JP2006090220A - Output control device for internal combustion engine - Google Patents

Output control device for internal combustion engine Download PDF

Info

Publication number
JP2006090220A
JP2006090220A JP2004277319A JP2004277319A JP2006090220A JP 2006090220 A JP2006090220 A JP 2006090220A JP 2004277319 A JP2004277319 A JP 2004277319A JP 2004277319 A JP2004277319 A JP 2004277319A JP 2006090220 A JP2006090220 A JP 2006090220A
Authority
JP
Japan
Prior art keywords
throttle opening
accelerator opening
opening
target throttle
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277319A
Other languages
Japanese (ja)
Other versions
JP4458252B2 (en
Inventor
Kazuhide Togai
一英 栂井
Motohiro Kawafuku
基裕 川福
Makoto Iwasaki
誠 岩崎
Hirotake Hirai
洋武 平井
Toru Amano
徹 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Nagoya Institute of Technology NUC
Original Assignee
Mitsubishi Motors Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Nagoya Institute of Technology NUC filed Critical Mitsubishi Motors Corp
Priority to JP2004277319A priority Critical patent/JP4458252B2/en
Publication of JP2006090220A publication Critical patent/JP2006090220A/en
Application granted granted Critical
Publication of JP4458252B2 publication Critical patent/JP4458252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an output control device for an internal combustion engine, having a simple structure and capable of securely suppressing vibration at the time of stepping on an accelerator and at the time of return operation. <P>SOLUTION: Based on an accelerator opening (APS), a target throttle opening is calculated via a predetermined transfer function C (s) including a resonance frequency element and an attenuation coefficient element. At this time, the resonance frequency element and the attenuation coefficient element of the predetermined transfer function C (s) are varied in accordance with the accelerator opening (APS). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は内燃機関の出力制御装置に係り、詳しくは車両のアクセル操作時における振動(加減速ショック)を低減する技術に関する。   The present invention relates to an output control device for an internal combustion engine, and more particularly to a technique for reducing vibration (acceleration / deceleration shock) during accelerator operation of a vehicle.

一般に、車両のアクセル踏み込み時や戻し操作時(特に、急激なアクセルの踏み込み時)には振動(加減速ショック)が生じる。このような、加減速ショックは、急激なアクセルの踏み込みや戻し操作によりエンジントルクが急変し、その結果駆動系に捩り振動が発生することに起因している。そして、このような駆動系の捩り振動が車体前後方向の振動現象として現れる。   In general, vibration (acceleration / deceleration shock) occurs when the accelerator of the vehicle is depressed or returned (particularly when the accelerator is depressed suddenly). Such acceleration / deceleration shock is caused by a sudden change in engine torque caused by a sudden accelerator depression or return operation, resulting in torsional vibration in the drive system. Such a torsional vibration of the drive system appears as a vibration phenomenon in the longitudinal direction of the vehicle body.

このようなアクセル操作に伴って発生する駆動系の振動を抑制するには、スロットルをゆっくり開く手法が広く知られているが、このような手法では加速感を損なう。
このようなことから、本出願のうちの一の出願人より、電子スロットルバルブ(ETV)の制御入力上流に補償器を介装し、駆動系の共振をキャンセルするようなトルク(トルク立ち上がりの途中で一度トルクが減少するようなもの)を発生させることで駆動系の振動を抑制する手法が提案されている(特許文献1等)。
特開2004−68702号公報
A method of slowly opening the throttle is widely known in order to suppress the vibration of the drive system that occurs due to such an accelerator operation. However, such a method impairs the feeling of acceleration.
For this reason, one of the applicants of the present application has proposed that a compensator is interposed upstream of the control input of the electronic throttle valve (ETV) to cancel the resonance of the drive system (in the middle of the torque rise). Has been proposed (Patent Document 1 and the like).
JP 2004-68702 A

しかしながら、上記特許文献1に開示の技術においても、ETVの開度が低開度の領域では良好な補償効果が得られる一方、高開度となる領域では十分に振動を抑制できないという現象が確認された。
この現象は、その後の研究により、ETVと吸気管の特性に深く関係しており、低吸気管圧からETVを大きく開いた直後に大量の空気がETVを通過することの他、特に吸気管圧が臨界圧以上になるとETV開口面積と通過空気量とが比例せずに非線形性を示すことが原因であることが判ってきた。即ち、吸気マニホールド内のブースト圧(Pb)が大気圧(Pa)を超えられないことが障害となって振動を十分に抑制できないことが明らかになってきた。
However, even in the technique disclosed in Patent Document 1 above, it has been confirmed that a good compensation effect can be obtained in a region where the opening of the ETV is low, but vibration cannot be sufficiently suppressed in a region where the opening is high. It was done.
This phenomenon is deeply related to the characteristics of the ETV and the intake pipe through subsequent studies. In addition to the fact that a large amount of air passes through the ETV immediately after the ETV is greatly opened from the low intake pipe pressure, in particular, the intake pipe pressure It has been found that when the pressure exceeds the critical pressure, the ETV opening area and the passing air amount are not proportional and show non-linearity. In other words, it has become clear that the boost pressure (Pb) in the intake manifold cannot exceed the atmospheric pressure (Pa), which makes it difficult to sufficiently suppress vibration.

これより、振動を確実に抑制するために、ETVと吸気管の特性を如何に補償するかが課題となる。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、簡単な構成でアクセル踏み込み時や戻し操作時の振動を確実に抑制可能な内燃機関の出力制御装置を提供することにある。
Thus, how to compensate the characteristics of the ETV and the intake pipe in order to surely suppress the vibration becomes a problem.
The present invention has been made to solve such problems, and an object of the present invention is to provide an output control device for an internal combustion engine that can reliably suppress vibrations when the accelerator is depressed or returned by a simple configuration. Is to provide.

上記した目的を達成するために、請求項1の内燃機関の出力制御装置では、アクセル開度変化に対して車両に発生する二次共振系の振動を補償すべく設定され、共振周波数要素と減衰係数要素とを含んでなる所定の伝達関数を用いてスロットル開度を制御する内燃機関の出力制御装置において、アクセル開度を検出するアクセル開度検出手段と、前記アクセル開度検出手段により検出されたアクセル開度に基づき、前記所定の伝達関数を介して目標スロットル開度を算出する目標スロットル開度算出手段と、前記目標スロットル開度算出手段により算出された目標スロットル開度に基づきスロットル開度を調整するスロットル開度調整手段とを備え、前記目標スロットル開度算出手段は、前記アクセル開度検出手段により検出されたアクセル開度に応じて前記所定の伝達関数の共振周波数要素及び減衰係数要素を可変させることで目標スロットル開度を算出することを特徴とする。   In order to achieve the above-mentioned object, the output control device for an internal combustion engine according to claim 1 is set to compensate for vibration of a secondary resonance system generated in the vehicle with respect to a change in accelerator opening, In an output control device for an internal combustion engine that controls a throttle opening using a predetermined transfer function including a coefficient element, an accelerator opening detecting means for detecting an accelerator opening and detected by the accelerator opening detecting means A target throttle opening calculating means for calculating a target throttle opening through the predetermined transfer function based on the accelerator opening, and a throttle opening based on the target throttle opening calculated by the target throttle opening calculating means A throttle opening adjusting means for adjusting the throttle opening, and the target throttle opening calculating means is an accelerator detected by the accelerator opening detecting means. And calculates a target throttle opening degree by varying the resonant frequency elements and the damping coefficient elements of the predetermined transfer function depending on the time.

即ち、アクセル開度に基づき所定の伝達関数を介して目標スロットル開度が算出されるが、この際、所定の伝達関数の共振周波数要素及び減衰係数要素がアクセル開度に応じて可変させられ、目標スロットル開度が駆動系の捩り振動を効果的に抑制すべく適正に算出される。
また、請求項2の内燃機関の出力制御装置では、ωmを共振周波数、ζmを減衰係数、sをラプラス演算子、Aを定数としたとき、前記所定の伝達関数が (s2+Aωms+ωm 2)/(s2+2ζmωms+ωm 2)であって、前記目標スロットル開度算出手段は、アクセル開度が大になるほど共振周波数ωmを小さく、減衰係数ζmを大きくすることを特徴とする。
That is, the target throttle opening is calculated through a predetermined transfer function based on the accelerator opening, and at this time, the resonance frequency element and the damping coefficient element of the predetermined transfer function are varied according to the accelerator opening, The target throttle opening is appropriately calculated so as to effectively suppress the torsional vibration of the drive system.
In the output control apparatus for an internal combustion engine according to claim 2, when ω m is a resonance frequency, ζ m is a damping coefficient, s is a Laplace operator, and A is a constant, the predetermined transfer function is (s 2 + Aω m s + ω m 2) a / (s 2 + 2ζ m ω m s + ω m 2), the target throttle opening degree calculation means, small enough resonant frequency omega m accelerator opening is large, increasing the damping factor zeta m It is characterized by that.

即ち、アクセル開度が大になるほど(s2+Aωms+ωm 2)/(s2+2ζmωms+ωm 2)からなる伝達関数の共振周波数ωmを小さく、減衰係数ζmを大きくすることにより、目標スロットル開度が駆動系の捩り振動をより効果的に抑制すべく適正に算出される。
また、請求項3の内燃機関の出力制御装置では、ω1、ω2を共振周波数、Knを比例係数、sをラプラス演算子としたとき、前記所定の伝達関数が {s2+(ω1+ω2−ω1×ω2×Kn)s+ω1×ω2}/{s2+(ω1+ω2)s+ω1×ω2}であって、前記目標スロットル開度算出手段は、アクセル開度が大になるほどω1×ω2を小さく、Knを大きくすることを特徴とする。
That is, the resonance frequency ω m of the transfer function consisting of (s 2 + Aω m s + ω m 2 ) / (s 2 + 2ζ m ω m s + ω m 2 ) is decreased and the damping coefficient ζ m is increased as the accelerator opening increases. Thus, the target throttle opening is appropriately calculated to more effectively suppress the torsional vibration of the drive system.
In the output control device for an internal combustion engine according to claim 3, when ω 1 and ω 2 are resonance frequencies, Kn is a proportional coefficient, and s is a Laplace operator, the predetermined transfer function is {s 2 + (ω 1 + Ω 2 −ω 1 × ω 2 × Kn) s + ω 1 × ω 2 } / {s 2 + (ω 1 + ω 2 ) s + ω 1 × ω 2 }, and the target throttle opening calculation means is an accelerator opening As the value increases, ω 1 × ω 2 decreases and Kn increases.

即ち、アクセル開度が大になるほど{s2+(ω1+ω2−ω1×ω2×Kn)s+ω1×ω2}/{s2+(ω1+ω2)s+ω1×ω2}からなる伝達関数のω1×ω2を小さく、比例係数Knを大きくすることにより、目標スロットル開度が駆動系の捩り振動をより効果的に抑制すべく適正に算出される。 That is, as the accelerator opening increases, {s 2 + (ω 1 + ω 2 −ω 1 × ω 2 × Kn) s + ω 1 × ω 2 } / {s 2 + (ω 1 + ω 2 ) s + ω 1 × ω 2 } By reducing ω 1 × ω 2 of the transfer function and increasing the proportionality coefficient Kn, the target throttle opening is appropriately calculated so as to more effectively suppress the torsional vibration of the drive system.

請求項1の内燃機関の出力制御装置によれば、目標スロットル開度を算出する所定の伝達関数の共振周波数要素及び減衰係数要素をアクセル開度に応じて可変にするようにしたので、目標スロットル開度を適正なものとして駆動系の捩り振動を確実に抑制することができ、車両の乗員に与える不愉快な加減速ショックを好適に低減することができる。
請求項2の内燃機関の出力制御装置によれば、アクセル開度が大になるほど(s2+Aωms+ωm 2)/(s2+2ζmωms+ωm 2)からなる伝達関数の共振周波数ωmを小さく、減衰係数ζmを大きくすることで、簡単な構成でありながら目標スロットル開度を適正なものとして駆動系の捩り振動を確実に抑制することができる。
According to the output control apparatus for an internal combustion engine of claim 1, the resonance frequency element and the damping coefficient element of the predetermined transfer function for calculating the target throttle opening are made variable according to the accelerator opening. It is possible to reliably suppress the torsional vibration of the drive system with an appropriate opening, and to suitably reduce unpleasant acceleration / deceleration shocks given to the vehicle occupant.
According to the output control apparatus for an internal combustion engine of claim 2, the resonance frequency ω of the transfer function consisting of (s 2 + Aω m s + ω m 2 ) / (s 2 + 2ζ m ω m s + ω m 2 ) as the accelerator opening increases. small m, by increasing the damping coefficient zeta m, it is possible to reliably suppress the torsional vibration of the drive system of the target throttle opening degree as appropriate with a simple configuration.

請求項3の内燃機関の出力制御装置によれば、アクセル開度が大になるほど{s2+(ω1+ω2−ω1×ω2×Kn)s+ω1×ω2}/{s2+(ω1+ω2)s+ω1×ω2}からなる伝達関数のω1×ω2を小さく、比例係数Knを大きくすることで、簡単な構成でありながら目標スロットル開度を適正なものとして駆動系の捩り振動を確実に抑制することができる。 According to the output control device for an internal combustion engine of claim 3, the larger the accelerator opening, the more {s 2 + (ω 1 + ω 2 −ω 1 × ω 2 × Kn) s + ω 1 × ω 2 } / {s 2 + Drive the target throttle opening to an appropriate value with a simple configuration by reducing ω 1 × ω 2 of the transfer function consisting of (ω 1 + ω 2 ) s + ω 1 × ω 2 } and increasing the proportionality coefficient Kn. The torsional vibration of the system can be reliably suppressed.

以下、図面を参照しながら本発明に係る内燃機関の出力制御装置の一実施形態について説明する。
本発明は、アクセルペダルとスロットルとが電気的に接続されたいわゆる電子スロットルバルブ(ETV、スロットル開度調整手段)を備えたエンジン(ガソリンエンジン)に適用される。
Hereinafter, an embodiment of an output control device for an internal combustion engine according to the present invention will be described with reference to the drawings.
The present invention is applied to an engine (gasoline engine) provided with a so-called electronic throttle valve (ETV, throttle opening adjusting means) in which an accelerator pedal and a throttle are electrically connected.

図1を参照すると、本発明に係る出力制御装置を含む系の制御モデルがブロック図で示されている。
同ブロック図によれば、当該制御モデルでは、アクセルペダルの操作量、即ちアクセル開度を検出するアクセル開度センサ(APS、アクセル開度検出手段)10からの信号がECU(電子コントロールユニット)の一部である補償器(目標スロットル開度算出手段)20に入力する。そして、補償器20からの信号がETV30に入力すると、ETV30の開度が補償器20の出力に基づいて制御される。そして、スロットル開度センサ(TPS)35からのスロットル開度信号とエンジン回転速度Neとに応じて吸気マニホールド40内のブースト圧Pbが変化し、これによりエンジン50のトルクTeが変化し、車両60の加速度Accが変化する。
Referring to FIG. 1, a control model of a system including an output control device according to the present invention is shown in a block diagram.
According to the block diagram, in the control model, an operation amount of an accelerator pedal, that is, a signal from an accelerator opening sensor (APS, accelerator opening detecting means) 10 that detects an accelerator opening is an ECU (electronic control unit). It is input to a compensator (target throttle opening calculation means) 20 which is a part. When the signal from the compensator 20 is input to the ETV 30, the opening degree of the ETV 30 is controlled based on the output of the compensator 20. Then, the boost pressure Pb in the intake manifold 40 changes in accordance with the throttle opening signal from the throttle opening sensor (TPS) 35 and the engine rotational speed Ne, whereby the torque Te of the engine 50 changes, and the vehicle 60 The acceleration Acc changes.

同ブロック図においては、ブースト圧Pbによるエンジン50のトルク発生から車両60の加速度Accまでの伝達特性、即ちエンジン50から車両60までの系の伝達関数G(s)は、二次共振系で模擬した場合、その伝達関数として次式(1)のように示される。
G(s)=Kωp 2/s2+2ζpωps+ωp 2 …(1)
ここに、sはラプラス演算子、ωp、ζpは、それぞれエンジン50から車両60までの系の共振周波数、減衰係数を示す。なお、共振周波数fは実際にはω/2πであり、ω=2πfとなるが、以下、便宜上ここではωを共振周波数と呼ぶこととする。
In the block diagram, the transfer characteristic from the torque generation of the engine 50 by the boost pressure Pb to the acceleration Acc of the vehicle 60, that is, the transfer function G (s) of the system from the engine 50 to the vehicle 60 is simulated by a secondary resonance system. In this case, the transfer function is expressed as the following equation (1).
G (s) = Kω p 2 / s 2 + 2ζ p ω p s + ω p 2 (1)
Here, s is a Laplace operator, and ω p and ζ p are the resonance frequency and damping coefficient of the system from the engine 50 to the vehicle 60, respectively. The resonance frequency f is actually ω / 2π and ω = 2πf. Hereinafter, for convenience, ω will be referred to as the resonance frequency.

このようにエンジン50のトルク発生から車両60の加速度Accまでの伝達関数G(s)が設定されると、二次共振系の振動を抑制するための補償器20の伝達関数C(s)は次式(2)のように与えることができる(所定の伝達関数)。
C(s)=(s2+2ζpωms+ωm 2)/(s2+2ζmωms+ωm 2 …(2)
ここに、sはラプラス演算子、ωm、ζmは、それぞれ補償器20における共振周波数、減衰係数を示す。なお、ζpは定数に設定できるので、式(2)の2ζpの部分をA(定数)と書き換えることもできる。
Thus, when the transfer function G (s) from the torque generation of the engine 50 to the acceleration Acc of the vehicle 60 is set, the transfer function C (s) of the compensator 20 for suppressing the vibration of the secondary resonance system is The following equation (2) can be given (predetermined transfer function).
C (s) = (s 2 + 2ζ p ω m s + ω m 2 ) / (s 2 + 2ζ m ω m s + ω m 2 ) … (2)
Here, s is a Laplace operator, and ω m and ζ m are a resonance frequency and a damping coefficient in the compensator 20, respectively. Since ζ p can be set to a constant, the 2ζ p portion of equation (2) can be rewritten as A (constant).

同式において、吸気マニホールド40内のブースト圧Pbが大気圧Paを超えず、ETV開口面積と通過空気量とが比例する線形領域では、ωm=ωp とし、ζmを適切な値にすることで駆動系の捩り振動(以下、単に振動という)を抑制した所望の加速応答を得ることができる。
しかしながら、吸気マニホールド40内のブースト圧Pbが大気圧Paを超え、ETV開口面積と通過空気量とが比例しない非線形領域では、上記のようにしても駆動系の振動を抑制した加速応答を必ずしも得ることができない。
In this equation, in a linear region where the boost pressure Pb in the intake manifold 40 does not exceed the atmospheric pressure Pa and the ETV opening area is proportional to the passing air amount, ω m = ω p and ζ m is set to an appropriate value. Thus, a desired acceleration response in which torsional vibration (hereinafter simply referred to as vibration) of the drive system is suppressed can be obtained.
However, in the non-linear region where the boost pressure Pb in the intake manifold 40 exceeds the atmospheric pressure Pa and the ETV opening area and the passing air amount are not proportional to each other, an acceleration response that suppresses the vibration of the drive system is always obtained. I can't.

この場合、理論的には、共振周波数ωmと減衰係数ζmとを可変にすると良好に駆動系の振動を抑制した加速応答を得ることができることになる。
具体的には、非線形領域において、アクセル開度(APS値)が大きいほど共振周波数ωmを小さく、減衰係数ζmを大きくする。実際には、図2、3に示すように、アクセル開度とωm、アクセル入力とζmとの関係を予め変速機(図示せず)の変速段毎にマップ化しておき、これらのマップから共振周波数ωm、減衰係数ζmを読み出す。
In this case, theoretically, if the resonance frequency ω m and the damping coefficient ζ m are made variable, an acceleration response in which the vibration of the drive system is satisfactorily suppressed can be obtained.
Specifically, in the nonlinear region, the resonance frequency ω m is decreased and the damping coefficient ζ m is increased as the accelerator opening (APS value) is increased. Actually, as shown in FIGS. 2 and 3, the relationship between the accelerator opening and ω m , the accelerator input and ζ m is previously mapped for each gear position of the transmission (not shown), and these maps are used. The resonance frequency ω m and the damping coefficient ζ m are read out from.

これにより、簡単な構成にして、あらゆるアクセル開度において駆動系の振動を十分に抑制した良好な加速応答、即ち補償効果を得ることができることとなる。
図4を参照すると、アクセル開度を6%→30%とした場合のAPS値及びTPS値、ブースト圧Pb、加速度Accの理論値が示され、図5を参照すると、アクセル開度を6%→80%と大きくした場合のAPS値及びTPS値、ブースト圧Pb、加速度Accの理論値が示されており、図中実線が共振周波数ωmと減衰係数ζmとを上記図2、3のマップに従い可変にした場合を示し、破線が共振周波数ωmと減衰係数ζmとを一定にした場合を示しているが、これらの図に示すように、共振周波数ωmと減衰係数ζmとをそれぞれ上記マップに従い可変にすることで、アクセル開度に拘わらず、TPSの応答性、即ち駆動系の共振をキャンセルするようなトルク(トルク立ち上がりの途中で一度トルクが減少するようなもの)の発生を適切に制御でき、加速度Accの振動を減衰させて駆動系の振動を確実に抑制することができる。
As a result, it is possible to obtain a good acceleration response that sufficiently suppresses vibration of the drive system at any accelerator opening, that is, a compensation effect, with a simple configuration.
Referring to FIG. 4, theoretical values of APS value, TPS value, boost pressure Pb, and acceleration Acc when the accelerator opening is changed from 6% to 30% are shown. Referring to FIG. 5, the accelerator opening is 6%. → The theoretical values of APS value, TPS value, boost pressure Pb, and acceleration Acc when increased to 80% are shown, and the solid line in the figure shows the resonance frequency ω m and the damping coefficient ζ m in FIG. The figure shows the case where it is variable according to the map, and the broken line shows the case where the resonance frequency ω m and the damping coefficient ζ m are constant. As shown in these figures, the resonance frequency ω m and the damping coefficient ζ m By making each of them variable according to the above map, the TPS response, that is, the torque that cancels the resonance of the drive system (the torque that once decreases during the torque rise) Generation can be controlled properly The vibration of the acceleration Acc can be attenuated to reliably suppress the vibration of the drive system.

以下、上述のような補償器20の実車における実際の設計手法について説明する。
図6を参照すると、本発明に係る補償器20が示されており、以下、補償器20の構成について説明する。
上記図1に従い、補償器20の入力側にはAPS10が接続され、出力側にはETV30が接続されている。
Hereinafter, an actual design method in the actual vehicle of the compensator 20 as described above will be described.
Referring to FIG. 6, a compensator 20 according to the present invention is shown, and the configuration of the compensator 20 will be described below.
According to FIG. 1, the APS 10 is connected to the input side of the compensator 20, and the ETV 30 is connected to the output side.

補償器20は、同図にブロック線図で示すように、フィードフォワード補償器(FF補償器)として構成されており、上記式(2)の式伝達関数C(s)の等価システムを実現すべく、比例要素22、第1の一次遅れ要素24、第2の一次遅れ要素26及び微分要素28を備えている。具体的には、比例要素22を比例係数Knとし、第1の一次遅れ要素24及び第2の一次遅れ要素26を共振周波数ω1、ω2を用いてそれぞれ 1/(s/ω1+1)、1/(s/ω2+1)とし、微分要素28をsとする。 The compensator 20 is configured as a feed-forward compensator (FF compensator) as shown by a block diagram in the figure, and realizes an equivalent system of the equation transfer function C (s) of the above equation (2). Accordingly, a proportional element 22, a first primary delay element 24, a second primary delay element 26, and a differential element 28 are provided. Specifically, the proportional element 22 is a proportional coefficient Kn, and the first primary delay element 24 and the second primary delay element 26 are respectively 1 / (s / ω 1 +1) using the resonance frequencies ω 1 and ω 2. 1 / (s / ω 2 +1), and the differential element 28 is s.

このように構成した等価システムのブロック線図の伝達関数C(s)’は次式(3)で示される。
C(s)’={s2+(ω1+ω2−ω1×ω2×Kn)s+ω1×ω2
/{s2+(ω1+ω2)s+ω1×ω2 …(3)
ここで、同式(3)と上記式(2)とを比較すると、(ω1+ω2−ω1×ω2×Kn) が2ζpωmに相当し、ω1×ω2がωm 2に相当し、(ω1+ω2)が2ζmωmに相当していることが分かる。
The transfer function C (s) ′ of the block diagram of the equivalent system configured as described above is expressed by the following equation (3).
C (s) ′ = {s 2 + (ω 1 + ω 2 −ω 1 × ω 2 × Kn) s + ω 1 × ω 2 }
/ {S 2 + (ω 1 + ω 2 ) s + ω 1 × ω 2 } … (3)
Here, when the same equation (3) is compared with the above equation (2), (ω 1 + ω 2 −ω 1 × ω 2 × Kn) corresponds to 2ζ p ω m and ω 1 × ω 2 is equal to ω m corresponds to 2, it can be seen that corresponds to (ω 1 + ω 2) is 2ζ m ω m.

これより、例えばω2を2π×1(rad/sec)で固定すれば、共振周波数ωmと減衰係数ζmとを可変にすることは、即ちω1とKnとを可変にすることに他ならないことが分かる。
そこで、図7に示すように、上記図6のブロック線図をさらに等価変形する。そして、図8、9に示すように、それぞれ上記図2、3のアクセル開度と共振周波数ωmの関係、アクセル開度と減衰係数ζmとの関係を維持するよう、アクセル開度とω1、アクセル入力とKnとの関係を予め実験により変速機(図示せず)の変速段毎にマップ化しておく。
Thus, for example, if ω 2 is fixed at 2π × 1 (rad / sec), the resonance frequency ω m and the attenuation coefficient ζ m can be changed, that is, ω 1 and Kn can be made variable. I understand that it doesn't become.
Therefore, as shown in FIG. 7, the block diagram of FIG. 6 is further equivalently modified. As shown in FIGS. 8 and 9, the accelerator opening and ω m are maintained so as to maintain the relationship between the accelerator opening and the resonance frequency ω m and the relationship between the accelerator opening and the damping coefficient ζ m shown in FIGS. 1. The relationship between the accelerator input and Kn is mapped in advance for each shift stage of a transmission (not shown) through experiments.

これにより、簡単にして理想的な補償器20を構成でき、あらゆるアクセル開度において駆動系の振動を抑制した良好な加速応答を得ることができることとなる。
図10乃至図12を参照すると、アクセル開度を6%→40%とした場合、6%→80%とした場合、30%→80%とした場合のAPS値、TPS値、ブースト圧Pb、加速度Accの実測値が示されており、図中実線がω1とKnとを上記図8、9のマップに従い可変にした場合を示し、破線がω1とKnとを一定にした場合を示しているが、これらの図に示すように、ω1とKnとをそれぞれ上記マップに従い可変にすることで、上記伝達関数C(s)で共振周波数ωmと減衰係数ζmとをそれぞれ図2、3のマップに従い可変にした場合の上記理論値を良好に再現可能となり、アクセル開度に拘わらず、TPSの応答性、即ち駆動系の共振をキャンセルするようなトルク(トルク立ち上がりの途中で一度トルクが減少するようなもの)の発生を適切に制御してブースト圧Pbの応答をなまらせ、加速度Accの振動を減衰させて駆動系の振動を確実に抑制することができる。
As a result, the ideal compensator 20 can be configured simply, and a good acceleration response with suppressed vibration of the drive system can be obtained at any accelerator opening.
10 to 12, when the accelerator opening is changed from 6% to 40%, from 6% to 80%, from 30% to 80%, the APS value, TPS value, boost pressure Pb, and the measured value of the acceleration Acc are shown, and Kn solid line omega 1 and in Figure shows the case of the variable in accordance with the map of FIG. 8 and 9 show a case where the broken line is constant and omega 1 and Kn However, as shown in these figures, by making ω 1 and Kn variable according to the above map, the resonance frequency ω m and the damping coefficient ζ m are respectively shown in FIG. 2 by the transfer function C (s). 3 makes it possible to reproduce the above theoretical values in a variable manner according to the map in FIG. 3, regardless of the accelerator opening, a torque that cancels the TPS response, that is, the resonance of the drive system (once during the torque rise). (Such as a torque reduction) Accordingly, the response of the boost pressure Pb is smoothed, and the vibration of the acceleration Acc is attenuated, so that the vibration of the drive system can be surely suppressed.

これにより、車両60の乗員に与える不愉快な加減速ショックを好適に低減することができる。
特に、流体継手を用いたトルクコンバータ式の自動変速機(A/T)や無段変速機(CVT)を搭載した車両においては、定速走行安定性を実現すべく流体継手を直結させる直結モードを有しており、流体継手を直結させた状態でアクセルペダルを大きく操作して急加減速を行う際には加減速ショックを回避すべく直結を解除するのが一般的であるが、本発明の適用により、直結を解除しなくても加減速ショックを好適に回避することが可能となり、燃費の向上を図ることができる。
Thereby, the unpleasant acceleration / deceleration shock given to the passenger | crew of the vehicle 60 can be reduced suitably.
In particular, in a vehicle equipped with a torque converter type automatic transmission (A / T) or continuously variable transmission (CVT) using a fluid coupling, a direct coupling mode in which the fluid coupling is directly coupled to achieve constant speed running stability. When the accelerator pedal is operated largely with the fluid coupling directly connected and sudden acceleration / deceleration is performed, the direct connection is generally released to avoid acceleration / deceleration shock. By applying, acceleration / deceleration shock can be suitably avoided without releasing the direct connection, and fuel consumption can be improved.

以上で本発明に係る内燃機関の出力制御装置の実施形態の説明を終えるが、実施形態は上記に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。
例えば、上記実施形態では、伝達関数C(s)’においてω2を2π×1(rad/sec)で固定し、ω1とKnとを可変にするようにしたが、ω1を固定し、ω2とKnとを可変にすることも可能であり、ω1、ω2及びKnの全てを可変にすることも可能である。
Although the description of the embodiment of the output control device for an internal combustion engine according to the present invention has been completed above, the embodiment is not limited to the above, and various modifications can be made without departing from the gist of the present invention.
For example, in the above embodiment, ω 2 is fixed to 2π × 1 (rad / sec) and ω 1 and Kn are made variable in the transfer function C (s) ′, but ω 1 is fixed, ω 2 and Kn can be made variable, and all of ω 1 , ω 2, and Kn can be made variable.

本発明に係る出力制御装置を含む系の制御モデルを示すブロック図である。It is a block diagram which shows the control model of the system containing the output control apparatus which concerns on this invention. アクセル開度とωmとの関係を示すマップである。It is a map which shows the relationship between an accelerator opening and (omega) m . アクセル入力とζmとの関係を示すマップである。It is a map which shows the relationship between an accelerator input and (zeta) m . アクセル開度を6%→30%とした場合のAPS値及びTPS値、ブースト圧Pb、加速度Accの理論値を示す図である。It is a figure which shows the theoretical value of APS value, TPS value, boost pressure Pb, and acceleration Acc when the accelerator opening is changed from 6% to 30%. アクセル開度を6%→80%と大きくした場合のAPS値及びTPS値、ブースト圧Pb、加速度Accの理論値を示す図である。It is a figure which shows the theoretical value of APS value and TPS value, boost pressure Pb, and acceleration Acc when accelerator opening is enlarged from 6% to 80%. 本発明に係る補償器を示す図である。It is a figure which shows the compensator which concerns on this invention. 図6のブロック線図を等価変形した図である。It is the figure which equivalently deformed the block diagram of FIG. アクセル開度とω1との関係を示すマップである。Is a map showing a relationship between the accelerator opening and the omega 1. アクセル入力とKnとの関係を示すマップである。It is a map which shows the relationship between an accelerator input and Kn. アクセル開度を6%→40%とした場合のAPS値、TPS値、ブースト圧Pb、加速度Accの実測値を示す図である。It is a figure which shows the measured value of APS value, TPS value, boost pressure Pb, and acceleration Acc when the accelerator opening is changed from 6% to 40%. アクセル開度を6%→80%とした場合のAPS値、TPS値、ブースト圧Pb、加速度Accの実測値を示す図である。It is a figure which shows the measured value of APS value, TPS value, boost pressure Pb, and acceleration Acc when the accelerator opening is 6% → 80%. アクセル開度を30%→80%とした場合のAPS値、TPS値、ブースト圧Pb、加速度Accの実測値を示す図である。It is a figure which shows the measured value of APS value, TPS value, boost pressure Pb, and acceleration Acc when the accelerator opening is changed from 30% to 80%.

符号の説明Explanation of symbols

10 アクセル開度センサ(APS、アクセル開度検出手段)
20 補償器(目標スロットル開度算出手段)
30 電子スロットルバルブ(ETV、スロットル開度調整手段)
35 スロットル開度センサ(TPS)
40 吸気マニホールド
50 エンジン
60 車両
10 Accelerator position sensor (APS, accelerator position detector)
20 Compensator (Target throttle opening calculation means)
30 Electronic throttle valve (ETV, throttle opening adjustment means)
35 Throttle opening sensor (TPS)
40 intake manifold 50 engine 60 vehicle

Claims (3)

アクセル開度変化に対して車両に発生する二次共振系の振動を補償すべく設定され、共振周波数要素と減衰係数要素とを含んでなる所定の伝達関数を用いてスロットル開度を制御する内燃機関の出力制御装置において、
アクセル開度を検出するアクセル開度検出手段と、
前記アクセル開度検出手段により検出されたアクセル開度に基づき、前記所定の伝達関数を介して目標スロットル開度を算出する目標スロットル開度算出手段と、
前記目標スロットル開度算出手段により算出された目標スロットル開度に基づきスロットル開度を調整するスロットル開度調整手段とを備え、
前記目標スロットル開度算出手段は、前記アクセル開度検出手段により検出されたアクセル開度に応じて前記所定の伝達関数の共振周波数要素及び減衰係数要素を可変させることで目標スロットル開度を算出することを特徴とする内燃機関の出力制御装置。
An internal combustion engine that controls the throttle opening using a predetermined transfer function that is set to compensate for vibrations of the secondary resonance system that occur in the vehicle against changes in the accelerator opening, and that includes a resonance frequency element and a damping coefficient element. In the engine output control device,
An accelerator opening detecting means for detecting the accelerator opening;
Target throttle opening calculating means for calculating a target throttle opening via the predetermined transfer function based on the accelerator opening detected by the accelerator opening detecting means;
Throttle opening adjustment means for adjusting the throttle opening based on the target throttle opening calculated by the target throttle opening calculation means,
The target throttle opening calculation means calculates a target throttle opening by varying a resonance frequency element and a damping coefficient element of the predetermined transfer function according to the accelerator opening detected by the accelerator opening detection means. An output control device for an internal combustion engine characterized by the above.
ωmを共振周波数、ζmを減衰係数、sをラプラス演算子、Aを定数としたとき、
前記所定の伝達関数が (s2+Aωms+ωm 2)/(s2+2ζmωms+ωm 2)であって、
前記目標スロットル開度算出手段は、アクセル開度が大になるほど共振周波数ωmを小さく、減衰係数ζmを大きくすることを特徴とする、請求項1記載の内燃機関の出力制御装置。
When ω m is a resonance frequency, ζ m is a damping coefficient, s is a Laplace operator, and A is a constant,
The predetermined transfer function is (s 2 + Aω m s + ω m 2 ) / (s 2 + 2ζ m ω m s + ω m 2 ),
The target throttle opening degree calculation means, small enough resonant frequency omega m accelerator opening is large, characterized by increasing the attenuation coefficient zeta m, output control device for an internal combustion engine according to claim 1.
ω1、ω2を共振周波数、Knを比例係数、sをラプラス演算子としたとき、
前記所定の伝達関数が {s2+(ω1+ω2−ω1×ω2×Kn)s+ω1×ω2}/{s2+(ω1+ω2)s+ω1×ω2}であって、
前記目標スロットル開度算出手段は、アクセル開度が大になるほどω1×ω2を小さく、Knを大きくすることを特徴とする、請求項1記載の内燃機関の出力制御装置。
When ω 1 and ω 2 are resonance frequencies, Kn is a proportional coefficient, and s is a Laplace operator,
The predetermined transfer function is {s 2 + (ω 1 + ω 2 −ω 1 × ω 2 × Kn) s + ω 1 × ω 2 } / {s 2 + (ω 1 + ω 2 ) s + ω 1 × ω 2 } ,
2. The output control apparatus for an internal combustion engine according to claim 1, wherein the target throttle opening calculation means decreases ω 1 × ω 2 and increases Kn as the accelerator opening increases.
JP2004277319A 2004-09-24 2004-09-24 Output control device for internal combustion engine Expired - Fee Related JP4458252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277319A JP4458252B2 (en) 2004-09-24 2004-09-24 Output control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277319A JP4458252B2 (en) 2004-09-24 2004-09-24 Output control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006090220A true JP2006090220A (en) 2006-04-06
JP4458252B2 JP4458252B2 (en) 2010-04-28

Family

ID=36231440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277319A Expired - Fee Related JP4458252B2 (en) 2004-09-24 2004-09-24 Output control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4458252B2 (en)

Also Published As

Publication number Publication date
JP4458252B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
RU2499705C2 (en) Device for control over vehicle
RU2505432C2 (en) Vehicle control system
US8892280B2 (en) Sprung mass damping control system of vehicle
KR101167879B1 (en) Internal combustion engine controller
WO2013011572A1 (en) Vehicle control apparatus
EP2204564A1 (en) Damping controller of diesel engine vehicle
JPH06129273A (en) Driving torque controller
JP2009108830A (en) Drive control device performing vehicle vibration damping control
KR100749193B1 (en) Method and device for controlling the drive unit of a vehicle
JPH09112327A (en) Method and equipment for controlling internal combustion engine
Kuwahara et al. Toyota’s new integrated drive power control system
JP2011207466A (en) Vehicle control system
JP2009121427A (en) Damping control device for diesel engine vehicle
JP4458252B2 (en) Output control device for internal combustion engine
JP3988654B2 (en) Vehicle control device
JP3316867B2 (en) Vehicle torque control device
JP6929335B2 (en) Control device
JPH01294925A (en) Drive force control device for vehicle
EP2868906B1 (en) Vehicle integrated control device
JP2008223584A (en) Drive control device performing vibration suppression control of vehicle
JP2009121426A (en) Damping control device for diesel engine vehicle
JP2007270706A (en) Expected accelerating value calculating device for vehicle and vehicle control apparatus using the same
JP5540686B2 (en) Vehicle control system
JP5141306B2 (en) Vehicle vibration suppression control device
JP4345544B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees