection circuit 26 for processing a signal from the position sensor 25; and a control circuit 28 for applying a drive command signal to the drive circuit 21 according to a position detection value by the detection circuit 26 to provide position feedback control of the movable member 18. In the positioning of the movable member 18, after the movable member 18 once reaches a target stop position, the control circuit 28 continues further positioning involving an overshoot for a predetermined time or longer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、位置決め装置に関し、例えばカメラや光ピックアップにおけるレンズ駆動や精密ステージ駆動などに好適に用いられる位置決め装置に関する。   The present invention relates to a positioning device, for example, a positioning device suitably used for driving a lens or a precision stage in a camera or an optical pickup.

従来、例えば特許文献1には、圧電素子を用いた駆動装置における移動部材の位置検出装置が開示されている。この駆動装置では、圧電素子の一端に駆動軸が連結され、この駆動軸に可動部材が摩擦係合されており、圧電素子に電圧を印加することにより伸び速度と縮み速度とが異なる伸縮振動させて、この振動を駆動軸に伝達することによって移動部材を駆動軸上で移動させるようになっている。そして、一定間隔で凹凸部が形成された検出部材を駆動軸と微小空隙を隔てて平行に配置し、可動部材の移動に伴って可動部材と検出部材との間の空隙(すなわち静電容量)が周期的に変化するのを利用して、可動部材から検出部材に流れる電流の変化を検出することにより、可動部材の位置を検出するようになっている。   Conventionally, for example, Patent Document 1 discloses a position detection device for a moving member in a driving device using a piezoelectric element. In this drive device, a drive shaft is connected to one end of the piezoelectric element, and a movable member is frictionally engaged with the drive shaft. By applying a voltage to the piezoelectric element, expansion and contraction vibrations having different extension speeds and contraction speeds are caused. By transmitting this vibration to the drive shaft, the moving member is moved on the drive shaft. And the detection member in which the uneven | corrugated | grooved part was formed in the fixed space | interval is arrange | positioned in parallel with the drive shaft and the micro gap | interval, and the space | gap (namely, electrostatic capacitance) between a movable member and a detection member with the movement of a movable member. The position of the movable member is detected by detecting a change in the current flowing from the movable member to the detection member using the periodic change of the current.

また、図9に、位置センサ付き摩擦駆動型圧電アクチュエータSを示す。この圧電アクチュエータSでは、固定部1に一端が固定された圧電素子2の他端に駆動軸3が固定されており、駆動軸3上に可動部材4が移動可能に保持されている。可動部材4は、駆動軸3上に摩擦力で係合する摩擦保持部5と、摩擦保持部5に連結されて図示しないレンズを保持するレンズホルダ6とからなっている。また、摩擦保持部5の中央部に摩擦保持点Xが位置している。   FIG. 9 shows a friction drive type piezoelectric actuator S with a position sensor. In this piezoelectric actuator S, the drive shaft 3 is fixed to the other end of the piezoelectric element 2 whose one end is fixed to the fixed portion 1, and the movable member 4 is movably held on the drive shaft 3. The movable member 4 includes a friction holding portion 5 that engages with the friction force on the drive shaft 3 and a lens holder 6 that is connected to the friction holding portion 5 and holds a lens (not shown). Further, the friction holding point X is located at the center of the friction holding portion 5.

レンズホルダ6の端部近傍には、駆動軸3と平行に配設されたガイド軸7が係合しており、このガイド軸7によって駆動軸3を中心とする回動が規制されながら駆動軸3に沿って移動する可動部材4がガイドされるようになっている。また、レンズホルダ6の端部には、磁石8が付設されており、この磁石8に対向するように磁気センサ9が固定配置されている。   A guide shaft 7 disposed in parallel with the drive shaft 3 is engaged in the vicinity of the end of the lens holder 6, and the drive shaft is controlled by the guide shaft 7 while the rotation about the drive shaft 3 is restricted. The movable member 4 that moves along 3 is guided. A magnet 8 is attached to the end of the lens holder 6, and a magnetic sensor 9 is fixedly disposed so as to face the magnet 8.

このような構成からなる圧電アクチュエータSにおける可動部材4の駆動原理は、上述した特許文献1の駆動装置と全く同じであり、可動部材4の位置検出方法が磁気方式によるものである点において異なるだけである。   The driving principle of the movable member 4 in the piezoelectric actuator S having such a configuration is exactly the same as that of the driving device of Patent Document 1 described above, and is different only in that the position detection method of the movable member 4 is based on a magnetic system. It is.

前記圧電アクチュエータSにおいて、可動部材4の位置決め制御を行って可動部材4が目標とする停止位置に到達したとき直ちに可動部材4の駆動を停止すると、慣性モーメントによって可動部材4が矢印C方向に傾く現象が発生する。この現象は、可動部材4でレンズなどの光学素子を駆動する場合に問題となる。例えば前記圧電アクチュエータSを光ディスク装置における収差補正駆動に用いた場合、レンズの位置決め完了後にレンズに傾きが生じると、トラッキングエラーが発生することになる。この問題は、静電容量方式で可動部材の位置検出を行う特許文献1に開示される駆動装置を光ディスク装置に用いて収差補正用レンズを駆動する場合も同様である。   In the piezoelectric actuator S, when the driving of the movable member 4 is stopped immediately after the movable member 4 is positioned and the movable member 4 reaches the target stop position, the movable member 4 is tilted in the direction of arrow C by the moment of inertia. The phenomenon occurs. This phenomenon becomes a problem when an optical element such as a lens is driven by the movable member 4. For example, when the piezoelectric actuator S is used for aberration correction drive in an optical disc apparatus, a tracking error occurs when the lens is tilted after the lens positioning is completed. This problem also applies to the case where the aberration correction lens is driven using the drive device disclosed in Patent Document 1 that detects the position of the movable member by the electrostatic capacity method in the optical disc apparatus.

図10に可動部材4の位置とレンズ傾きの関係を示すが、可動部材4が目標位置に到達したとき直ちに駆動を停止すると、レンズ傾きは次第に減衰するものの停止直後にはレンズ傾きはかなり大きくなっている。   FIG. 10 shows the relationship between the position of the movable member 4 and the lens tilt. When the drive is stopped immediately when the movable member 4 reaches the target position, the lens tilt gradually attenuates, but the lens tilt becomes considerably large immediately after the stop. ing.

特開2003−185406号公報JP 2003-185406 A

そこで、本発明は、簡便かつ安価な構成で、可動部材の傾きを抑えながら位置決め制御できる位置決め装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a positioning device that can perform positioning control while suppressing the inclination of the movable member with a simple and inexpensive configuration.

前記課題を解決するため、本発明の第1態様の位置決め装置は、電気機械変換素子、前記電気機械変換素子の一端に固定された駆動部材、および、前記駆動部材上に移動可能に摩擦保持された可動部材からなる圧電アクチュエータと、
前記電気機械変換素子を駆動する駆動回路と、
前記可動部材の位置を検出する位置センサと、
前記位置センサからの信号を処理する検出回路と、
前記検出回路による位置検出値に基づいて前記駆動回路に駆動指令信号を与えることで前記可動部材の位置フィードバック制御を行う制御回路と、を備えた位置決め装置であって、
前記可動部材の位置決め動作の際、前記制御回路は、前記可動部材が目標停止位置に一旦到達した後に、オーバーシュートを伴う位置決め制御を所定時間以上さらに継続することを特徴とするものである。
In order to solve the above problems, a positioning device according to a first aspect of the present invention includes an electromechanical transducer, a driving member fixed to one end of the electromechanical transducer, and frictionally held on the driving member. A piezoelectric actuator made of a movable member,
A drive circuit for driving the electromechanical transducer;
A position sensor for detecting the position of the movable member;
A detection circuit for processing a signal from the position sensor;
A control circuit that performs position feedback control of the movable member by giving a drive command signal to the drive circuit based on a position detection value by the detection circuit,
In the positioning operation of the movable member, the control circuit further continues positioning control with overshoot for a predetermined time or more after the movable member once reaches a target stop position.

この構成によれば、可動部材が目標停止位置に一旦到達した後にオーバーシュートさせてから戻すというような位置決め制御を所定時間以上さらに継続してから可動部材を駆動停止することにより、目標停止位置に到達したとき直ちに可動部材を駆動停止する場合に比べて、可動部材の位置決め時の傾きをごく僅かに抑えることができる。また、可動部材をオーバーシュートさせてから戻すというような位置決め制御は、通常用いられる制御回路で対応可能であるので、構成を簡便かつ安価なものにできる。   According to this configuration, after the movable member once reaches the target stop position, the positioning control such as overshooting and then returning is further continued for a predetermined time or more, and then the movable member is driven and stopped, so that the target stop position is reached. Compared with the case where the movable member is immediately stopped when it reaches, the inclination at the time of positioning the movable member can be suppressed to a slight extent. In addition, positioning control such as overshooting the movable member and then returning it can be handled by a control circuit that is normally used, so that the configuration can be simplified and inexpensive.

本発明の第1態様の位置決め装置において、前記所定時間は、前記可動部材の摩擦保持点を中心とする慣性モーメントと前記駆動部材に対する前記可動部材の摩擦保持トルクとから決まる前記可動部材の固有振動周期の半分の時間であってもよい。   In the positioning device according to the first aspect of the present invention, the predetermined time is determined by a moment of inertia centered on a friction holding point of the movable member and a friction holding torque of the movable member with respect to the driving member. It may be half the period.

この構成によれば、可動部材の駆動停止時に発生する可動部材の傾きは減衰振動するので、前記オーバーシュートを伴う位置決め制御を前記固有振動周期の半分以上の時間継続することで可動部材の傾きは問題がない程度に十分に小さいものになる。   According to this configuration, the inclination of the movable member generated when the drive of the movable member stops is damped, and therefore the inclination of the movable member is reduced by continuing the positioning control with the overshoot for more than half the natural vibration period. It is small enough that there is no problem.

また、本発明の第1態様の位置決め装置において、前記所定時間が、前記固有振動周期のn/2(nは1から始まる自然数)であってもよい。   In the positioning device of the first aspect of the present invention, the predetermined time may be n / 2 of the natural vibration period (n is a natural number starting from 1).

この構成によれば、前記固有振動周期のn/2の時間で前記オーバーシュートを伴う位置決め制御を停止することで、可動部材の傾きが無い状態で可動部材を位置決めすることができる。   According to this configuration, the movable member can be positioned without the inclination of the movable member by stopping the positioning control with the overshoot at the time of n / 2 of the natural vibration period.

本発明の第2態様の位置決め装置は、電気機械変換素子、前記電気機械変換素子の一端に固定された駆動部材、および、前記駆動部材上に移動可能に摩擦保持された可動部材からなる圧電アクチュエータと、
前記電気機械変換素子を駆動する駆動回路と、
前記可動部材の位置を検出する位置センサと、
前記位置センサからの信号を処理する検出回路と、
前記検出回路による位置検出値に基づいて前記駆動回路に駆動指令信号を与えることで前記可動部材の位置決め制御を行う制御回路と、を備えた位置決め装置であって、
前記位置センサが、前記可動部材に設けられた磁界発生部材と、固定部に設けられた磁気検出部材とからなり、前記可動部材の摩擦保持点を基準として前記可動部材の重心が位置する方向と反対方向において前記磁界発生部材が前記可動部材に設けられていることを特徴とするものである。
A positioning device according to a second aspect of the present invention includes an electromechanical conversion element, a drive member fixed to one end of the electromechanical conversion element, and a piezoelectric actuator comprising a movable member movably held on the drive member. When,
A drive circuit for driving the electromechanical transducer;
A position sensor for detecting the position of the movable member;
A detection circuit for processing a signal from the position sensor;
A control circuit for performing positioning control of the movable member by giving a drive command signal to the drive circuit based on a position detection value by the detection circuit,
The position sensor includes a magnetic field generating member provided on the movable member and a magnetic detection member provided on the fixed portion, and a direction in which the center of gravity of the movable member is located with reference to a friction holding point of the movable member. In the opposite direction, the magnetic field generating member is provided on the movable member.

この構成によれば、磁界発生部材を可動部材の駆動部材側に設けたことで、可動部材の慣性モーメントが小さくなるので、可動部材を位置決め停止したときの可動部材の傾きを小さくすることができる。   According to this configuration, since the magnetic moment generating member is provided on the driving member side of the movable member, the moment of inertia of the movable member is reduced, so that the inclination of the movable member when the positioning of the movable member is stopped can be reduced. .

本発明の位置決め装置において、前記可動部材が光学素子を保持してもよい。   In the positioning device of the present invention, the movable member may hold an optical element.

この構成によれば、可動部材を位置決め停止したときの光学素子の傾きを小さくすることができる。   According to this configuration, the inclination of the optical element when the positioning of the movable member is stopped can be reduced.

また、本発明の位置決め装置において、前記光学素子の光軸と、前記可動部材の移動方向が平行であることが好ましい。   In the positioning device of the present invention, it is preferable that the optical axis of the optical element is parallel to the moving direction of the movable member.

この構成によれば、収差補正すべき光線が光学素子の光軸に常に一致した状態で可動部材を移動させることができる。   According to this configuration, the movable member can be moved in a state where the light beam to be corrected for aberration always coincides with the optical axis of the optical element.

また、本発明の位置決め装置において、前記光学素子が撮影光学系の一部をなしてもよい。   In the positioning device of the present invention, the optical element may form part of a photographing optical system.

また、本発明の位置決め装置において、前記光学素子が光ピックアップ光学系の一部をなしてもよい。この場合、前記光学素子が光ピックアップ光学系のレンズであり、前記レンズが光軸方向に移動することにより収差補正を行ってもよい。   In the positioning device of the present invention, the optical element may form part of an optical pickup optical system. In this case, the optical element may be a lens of an optical pickup optical system, and aberration correction may be performed by moving the lens in the optical axis direction.

この構成によれば、レンズの傾きを抑えながら可動部材を位置決めでるので、精度良く収差補正することができる。   According to this configuration, since the movable member can be positioned while suppressing the tilt of the lens, aberration correction can be performed with high accuracy.

さらに、前記可動部材が目標停止位置に一旦到達した後に行うオーバーシュートを伴う位置決め制御の継続時間は、光ディスク回転周期以上であってもよい。   Furthermore, the duration of the positioning control with overshoot performed after the movable member once reaches the target stop position may be equal to or longer than the optical disk rotation period.

この構成によれば、光ディスク1周内で発生する光ディスクの保護層の厚み変化に基づく収差をリアルタイムに補正することが可能になり、光ディスク装置の信頼性を向上させることができる。   According to this configuration, it becomes possible to correct in real time the aberration based on the change in the thickness of the protective layer of the optical disc that occurs within one circumference of the optical disc, and the reliability of the optical disc apparatus can be improved.

上述したように本発明の位置決め装置によれば、可動部材が目標停止位置に一旦到達した後にオーバーシュートさせてから戻すというような位置決め制御を所定時間以上さらに継続してから可動部材を駆動停止することにより、目標停止位置に到達したとき直ちに可動部材を駆動停止する場合に比べて、可動部材の位置決め時の傾きをごく僅かに抑えることができる。また、可動部材をオーバーシュートさせてから戻すというような位置決め制御は、通常用いられる制御回路で対応可能であるので、構成を簡便かつ安価なものにできる。   As described above, according to the positioning device of the present invention, after the movable member once reaches the target stop position, the positioning control such as overshooting and returning is further continued for a predetermined time or more, and then the movable member is stopped driving. As a result, the tilt at the time of positioning of the movable member can be suppressed slightly compared to the case where the driving of the movable member is stopped immediately when the target stop position is reached. In addition, positioning control such as overshooting the movable member and then returning it can be handled by a control circuit that is normally used, so that the configuration can be simplified and inexpensive.

以下に、本発明の実施の形態について添付図面を参照して説明する。
図1は、本発明の第1実施形態である位置決め装置10のシステム構成図である。この位置決め装置10は、固定部12に接着等の方法で一端が固定された電気機械変換素子としての圧電素子14と、圧電素子14の他端に接着等の方法で固定された例えば丸棒状の駆動部材16と、駆動部材16上に摩擦保持されている可動部材18とからなる圧電アクチュエータ20を備えている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a system configuration diagram of a positioning device 10 according to a first embodiment of the present invention. This positioning device 10 includes a piezoelectric element 14 as an electromechanical conversion element whose one end is fixed to the fixing portion 12 by a method such as adhesion, and a round bar-like shape fixed to the other end of the piezoelectric element 14 by a method such as adhesion. A piezoelectric actuator 20 including a driving member 16 and a movable member 18 frictionally held on the driving member 16 is provided.

可動部材18は、圧電素子14の伸縮方向である矢印D方向に駆動部材16に沿って移動可能になっている。また、可動部材18は、図9に示す可動部材4と同様に、駆動部材16上に摩擦力で係合する摩擦保持部と、この摩擦保持部に連結されて図示しないレンズ(光学素子)を保持するレンズホルダとからなっており、このレンズの光軸が可動部材18の移動方向と平行になっている。また、可動部材18が駆動部材16に沿って移動するときにガイド軸によって駆動部材16を中心とする回動が規制されながらガイドされるようになっている点も図9に示す圧電アクチュエータSと同様である。さらに、可動部材18の摩擦保持部の中央部に摩擦保持点Xが位置している点も前記圧電アクチュエータSと同様である。   The movable member 18 is movable along the drive member 16 in the direction of arrow D, which is the expansion / contraction direction of the piezoelectric element 14. Similarly to the movable member 4 shown in FIG. 9, the movable member 18 includes a friction holding portion that engages with the friction force on the driving member 16 and a lens (optical element) (not shown) connected to the friction holding portion. The lens holder is held, and the optical axis of the lens is parallel to the moving direction of the movable member 18. Further, when the movable member 18 moves along the driving member 16, it is guided by the guide shaft while the rotation about the driving member 16 is restricted by the guide shaft, as shown in FIG. It is the same. Further, the point that the friction holding point X is located at the center of the friction holding part of the movable member 18 is the same as that of the piezoelectric actuator S.

圧電アクチュエータ10が例えばカメラ等の撮影装置に適用される場合には、前記レンズは撮影光学系の一部を構成し、圧電アクチュエータ10が光ピックアップ装置に適用される場合には、前記レンズは光ピックアップ光学系の一部を構成する。さらに、圧電素子14は、駆動回路21から電圧が印加されて駆動されるようになっている。なお、電気変換素子は例えばピエゾ素子等の圧電素子に限定されず、他の電歪素子であってもよい。   For example, when the piezoelectric actuator 10 is applied to an imaging apparatus such as a camera, the lens constitutes a part of an imaging optical system, and when the piezoelectric actuator 10 is applied to an optical pickup apparatus, the lens is a light beam. Part of the pickup optical system. Further, the piezoelectric element 14 is driven by applying a voltage from the drive circuit 21. The electrical conversion element is not limited to a piezoelectric element such as a piezoelectric element, and may be another electrostrictive element.

可動部材18には、磁界発生部材22が取り付けられている。磁界発生部材22は、可動部材18と共に移動するようになっている。この磁界発生部材22に対向するようにして固定部12上に磁界検出部材24が固定されている。磁界検出部材24は、磁界発生部材22により生成される磁界を検出するものである。磁界検出部材24として、例えばホール素子やMR素子などが好適に用いられる。これら磁界発生部材22および磁界検出部材24が、可動部材18の位置を検出する位置センサ25を構成する。   A magnetic field generating member 22 is attached to the movable member 18. The magnetic field generating member 22 moves with the movable member 18. A magnetic field detecting member 24 is fixed on the fixing portion 12 so as to face the magnetic field generating member 22. The magnetic field detection member 24 detects a magnetic field generated by the magnetic field generation member 22. As the magnetic field detection member 24, for example, a Hall element or an MR element is preferably used. The magnetic field generating member 22 and the magnetic field detecting member 24 constitute a position sensor 25 that detects the position of the movable member 18.

磁界検出部材24は、検出回路26に電気的に接続されており、磁界検出部材24による検出信号が検出回路26に入力されるようになっている。検出回路26は、前記検出信号に基づいて演算処理することにより可動部材18の位置を求めるものである。検出回路26は、制御回路28に電気的に接続されており、検出回路26による位置検出値が制御回路28に入力されるようになっている。制御回路28は、前記位置検出値に基づいて駆動回路21に駆動指令信号を与えることで、可動部材18の位置決めフィードバック制御を行うためのものである。   The magnetic field detection member 24 is electrically connected to the detection circuit 26, and a detection signal from the magnetic field detection member 24 is input to the detection circuit 26. The detection circuit 26 calculates the position of the movable member 18 by performing arithmetic processing based on the detection signal. The detection circuit 26 is electrically connected to the control circuit 28, and a position detection value by the detection circuit 26 is input to the control circuit 28. The control circuit 28 is for performing positioning feedback control of the movable member 18 by giving a drive command signal to the drive circuit 21 based on the position detection value.

続いて、前記圧電アクチュエータ10の作動原理について説明する。図2は駆動部材16上における可動部材18の移動状態を示す模式図であり、図3は駆動部材16の軸変位を時間軸に示したグラフである。つまり、図3に示すような軸変位動作を駆動部材16が為すように、圧電素子14に対して鋸歯状の駆動パルス電圧が印加されるものである。なお、図2中のa,b,cの各状態と、図3中に示す記号a,b,cの時間ポイントとは一致させて描いている。   Next, the operating principle of the piezoelectric actuator 10 will be described. FIG. 2 is a schematic diagram showing the moving state of the movable member 18 on the driving member 16, and FIG. 3 is a graph showing the axial displacement of the driving member 16 on the time axis. That is, a sawtooth drive pulse voltage is applied to the piezoelectric element 14 so that the drive member 16 performs the axial displacement operation as shown in FIG. It should be noted that the states a, b, and c in FIG. 2 and the time points of symbols a, b, and c shown in FIG.

まず、図2のa状態を初期状態とすると、この初期状態から図2のb状態に移行するとき、前記鋸歯状駆動パルス電圧の緩慢な立ち上がり部の電圧が印加されることによって圧電素子14は緩やかに伸長し、これに伴って駆動部材16も図3に示すように緩やかな速度で繰り出し方向に変位する。このとき、駆動部材16に摩擦係合された可動部材18は、その摩擦係合力により駆動部材16と同期追随して移動する。次に、図2のb状態からc状態へ移行するとき、前記鋸歯状駆動パルス電圧の急峻な立ち下がり部の電圧が印加されることによって圧電素子14は急速に収縮し、これに伴って駆動部材16も図3に示すように急速に戻り方向に変位する。このとき、可動部材18と駆動部材16の摩擦係合部に滑りが生じることになる。この滑りにより、可動部材18は駆動部材16の軸変位に追随して変位せず、戻り方向に僅かに移動するだけになり、その結果として、初期状態であるa状態と比べると、c状態では可動部材18は繰り出し方向に移動している。このような動作が繰り返されることにより、可動部材18は駆動部材16上を圧電素子14から離れる方向である繰り出し方向に移動されることになる。   First, assuming the state a in FIG. 2 as the initial state, when the state transitions from the initial state to the state b in FIG. 2, the piezoelectric element 14 is applied by applying a slowly rising voltage of the sawtooth drive pulse voltage. As shown in FIG. 3, the driving member 16 is displaced in the feeding direction at a moderate speed. At this time, the movable member 18 frictionally engaged with the drive member 16 moves in synchronization with the drive member 16 by the friction engagement force. Next, when the state transitions from the b state to the c state in FIG. 2, the piezoelectric element 14 is rapidly contracted by applying a voltage at the steep falling edge of the sawtooth drive pulse voltage, and is driven accordingly. The member 16 is also rapidly displaced in the return direction as shown in FIG. At this time, slip occurs in the friction engagement portion between the movable member 18 and the drive member 16. Due to this slip, the movable member 18 does not move following the axial displacement of the drive member 16, but only moves slightly in the return direction. As a result, in the c state, compared with the a state which is the initial state. The movable member 18 has moved in the feeding direction. By repeating such an operation, the movable member 18 is moved on the driving member 16 in a feeding direction which is a direction away from the piezoelectric element 14.

一方、可動部材18は、上述したのと逆の原理で圧電素子14に近づく方向である戻り方向に移動される。すなわち、鋸歯状駆動パルス電圧の急峻な立ち上がり部の電圧が印加されることによって圧電素子14は急速に伸長し、これに伴って駆動部材16も急速に繰り出し方向に移動する。このとき、可動部材18と駆動部材16の摩擦係合部に滑りが生じ。この滑りにより可動部材18は駆動部材16の軸変位に追随して変位せず、繰り出し方向に僅かに移動するだけになる。次に、鋸歯状駆動パルス電圧の緩慢な立ち下がり部の電圧が印加されることによって圧電素子14は緩やかに収縮し、これに伴って駆動部材16も緩やかな速度で戻り方向に移動する。このとき、駆動部材16に摩擦係合された可動部材18は、その摩擦係合力により駆動部材16と同期追随して戻り方向に変位する。その結果、初期状態と比べると、可動部材18は戻り方向に移動している。このような動作が繰り返されることにより、可動部材18は駆動部材16上を戻り方向に移動されることになる。   On the other hand, the movable member 18 is moved in a return direction that is a direction approaching the piezoelectric element 14 on the principle opposite to that described above. That is, when the voltage at the steep rising portion of the sawtooth drive pulse voltage is applied, the piezoelectric element 14 rapidly expands, and accordingly, the drive member 16 also rapidly moves in the feeding direction. At this time, slip occurs in the friction engagement portion between the movable member 18 and the drive member 16. Due to this slip, the movable member 18 does not move following the axial displacement of the drive member 16, but moves slightly in the feeding direction. Next, when the voltage at the slowly falling portion of the sawtooth drive pulse voltage is applied, the piezoelectric element 14 is gradually contracted, and the drive member 16 is also moved in the return direction at a moderate speed. At this time, the movable member 18 frictionally engaged with the drive member 16 is displaced in the return direction following the drive member 16 in synchronization with the friction engagement force. As a result, the movable member 18 has moved in the return direction compared to the initial state. By repeating such an operation, the movable member 18 is moved on the drive member 16 in the return direction.

続いて、図4を参照して前記位置センサ25および検出回路26について詳細に説明する。
位置センサ25を構成する磁界発生部材22は、厚さ方向に正着磁(つまり、磁界検出部材24に対向する面がN極で、その裏面がS極)された略三角形状の第1磁石22aと、厚さ方向に負着磁(つまり、磁界検出部材24に対向する面がS極で、その裏面がN極)された略三角形状の第2磁石22bとを備えており、第1磁石22aおよび第2磁石22bの各斜辺同士を対向させて固着した略四角形状をなしている。このような磁界発生部材22であれば、N極部分とS極部分とが斜面形状に応じて、緩やかに入れ替わることとなる。したがって、かかる磁界発生部材22が可動部材3と共に矢印D方向に移動された場合、定点で磁界観測すると、検出される表面磁束密度が略線形に変化するように検出されることとなる。
Next, the position sensor 25 and the detection circuit 26 will be described in detail with reference to FIG.
The magnetic field generating member 22 constituting the position sensor 25 is a substantially triangular first magnet that is positively magnetized in the thickness direction (that is, the surface facing the magnetic field detecting member 24 is N-pole and the back surface is S-pole). 22a and a substantially triangular second magnet 22b that is negatively magnetized in the thickness direction (that is, the surface facing the magnetic field detection member 24 is the south pole and the back surface is the north pole). The magnet 22a and the second magnet 22b have a substantially square shape in which the oblique sides of the magnet 22a and the second magnet 22b are fixed to face each other. With such a magnetic field generating member 22, the N pole portion and the S pole portion are gently switched according to the slope shape. Therefore, when the magnetic field generating member 22 is moved in the direction of the arrow D together with the movable member 3, when the magnetic field is observed at a fixed point, the detected surface magnetic flux density is detected so as to change substantially linearly.

このような磁界発生部材22が磁界検出部材24に対向するように可動部材18に固定されている。そして、磁界検出部材24は、磁界発生部材22の移動方向に沿って第1の磁界検出素子24aと第2の磁界検出素子24bとが固定的に並置されて構成されている。したがって、磁界発生部材22が矢印D方向に移動すると、第1の磁界検出素子24aおよび第2の磁界検出素子24b周辺の磁界が、磁界発生部材22から与えられる表面胃磁束密度の変化に応じてそれぞれ変化するため、第1,第2の磁界検出素子24a,24bが検出する出力信号も変化することとなる。しかも、第1の磁界検出素子24aと第2の磁界検出素子24bとが同時刻において検出する磁束密度は、磁界発生部材22がN極部分からS極部分へ緩やかに変化する形状を備えていることから、それぞれの配置位置に応じて異なる磁束密度が検出されることとなる。すなわち、磁界発生部材22の表面磁束密度は、その移動方向に対して、図中左端近傍で正の最大値をとり、中央部でゼロになり、図中右端近傍で負の最大値(絶対値)をとり、またその変化は略線形となることから、第1の磁界検出素子24aと第2の磁界検出素子24bとからは、同時刻において異なる表面磁束密度が検出されるものである。   Such a magnetic field generating member 22 is fixed to the movable member 18 so as to face the magnetic field detecting member 24. The magnetic field detection member 24 is configured such that the first magnetic field detection element 24a and the second magnetic field detection element 24b are fixedly juxtaposed along the moving direction of the magnetic field generation member 22. Therefore, when the magnetic field generating member 22 moves in the direction of the arrow D, the magnetic field around the first magnetic field detecting element 24a and the second magnetic field detecting element 24b changes according to the change in the surface gastric magnetic flux density applied from the magnetic field generating member 22. Since these change, the output signals detected by the first and second magnetic field detection elements 24a and 24b also change. Moreover, the magnetic flux density detected by the first magnetic field detection element 24a and the second magnetic field detection element 24b at the same time has a shape in which the magnetic field generating member 22 gradually changes from the N pole portion to the S pole portion. Therefore, different magnetic flux densities are detected depending on the respective arrangement positions. That is, the surface magnetic flux density of the magnetic field generating member 22 takes a positive maximum value in the vicinity of the left end in the figure, becomes zero in the center, and becomes zero in the vicinity of the right end in the figure (absolute value). In addition, since the change is substantially linear, different surface magnetic flux densities are detected at the same time from the first magnetic field detection element 24a and the second magnetic field detection element 24b.

検出回路26は、演算増幅器からそれぞれなる第1の加算器26aおよび第2の加算器26bと、第1の加算器26aおよび第2の加算器26bの各出力値に基づいて演算処理を行う演算器26cとを備えている。   The detection circuit 26 performs arithmetic processing based on the output values of the first adder 26a and the second adder 26b, and the output values of the first adder 26a and the second adder 26b. 26c.

第1の加算器26aは、第1の磁界検出素子24aが磁界を検出して出力する出力電気信号を増幅するもので、第1の磁界検出素子24aのプラス側端子30aが第1の加算器26aの非反転入力端子に接続されている。また、第1の磁界検出素子24aのマイナス側端子32aは、第1の加算器26aの反転入力端子に接続されている。   The first adder 26a amplifies the output electric signal output by the first magnetic field detection element 24a detecting the magnetic field, and the positive terminal 30a of the first magnetic field detection element 24a is the first adder. It is connected to the non-inverting input terminal 26a. The minus side terminal 32a of the first magnetic field detection element 24a is connected to the inverting input terminal of the first adder 26a.

一方、第2の加算器26bは、第2の磁界検出素子24bが磁界を検出して出力する出力電気信号を増幅するもので、第2の磁界検出素子24bのプラス側端子30bが第2の加算器26bの反転入力端子に接続されている。また、第2の磁界検出素子24bのマイナス側端子32bは、第2の加算器26bの非反転入力端子に接続されている。   On the other hand, the second adder 26b amplifies the output electric signal output by the second magnetic field detection element 24b detecting the magnetic field, and the plus side terminal 30b of the second magnetic field detection element 24b is the second one. It is connected to the inverting input terminal of the adder 26b. The minus side terminal 32b of the second magnetic field detection element 24b is connected to the non-inverting input terminal of the second adder 26b.

演算器26cは、第1の磁界検出素子24aから出力される電気信号を出力A、第2の磁界検出素子24bから出力される電気信号を出力Bとするときに、次式(1)に基づいて演算を行い、その演算結果を位置検出値として制御回路28に送信する。   When the electric signal output from the first magnetic field detection element 24a is output A and the electric signal output from the second magnetic field detection element 24b is output B, the computing unit 26c is based on the following equation (1). The calculation result is transmitted to the control circuit 28 as a position detection value.

Figure 2006113874
Figure 2006113874

このような(A−B)/(A+B)の演算処理を演算器26cにおいて実行させる目的は、検出回路26が検出する可動部材18の位置信号の動作環境温度特性を改善させることにある。すなわち、一般に磁石は環境温度が変化すると、その温度特性により磁束密度が変化する。例えば環境温度が上昇した場合、磁界発生部材22が備える第1磁石22aおよび第2磁石22bがもつ温度特性によって、その表面磁束密度が低下することになる。これに伴い、第1,第2の磁界検出素子24a,24bの出力値も、環境温度の上昇に伴い低下する傾向がある。演算器26cは、このような動作環境温度の変化による第1,第2の磁界検出素子24a,24bの出力値低下の影響を受けずに可動部材18の位置検知が行い得るように、演算処理を行うものである。   The purpose of causing the arithmetic unit 26c to execute such arithmetic processing of (A−B) / (A + B) is to improve the operating environment temperature characteristic of the position signal of the movable member 18 detected by the detection circuit 26. That is, in general, when the environmental temperature of a magnet changes, the magnetic flux density changes due to its temperature characteristics. For example, when the environmental temperature rises, the surface magnetic flux density decreases due to the temperature characteristics of the first magnet 22a and the second magnet 22b included in the magnetic field generating member 22. Accordingly, the output values of the first and second magnetic field detection elements 24a and 24b also tend to decrease as the environmental temperature increases. The arithmetic unit 26c performs arithmetic processing so that the position of the movable member 18 can be detected without being affected by the decrease in the output values of the first and second magnetic field detection elements 24a and 24b due to such changes in the operating environment temperature. Is to do.

なお、本実施形態では、位置センサとして磁気方式のものを用いたが、これに限らず、他の方式(例えば静電容量式や光学式など)の位置センサを用いてもよい。   In the present embodiment, a magnetic sensor is used as the position sensor. However, the position sensor is not limited to this, and a position sensor of another system (for example, a capacitance type or an optical type) may be used.

次に、前記位置決め装置10の位置フィードバック制御について説明する。
図5は、本実施形態の位置決め装置10における可動部材18の位置とレンズ傾きの関係を示す。位置決め装置10において、例えば撮影装置の本体制御部から位置指令信号が制御回路28に入力されると、制御回路28は駆動回路21に駆動指令信号を送信する。これにより、駆動回路21が圧電素子14に駆動電圧を印加することで、可動部材18が駆動される。可動部材18の位置は、位置センサ25によって随時検出され、その位置検出値が検出回路26から制御回路28に入力される。制御回路28は、図5に示すように、指令された目標位置と、位置センサ25による位置検出値との差がゼロになるまで、可動部材18を駆動する。
Next, position feedback control of the positioning device 10 will be described.
FIG. 5 shows the relationship between the position of the movable member 18 and the lens tilt in the positioning device 10 of the present embodiment. In the positioning device 10, for example, when a position command signal is input to the control circuit 28 from the main body control unit of the photographing apparatus, the control circuit 28 transmits a drive command signal to the drive circuit 21. As a result, the drive circuit 21 applies a drive voltage to the piezoelectric element 14 to drive the movable member 18. The position of the movable member 18 is detected at any time by the position sensor 25, and the position detection value is input from the detection circuit 26 to the control circuit 28. As shown in FIG. 5, the control circuit 28 drives the movable member 18 until the difference between the commanded target position and the position detection value by the position sensor 25 becomes zero.

可動部材18が目標位置に到達したとき、直ちに可動部材18の駆動を停止すると、可動部材18が有する慣性モーメントによって可動部材18に傾きが生じ、可動部材18に保持されたレンズにも傾きが発生する。この可動部材18の傾きを、駆動部材16に対する直交面からの角度θとすると、次式(2)で表すことができ、これを具体的にグラフ化したものが図6である。   If the drive of the movable member 18 is stopped immediately when the movable member 18 reaches the target position, the movable member 18 is inclined due to the moment of inertia of the movable member 18, and the lens held by the movable member 18 is also inclined. To do. When the inclination of the movable member 18 is an angle θ from the orthogonal plane with respect to the drive member 16, it can be expressed by the following formula (2), and FIG.

なお、下記の運動方程式において、Jは可動部材18の駆動部材16に対する摩擦保持点Xを基準とする慣性モーメント、Cは振動減衰係数、Kはバネ定数を示す。ここで、図9を参照すると、可動部材4の摩擦保持部5は、図示しない板ばね等の付勢部材の付勢力によって駆動部材3に対して圧接されていることで摩擦保持部5と駆動部材3との間に所定の摩擦力を生じることになるが、摩擦保持部5は前記付勢部材によって駆動部材3に押し付けられているだけなので、レンズホルダ6および摩擦保持部5を含む可動部材4は図示する状態から矢印C方向(または逆方向)に或る程度の角度範囲で弾性的復元力をもって回動可能になっている。そのために上述したような可動部材およびレンズの傾きが生じることになるのだが、このときの弾性的復元力を前記バネ定数Kで表したものであり、このバネ定数Kは摩擦保持トルクとも表現される。このバネ定数K(すなわち摩擦保持トルク)は、本実施形態の位置決め装置10についても同様である。   In the following equation of motion, J represents a moment of inertia based on the friction holding point X of the movable member 18 with respect to the drive member 16, C represents a vibration damping coefficient, and K represents a spring constant. Here, referring to FIG. 9, the friction holding portion 5 of the movable member 4 is driven in contact with the friction holding portion 5 by being pressed against the driving member 3 by a biasing force of a biasing member such as a leaf spring (not shown). A predetermined frictional force is generated between the member 3 and the movable member including the lens holder 6 and the friction holding unit 5 because the friction holding unit 5 is only pressed against the driving member 3 by the biasing member. 4 is rotatable with an elastic restoring force in a certain angle range in the direction of arrow C (or the reverse direction) from the state shown in the figure. Therefore, the movable member and the lens are inclined as described above. The elastic restoring force at this time is expressed by the spring constant K, and the spring constant K is also expressed as a friction holding torque. The This spring constant K (that is, friction holding torque) is the same for the positioning device 10 of this embodiment.

Figure 2006113874
Figure 2006113874

図6に示すように、目標位置到達後直ちに可動部材18を駆動停止した場合には、停止直後にレンズを保持する可動部材18にはかなり大きな傾きが生じることになる。そこで、本実施形態の位置決め装置10では、可動部材18(すなわちレンズ)の傾きを抑えるために、可動部材18が目標停止位置に一旦到達した後に、次のような位置フィードバック制御を所定時間以上さらに継続する。   As shown in FIG. 6, when the driving of the movable member 18 is stopped immediately after reaching the target position, a considerably large inclination is generated in the movable member 18 holding the lens immediately after the stop. Therefore, in the positioning device 10 of this embodiment, in order to suppress the tilt of the movable member 18 (that is, the lens), after the movable member 18 reaches the target stop position, the following position feedback control is further performed for a predetermined time or more. continue.

図5に示すように、制御回路28は、可動部材18が目標停止位置に到達した後もさらに可動部材18の駆動を継続して僅かにオーバーシュートさせから逆方向に駆動して戻すというような位置決め制御を少なくとも1回以上行う。このような制御を行うことで、目標停止位置に到達したとき直ちに可動部材18を駆動停止する場合(図10参照)に比べて、可動部材18およびレンズの傾きをごく僅かに抑えることができる。また、可動部材18をオーバーシュートさせてから戻すというような位置フィードバック制御は、通常用いられる一般的な制御回路28で対応可能であるので、構成を簡便かつ安価なものにできる。   As shown in FIG. 5, the control circuit 28 continues to drive the movable member 18 even after the movable member 18 reaches the target stop position, slightly overshoots, and then drives back in the reverse direction. Perform positioning control at least once. By performing such control, the tilt of the movable member 18 and the lens can be suppressed to a slight extent as compared with the case where the driving of the movable member 18 is stopped immediately when the target stop position is reached (see FIG. 10). Further, position feedback control such as returning the movable member 18 after overshooting can be handled by a general control circuit 28 that is normally used, so that the configuration can be simplified and inexpensive.

上述したような可動部材18をオーバーシュートさせる制御は、次のようにして行われる。本実施形態の位置決め装置10は、図7に示す制御ブロック図で表すことができ、制御回路28は、その運動方程式に基づいて可動部材18の位置xの挙動がオーバーシュートを伴う減衰振動的なものになるように積分ゲインKiを選択する。   The control for overshooting the movable member 18 as described above is performed as follows. The positioning device 10 of the present embodiment can be represented by the control block diagram shown in FIG. 7, and the control circuit 28 is configured such that the behavior of the position x of the movable member 18 is damped and vibrational with overshoot based on the equation of motion. The integral gain Ki is selected so as to be a certain one.

Figure 2006113874
Figure 2006113874

なお、上記のような制御回路はPIコントローラと一般的に称され、Pは比例を、Iは積分をそれぞれ意味する。また、Kpを比例ゲイン、Kiを積分ゲインと言い、Kiを上述のように選択するとオーバーシュートが出る制御系になる。   The control circuit as described above is generally called a PI controller, P means proportionality, and I means integration. Also, Kp is referred to as a proportional gain, Ki is referred to as an integral gain, and when Ki is selected as described above, a control system in which overshoot occurs.

このようなオーバーシュートを伴う位置決め制御を継続する所定時間は、可動部材18の摩擦保持点Xを中心とする慣性モーメントと駆動部材16に対する可動部材18の摩擦保持トルクとから決まる可動部材18の固有振動周期frの半分以上の時間であることが好ましい。このようにすれば、可動部材18の駆動停止時に発生する可動部材18の傾きは減衰振動するので、オーバーシュートを伴う位置決め制御を固有振動周期frの半分以上の時間継続することで可動部材18の傾きは問題がない程度に十分に小さいものになる。   The predetermined time during which the positioning control with overshoot is continued is determined by the inertia of the movable member 18 centered on the friction holding point X of the movable member 18 and the friction holding torque of the movable member 18 with respect to the driving member 16. It is preferable that the time is half or more of the vibration period fr. In this way, the inclination of the movable member 18 generated when the drive of the movable member 18 stops is damped and vibration. Therefore, the positioning control with overshoot is continued for more than half of the natural vibration period fr, thereby allowing the movable member 18 to move. The slope is small enough that there is no problem.

前記所定時間の上限は、特に限定されるものではないが、あまり長くなるとレンズの位置決めに時間がかかって撮影装置や光ピックアップ装置などの使い勝手が悪くなる。例えば前記位置決め装置10がDVDドライブの光ピックアップ光学系に用いられた場合には、DVDドライブの平均アクセス時間が約150msecであり、ピックアップ用レンズの位置決めに要する時間はその10分の1程度に収まっている必要があることから、この場合における前記所定時間の上限は例えば15msecが適当である。   The upper limit of the predetermined time is not particularly limited, but if it is too long, it takes time to position the lens, and the usability of the photographing device, the optical pickup device, etc. is deteriorated. For example, when the positioning device 10 is used in an optical pickup optical system of a DVD drive, the average access time of the DVD drive is about 150 msec, and the time required for positioning the pickup lens is about 1/10. In this case, for example, 15 msec is appropriate as the upper limit of the predetermined time.

また、前記所定時間を、前記固有振動周期frのn/2(nは1から始まる自然数)としてもよい。具体的には、図5のレンズ傾きを示す時間軸上における丸印34,36,38の位置が固有振動周期frのn/2の時間になる。このようにすれば、固有振動周期frのn/2の時間でオーバーシュートを伴う位置決め制御を停止することで、可動部材18の傾きが無い状態で可動部材18を位置決めすることができる。   The predetermined time may be n / 2 of the natural vibration period fr (n is a natural number starting from 1). Specifically, the positions of the circles 34, 36, and 38 on the time axis indicating the lens tilt in FIG. 5 are times of n / 2 of the natural vibration period fr. In this manner, the movable member 18 can be positioned without tilting the movable member 18 by stopping the positioning control with overshoot at the time of n / 2 of the natural vibration period fr.

ここで、可動部材18の固有振動周期は次式(3)で表される。

Figure 2006113874
Here, the natural vibration period of the movable member 18 is expressed by the following equation (3).
Figure 2006113874

次に、図8を参照して本発明の第2実施形態の位置決め装置40について説明する。
位置決め装置40は、従来例として説明した圧電アクチュエータSとほぼ同様の構成を備えている。すなわち、圧電アクチュエータ40では、固定部42に一端が固定された圧電素子44の他端に駆動部材46が固定されており、駆動部材46上に可動部材48が移動可能に保持されている。可動部材48は、駆動部材46上に摩擦力で係合する摩擦保持部50と、摩擦保持部50に連結されて図示しないレンズを保持するレンズホルダ52とからなっている。可動部材48について、摩擦保持部5の中央部に摩擦保持点Xが位置しており、レンズホルダ52の略中央部に可動部材48の重心Gが位置している。
Next, a positioning device 40 according to a second embodiment of the present invention will be described with reference to FIG.
The positioning device 40 has substantially the same configuration as the piezoelectric actuator S described as the conventional example. That is, in the piezoelectric actuator 40, the driving member 46 is fixed to the other end of the piezoelectric element 44 whose one end is fixed to the fixing portion 42, and the movable member 48 is movably held on the driving member 46. The movable member 48 includes a friction holding unit 50 that is engaged with the driving member 46 by a frictional force, and a lens holder 52 that is connected to the friction holding unit 50 and holds a lens (not shown). With respect to the movable member 48, the friction holding point X is located at the center portion of the friction holding portion 5, and the center of gravity G of the movable member 48 is located substantially at the center portion of the lens holder 52.

レンズホルダ52の端部近傍には、駆動部材46と平行に配設されたガイド軸54が係合しており、このガイド軸54によって駆動部材46を中心とする回動が規制されながら駆動部材46に沿って移動する可動部材48がガイドされるようになっている。   A guide shaft 54 disposed in parallel with the drive member 46 is engaged in the vicinity of the end portion of the lens holder 52, and the drive member is controlled by the guide shaft 54 while turning around the drive member 46 is restricted. A movable member 48 that moves along 46 is guided.

位置決め装置40もまた、可動部材48に設けられた磁界発生部材56と、磁界発生部材56に対向して固定部57上に固定配置された磁界検出部材58とからなる位置センサ60を備えている。この位置センサ60は、上述した第1実施形態の位置決め装置10における位置センサ25と同様である。   The positioning device 40 also includes a position sensor 60 including a magnetic field generating member 56 provided on the movable member 48 and a magnetic field detecting member 58 fixedly disposed on the fixed portion 57 so as to face the magnetic field generating member 56. . The position sensor 60 is the same as the position sensor 25 in the positioning device 10 of the first embodiment described above.

従来例の圧電アクチュエータSでは、駆動軸3から離れた可動部材48の先端部に磁石8を設けたが、位置決め装置40では、可動部材48の摩擦保持点Xを基準として可動部材48の重心Gが位置する方向と反対方向において磁界発生部材56が可動部材48の摩擦保持部50に設けられている。   In the piezoelectric actuator S of the conventional example, the magnet 8 is provided at the tip of the movable member 48 separated from the drive shaft 3. However, in the positioning device 40, the center of gravity G of the movable member 48 with reference to the friction holding point X of the movable member 48. A magnetic field generating member 56 is provided on the friction holding portion 50 of the movable member 48 in a direction opposite to the direction in which the position is located.

なお、駆動回路、検出回路および制御回路を備えている点と、位置決め装置40の動作および制御は、第1実施形態の位置決め装置10と同様であるため、ここでの説明を省略する。   Since the drive circuit, the detection circuit, and the control circuit are provided, and the operation and control of the positioning device 40 are the same as those of the positioning device 10 of the first embodiment, description thereof is omitted here.

このように本実施形態の位置決め装置40では、磁界発生部材56を可動部材48の駆動部材46側に設けたことで、可動部材48の慣性モーメントが小さくなるので、可動部材48を位置決め停止したときの可動部材48とそれに保持されているレンズの矢印C方向への傾きを小さくすることができる。   As described above, in the positioning device 40 of the present embodiment, since the magnetic moment generating member 56 is provided on the driving member 46 side of the movable member 48, the moment of inertia of the movable member 48 is reduced. The inclination of the movable member 48 and the lens held by the movable member 48 in the direction of arrow C can be reduced.

ところで、前記位置決め装置10,40が光ピックアップ装置に適用されたときには、可動部材18,48に保持されたレンズが光ピックアップ光学系のレンズになり、このレンズが光軸方向に移動することにより収差補正が行われる。この場合、レンズの傾きを抑えながら可動部材18,48を位置決めでるので、精度良く収差補正することができる。   By the way, when the positioning devices 10 and 40 are applied to an optical pickup device, the lenses held by the movable members 18 and 48 become the lenses of the optical pickup optical system, and the aberration is caused by the movement of the lenses in the optical axis direction. Correction is performed. In this case, since the movable members 18 and 48 can be positioned while suppressing the tilt of the lens, the aberration can be corrected with high accuracy.

また、可動部材18,48が目標停止位置に一旦到達した後に行うオーバーシュートを伴う位置決め制御の継続時間は、光ディスク回転周期以上であってもよい。このようにすれば、光ディスク1周内で発生する光ディスクの保護層の厚み変化に基づく収差をリアルタイムに補正することが可能になり、光ディスク装置の信頼性を向上させることができる。   Further, the duration of the positioning control with overshoot performed after the movable members 18 and 48 once reach the target stop position may be equal to or longer than the optical disk rotation period. In this way, it becomes possible to correct in real time the aberration based on the change in the thickness of the protective layer of the optical disc that occurs within one circumference of the optical disc, and the reliability of the optical disc apparatus can be improved.

第1実施形態の位置決め装置のシステム構成図。The system block diagram of the positioning device of 1st Embodiment. 図1に示す圧電アクチュエータの作動原理を説明するための図。The figure for demonstrating the action | operation principle of the piezoelectric actuator shown in FIG. 圧電アクチュエータの駆動部材の軸変位を示す図。The figure which shows the axial displacement of the drive member of a piezoelectric actuator. 磁界発生部材、磁界検出部材および検出回路の詳細図。3 is a detailed view of a magnetic field generating member, a magnetic field detecting member, and a detection circuit. オーバーシュートを伴う位置決め制御を行ったときの可動部材の位置とレンズ傾きを示すグラフ。The graph which shows the position and lens inclination of a movable member when performing positioning control with an overshoot. 目標位置で直ちに駆動停止した後の可動部材の傾きを示すグラフ。The graph which shows the inclination of the movable member after a drive stop immediately at a target position. 位置決め装置の制御ブロック図。The control block diagram of a positioning device. 第2実施形態の位置決め装置の構成図。The block diagram of the positioning device of 2nd Embodiment. 従来例の位置センサ付き摩擦駆動型圧電アクチュエータの構成図。The block diagram of the friction drive type piezoelectric actuator with a position sensor of a prior art example. 図9の圧電アクチュエータにおける可動部材の位置とレンズ傾きを示すグラフ。The graph which shows the position of the movable member and lens inclination in the piezoelectric actuator of FIG.

符号の説明Explanation of symbols

10…位置決め装置
12…固定部
14…圧電素子(電気変換素子)
16…駆動部材
18…可動部材
20…圧電アクチュエータ
21…駆動回路
22…磁界発生部材
24…磁界検出部材
25…位置センサ
26…検出回路
28…制御回路
DESCRIPTION OF SYMBOLS 10 ... Positioning device 12 ... Fixed part 14 ... Piezoelectric element (electric conversion element)
DESCRIPTION OF SYMBOLS 16 ... Drive member 18 ... Movable member 20 ... Piezoelectric actuator 21 ... Drive circuit 22 ... Magnetic field generation member 24 ... Magnetic field detection member 25 ... Position sensor 26 ... Detection circuit 28 ... Control circuit

Claims (10)

電気機械変換素子、前記電気機械変換素子の一端に固定された駆動部材、および、前記駆動部材上に移動可能に摩擦保持された可動部材からなる圧電アクチュエータと、
前記電気機械変換素子を駆動する駆動回路と、
前記可動部材の位置を検出する位置センサと、
前記位置センサからの信号を処理する検出回路と、
前記検出回路による位置検出値に基づいて前記駆動回路に駆動指令信号を与えることで前記可動部材の位置フィードバック制御を行う制御回路と、を備えた位置決め装置であって、
前記可動部材の位置決め動作の際、前記制御回路は、前記可動部材が目標停止位置に一旦到達した後に、オーバーシュートを伴う位置決め制御を所定時間以上さらに継続することを特徴とする位置決め装置。
A piezoelectric actuator comprising an electromechanical transducer, a driving member fixed to one end of the electromechanical transducer, and a movable member frictionally held on the driving member;
A drive circuit for driving the electromechanical transducer;
A position sensor for detecting the position of the movable member;
A detection circuit for processing a signal from the position sensor;
A control circuit that performs position feedback control of the movable member by giving a drive command signal to the drive circuit based on a position detection value by the detection circuit,
In the positioning operation of the movable member, the control circuit further continues positioning control with overshoot for a predetermined time or more after the movable member once reaches a target stop position.
前記所定時間は、前記可動部材の摩擦保持点を中心とする慣性モーメントと前記駆動部材に対する前記可動部材の摩擦保持トルクとから決まる前記可動部材の固有振動周期の半分の時間であることを特徴とする請求項1に記載の位置決め装置。   The predetermined time is a half time of a natural vibration period of the movable member determined from an inertia moment centered on a friction holding point of the movable member and a friction holding torque of the movable member with respect to the driving member. The positioning device according to claim 1. 前記所定時間が、前記固有振動周期のn/2(nは1から始まる自然数)であることを特徴とする請求項2に記載の位置決め装置。   The positioning device according to claim 2, wherein the predetermined time is n / 2 of the natural vibration period (n is a natural number starting from 1). 電気機械変換素子、前記電気機械変換素子の一端に固定された駆動部材、および、前記駆動部材上に移動可能に摩擦保持された可動部材からなる圧電アクチュエータと、
前記電気機械変換素子を駆動する駆動回路と、
前記可動部材の位置を検出する位置センサと、
前記位置センサからの信号を処理する検出回路と、
前記検出回路による位置検出値に基づいて前記駆動回路に駆動指令信号を与えることで前記可動部材の位置決め制御を行う制御回路と、を備えた位置決め装置であって、
前記位置センサが、前記可動部材に設けられた磁界発生部材と、固定部に設けられた磁気検出部材とからなり、前記可動部材の摩擦保持点を基準として前記可動部材の重心が位置する方向と反対方向において前記磁界発生部材が前記可動部材に設けられていることを特徴とする位置決め装置。
A piezoelectric actuator comprising an electromechanical transducer, a driving member fixed to one end of the electromechanical transducer, and a movable member frictionally held on the driving member;
A drive circuit for driving the electromechanical transducer;
A position sensor for detecting the position of the movable member;
A detection circuit for processing a signal from the position sensor;
A control circuit for performing positioning control of the movable member by giving a drive command signal to the drive circuit based on a position detection value by the detection circuit,
The position sensor includes a magnetic field generating member provided on the movable member and a magnetic detection member provided on the fixed portion, and a direction in which the center of gravity of the movable member is located with reference to a friction holding point of the movable member. A positioning apparatus, wherein the magnetic field generating member is provided on the movable member in the opposite direction.
前記可動部材が光学素子を保持することを特徴とする請求項1ないし4のいずれかに記載の位置決め装置。   The positioning apparatus according to claim 1, wherein the movable member holds an optical element. 前記光学素子の光軸と、前記可動部材の移動方向が平行であることを特徴とする請求項5に記載の位置決め装置。   The positioning device according to claim 5, wherein an optical axis of the optical element is parallel to a moving direction of the movable member. 前記光学素子が撮影光学系の一部をなすことを特徴とする請求項5に記載の位置決め装置。   The positioning apparatus according to claim 5, wherein the optical element forms part of a photographing optical system. 前記光学素子が光ピックアップ光学系の一部をなすことを特徴とする請求項5に記載の位置決め装置。   6. The positioning apparatus according to claim 5, wherein the optical element forms part of an optical pickup optical system. 前記光学素子が光ピックアップ光学系のレンズであり、前記レンズが光軸方向に移動することにより収差補正を行うことを特徴とする請求項8に記載の位置決め装置。   9. The positioning apparatus according to claim 8, wherein the optical element is a lens of an optical pickup optical system, and the aberration is corrected by moving the lens in the optical axis direction. 前記可動部材が目標停止位置に一旦到達した後に行うオーバーシュートを伴う位置決め制御の継続時間は、光ディスク回転周期以上であること特徴とする請求項8または9に記載の位置決め装置。   The positioning device according to claim 8 or 9, wherein a duration time of positioning control with overshoot performed after the movable member once reaches a target stop position is equal to or longer than an optical disk rotation period.
JP2004301514A 2004-10-15 2004-10-15 Positioning device Pending JP2006113874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301514A JP2006113874A (en) 2004-10-15 2004-10-15 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301514A JP2006113874A (en) 2004-10-15 2004-10-15 Positioning device

Publications (1)

Publication Number Publication Date
JP2006113874A true JP2006113874A (en) 2006-04-27

Family

ID=36382343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301514A Pending JP2006113874A (en) 2004-10-15 2004-10-15 Positioning device

Country Status (1)

Country Link
JP (1) JP2006113874A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076193A (en) * 2006-09-20 2008-04-03 Asahi Kasei Electronics Co Ltd Position detector, optical system with position detector, and imaging device
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
EP2019439A2 (en) 2007-07-26 2009-01-28 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
JP2009047425A (en) * 2007-08-13 2009-03-05 Konica Minolta Opto Inc Position detection apparatus and electronic apparatus
US7633209B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of obtaining a stable frequency characteristic
US7633208B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
US7652407B2 (en) 2007-04-17 2010-01-26 Mitsumi Electric Co., Ltd. Driving device capable of improving a shock and vibration resistance thereof
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
US7732982B2 (en) 2007-04-19 2010-06-08 Mitsumi Electric Co., Ltd. Driving device capable of reducing height thereof
US7755252B2 (en) 2007-04-18 2010-07-13 Mitsumi Electric Co., Ltd. Driving device having suitable stationary member as material
US7759634B2 (en) 2007-04-24 2010-07-20 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
JP2011038919A (en) * 2009-08-12 2011-02-24 Asahi Kasei Electronics Co Ltd Position detector
US7956513B2 (en) 2007-04-20 2011-06-07 Mitsumi Electric Co., Ltd. Method of driving a driving device
US7965457B2 (en) 2009-05-19 2011-06-21 Konica Minolta Opto, Inc. Vibratory driving device
US8575870B2 (en) 2009-05-20 2013-11-05 Konica Minolta Opto, Inc. Vibratory driving device
CN106357153A (en) * 2015-07-14 2017-01-25 佳能株式会社 Drive device for vibrating member, vibration type actuator using the same, and imaging apparatus
CN106502273A (en) * 2014-07-25 2017-03-15 山东中鸿新能源科技有限公司 A kind of little cloud terminal cradle head control module of step-length
CN112260579A (en) * 2020-09-12 2021-01-22 西安交通大学 Piezoelectric actuator capable of keeping displacement in power-off state and time-sharing driving actuation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429613A (en) * 1990-05-24 1992-01-31 Toshiba Corp Magnetic bearing
JPH0469070A (en) * 1990-07-03 1992-03-04 Canon Inc Driving apparatus
JPH0876849A (en) * 1994-08-31 1996-03-22 Sony Corp Positioning controller
JPH0993998A (en) * 1995-09-29 1997-04-04 Mitsubishi Electric Corp Position control device of electric motor
JP2002281771A (en) * 2001-03-21 2002-09-27 Minolta Co Ltd Drive mechanism using piezoelectric element
JP2004077705A (en) * 2002-08-14 2004-03-11 Ricoh Co Ltd Lens driving device, method of assembling the same, beam expander device, and optical pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429613A (en) * 1990-05-24 1992-01-31 Toshiba Corp Magnetic bearing
JPH0469070A (en) * 1990-07-03 1992-03-04 Canon Inc Driving apparatus
JPH0876849A (en) * 1994-08-31 1996-03-22 Sony Corp Positioning controller
JPH0993998A (en) * 1995-09-29 1997-04-04 Mitsubishi Electric Corp Position control device of electric motor
JP2002281771A (en) * 2001-03-21 2002-09-27 Minolta Co Ltd Drive mechanism using piezoelectric element
JP2004077705A (en) * 2002-08-14 2004-03-11 Ricoh Co Ltd Lens driving device, method of assembling the same, beam expander device, and optical pickup device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076193A (en) * 2006-09-20 2008-04-03 Asahi Kasei Electronics Co Ltd Position detector, optical system with position detector, and imaging device
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
US7633208B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
US7652407B2 (en) 2007-04-17 2010-01-26 Mitsumi Electric Co., Ltd. Driving device capable of improving a shock and vibration resistance thereof
US7633209B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of obtaining a stable frequency characteristic
US7755252B2 (en) 2007-04-18 2010-07-13 Mitsumi Electric Co., Ltd. Driving device having suitable stationary member as material
US7732982B2 (en) 2007-04-19 2010-06-08 Mitsumi Electric Co., Ltd. Driving device capable of reducing height thereof
US7956513B2 (en) 2007-04-20 2011-06-07 Mitsumi Electric Co., Ltd. Method of driving a driving device
US7759634B2 (en) 2007-04-24 2010-07-20 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
US7733587B2 (en) 2007-07-26 2010-06-08 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
EP2019439A2 (en) 2007-07-26 2009-01-28 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
JP2009047425A (en) * 2007-08-13 2009-03-05 Konica Minolta Opto Inc Position detection apparatus and electronic apparatus
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
US7965457B2 (en) 2009-05-19 2011-06-21 Konica Minolta Opto, Inc. Vibratory driving device
US8575870B2 (en) 2009-05-20 2013-11-05 Konica Minolta Opto, Inc. Vibratory driving device
JP2011038919A (en) * 2009-08-12 2011-02-24 Asahi Kasei Electronics Co Ltd Position detector
CN106502273A (en) * 2014-07-25 2017-03-15 山东中鸿新能源科技有限公司 A kind of little cloud terminal cradle head control module of step-length
CN106774461A (en) * 2014-07-25 2017-05-31 山东中鸿新能源科技有限公司 A kind of cloud terminal cradle head control module of use two-step stepper motor
CN106357153A (en) * 2015-07-14 2017-01-25 佳能株式会社 Drive device for vibrating member, vibration type actuator using the same, and imaging apparatus
CN106357153B (en) * 2015-07-14 2019-05-03 佳能株式会社 The driving element of vibration component, vibration-type actuator and imaging device using it
CN112260579A (en) * 2020-09-12 2021-01-22 西安交通大学 Piezoelectric actuator capable of keeping displacement in power-off state and time-sharing driving actuation method
CN112260579B (en) * 2020-09-12 2021-09-03 西安交通大学 Time-sharing driving actuation method of piezoelectric actuator capable of keeping displacement in outage state

Similar Documents

Publication Publication Date Title
JP2006113874A (en) Positioning device
US20050232094A1 (en) Driving device and an optical apparatus
JP2007053831A (en) Driver
US10447176B2 (en) Vibration type actuator control apparatus, apparatus having the same, and storage medium storing vibration type actuator control program
US10185116B2 (en) Lens driving apparatus and lens driving method
JP5884242B2 (en) Actuator, lens unit, and camera
JP2008197220A (en) Lens barrel driving device
JP2008216477A (en) Turning mechanism for lens barrel
JP2006220776A (en) Drive unit and lens drive unit
US9231497B2 (en) Optical member driving apparatus and lens apparatus having the same
US11621653B2 (en) Controller capable of stopping control target in short time, vibration actuator, image capture apparatus, and control method
JP4880763B2 (en) Motor control method and apparatus
CN113940054B (en) Imaging device and information terminal
EP2015298B1 (en) Optical pickup device, optical pickup control device and optical pickup control method
US20080186589A1 (en) Compact Stepping Lens Actuator for Mobile Cameras
JP2016095525A (en) Lens driving device
JP4951801B2 (en) Actuator, lens unit and camera equipped with the same
US11689120B2 (en) Control apparatus, control method, and driving apparatus of vibration type actuator
JPS63825A (en) Optical information recording and reproducing device
JP2023117697A (en) lens driving mechanism
JP2020086166A (en) Drive unit, control method for the same and imaging apparatus
JP2010139726A (en) Optical device
JP2021063899A (en) Image shake correction device
JP2007080310A (en) Lens driving device and optical pickup device
JP2020028145A (en) Motor drive device, control method therefor, and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020