JP2006091285A - Light emitting apparatus - Google Patents

Light emitting apparatus Download PDF

Info

Publication number
JP2006091285A
JP2006091285A JP2004275134A JP2004275134A JP2006091285A JP 2006091285 A JP2006091285 A JP 2006091285A JP 2004275134 A JP2004275134 A JP 2004275134A JP 2004275134 A JP2004275134 A JP 2004275134A JP 2006091285 A JP2006091285 A JP 2006091285A
Authority
JP
Japan
Prior art keywords
light
light emitting
array
optical element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275134A
Other languages
Japanese (ja)
Inventor
Hirohisa Saito
裕久 齊藤
Akira Yamaguchi
章 山口
Yoshiyuki Hirose
義幸 廣瀬
Hideki Matsubara
秀樹 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004275134A priority Critical patent/JP2006091285A/en
Publication of JP2006091285A publication Critical patent/JP2006091285A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small light emitting apparatus at low cost and with a simple structure. <P>SOLUTION: This light emitting apparatus is equipped with a surface emitting array 1 including a plurality of surface emitting parts 3, a diffractive optical element array 4 including a plurality of diffractive optical elements 6 that converge the outgoing light of the plurality of surface emitting parts 3 on one point, and an optical fiber 7 that receives the light converged by the diffractive optical element array 4 at one end to make it exit from the other end. Consequently, compared with the conventional system of converging light with a plurality of optical fibers, price reduction of the apparatus, simplification of the structure and the miniaturization of the apparatus can be achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は発光装置に関し、特に、高出力の発光装置に関する。   The present invention relates to a light emitting device, and more particularly to a high output light emitting device.

従来より、半導体レーザ素子の高出力化が進められているが、それにも限度がある。しかし、複数の半導体レーザ素子の出射光を1つに束ねれば、強いレーザ光を容易に得ることができる。   Conventionally, the output of a semiconductor laser device has been increased, but there is a limit. However, strong laser light can be easily obtained by bundling the emitted light of a plurality of semiconductor laser elements into one.

すなわち図6に示すように、複数の半導体レーザ素子31を使用し、各半導体レーザ素子31の出射光をコリメータレンズ32でコリメートして光ファイバ33の一方端に導入し、複数の光ファイバ33の他方端からの光を1本の光ファイバ34の一方端に導入すれば、光ファイバ34の他方端から強いレーザ光を得ることができる。   That is, as shown in FIG. 6, a plurality of semiconductor laser elements 31 are used, and the emitted light of each semiconductor laser element 31 is collimated by a collimator lens 32 and introduced into one end of an optical fiber 33. If light from the other end is introduced into one end of one optical fiber 34, strong laser light can be obtained from the other end of the optical fiber 34.

また図7に示すように、面発光アレイ41の出射光をコリメータレンズアレイ42でコリメートして平面光源を作製し(たとえば特許文献1参照)、この平面光源の出射光を光ファイバアレイ43の一方端に導入し、光ファイバアレイ43の他方端からの光を1本の光ファイバ44の一方端に導入すれば、光ファイバ44の他方端から強いレーザ光を得ることができる。
特開2002−49326号公報
As shown in FIG. 7, the light emitted from the surface light emitting array 41 is collimated by a collimator lens array 42 to produce a planar light source (see, for example, Patent Document 1). If light is introduced into one end and light from the other end of the optical fiber array 43 is introduced into one end of one optical fiber 44, strong laser light can be obtained from the other end of the optical fiber 44.
JP 2002-49326 A

しかし、複数の半導体レーザ素子31を使用する方法では、半導体レーザ素子31、コリメータレンズ32および光ファイバ33の各組毎に光軸調整をする必要があるため、装置価格が高くなり、装置構成が複雑になるという問題があった。   However, in the method using a plurality of semiconductor laser elements 31, since it is necessary to adjust the optical axis for each set of the semiconductor laser element 31, the collimator lens 32, and the optical fiber 33, the apparatus price increases and the apparatus configuration is increased. There was a problem of becoming complicated.

また、面発光アレイ41を使用する方法では、面発光アレイ41における面発光部のピッチを光ファイバアレイ43における光ファイバの直径よりも小さくすることはできず、装置寸法を小さくすることができないという問題がある。また、光ファイバアレイ43の精度にも限度がある。   Further, in the method using the surface light emitting array 41, the pitch of the surface light emitting portions in the surface light emitting array 41 cannot be made smaller than the diameter of the optical fiber in the optical fiber array 43, and the device size cannot be reduced. There's a problem. In addition, the accuracy of the optical fiber array 43 is limited.

それゆえに、この発明の主たる目的は、低価格で、簡単な構成で、小型の発光装置を提供することである。   Therefore, a main object of the present invention is to provide a small light emitting device with a low cost and a simple configuration.

課題を解決するための手段および効果Means and effects for solving the problem

この発明に係る発光装置は、複数の面発光部を含む面発光アレイと、複数の面発光部の出射光を1点に集光する光学素子と、その一方端が光学素子によって集光された光を受け、その他方端から出射させる光ファイバとを備えたものである。したがって、面発光アレイの出射光を1つの光学素子で集光するので、複数の光ファイバで集光していた従来に比べ、容易に実装することができ、装置の低価格化、構成の簡単化を図ることができる。また、面発光アレイにおける面発光部のピッチを光ファイバの直径よりも小さくすることができ、装置の小型化を図ることができる。   A light-emitting device according to the present invention includes a surface-emitting array including a plurality of surface-emitting units, an optical element that collects light emitted from the plurality of surface-emitting units at one point, and one end of which is condensed by the optical element. And an optical fiber that receives light and emits it from the other end. Therefore, since the emitted light from the surface emitting array is collected by one optical element, it can be easily mounted compared to the conventional case where the light is collected by a plurality of optical fibers, the cost of the apparatus is reduced, and the configuration is simple. Can be achieved. Further, the pitch of the surface light emitting portions in the surface light emitting array can be made smaller than the diameter of the optical fiber, and the device can be miniaturized.

好ましくは、光学素子は、それぞれ複数の面発光部に対応して設けられ、各々が、対応の面発光部の出射光を光ファイバの一方端に入射させる複数の回折光学素子を含む回折光学素子アレイである。この場合は、光学素子の小型化、薄型化を図ることができる。   Preferably, the optical element is provided corresponding to each of the plurality of surface light emitting units, and each includes a plurality of diffractive optical elements that allow the emitted light of the corresponding surface light emitting unit to enter one end of the optical fiber. An array. In this case, the optical element can be reduced in size and thickness.

また好ましくは、回折光学素子は、ガラス、樹脂、SiC、GaN、AlN、LiNbO、LiTaO、ダイヤモンド、ZnO、サファイア、DLC、フォトポリマから選ばれた少なくとも1種を含む材質で形成されている。この場合は、高い回折効果を得ることができ、回折光学素子の薄型化を図ることができる。   Preferably, the diffractive optical element is made of a material including at least one selected from glass, resin, SiC, GaN, AlN, LiNbO, LiTaO, diamond, ZnO, sapphire, DLC, and a photopolymer. In this case, a high diffraction effect can be obtained and the diffractive optical element can be thinned.

また好ましくは、光学素子はフォトニック結晶である。この場合は、光学素子の小型化、薄型化を図ることができる。   Preferably, the optical element is a photonic crystal. In this case, the optical element can be reduced in size and thickness.

また好ましくは、フォトニック結晶は、Si、InP、GaAs、GaN、AlN、SiCから選ばれた少なくとも1種を含む材質で形成されている。この場合は、半導体プロセスで加工することができ、高い屈折率を得ることができる。   Preferably, the photonic crystal is formed of a material including at least one selected from Si, InP, GaAs, GaN, AlN, and SiC. In this case, it can be processed by a semiconductor process, and a high refractive index can be obtained.

また好ましくは、面発光アレイは、導電性窒化ガリウム基板上に少なくとも窒化物半導体層を積層して形成されている。この場合は、高い熱伝導率を得ることができるので、面発光部の熱を充分に放散することができ、面発光部を高密度でアレイ化することができる。また、基板と各層の熱膨張係数が近いので、不要な応力がかからない。   Preferably, the surface emitting array is formed by laminating at least a nitride semiconductor layer on a conductive gallium nitride substrate. In this case, since high thermal conductivity can be obtained, the heat of the surface light emitting portion can be sufficiently dissipated, and the surface light emitting portions can be arrayed with high density. Further, since the thermal expansion coefficients of the substrate and each layer are close, unnecessary stress is not applied.

また好ましくは、各面発光部は面発光レーザである。この場合は、面発光部の高出力化が可能になる。   Preferably, each surface emitting unit is a surface emitting laser. In this case, the output of the surface light emitting unit can be increased.

[実施の形態1]
図1は、この発明の実施の形態1による発光装置の構成を示す図である。図1において、この発光装置は、面発光アレイ1、回折光学素子アレイ4および光ファイバ7を備える。面発光アレイ1は、4角形の基板2と、その表面に複数行複数列(ここでは4行4列とする)に配置された16の面発光部3とを含む。
[Embodiment 1]
FIG. 1 is a diagram showing a configuration of a light emitting device according to Embodiment 1 of the present invention. In FIG. 1, the light emitting device includes a surface light emitting array 1, a diffractive optical element array 4, and an optical fiber 7. The surface light emitting array 1 includes a quadrangular substrate 2 and 16 surface light emitting units 3 arranged in a plurality of rows and a plurality of columns (here, 4 rows and 4 columns) on the surface thereof.

面発光アレイ1は、基板2である導電性窒化ガリウム基板の表面に少なくとも窒化物半導体層を積層して形成することが好ましい。これにより、高い放熱性を得ることができ、面発光部3の発光時に発生する熱を効率よく放散することができる。また、基板と各層の熱膨張係数の差に起因するクラックの発生を抑制することができる。面発光部3は、面発光レーザであることが好ましい。これにより、高い出力を得ることができる。   The surface emitting array 1 is preferably formed by laminating at least a nitride semiconductor layer on the surface of a conductive gallium nitride substrate which is the substrate 2. Thereby, high heat dissipation can be obtained, and the heat generated when the surface light emitting unit 3 emits light can be efficiently dissipated. Moreover, generation | occurrence | production of the crack resulting from the difference of the thermal expansion coefficient of a board | substrate and each layer can be suppressed. The surface emitting unit 3 is preferably a surface emitting laser. Thereby, a high output can be obtained.

回折光学素子アレイ4は、透光性基板5の表面に16の回折光学素子6を形成したものである。16の回折光学素子6は、それぞれ16の面発光部3に対応して設けられている。各回折光学素子6は、対応の面発光部3の出射光を光ファイバ7の一方端に入射させる。   The diffractive optical element array 4 is formed by forming 16 diffractive optical elements 6 on the surface of a translucent substrate 5. Sixteen diffractive optical elements 6 are provided corresponding to the sixteen surface light emitting sections 3, respectively. Each diffractive optical element 6 causes the light emitted from the corresponding surface light emitting unit 3 to enter one end of the optical fiber 7.

回折光学素子6は、回折格子層を含む。回折格子層では、比較的小さな屈折率(または膜厚)を有する第1の局所的領域と、比較的大きな屈折率(または膜厚さ)を有する第2の局所的領域とが所定の周期で交互に形成されている。回折光学素子を形成する方法としては、エネルギービームの照射によって屈折率が変化する材料で透光性層を形成した後にエネルギービームを周期的パターンで照射する方法や、フォトリソグラフィとエッチングを利用して透光性層を加工する方法がある。   The diffractive optical element 6 includes a diffraction grating layer. In the diffraction grating layer, a first local region having a relatively small refractive index (or film thickness) and a second local region having a relatively large refractive index (or film thickness) are in a predetermined cycle. It is formed alternately. As a method of forming a diffractive optical element, a method of irradiating an energy beam in a periodic pattern after forming a translucent layer with a material whose refractive index changes by irradiation of the energy beam, or utilizing photolithography and etching. There is a method for processing a light-transmitting layer.

第1の局所的領域を通過した光と、第2の局所的領域を通過した光との位相差に起因して回折現象が生じる。第1および第2の局所的領域の屈折率(または膜厚)の比を調整することにより回折光学素子6の回折角度を調整することができる。回折光学素子アレイ4の中心からの距離が大きな回折光学素子6の回折角度を大きくし、回折光学素子アレイ4の中心からの距離が小さな回折光学素子6の回折角度を小さくすることにより、16の面発光部3の出射光を光ファイバ7の一方端の中心に集光する。   A diffraction phenomenon occurs due to the phase difference between the light passing through the first local region and the light passing through the second local region. The diffraction angle of the diffractive optical element 6 can be adjusted by adjusting the ratio of the refractive indexes (or film thicknesses) of the first and second local regions. By increasing the diffraction angle of the diffractive optical element 6 having a large distance from the center of the diffractive optical element array 4 and decreasing the diffraction angle of the diffractive optical element 6 having a small distance from the center of the diffractive optical element array 4, Light emitted from the surface light emitting unit 3 is collected at the center of one end of the optical fiber 7.

回折光学素子6は、ガラス、樹脂、SiC、GaN、AlN、LiNbO、LiTaO、ダイヤモンド、ZnO、サファイア、DLC(ダイヤモンドライクカーボン:ダイヤモンド状炭素)、フォトポリマから選ばれた少なくとも1種を含む材質で形成されている。これにより、高い回折効果を得ることができ、回折光学素子6の薄型化を図ることができる。   The diffractive optical element 6 is made of a material including at least one selected from glass, resin, SiC, GaN, AlN, LiNbO, LiTaO, diamond, ZnO, sapphire, DLC (diamond-like carbon: diamond-like carbon), and a photopolymer. Is formed. Thereby, a high diffraction effect can be obtained and the diffractive optical element 6 can be made thin.

光ファイバ7の一方端に入射された16のレーザビームは、光ファイバ7で1つのレーザビームに束ねられて光ファイバ7の他方端から出射される。   The 16 laser beams incident on one end of the optical fiber 7 are bundled into one laser beam by the optical fiber 7 and emitted from the other end of the optical fiber 7.

この実施の形態1では、面発光アレイ1の出射光を回折光学素子アレイ4で集光するので、複数の光ファイバ33や光ファイバアレイ43で集光していた従来に比べ、容易に実装することができ、装置の低価格化、構成の簡単化を図ることができる。また、面発光アレイ1における面発光部3のピッチを光ファイバ7の直径よりも小さくすることができ、装置の小型化を図ることができる。   In this Embodiment 1, since the emitted light of the surface emitting array 1 is condensed by the diffractive optical element array 4, mounting is easier than in the conventional case where the light is condensed by the plurality of optical fibers 33 and the optical fiber array 43. Therefore, it is possible to reduce the price of the apparatus and simplify the configuration. Further, the pitch of the surface light emitting portions 3 in the surface light emitting array 1 can be made smaller than the diameter of the optical fiber 7, and the apparatus can be miniaturized.

[実施の形態2]
図2は、この発明の実施の形態2による発光装置の構成を示す図である。図2を参照して、この発光装置が図1の発光装置と異なる点は、回折光学素子4がフォトニック結晶10で置換されている点である。
[Embodiment 2]
FIG. 2 is a diagram showing a configuration of a light emitting device according to Embodiment 2 of the present invention. Referring to FIG. 2, this light emitting device is different from the light emitting device of FIG. 1 in that diffractive optical element 4 is replaced with photonic crystal 10.

フォトニック結晶10は、図3に示すように、第1の方向に延在する柱状部材11が所定周期で配置された第1の層と、第1の方向と直交する第2の方向に延在する柱状部材12が所定周期で配置された第2の層とを交互に配置した3次元周期構造のバルク中に、光の通過可能な光路を形成したものである。16の面発光部3から出射された光は、フォトニック結晶10内に形成された光路を通過してフォトニック結晶10の中心点から光ファイバ7の一方端に放出される。   As shown in FIG. 3, the photonic crystal 10 includes a first layer in which columnar members 11 extending in a first direction are arranged at a predetermined period, and a second direction orthogonal to the first direction. An optical path through which light can pass is formed in the bulk of a three-dimensional periodic structure in which the existing columnar members 12 are alternately arranged with second layers arranged with a predetermined period. The light emitted from the 16 surface emitting units 3 passes through an optical path formed in the photonic crystal 10 and is emitted from the center point of the photonic crystal 10 to one end of the optical fiber 7.

フォトニック結晶10は、Si、InP、GaAs、GaN、AlN、SiCから選ばれた少なくとも1種を含む材質で形成される。これにより、半導体プロセスで加工することができ、高い屈折率を得ることができる。   The photonic crystal 10 is formed of a material including at least one selected from Si, InP, GaAs, GaN, AlN, and SiC. Thereby, it can process by a semiconductor process and can obtain a high refractive index.

次に、この発光装置の作製方法について具体的に説明する。まず、面発光アレイ1として、導電性窒化ガリウム基板を用いた面発光レーザアレイを用意した。面発光レーザアレイには10行10列の発光部(面発光部3)が配置されている。発光部のピッチは200μmである。出射光の波長は405nmであり、発光部1つ当たりの光出力は5mWである。この面発光レーザアレイは、発光面にフォトニック結晶10を接合するため、アレイ基板端部の電極から全発光部に通電可能なように形成されている。   Next, a method for manufacturing the light emitting device will be specifically described. First, a surface emitting laser array using a conductive gallium nitride substrate was prepared as the surface emitting array 1. The surface emitting laser array has 10 rows and 10 columns of light emitting portions (surface emitting portions 3). The pitch of the light emitting parts is 200 μm. The wavelength of the emitted light is 405 nm, and the light output per light emitting part is 5 mW. This surface emitting laser array is formed so that all the light emitting portions can be energized from the electrode at the end of the array substrate in order to join the photonic crystal 10 to the light emitting surface.

フォトニック結晶用材料としては、屈折率n=2.4のGaNを選択した。GaAs基板上に厚み130nmのSiO膜をスパッタ蒸着法で形成し、フォトリソグラフィ法とドライエッチング法で119nmピッチのラインおよびスペースを形成した。次に、MOCVD法によりGaNを119nmの厚みで堆積した。ただし、SiO膜上にはGaNは成長しない。次いで、SiO膜を除去し、図4(a)に示すように、GaAs基板上にGaNのラインLのみが残った部材を作製した。 As the photonic crystal material, GaN having a refractive index n = 2.4 was selected. A SiO 2 film having a thickness of 130 nm was formed on a GaAs substrate by sputtering deposition, and lines and spaces having a pitch of 119 nm were formed by photolithography and dry etching. Next, GaN was deposited to a thickness of 119 nm by MOCVD. However, GaN does not grow on the SiO 2 film. Next, the SiO 2 film was removed, and as shown in FIG. 4A, a member in which only the GaN line L remained on the GaAs substrate was produced.

このとき、上記面発光レーザアレイの出射光を受光する箇所および1箇所に集光するための導光経路AにはGaNが残らないように、すなわち、一定のラインLおよびスペースSではなく、ラインLの一部がなくなっている部分ができるように、フォトリソグラフィ用のマスクは特別に設計したものを使用した。なお、図4(a)では、図面の簡単化のため1つの導光経路Aのみが示されている。この手法を用いて、図4(a)〜(d)に示すように、フォトニック結晶で集光させるのに必要な層数(図では4層)分のGaN付GaAs基板を作製、準備した。   At this time, GaN does not remain in the light receiving path A for receiving the emitted light of the surface emitting laser array and in one place, that is, not the fixed line L and the space S but the line A specially designed mask for photolithography was used so that a part where L was partially lost was formed. In FIG. 4A, only one light guide path A is shown for simplification of the drawing. Using this technique, as shown in FIGS. 4A to 4D, GaN-attached GaAs substrates for the number of layers (four layers in the figure) necessary for condensing with a photonic crystal were prepared and prepared. .

次に、上の層から順番にGaN付GaAs基板を超高真空槽に導入し、窒素プラズマでGaNの接合面を清浄化し、そのままGaN面を合わせて高温高圧をかけ、ウェハボンディングの要領で接合した。接合後、上面側のGaAsが残るように、下側のGaAsのみを除去した。次に、上から3層目と4層目のGaN付GaAs基板を上述の手順で接合した部材と先の1層目および2層目の部材とを接合した。図5(a)はこのようにして形成したフォトニック結晶の正面図であり、図5(b)は図5(a)のVB−VB線断面図である。奇数番目の層のラインLと偶数番目の層のラインLとは直交して配置される。面発光レーザアレイの発光部から出射されたレーザ光は、ラインLの欠落部によって形成された導光経路Aを通って出射口に導かれる。   Next, the GaN-attached GaAs substrate is introduced into the ultrahigh vacuum chamber in order from the upper layer, the GaN bonding surface is cleaned with nitrogen plasma, the GaN surface is aligned as it is, and high temperature and high pressure are applied, and bonding is performed in the manner of wafer bonding. did. After bonding, only the lower GaAs was removed so that the upper GaAs remained. Next, a member obtained by joining the third and fourth GaN-attached GaAs substrates from the top in the above-described procedure was joined to the first and second layer members. FIG. 5A is a front view of the photonic crystal formed as described above, and FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. The odd-numbered layer lines L and the even-numbered layer lines L are arranged orthogonally. The laser light emitted from the light emitting portion of the surface emitting laser array is guided to the emission port through the light guide path A formed by the missing portion of the line L.

以上のようにして、必要な厚みの3次元格子状のフォトニック結晶を作製した。この後、面発光レーザアレイと作製した3次元格子状フォトニック結晶を、面発光レーザアレイの発光部がフォトニック結晶の導光部に合うように位置決めし、上述の手法で接合した。作製したフォトニック結晶付面発光レーザアレイを発振させたところ、フォトニック結晶の1つの出射部から光が出射した。出射光の出力は、約480mWであった。   As described above, a three-dimensional lattice-like photonic crystal having a necessary thickness was produced. Thereafter, the surface emitting laser array and the produced three-dimensional lattice-like photonic crystal were positioned so that the light emitting portion of the surface emitting laser array was aligned with the light guide portion of the photonic crystal, and joined by the above-described method. When the fabricated surface emitting laser array with a photonic crystal was oscillated, light was emitted from one emitting portion of the photonic crystal. The output power of the emitted light was about 480 mW.

この実施の形態2でも、実施の形態1と同じ効果を得ることができる。   In the second embodiment, the same effect as in the first embodiment can be obtained.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態1による発光装置の構成を示す図である。It is a figure which shows the structure of the light-emitting device by Embodiment 1 of this invention. この発明の実施の形態2による発光装置の構成を示す図である。It is a figure which shows the structure of the light-emitting device by Embodiment 2 of this invention. 図2に示したフォトニック結晶の構成を示す図である。It is a figure which shows the structure of the photonic crystal shown in FIG. 図3に示したフォトニック結晶の作製方法を示す図である。It is a figure which shows the preparation methods of the photonic crystal shown in FIG. 図3に示したフォトニック結晶の作製方法を示す他の図である。It is another figure which shows the preparation methods of the photonic crystal shown in FIG. 従来の発光装置の構成を示す図である。It is a figure which shows the structure of the conventional light-emitting device. 従来の他の発光装置の構成を示す図である。It is a figure which shows the structure of the other conventional light-emitting device.

符号の説明Explanation of symbols

1,41 面発光アレイ、2 基板、3 面発光部、4 回折光学素子アレイ、5 透光性基板、6 回折光学素子、7,33,34,44 光ファイバ、10 フォトニック結晶、11,12 柱状部材、L ライン、S スペース、A 導光経路、31 半導体レーザ、32 コリメータレンズ、42 コリメータレンズアレイ、43 光ファイバアレイ。   1,41 surface emitting array, 2 substrate, 3 surface emitting unit, 4 diffractive optical element array, 5 translucent substrate, 6 diffractive optical element, 7, 33, 34, 44 optical fiber, 10 photonic crystal, 11, 12 Columnar member, L line, S space, A light guide path, 31 semiconductor laser, 32 collimator lens, 42 collimator lens array, 43 optical fiber array.

Claims (7)

複数の面発光部を含む面発光アレイと、
前記複数の面発光部の出射光を1点に集光する光学素子と、
その一方端が前記光学素子によって集光された光を受け、その他方端から出射させる光ファイバとを備えた、発光装置。
A surface emitting array including a plurality of surface emitting portions;
An optical element for condensing the light emitted from the plurality of surface light emitting units at one point;
A light emitting device comprising: an optical fiber having one end receiving light collected by the optical element and emitting the light from the other end.
前記光学素子は、それぞれ前記複数の面発光部に対応して設けられ、各々が、対応の面発光部の出射光を前記光ファイバの一方端に入射させる複数の回折光学素子を含む回折光学素子アレイである、請求項1に記載の発光装置。   Each of the optical elements is provided corresponding to the plurality of surface light emitting units, and each includes a plurality of diffractive optical elements that allow the light emitted from the corresponding surface light emitting units to enter one end of the optical fiber. The light-emitting device according to claim 1, which is an array. 前記回折光学素子は、ガラス、樹脂、SiC、GaN、AlN、LiNbO、LiTaO、ダイヤモンド、ZnO、サファイア、DLC、フォトポリマから選ばれた少なくとも1種を含む材質で形成されている、請求項2に記載の発光装置。   The diffractive optical element is formed of a material including at least one selected from glass, resin, SiC, GaN, AlN, LiNbO, LiTaO, diamond, ZnO, sapphire, DLC, and a photopolymer. The light-emitting device of description. 前記光学素子はフォトニック結晶である、請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the optical element is a photonic crystal. 前記フォトニック結晶は、Si、InP、GaAs、GaN、AlN、SiCから選ばれた少なくとも1種を含む材質で形成されている、請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the photonic crystal is formed of a material including at least one selected from Si, InP, GaAs, GaN, AlN, and SiC. 前記面発光アレイは、導電性窒化ガリウム基板上に少なくとも窒化物半導体層を積層して形成されている、請求項1から請求項5までのいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the surface emitting array is formed by laminating at least a nitride semiconductor layer on a conductive gallium nitride substrate. 各面発光部は面発光レーザである、請求項1から請求項6までのいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 6, wherein each surface emitting unit is a surface emitting laser.
JP2004275134A 2004-09-22 2004-09-22 Light emitting apparatus Pending JP2006091285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275134A JP2006091285A (en) 2004-09-22 2004-09-22 Light emitting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275134A JP2006091285A (en) 2004-09-22 2004-09-22 Light emitting apparatus

Publications (1)

Publication Number Publication Date
JP2006091285A true JP2006091285A (en) 2006-04-06

Family

ID=36232358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275134A Pending JP2006091285A (en) 2004-09-22 2004-09-22 Light emitting apparatus

Country Status (1)

Country Link
JP (1) JP2006091285A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108761A1 (en) * 2010-03-04 2011-09-09 Gigaphoton Inc. Laser device, laser system, and extreme ultraviolet light generation apparatus
JP2012164981A (en) * 2011-01-24 2012-08-30 Soraa Inc Laser package with plural emitters constructed on substrate member
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
WO2016059893A1 (en) * 2014-10-15 2016-04-21 株式会社アマダホールディングス Semiconductor laser oscillator
JP2016082219A (en) * 2014-10-15 2016-05-16 株式会社アマダホールディングス Semiconductor laser oscillator
US9570884B2 (en) 2011-02-09 2017-02-14 Gigaphoton Inc. Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light
JP2017524266A (en) * 2014-08-22 2017-08-24 ザ・ユニヴァーシティ・オヴ・シェフィールド Improved laser structure
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213802A (en) * 1985-03-20 1986-09-22 Toshiba Corp Optical coupler
JPH1039164A (en) * 1996-04-10 1998-02-13 Ohmeda Inc Optical blood flow measuring instrument having integrated type multimode optical coupler device
JPH10215026A (en) * 1996-12-27 1998-08-11 Motorola Inc Ultraviolet-visible-light-emitting vertical cavity surface emitting laser and its manufacturing device
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
JP2000022643A (en) * 1998-07-01 2000-01-21 Canon Inc Optical interconnect system
JP2001203427A (en) * 2000-01-20 2001-07-27 Canon Inc Wave-length multiplexing surface type light-emitting element device, its manufacturing method and wavelength multiplexing transmission system
JP2002023023A (en) * 2000-07-04 2002-01-23 Toyota Central Res & Dev Lab Inc Optical condensing system
JP2002026466A (en) * 2000-07-11 2002-01-25 Toyota Central Res & Dev Lab Inc Condensing optical system and light source for laser machines
JP2002056706A (en) * 2000-08-07 2002-02-22 Opt Design:Kk Illumination device
JP2002323629A (en) * 2001-04-26 2002-11-08 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser beam device
JP2002341166A (en) * 2001-05-16 2002-11-27 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser beam device
JP2003188460A (en) * 2001-11-13 2003-07-04 Xerox Corp Vcsel array for optical scanning and integrated structure of microlens
JP2003188471A (en) * 2001-12-19 2003-07-04 Fuji Xerox Co Ltd Vertical cavity surface-emitting laser device and its manufacturing method
JP2003224322A (en) * 2002-01-29 2003-08-08 Matsushita Electric Ind Co Ltd Two-wavelength semiconductor laser light source for optical pickup
JP2003318488A (en) * 2002-04-24 2003-11-07 Furukawa Electric Co Ltd:The Surface emitting laser, optical transmitter-receiver using the same, optical communication equipment, and optical communication system
JP2003344721A (en) * 2002-05-29 2003-12-03 Toyota Central Res & Dev Lab Inc Optical circuit for light convergence and light source unit
JP2004014993A (en) * 2002-06-11 2004-01-15 Seiko Epson Corp Surface light-emitting element, its manufacturing method, its mounting structure, optical module and optical transmitting element
JP2004063972A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Semiconductor laser, and manufacturing method thereof
JP2004119582A (en) * 2002-09-25 2004-04-15 Seiko Epson Corp Surface-emitting semiconductor laser, its manufacturing method, optical module, light transmission device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213802A (en) * 1985-03-20 1986-09-22 Toshiba Corp Optical coupler
JPH1039164A (en) * 1996-04-10 1998-02-13 Ohmeda Inc Optical blood flow measuring instrument having integrated type multimode optical coupler device
JPH10215026A (en) * 1996-12-27 1998-08-11 Motorola Inc Ultraviolet-visible-light-emitting vertical cavity surface emitting laser and its manufacturing device
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
JP2000022643A (en) * 1998-07-01 2000-01-21 Canon Inc Optical interconnect system
JP2001203427A (en) * 2000-01-20 2001-07-27 Canon Inc Wave-length multiplexing surface type light-emitting element device, its manufacturing method and wavelength multiplexing transmission system
JP2002023023A (en) * 2000-07-04 2002-01-23 Toyota Central Res & Dev Lab Inc Optical condensing system
JP2002026466A (en) * 2000-07-11 2002-01-25 Toyota Central Res & Dev Lab Inc Condensing optical system and light source for laser machines
JP2002056706A (en) * 2000-08-07 2002-02-22 Opt Design:Kk Illumination device
JP2002323629A (en) * 2001-04-26 2002-11-08 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser beam device
JP2002341166A (en) * 2001-05-16 2002-11-27 Fuji Photo Film Co Ltd Optical waveguide element and semiconductor laser beam device
JP2003188460A (en) * 2001-11-13 2003-07-04 Xerox Corp Vcsel array for optical scanning and integrated structure of microlens
JP2003188471A (en) * 2001-12-19 2003-07-04 Fuji Xerox Co Ltd Vertical cavity surface-emitting laser device and its manufacturing method
JP2003224322A (en) * 2002-01-29 2003-08-08 Matsushita Electric Ind Co Ltd Two-wavelength semiconductor laser light source for optical pickup
JP2003318488A (en) * 2002-04-24 2003-11-07 Furukawa Electric Co Ltd:The Surface emitting laser, optical transmitter-receiver using the same, optical communication equipment, and optical communication system
JP2003344721A (en) * 2002-05-29 2003-12-03 Toyota Central Res & Dev Lab Inc Optical circuit for light convergence and light source unit
JP2004014993A (en) * 2002-06-11 2004-01-15 Seiko Epson Corp Surface light-emitting element, its manufacturing method, its mounting structure, optical module and optical transmitting element
JP2004063972A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Semiconductor laser, and manufacturing method thereof
JP2004119582A (en) * 2002-09-25 2004-04-15 Seiko Epson Corp Surface-emitting semiconductor laser, its manufacturing method, optical module, light transmission device

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8749719B2 (en) 2009-05-29 2014-06-10 Soraa Laser Diode, Inc. Laser based display method and system
US8773598B2 (en) 2009-05-29 2014-07-08 Soraa Laser Diode, Inc. Laser based display method and system
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US8908731B1 (en) 2009-05-29 2014-12-09 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
WO2011108761A1 (en) * 2010-03-04 2011-09-09 Gigaphoton Inc. Laser device, laser system, and extreme ultraviolet light generation apparatus
JP2011205061A (en) * 2010-03-04 2011-10-13 Komatsu Ltd Laser device, laser system, and extreme ultraviolet light generation apparatus
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US9371970B2 (en) 2011-01-24 2016-06-21 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
JP2012164981A (en) * 2011-01-24 2012-08-30 Soraa Inc Laser package with plural emitters constructed on substrate member
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9570884B2 (en) 2011-02-09 2017-02-14 Gigaphoton Inc. Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US10587097B1 (en) 2011-04-04 2020-03-10 Soraa Laser Diode, Inc. Laser bar device having multiple emitters
US11742634B1 (en) 2011-04-04 2023-08-29 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US10050415B1 (en) 2011-04-04 2018-08-14 Soraa Laser Diode, Inc. Laser device having multiple emitters
US9716369B1 (en) 2011-04-04 2017-07-25 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US11005234B1 (en) 2011-04-04 2021-05-11 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
JP2017524266A (en) * 2014-08-22 2017-08-24 ザ・ユニヴァーシティ・オヴ・シェフィールド Improved laser structure
WO2016059893A1 (en) * 2014-10-15 2016-04-21 株式会社アマダホールディングス Semiconductor laser oscillator
JP2016082219A (en) * 2014-10-15 2016-05-16 株式会社アマダホールディングス Semiconductor laser oscillator
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11870495B2 (en) 2017-09-28 2024-01-09 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11677468B2 (en) 2017-09-28 2023-06-13 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Similar Documents

Publication Publication Date Title
JP2006091285A (en) Light emitting apparatus
US8358892B2 (en) Connection structure of two-dimensional array optical element and optical circuit
EP2803123B1 (en) Integrated sub-wavelength grating system
JP2004179607A (en) Laser device
JP2010147359A (en) Optical module
JPH10104473A (en) Photodetector module and its manufacture
WO2014171467A1 (en) Led element and method for producing same
JPH07168040A (en) Semiconductor laser converging apparatus
JP2005531135A (en) Method and laser apparatus for generating high optical power density
JP2007003969A (en) Optical element
JP2011066339A (en) Optical communication module, and method for manufacturing the same
JP2021193444A (en) Multilayer optical phased array for side lobe alleviation
US7120177B2 (en) Laser element, method of producing the laser element, and a laser module employing the laser element
JP2006066538A (en) Surface-emitting laser light source and method for manufacturing the same
JPS58153388A (en) Monitoring method for semiconductor laser output beam
JP4729893B2 (en) Manufacturing method of semiconductor optical device
JP2009168846A (en) Light condensing device and light condensing method
JP2007036234A (en) Light emitting device and method of manufacturing it
JP7068560B1 (en) Manufacturing method of semiconductor laser device and semiconductor laser device
JP2008135441A (en) Two-dimensional photonic crystal surface-emitting laser and manufacturing method thereof
JP2001185792A (en) Optical element for laser
JP7137321B2 (en) Movable diffraction grating, external cavity laser module, method for manufacturing movable diffraction grating
US20220404562A1 (en) High efficiency vertical grating coupler for flip-chip application
JP2001156396A (en) Surface emission semiconductor laser and method of fabrication
JP2005010190A (en) Laser apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080827

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928