JP2006078179A - Micro-mass sensor and holding mechanism of its oscillator - Google Patents

Micro-mass sensor and holding mechanism of its oscillator Download PDF

Info

Publication number
JP2006078179A
JP2006078179A JP2002266987A JP2002266987A JP2006078179A JP 2006078179 A JP2006078179 A JP 2006078179A JP 2002266987 A JP2002266987 A JP 2002266987A JP 2002266987 A JP2002266987 A JP 2002266987A JP 2006078179 A JP2006078179 A JP 2006078179A
Authority
JP
Japan
Prior art keywords
crystal oscillator
mass sensor
etching
oscillator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002266987A
Other languages
Japanese (ja)
Inventor
Kaoru Furukawa
薫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Techno Res Kk
Furukawa Research Inc
Original Assignee
Furukawa Techno Res Kk
Furukawa Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Techno Res Kk, Furukawa Research Inc filed Critical Furukawa Techno Res Kk
Priority to JP2002266987A priority Critical patent/JP2006078179A/en
Priority to AU2003262005A priority patent/AU2003262005A1/en
Priority to PCT/JP2003/011464 priority patent/WO2004025274A1/en
Publication of JP2006078179A publication Critical patent/JP2006078179A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized quartz oscillator mass sensor having high sensitivity, high accuracy, high stability and durability. <P>SOLUTION: The center part of a parallel flat crystal pieces are subjected to dry etching of strong and weak two or more steps and then to wet etching, to thereby acquire a reverse mesa quartz oscillator having the longitudinal section dug down to have a trapezoid-shaped table shape, and additionally the reverse-mesa machined part is machined into a convex lens shape by finish machining, to thereby acquire the small-sized quartz oscillator having high sensitivity, high accuracy and high stability. In addition, the stiffness of a quartz oscillator fixing frame is heightened, and a mechanism for keeping the flatness of the fixing frame is provided to secure conductivity in a high frequency, and the insulation property of the quartz oscillator fixing frame is heightened to reduce leakage of an electromagnetic wave, to thereby acquire this mass sensor having high accuracy and durability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水溶液中または大気中の特定化学物質を高感度・高精度・高安定度で測定し得る耐久性のある小型質量センサに関する。
【0002】
【従来の技術】
【非特許文献1】
著者 G.Sauerbrey
書名 Zeitschrift fur Physik 155
発行年月日 1959
頁 206−222
【非特許文献2】
著者 野田和俊等
書名 Trans.IEE of Japan,Vol.118−E,No12
発行年月日 1998.12
頁 590−594
【非特許文献3】
著者 Z.Lin等
書名 Analytical Chemistry,VOL.65,NO.11
発行年月日 1993.6.1
頁 1546−1551
【非特許文献4】
著者 E.Uttenthaler等
書名 Biosensors and Bioelectronics 16.
発行年月日 2001
頁 735ー743
【非特許文献5】
著者 横溝精一等
書名 砥粒加工学会誌,Vol.45
発行年月日 2001.9
頁 448−453
【特許文献1】
特開平8−338798号公報
【特許文献2】
特開平10−38784号公報
【特許文献3】
特開2001−153777号公報
【0003】
水晶を発振子として利用する場合の水晶のカッティングにはATカット・BTカット・CTカット・DTカット等があるが、ATカットまたはBTカットの水晶発振子を用い質量センサとして用いる方法は、非特許文献1により報告されており、それは水晶表面に設けられた電極の上に物質が吸着するとその質量によって水晶発振子の発振周波数が減少することをその原理とし、その周波数の変化は基本周波数(以下「振動数」ともいう。)の2乗に比例し、電極面積に反比例することが報告されている。
従って、発振子の基本周波数を高周波化し、電極面積を小さくすれば、高感度のセンサが得られることになる。
また、水晶発振子の場合、上述のカットの方法で決定される定数Nがあり、周波数をf、水晶発振子の厚さをdとすると、N=f・dの関係があることから、水晶発振子の厚さを薄くすれば高周波化が計られることになる。
しかし、周辺技術の未発達なこと等を主要因として、上記原理が実用化されたのは比較的新しい。
【0004】
上記原理に基づいて最初に実用化されたのは、真空蒸着等の薄膜の膜厚を測定するセンサであって、水晶発振子は直径が14mm、基本周波数が6MHz程度のものである。その後、多方面で種々のセンサが実用化され、例えば水晶発振子の表面に設けた電極に種々のガス種に特有の親和性を有する選択認識分子をコーティングし、個々のガスの吸着により質量増加を測定するものがある。
上記のセンサはいずれも乾燥状態の測定に供されるものであり、その多くは電子機器用のATカット水晶発振子を転用したものであって、水晶発振子のサイズも大きいため基本周波数も比較的低く、感度は6μg/Hz程度のものであった(非特許文献2)。
【0005】
30MHz以上の高周波数にして高感度にする方法については振動部中央を両面化学エッチングにより薄くする方法が、非特許文献3や非特許文献4により報告されているが、これによれば高感度が得られているものの、水晶発振子の振動面(エッチング加工面)の平坦性・両面の平行性の低下による発振強度の低下、及び振動面一面で複数の振動面を形成する分割振動の発生、に起因してノイズ量が増加し共振特性が悪化するため、精度が低く、安定した共振特性が得られない等の問題がある(後述の比較例3で実証・説明します。)。
【0006】
最近この水晶発振子を用いた質量センサを水溶液中に存在する種々の生理活性物質の定量測定にバイオセンサとして利用する研究が活発に行われるようになり、食品・医療・環境等の広範囲な応用が検討されつつあるが、かかる分野では質量センサとして1ng/Hz以上の高感度が要求される。
【0007】
また、バイオセンサとして使用する場合は、溶液中で測定が求められる。溶液中の測定では溶液の抵抗のため水晶発振子の発振強度が10分の1程度に低下することから、発振強度の高い発振子が必要とされ、かつ高度の絶縁性が要求される。
また、バイオセンサは高感度が要求されることから高周波化せざるを得ず、高周波化に伴って電磁波の発生・漏洩が多くなり、周波数測定が不可能になる場合がある。
さらに、高周波化に伴い水晶発振子の保持機構が不十分となり高周波における共振特性が不安定になる。
【0008】
水晶発振子の固定・絶縁方法として特許文献1があり、それによると、直径8mm、厚さ147.5μm(11.32MHz)の水晶発振子の周辺端部をシリコン接着剤でアクリル樹脂製チャンバーに接着固定して発振子の片面の電極をカバーして液と接触しない構造に改良している。
また特許文献2では直径11−12mm、厚さ61.75μm(27.0MHz)の水晶発振子の外周片面を接着剤とプラスチック板でシールして液と接しない構造としている。
さらに特許文献3においては、27MHzの水晶発振子を周辺部分でシリコンゴムでカバーし電極の片面を水溶液から遮断絶縁しているが、振動する水晶発振子が裏面で露出している2本のリード線に接触結合させる構造を採用している。
しかし、上記いずれの方法も、2本のリード線の平行度及び固定枠の平坦度(平面度)が充分でないこと及び水晶振動子の外面から周辺を接着剤で固定枠に固定することから水晶発振子が反ったり傾いたまま固定されたりして良好な共振特性を得にくく、また逆メサ型水晶発振子は逆メサ型部分が振動する発振子となるのに対し平行平板水晶発振子は全体が振動し振動する発振子周辺で固定枠に固定することから水晶発振子の振動を抑制して良好な共振特性が得られにくくかつ電極とリード線の接触不良を生じ易くこれらに起因して製品の歩留まりが悪くなるという問題がある。
【0009】
【発明が解決しようとする課題】
従って、本発明では、従来の諸問題に鑑み、高感度・高精度・高安定度の、かつ耐久性のある小型の質量センサを提供することを課題とする。
【0010】
さらに、本発明では、水晶発振子固定枠の水晶発振子の固定性及び固定枠の平面度ならびに固定枠全体の絶縁性を高めて共振特性の一層よい耐久性のある質量センサを提供することを課題とする。
【0011】
【課題を解決するための手段】
水晶発振子の高周波化を計るためには水晶発振子の振動部分を薄板化する必要があるが、本発明では、まず、水晶板の中央部を切頭錐体状に掘り下げた水晶発振子、すなわち縦断面が台形状の卓状形状(以下「メサ」という。)に掘り下げた形状(以下「逆メサ型」という。)の水晶発振子(図2)を用いた。
また、逆メサ型加工に、強弱2段階以上のドライエッチング加工を行った後、ウェットエッチング加工を行なった。
さらに、逆メサ型に加工した後研磨加工を行うことによって中央部が厚くなる凸レンズ状の水晶発振子を用いた。
【0012】
高周波における共振特性の精度・安定性を確保するため上述の特殊エッチング・逆メサ型水晶発振子・凸レンズ状水晶発振子を採用した他、高周波化に伴う電磁波の発生・漏洩を防止するため水晶発振子固定枠の剛性を高めるとともに該固定枠の平面度を保つ保持機構を設け、さらに水晶発振子固定枠の絶縁性を高めた。
【0013】
【発明の実施の形態】
まず、本発明の概要の把握の便に供するため、本発明の質量センサの概要を、組立て手順に従って説明する。
図1に示すように、ハーメチックシールピン21に導電棒22をはんだ等を用いて溶着し、導電棒に導電棒相互の間隔及び平面度を保つ保持機構である導電棒保持枠23・24を嵌合する。
これを形状構成用モールディング型に入れ、該型にモールディング剤としてシリコンゴムコンパウンドを押しこみ加熱・加圧してシリコンゴムコンパウンドを硬化させ、水晶発振子保持枠20を製作する。
水晶発振子保持枠の水晶発振子を埋めこむ部分には凹部(図2)が設けられている。該凹部の導電棒の水晶発振子10の表電極15・裏電極17と接触する部分は露出するようにモールドされている(図2)が、該接触部分を磨いたのち、伝導ペースト(図示省略)を塗布し、水晶発振子の逆メサ部12を水晶発振子保持枠側にして該凹部に嵌めこむと水晶発振子のフレーム部13は該凹部の段部で支持され(図2)、凸レンズ状部11は解放側となる。
さらに水晶発振子外径部をシリコンゴム系接着剤で接着固定して接着シール部19を構成し、水晶発振子を固定・封止する。
なお、モールディング剤としては、シリコンゴムコンパウンドの他、ポリウレタンコンパウンド・不飽和ポリエステルコンパウンド・エチレン−プロピレンエラストマ・ゴム等が用いられる。
水晶発振子固定枠の平面度を保つ保持機構には、図1等に示すような、穴または開孔を設けた保持枠が使用されるが、さらに平面度・剛性を高めるため斜めに保持枠を設けてもよい。
図4は、角型水晶発振子を水晶発振子保持枠に組み込んだ場合を示す。
【0014】
ここで用いる水晶発振子製造の加工工程を略記すると次の通りである。
まず、人工水晶の方位をX線で測定し、ワイヤソーで切断する。その後、以下の工程で所定の厚さにし所定の振動特性の発振子を得る。
原板→種切断→粗研磨→外径研削(丸目)→中研磨→精密研磨→鏡面仕上研磨
→発振子ブランク
【0015】
水晶を発振子として利用する場合の水晶のカッティングにはATカット・BTカット・CTカット・DTカット・BTTカット・BBLカット等種々のカッティングがあるが、本発明の水晶発振子には、温度変化に対する共振周波数の変化が小さく広い温度範囲で安定した共振周波数が得られるATカット、ATカットよりは狭い温度範囲でしか共振周波数が安定しないがATカットよりも1.5倍厚くても同じ基本周波数が得られて高周波振動が得られ易く(上述の定数Nが1.5倍)かつエッチング加工に適した性質を有するBTカット、が主に用いられる。
上述定数Nに基づく数値例を挙げると60MHzの発振子では、ATカットでは、N=1670MHz・μm で、厚さは28.83μm となり、BTカットでは、N=2570MHz・μm で、厚さは42.83μm となり、加工面からみれば、BTカットの方が加工し易いことが明らかある。
もっとも、質量センサの使用温度・サイズ・周波数を考慮して、カットの種類・カット角度を選ぶことができる。
【0016】
高周波化のために平行平板水晶板の両面を精密研磨して平行に薄片化し鏡面仕上げした発振素子(発振子ブランク)はそれ自体でも優れた発振特性を有するが、薄片化に伴い強度が弱くなるため水晶発振子の振動部分の外周部分を安定的に固定することが困難となり、振動する発振子周辺を固定することによる発振強度の低下と電極の接触不良から共振特性が悪化し易い。
これを防止するには、水晶発振子の振動する部分のみが薄板で、該部分以外を厚板のまま残しこの厚板部分をフレームとして水晶発振子を固定することが望ましい。
そこで、本発明では、逆メサ型の水晶発振子(図2)を用いてこの問題を解決した。
これにより、高周波化されて高感度の、かつ共振特性の安定した水晶発振子が得られた。
【0017】
逆メサ型に加工するにはエッチング加工が採用され、ドライエッチング方法とウェットエッチング方法が用いられる。
エッチング加工は機械研磨加工と異なり、ドライエッチングではエッチング表面の結晶構造を崩してしまい(加工変質)、またウェットエッチングではエッチング表面にピット・エッチチャンネル等を生じやすくまた表面荒れを起しやすく、これらの欠陥が、分割振動による高調波成分を発生し共振特性の悪化をもたらすので、エッチング加工条件の選択・組合せ等のエッチングプロセスの最適化が不可欠である。
【0018】
ドライエッチング加工には、CF4 ガスやC6ガスによるリアクティブイオンエッチング法(RIE法)、ArやXeガスによるレーザーアブレーション法(LA法)あるいはArガスやCO ガスによるクラスターイオンビーム法(CIB法)が用いられる。
ドライエッチング加工は、エッチング方位に等方性があり、加工時に加える高周波電力の大きさやガスの濃度・流量によってエッチング量が変わるので、エッチング加工をコントロールし易い。
ただし、加えるエネルギーが大きいので加工物表面に上述の欠陥を生じやすい。ドライエッチング加工は、水晶発振子素材に金属製のマスク及びまたはフォトレジストでマスキングして、マスキングした部分以外を所定の厚さになるまでエッチングする。
【0019】
ウェットエッチング加工は、加温した弗酸系水溶液にマスキングした水晶発振子素材を浸漬して行う。エッチング量は弗酸の濃度に対応する。
ウェットエッチングでは異方性があり、深掘りは表面欠陥を起し易いので5μm以下に抑えるのが好ましい。
【0020】
本発明では、最初に水晶発振子素材にエッチング量が大きく等方性のドライエッチングを用い、上述の定数Nによって求められる目標周波数に相当する厚さの1.3〜1.4倍までにエッチングし、次に高周波電力を下げ活性ガス濃度を上げて、水晶表面の欠陥を少なくなるようにして1.1〜1.2倍までエッチングする。
すなわち、最初に強度の、次に弱度の2段階のドライエッチング加工を行う。
もっとも、更に弱の、あるいは強弱のドライエッチング加工を行ってもよい。
次に、上記のごとく弗酸系水溶液に浸漬してウェットエッチングを行う。
【0021】
さらに、逆メサ型にエッチング加工された水晶発振子のエッチング加工面の対向面に機械研磨を行う。
機械研磨は水晶発振子を押圧して行うことから、逆メサ型に加工された部分は該押圧をエッチング加工面で受けることができず、この部分は加工力学的には丁度周辺固定の円形板が片面から分布荷重の加工荷重を受けることとなる。
従って、逆メサ型加工部分は逆メサ型加工部分の中央部に行くほど加工荷重は少なくなることから、研磨加工量は少なくなり、逆メサ型加工部分の中央部が厚くなった凸レンズ状に仕上がることになり、加工後は加工荷重が解放されることから逆メサ部と反対側が凸レンズ状に盛り上がることとなる。
この凸レンズ状に仕上がった振動片は、音響用スピーカと同様、分割振動を少なくすることから分割振動による高調波成分の発生を防止し、共振特性の良い発振子となる。
上記機械研磨終了後、水晶発振子の表裏に逆メサ部の約1/2の径の蒸着膜を作り、表電極15・裏電極17を作製する。
【0022】
高周波化する程電磁波が発生し易くなり、周波数測定の精度を欠くことにつながることから、電磁波によるノイズの発生を少なくする必要がある。特に、振動による導電部分に導電不良が生ずると、電磁波の発生に結びつき易くなり、測定の信頼性を落とす結果となる。
そこで、本発明では、導電棒の間隔の平行性を確保しかつ水晶発振子の反り返りや傾きを防ぐため水晶発振子固定枠の平面度を保つ保持機構を設けかつ該枠の剛性を高めて導電部分の導電不良の発生・電磁波の発生を防止し、さらに電気系統の封止性を高めて、電磁波の漏洩や水溶液の伝導度の影響を極力排した。
なお、封止性を高めるため、モールディングの型には導電棒の径等を考慮している。
【0023】
以下に実施例を4例挙げて説明する。
【0024】実施例1
実施例1としてATカットの水晶片を用い本発明に従って製造した実例を挙げる。
ATカットの水晶片を研磨して厚さ60μmにしたのち直径6.0mmに加工し、さらに精密研磨仕上げをして50μmの厚さにして基本周波数33.40MHz・発振強度40〜50dBの水晶発振子を得た。
この水晶発振子を、逆メサ型にエッチングするため、孔径3.0mmのマスキングをして、RIE法で高周波電力200W・Cを用いてガス圧力13Paで、次に高周波電力100W・Cのガス圧力26Paで、強弱2段階のドライエッチングを行なった。
この段階で基本周波数46.58〜46.84MHz・発振強度40〜50dBの水晶発振子が得られたが、この状態での水晶発振子は図5に示すように分割振動による高調波成分が多いもので、水晶発振子としては適性を欠くものであった。すなわち、強弱2段階のドライエッチングによって薄片化による高周波化の効果はあったが、エッチング表面の水晶結晶に加工変質を起してしまい、分割振動による高調波成分が多くなることがわかる。
次に弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数51.39〜51.75MHz・発振強度20〜30dBの水晶発振子を得た。この時の逆メサ部の厚さは31.64〜31.88μmであった。
すなわち、ウェットエッチングによって薄片化による高周波化の効果もあるが、それよりもドライエッチングによって生じた表面の加工変質を除去する効果があり、分割振動を少なくする効果があることがわかる。一方発振強度が減少し、共振特性の悪化をもたらすこともわかる。
次に凸レンズ状にする意味も兼ねて仕上げ研磨を行い、図6に示すような測定結果の、基本周波数52.10〜52.38MHz・発振強度40〜50dBで、かつ、分割振動の無い、凸レンズ状の逆メサ型水晶発振子が得られた。
すなわち、仕上げ研磨を行うことによって凸レンズ状とすることができ、その効果として、発振強度を高め共振特性の改善を計ることができる。
以上から、先に強弱2段階のドライエッチングを行ないその後ウェットエッチングを行う効果と、さらにその後仕上げ研磨によって凸レンズ状とすることの有効性が確認された。
次に、この凸レンズ状逆メサ型水晶発振子に径1.5mmの蒸着電極を作製後、共振特性を測定したら、基本周波数51.66〜52.00MHzの先鋭な共振特性の水晶発振子が全数得られた(歩留まり100%)。
さらに、この水晶発振子を図1〜図3に示す水晶発振子固定枠に取り付けて最終品とし、この質量センサを、25±0.1℃に保たれた水中に浸漬し、20分後に共振特性を測定した結果、基本周波数52MHz近辺に先鋭な共振特性を有する質量センサが全数得られた(歩留まり100%)。
また、この質量センサ(3個)の表電極にポリスチレン10ngのトルエン溶液を塗布・乾燥させた後、上記同様に水中に置いて共振周波数の減少量を測定すると、3.232〜3.370kHzとなり、これにより平均感度3.027pg/Hz(10ng/3.304kHz)の質量センサが得られた。
【0025】実施例2
実施例2として、BTカットの水晶片を用い、水晶発振子の径を実施例1の75%に小型化して、本発明に従って製造した実例を挙げる。
BTカットの水晶片を研磨して厚さ50μmにしたのち直径4.5mmに加工し、さらに精密研磨仕上げをして42.56μmの厚さにして基本周波数60.385MHz・発振強度40〜50dBの水晶発振子を得た。
この水晶発振子を逆メサ型にエッチングするため、孔径2.25mmのマスキングをして、RIE法で高周波電力200W・Cを用いてガス圧力13Paで、次に高周波電力100W・Cのガス圧力26Paで、強弱2段階のドライエッチングを行なった。
この段階で基本周波数108.806〜110.988MHz・発振強度30〜40dBの、実施例1よりは分割振動の少ない水晶発振子を得た。
次に弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数123.44〜123.82MHz・発振強度20〜30dBを得た。この時の逆メサ部の厚さは20.756〜20.820μmであった。
次に仕上げ研磨を行い、基本周波数144.25〜144.70MHz・発振強度40〜50dBで、かつ、分割振動の無い、凸レンズ状の逆メサ型水晶発振子が得られた。
その測定結果の一例を図7に示す。
以上から実施例1と同様、強弱2段階のドライエッチングとウェットエッチングを行う効果と、さらにその後仕上げ研磨によって凸レンズ状とすることの有効性が確認された。
次に、この凸レンズ状逆メサ型水晶発振子に径1.25mmの蒸着電極を作製した後、共振特性を測定したら、基本周波数142.76〜143.28MHz、の、先鋭な共振特性の水晶発振子が全数得られた(歩留まり100%)。
さらに、この水晶発振子を図1〜図3に示す水晶発振子固定枠に取り付けて最終品とし、この質量センサを、25±0.1℃に保たれた水中に浸漬し、共振特性を測定した結果、基本周波数143MHz近辺に先鋭な共振特性を有する質量センサが全数得られた(歩留まり100%)。
また、この質量センサ(3個)の表電極にポリスチレン4ngのトルエン溶液を塗布・乾燥させた後、上記同様に水中に置いて共振周波数の減少量を測定すると、14.900〜14.972kHzとなり、これにより平均感度0.309pg/Hzの質量センサが得られた。
すなわち、BTカットの水晶片を使用し、水晶発振子の径を実施例1の75%等とすることにより、基本周波数で2.75倍、感度で9.80倍の質量センサが製造可能となった。
【0026】実施例3
実施例3として、実施例1と同様にATカットの水晶片を用い、水晶発振子の径を実施例1の50%に小型化して、本発明に従って製造した実例を挙げる。
実施例1と同様のATカットの水晶片を研磨して厚さ45μmにしたのち直径3.0mmに加工し、さらに精密研磨仕上げをして36μmの厚さにして基本周波数46.389MHz・発振強度40〜50dBの水晶発振子を得た。
この水晶発振子を逆メサ型にエッチングするため、孔径1.5mmのマスキングをして、RIE法で高周波電力150W・Cを用いてガス圧力13Paで、次に高周波電力100W・Cのガス圧力26Paで、強弱2段階のドライエッチングを行なった。
この段階で基本周波数86.22〜86.58MHz・発振強度20〜30dBの水晶発振子を得た。
次に弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数91.79〜92.25MHz・発振強度20〜30dBを得た。この時の逆メサ部の厚さは18.103〜18.194μmであった。
次に仕上げ研磨を行い、基本周波数96.10〜96.48MHz・発振強度30〜50dBで、かつ、分割振動の無い、凸レンズ状の逆メサ型水晶発振子が得られた。
その測定結果の一例を図8に示す。
以上から実施例1と同様、強弱2段階のドライエッチングとウェットエッチングを行う効果と、さらにその後仕上げ研磨によって凸レンズ状とすることの有効性が確認された。
この凸レンズ状逆メサ型水晶発振子に径0.75mmの蒸着電極を作製した後、共振特性を測定したら、基本周波数95.48〜95.86MHzの先鋭な共振特性の水晶発振子が全数得られた(歩留まり100%)。
さらに、この水晶発振子を図1〜図3に示す水晶発振子固定枠に取り付けて最終品とし、この質量センサを、25±0.1℃に保たれた水中に浸漬し、共振特性を測定した結果、基本周波数95MHz近辺に先鋭な共振特性を有する質量センサが全数得られた(歩留まり100%)。
また、この質量センサ(3個)の表電極にポリスチレン2.5ngのトルエン溶液を塗布・乾燥させた後、上記同様に水中に置いて20分後の共振周波数の減少量を測定すると、11.705〜11.980kHzとなり、これにより平均感度0.224pg/Hzの質量センサが得られた。
すなわち、ATカットの水晶片を使用し、水晶発振子の径を実施例1の50%等とすることにより、基本周波数で1.83倍、感度で13.54倍の発振周波数95MHzのATカットとしては極めて高周波の小型の質量センサが製造可能となった。
【0027】実施例4
実施例2と同様のBTカットの水晶片を用い、精密研磨仕上げをして30.0μmの厚さにし48個の水晶発振子用として16mmX20mm□にした基本周波数85.63MHzの水晶発振子に、逆メサ型にエッチングするため、孔径0.8mmを48個有するマスクでマスキングをして、RIE法で高周波電力150W・Cを用いてガス圧力13Paで、次に高周波電力75W・Cのガス圧力26Paで、強弱2段階のドライエッチングを行なった。
この段階で基本周波数264.54〜265.46MHz・発振強度10〜20dBの、分割振動の多い水晶発振子を得た。
次に弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数318.22〜319.18MHz・発振強度10〜20dBの分割振動の少ない水晶発振子を得た。
次に仕上げ研磨を行い、基本周波数336.64〜337.51MHz・発振強度40〜50dBで、かつ、僅かの分割振動はあるが問題となる程の分割振動は無い、凸レンズ状の逆メサ型水晶発振子が得られた。
その測定結果の一例を図9に示す。
この凸レンズ状逆メサ型水晶発振子に径0.4mmの蒸着電極を48個分作製した後、1.8mmx1.6mm□の48個の水晶発振子を切り出し、表電極から裏面への導通線及び裏面に導通線をプリントで配線し、図4で示す水晶発振子固定枠を取り付けて最終品として、25±0.1℃に保たれた水中に浸漬し、共振特性を測定した結果、基本周波数333MHz近辺に先鋭な共振特性を有する質量センサが48個中46個(歩留まり96%)得られた。
また、この質量センサ3個の表電極にポリスチレン0.1ngのトルエン溶液を塗布・乾燥させた後、上記同様に水中に置いて20分後共振周波数の減少量を測定すると、19.63〜20.05kHzとなり、これにより平均感度0.0050pg/Hzの質量センサが得られた。
すなわち、実施例2と比較して、水晶発振子外形は矩形でことなるものの、逆メサ部の径を36%等とすることにより、基本周波数で2.33倍、感度で62倍の発振周波数333MHzと極めて高周波で超小型の質量センサが製造可能となった。
【0028】
以下に、比較例を4例挙げて説明する。
なお、この比較4例はいずれも凸レンズ状面を作製する仕上げ研磨は行っていない。
【0029】比較例1
比較例1として、種々の確認実験の中から、逆メサ型加工の有無の効果と水晶発振子保持具の良否の効果を確認するために行なった実験例の一つを挙げる。
実施例1に示したATカットの直径6.0mm・厚さ50μmの水晶片で基本周波数33.40MHz・発振強度40〜50dBの水晶発振子に、逆メサ型のエッチングをせず、径1.5mmの蒸着電極を作製した後、共振特性を測定したら、基本周波数32.95〜33.13MHzの、先鋭な共振特性の水晶発振子が全数得られた。
なお、この水晶発振子は電子部品として用いられる通常のものである。
この水晶発振子を通常の電子部品の発振子に使用される市販の小型振動子保持具(通常型番UM−1/2P2L)に取付け、蒸着電極と該保具の電極リード線をはんだ付けした。この発振子(48個)は、空気中では良好な共振特性を示したが、25±0.1℃に保たれた水中に浸漬すると周波数が不規則に変動し、安定した共振周波数を全数示さなかった(歩留まり0%)。
この結果、この比較例1の場合は、逆メサ型加工の有無の効果の程はともかく、少なくとも電子部品用の市販の小型振動子保持具では水中の使用に耐えられないことが判明した。
【0030】比較例2
さらに、水晶発振子の保持枠の良否を調べるために行なった実験例を比較例2として挙げる。
上記比較例1の蒸着電極と該保持具の電気リード線をはんだ付けした水晶発振子を用い、特許文献2に示された方法でプラスチック板とシリコンゴム接着剤で固定・シールした。
これを上記同様に水中で測定すると、45個中21個は33MHz近辺で安定した共振周波数を示したが、残り24個は共振周波数が安定せず、歩留まりは46%であった。
この結果、この比較例2の場合から、水晶発振子の保持枠には水晶発振子の性能に見合ったものが必要であることが判明した。
【0031】比較例3
次に、ドライエッチングを省略しかつ両面ウェットエッチングした場合の効果と本発明の水晶発振子保持具の効果を確認するために行なった実験例を比較例3として挙げる。
実施例1及び実施例3と同様のATカットの水晶片を用い、実施例3と同じ直径3.0mmに加工し、さらに精密研磨仕上げをして61.85μmの厚さにして基本周波数27.00MHz・発振強度40〜50dBの水晶発振子を得た。
この水晶発振子を両面メサ型にエッチングするため、両面に孔径1.5mmのマスキングをして、弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数92.14〜92.86MHz・発振強度10〜20dBを得た。エッチング量の両面合計量は、43.80μmであった。
この水晶発振子に径0.75mmの蒸着電極を作製した後、図1〜図3に示す水晶発振子固定枠に取り付けて最終品とした。
この質量センサを、25±0.1℃に保たれた水中に浸漬し、共振特性を測定した。
その結果、基本周波数は92MHz近辺であるものの、質量センサとしてはノイズが多く、辛うじて20分以内に安定した周波数が得られたのは90個中12個(歩留まり13.3%)であった。
この結果、この比較例3においては、本発明の水晶発振子保持具の効果の程はともかく、ドライエッチングを省略しかつ両面ウェットエッチングして両面メサ型とした場合には、エッチング表面の影響で良品の製作が困難であることが判明した。
【0032】比較例4
次に、凸レンズ加工兼用仕上げ研磨を行なわない場合の効果を調べるために行なった実験例を比較例4として挙げる。
実施例3と同様のATカットの水晶片(研磨後の厚さ45μm、直径3.0mm、精密研磨仕上げ後の厚さ36μm、基本周波数46.389MHz・発振強度40〜50dB)を用い、逆メサ型にエッチングするため、孔径1.5mmのマスキングをして、RIE法で高周波電力150W・Cを用いてガス圧力13Paで、次に高周波電力100W・Cのガス圧力26Paで、2段階のドライエッチングを行なった。
この段階で基本周波数86.22〜86.58MHz・発振強度20〜30dBの水晶発振子を得た。
次に弗化水素アンモニウムの飽和水溶液中でウェットエッチングを行って、基本周波数70.08〜70.56MHz・発振強度20〜30dBの図10で示すように、発振強度がやや小さい水晶発振子を得た。この水晶発振子の逆メサ部の厚さは23.668〜23.830μmであった。
この凸レンズ状逆メサ型水晶発振子に仕上げ研磨をせず、径0.75mmの蒸着電極を作製した後、図1〜図3に示す水晶発振子固定枠に取り付けて最終品とし、この質量センサを、25±0.1℃に保たれた水中に浸漬し、共振特性を測定した。
その結果、90個中78個(歩留まり87%)は基本周波数95MHz近辺に明確な共振特性を示したが、残り12個は安定した共振特性を示さなかった。
この比較例4により仕上げ研磨による凸レンズ状加工の有効性が極めて高いことが確認できた。
【0033】
【発明の効果】
本発明では、逆メサ型水晶発振子を採用することにより水晶発振子の固定部分の改良が図られた結果、平行平板発振子では困難であった高周波化(高感度化)が可能となった。
【0034】
また、本発明では、逆メサ型加工後、他面を仕上げ研磨することにより、逆メサ型加工部分に凸レンズ状薄膜を構成し、かつ表面の平滑度を上げたことから、共振特性の安定な水晶発振子製作することが可能となった。
【0035】
さらに、ウェットエッチングの前に強弱2段階以上のドライエッチング加工を行ったことから、ウェットエッチングのみでは達せられない高周波の水晶発振子を正確な寸法で製作することができた。
【0036】
上記の、逆メサ型水晶発振子、凸レンズ状薄膜の水晶発振子、ウェットエッチングの前に強弱2段階以上のドライエッチング加工を採用した結果、高周波で且つ先鋭な共振特性を有する水晶発振子が得られたことから、従来質量センサの水溶液中活性物質濃度測定感度1ng〜30pg/Hzに対し本発明による質量センサは感度を3〜0.005pg/Hzの極めて高感度とすることができ、従来測定が困難であった微量の質量の測定が可能となった。
【0037】
本発明では、逆メサ型構造を片面に採用し、逆メサ側を密封して対面の平面側を検出体用としたことから、以下の便宜が計られた。
水中の生理活性物質の測定を行うバイオセンサでは電極面をピランハ溶液(過酸化水素:硫酸=1:3(Vol比))で洗浄する必要があり、ときには電極面を擦り掃除することがあるが、両面逆メサ型構造では凹部の底に電極があるため充分な洗浄が困難なのに対し、本発明の片面逆メサ型構造のものでは他面の平板面を洗浄すれば足りることから洗浄を容易に行うことができる。
また、分子認識コート剤の再塗布や別種のコート剤への転換塗布も容易である。
【0038】
高周波化に伴う電磁波の発生・漏洩に対しては、電極接触部の不良を軽減する構造・絶縁性を高める構造の剛性の高い適切な水晶発振子固定枠を採用することにより解決でき、これにより精度の高い安定した測定をすることが可能となった。
【0039】
片面エッチングによると仕上げ研磨による凸レンズ状薄膜の水晶発振子、ウェットエッチングの前の強弱2段階以上のドライエッチング加工、及び適切な水晶発振子固定枠を採用することにより、製品の歩留まりをほぼ100%にすることができた。
【0040】
上記の、逆メサ型水晶発振子、及び適切な水晶発振子固定枠を採用することにより、サイズを径で従来の1/2〜1/5にすることができ、この結果、製品品質の均一化・低価格化を図ることができ、少量試料の測定が可能となり、それに伴い多数の検出体の同時測定が容易となった。
【図面の簡単な説明】
【図1】丸型水晶発振子を組み込んだ質量センサの平面図である。
【図2】図1のA−A矢視断面図である。
【図3】図1のB−B矢視断面図である。
【図4】角型水晶発振子を組み込んだ質量センサの平面図である。
【図5】実施例1のドライエッチング後の共振特性を示す図である。
【図6】実施例1のドライエッチング・ウェットエッチング・仕上げ研磨後の共振特性を示す図である。
【図7】実施例2のドライエッチング・ウェットエッチング・仕上げ研磨後の共振特性を示す図である。
【図8】実施例3のドライエッチング・ウェットエッチング・仕上げ研磨後の共振特性を示す図である。
【図9】実施例4のドライエッチング・ウェットエッチング・仕上げ研磨後の共振特性を示す図である。
【図10】比較例4のドライエッチング・ウェットエッチング後の共振特性を示す図である。
【符号の説明】
10 水晶発振子
11 凸レンズ状部
12 逆メサ部
13 フレーム部
15 表電極
17 裏電極
19 接着シール部
20 水晶発振子保持枠
21 ハーメチックシールピン
22 導電棒
23 導電棒保持枠
24 導電棒保持枠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a durable small mass sensor capable of measuring a specific chemical substance in an aqueous solution or in the atmosphere with high sensitivity, high accuracy, and high stability.
[0002]
[Prior art]
[Non-Patent Document 1]
Author G. Sauerbrey
Book Title Zeitshift fur Physik 155
Date of issue 1959
Pages 206-222
[Non-Patent Document 2]
Author Kazutoshi Noda, etc.
Book title Trans. IEE of Japan, Vol. 118-E, No12
Date of issue 1998.12.
Pages 590-594
[Non-Patent Document 3]
Author Z. Lin etc.
Name of book Analytical Chemistry, VOL. 65, NO. 11
Date of issue 1993.6.1
Pages 1546-1551
[Non-Patent Document 4]
Author E.E. Utenthaler etc.
Title Biosensors and Bioelectronics 16.
Issuing date 2001
Pages 735-743
[Non-Patent Document 5]
Author Seichi Yokomizo
Title: Journal of Abrasive Technology, Vol. 45
Issuing date 2001.9
Pages 448-453
[Patent Document 1]
JP-A-8-338798
[Patent Document 2]
JP-A-10-38784
[Patent Document 3]
JP 2001-153777 A
[0003]
There are AT-cut, BT-cut, CT-cut, DT-cut, etc. in the case of using crystal as an oscillator, but the method of using AT-cut or BT-cut crystal oscillator as a mass sensor is not patented. It is reported by Reference 1, which is based on the principle that when a substance is adsorbed on an electrode provided on a quartz surface, the oscillation frequency of the quartz crystal is reduced by its mass. It is also reported that it is proportional to the square of “frequency” and inversely proportional to the electrode area.
Therefore, if the fundamental frequency of the oscillator is increased and the electrode area is reduced, a highly sensitive sensor can be obtained.
In the case of a crystal oscillator, there is a constant N determined by the above-described cutting method, and if the frequency is f and the thickness of the crystal oscillator is d, there is a relationship of N = f · d. Higher frequencies can be achieved by reducing the thickness of the resonator.
However, it is relatively new that the above principle has been put into practical use mainly due to the lack of peripheral technology.
[0004]
A sensor that measures the thickness of a thin film, such as vacuum deposition, was first put into practical use based on the above principle. The crystal oscillator has a diameter of 14 mm and a fundamental frequency of about 6 MHz. Later, various sensors were put to practical use. For example, the electrodes provided on the surface of a crystal oscillator were coated with selective recognition molecules having specific affinity for various gas types, and the mass was increased by adsorption of individual gases. There is something to measure.
All of the above sensors are used to measure dry conditions, and most of them are AT-cut crystal oscillators for electronic devices. The size of the crystal oscillator is also large, so the fundamental frequency is also compared. The sensitivity was about 6 μg / Hz (Non-patent Document 2).
[0005]
Non-patent literature 3 and non-patent literature 4 have reported a method of thinning the center of the vibration part by double-sided chemical etching as a method of increasing the frequency to 30 MHz or higher and making it highly sensitive. Although it is obtained, the oscillation intensity is reduced due to the flatness of the vibration surface (etched surface) of the crystal oscillator and the parallelism of both surfaces, and the generation of split vibrations that form a plurality of vibration surfaces on the entire vibration surface. Due to this, the amount of noise increases and the resonance characteristics deteriorate, so there are problems such as low accuracy and inability to obtain stable resonance characteristics (demonstrated and explained in Comparative Example 3 described later).
[0006]
Recently, research has been actively conducted on the use of this quartz crystal mass sensor as a biosensor for quantitative measurement of various physiologically active substances in aqueous solutions, and a wide range of applications such as food, medicine, and environment. However, in such a field, high sensitivity of 1 ng / Hz or more is required as a mass sensor.
[0007]
Moreover, when using as a biosensor, a measurement is calculated | required in a solution. In the measurement in the solution, the oscillation intensity of the crystal oscillator is reduced to about 1/10 due to the resistance of the solution. Therefore, an oscillator having a high oscillation intensity is required and a high degree of insulation is required.
In addition, since high sensitivity is required for biosensors, it is necessary to increase the frequency, and as the frequency increases, generation and leakage of electromagnetic waves increase, and frequency measurement may become impossible.
Furthermore, as the frequency becomes higher, the crystal oscillator holding mechanism becomes insufficient and the resonance characteristics at high frequencies become unstable.
[0008]
Patent Document 1 discloses a method for fixing and insulating a crystal oscillator. According to this method, the peripheral edge of a crystal oscillator having a diameter of 8 mm and a thickness of 147.5 μm (11.32 MHz) is placed in an acrylic resin chamber with silicon adhesive. The structure is improved such that the electrode on one side of the oscillator is bonded and fixed to prevent contact with the liquid.
In Patent Document 2, the outer peripheral surface of a crystal oscillator having a diameter of 11-12 mm and a thickness of 61.75 μm (27.0 MHz) is sealed with an adhesive and a plastic plate so as not to come into contact with the liquid.
Further, in Patent Document 3, a 27 MHz crystal oscillator is covered with silicon rubber at the peripheral portion and one side of the electrode is shielded and insulated from the aqueous solution. However, the two leads in which the vibrating crystal oscillator is exposed on the back surface. Uses a structure that makes contact with the wire.
However, in any of the above methods, the parallelism of the two lead wires and the flatness (flatness) of the fixed frame are not sufficient, and the periphery from the outer surface of the crystal unit is fixed to the fixed frame with an adhesive. It is difficult to obtain good resonance characteristics because the resonator is fixed while being warped or tilted, and the inverted mesa type crystal resonator is an oscillator in which the inverted mesa type portion vibrates, whereas the parallel plate crystal resonator is the whole Because it vibrates and is fixed to the fixed frame around the vibrating oscillator, it is difficult to obtain good resonance characteristics by suppressing the vibration of the crystal oscillator, and it is easy to cause poor contact between the electrode and the lead wire. There is a problem that the yield of is worse.
[0009]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a small mass sensor having high sensitivity, high accuracy, high stability, and durability in view of conventional problems.
[0010]
Furthermore, the present invention provides a durable mass sensor with improved resonance characteristics by enhancing the crystal oscillator's fixation and flatness of the crystal oscillator's fixed frame and the insulation of the entire fixed frame. Let it be an issue.
[0011]
[Means for Solving the Problems]
In order to increase the frequency of the crystal oscillator, it is necessary to make the vibration part of the crystal oscillator thin, but in the present invention, first, the crystal oscillator in which the central part of the crystal plate is dug into a truncated cone shape, That is, a crystal oscillator (FIG. 2) having a shape dug down into a trapezoidal table shape (hereinafter referred to as “mesa”) (hereinafter referred to as “reverse mesa type”) was used.
Moreover, after performing dry etching processing of two or more levels of strength and weakness in reverse mesa processing, wet etching processing was performed.
Further, a convex lens-shaped crystal oscillator whose central portion is thickened by polishing after being processed into an inverted mesa shape was used.
[0012]
In order to ensure the accuracy and stability of resonance characteristics at high frequencies, the above-mentioned special etching, inverted mesa crystal oscillator, and convex lens-shaped crystal oscillator are adopted, and crystal oscillation is performed to prevent generation and leakage of electromagnetic waves associated with higher frequencies. A holding mechanism for maintaining the flatness of the fixed frame as well as increasing the rigidity of the fixed frame is provided, and the insulation of the fixed crystal frame is further improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the outline of the mass sensor of the present invention will be described according to the assembly procedure in order to facilitate the understanding of the outline of the present invention.
As shown in FIG. 1, the conductive rod 22 is welded to the hermetic seal pin 21 using solder or the like, and the conductive rod holding frames 23 and 24, which are holding mechanisms for maintaining the distance and flatness between the conductive rods, are fitted to the conductive rod. Match.
This is put into a molding die for shape configuration, and a silicon rubber compound is pushed into the die as a molding agent and heated and pressed to cure the silicon rubber compound, and the crystal oscillator holding frame 20 is manufactured.
A recess (FIG. 2) is provided in a portion of the crystal oscillator holding frame where the crystal oscillator is embedded. The portion of the conductive bar in the concave portion that is in contact with the front electrode 15 and the back electrode 17 of the crystal oscillator 10 is molded so as to be exposed (FIG. 2), but after polishing the contact portion, a conductive paste (not shown) ), And the crystal resonator frame portion 13 is supported by the stepped portion of the recess (FIG. 2). The shaped part 11 is on the release side.
Further, the outer diameter portion of the crystal oscillator is bonded and fixed with a silicon rubber adhesive to form an adhesive seal portion 19 to fix and seal the crystal oscillator.
In addition to the silicone rubber compound, polyurethane compound, unsaturated polyester compound, ethylene-propylene elastomer, rubber, etc. are used as the molding agent.
As the holding mechanism for maintaining the flatness of the crystal oscillator fixing frame, a holding frame having a hole or an opening as shown in FIG. 1 or the like is used. May be provided.
FIG. 4 shows a case where a square crystal oscillator is incorporated in a crystal oscillator holding frame.
[0014]
The processing steps for manufacturing the crystal oscillator used here are briefly described as follows.
First, the orientation of the artificial quartz is measured with X-rays and cut with a wire saw. Thereafter, an oscillator having a predetermined vibration characteristic is obtained by a predetermined thickness in the following steps.
Master plate → Seed cutting → Rough polishing → Outer diameter grinding (round) → Medium polishing → Precision polishing → Mirror finish polishing
→ Resonator blank
[0015]
There are various cutting methods such as AT cut, BT cut, CT cut, DT cut, BTT cut, BBL cut, etc. in the case of using a crystal as an oscillator. The resonance frequency is stable only in a narrower temperature range than the AT cut, but the same basic frequency even if it is 1.5 times thicker than the AT cut. BT cut having a property suitable for etching (mainly, the above-mentioned constant N is 1.5 times) is obtained mainly.
As an example of numerical values based on the above constant N, in a 60 MHz oscillator, N = 1670 MHz · μm for an AT cut and a thickness of 28.83 μm, and for a BT cut, N = 2570 MHz · μm and a thickness of 42 From the processing surface, it is clear that the BT cut is easier to process.
However, the cut type and cut angle can be selected in consideration of the operating temperature, size, and frequency of the mass sensor.
[0016]
Oscillation elements (oscillator blanks) that have been polished and mirror-polished on both sides of a parallel plate quartz plate for high frequency and have a mirror finish have excellent oscillation characteristics themselves, but the strength decreases as the thickness decreases. For this reason, it is difficult to stably fix the outer peripheral portion of the vibrating portion of the crystal oscillator, and the resonance characteristics are likely to deteriorate due to a decrease in oscillation intensity and poor electrode contact caused by fixing the periphery of the vibrating oscillator.
In order to prevent this, it is desirable that only the vibrating portion of the crystal oscillator is a thin plate, and the other portion is left as a thick plate and the thick plate portion is used as a frame to fix the crystal oscillator.
Therefore, in the present invention, this problem is solved by using an inverted mesa type crystal oscillator (FIG. 2).
As a result, a high-sensitivity crystal resonator with high resonance and stable resonance characteristics was obtained.
[0017]
Etching is employed for processing into a reverse mesa shape, and a dry etching method and a wet etching method are used.
Unlike mechanical polishing, the etching process destroys the crystal structure of the etched surface (process alteration), and the wet etching tends to cause pits and etch channels on the etched surface, and surface roughness. These defects generate harmonic components due to split vibration and cause deterioration of resonance characteristics. Therefore, it is indispensable to optimize the etching process such as selection and combination of etching processing conditions.
[0018]
CF for dry etching Four Gas or C 2 F 6 Reactive ion etching method (RIE method) using gas, laser ablation method (LA method) using Ar or Xe gas, Ar gas or CO 2 A cluster ion beam method (CIB method) using gas is used.
In the dry etching process, the etching direction is isotropic, and the etching amount varies depending on the magnitude of the high-frequency power applied during the process and the concentration and flow rate of the gas, so that the etching process can be easily controlled.
However, since the applied energy is large, the above-described defects are likely to occur on the surface of the workpiece. In the dry etching process, the quartz oscillator material is masked with a metal mask and / or a photoresist, and the portions other than the masked portion are etched to a predetermined thickness.
[0019]
The wet etching process is performed by immersing the masked quartz oscillator material in a heated hydrofluoric acid aqueous solution. The etching amount corresponds to the concentration of hydrofluoric acid.
Since wet etching has anisotropy and deep digging tends to cause surface defects, it is preferable to suppress the depth to 5 μm or less.
[0020]
In the present invention, first, a crystal oscillator material is etched using a large amount of isotropic dry etching, and etching is performed up to 1.3 to 1.4 times the thickness corresponding to the target frequency determined by the constant N described above. Then, the high frequency power is lowered and the active gas concentration is increased, and etching is performed up to 1.1 to 1.2 times so as to reduce defects on the crystal surface.
That is, the dry etching process is performed in two steps of strength first and then weakness.
However, weaker or stronger dry etching may be performed.
Next, as described above, wet etching is performed by dipping in a hydrofluoric acid aqueous solution.
[0021]
Further, mechanical polishing is performed on the surface opposite to the etched surface of the crystal oscillator etched into the inverted mesa shape.
Since mechanical polishing is performed by pressing a quartz oscillator, the part processed into the reverse mesa type cannot receive the pressing on the etching processed surface, and this part is a circular plate that is just fixed in the periphery in terms of processing mechanics. Will receive the processing load of distributed load from one side.
Therefore, since the machining load of the reverse mesa mold processing portion decreases as it goes to the center of the reverse mesa mold processing portion, the amount of polishing is reduced and the reverse mesa mold processing portion is finished in a convex lens shape with a thick central portion. In other words, after processing, the processing load is released, so that the opposite side of the reverse mesa portion rises like a convex lens.
The vibration piece finished in the shape of a convex lens, like an acoustic speaker, reduces the divided vibration, thereby preventing the generation of harmonic components due to the divided vibration and becomes an oscillator having good resonance characteristics.
After the mechanical polishing is completed, a vapor deposition film having a diameter of about ½ of the reverse mesa portion is formed on the front and back surfaces of the crystal oscillator, and the front electrode 15 and the back electrode 17 are manufactured.
[0022]
As the frequency increases, electromagnetic waves are more likely to be generated, leading to lack of accuracy in frequency measurement. Therefore, it is necessary to reduce the generation of noise due to electromagnetic waves. In particular, if a conductive defect occurs in the conductive portion due to vibration, it tends to be associated with generation of electromagnetic waves, resulting in a decrease in measurement reliability.
Therefore, in the present invention, in order to ensure the parallelism of the distance between the conductive bars and to prevent the crystal oscillator from warping or tilting, a holding mechanism for maintaining the flatness of the crystal oscillator fixing frame is provided, and the rigidity of the frame is increased to improve the conductivity. By preventing the occurrence of poor electrical conductivity in parts and the generation of electromagnetic waves, the electrical system was further sealed to eliminate the effects of electromagnetic leakage and aqueous solution conductivity as much as possible.
In order to improve the sealing performance, the diameter of the conductive rod is taken into consideration for the molding die.
[0023]
Hereinafter, four examples will be described.
Example 1
As Example 1, an example manufactured according to the present invention using an AT-cut crystal piece will be described.
The AT-cut crystal piece is polished to a thickness of 60 μm, then processed to a diameter of 6.0 mm, and further precision polished to a thickness of 50 μm, with a fundamental frequency of 33.40 MHz and an oscillation intensity of 40 to 50 dB. I got a child.
In order to etch this crystal oscillator into a reverse mesa type, masking with a hole diameter of 3.0 mm is performed, and a high frequency power of 200 W · C is applied by the RIE method. 2 F 6 Gas pressure 13Pa, then high frequency power 100W · C 2 F 6 At a gas pressure of 26 Pa, dry etching was performed in two steps of strength and weakness.
At this stage, a crystal oscillator having a fundamental frequency of 46.58 to 46.84 MHz and an oscillation intensity of 40 to 50 dB was obtained. In this state, the crystal oscillator has many harmonic components due to divided vibration as shown in FIG. However, the crystal oscillator lacked suitability. That is, although the effect of increasing the frequency by thinning is obtained by the two-step dry etching of strength and weakness, it can be seen that the quartz crystal on the etching surface causes processing alteration and the harmonic components due to the divided vibration increase.
Next, wet etching was performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a crystal oscillator having a fundamental frequency of 51.39 to 51.75 MHz and an oscillation intensity of 20 to 30 dB. At this time, the thickness of the reverse mesa portion was 31.64 to 31.88 μm.
That is, it can be seen that wet etching has the effect of increasing the frequency by thinning, but it has the effect of removing surface processing alteration caused by dry etching, and the effect of reducing divided vibration. On the other hand, it can also be seen that the oscillation intensity decreases and the resonance characteristics deteriorate.
Next, finish polishing is also performed to serve as a convex lens shape, and a convex lens having a fundamental frequency of 52.10 to 52.38 MHz, an oscillation intensity of 40 to 50 dB, and no split vibration, as shown in FIG. An inverted mesa crystal resonator was obtained.
That is, by performing finish polishing, a convex lens shape can be obtained. As an effect, the oscillation intensity can be increased and the resonance characteristics can be improved.
From the above, it was confirmed that the effect of performing dry etching in two steps of strength and weakness first and then performing wet etching, and further the effectiveness of forming a convex lens by finish polishing thereafter.
Next, after producing a 1.5 mm diameter deposited electrode on the convex lens-shaped inverted mesa crystal oscillator and measuring the resonance characteristics, all the crystal oscillators with sharp resonance characteristics having a fundamental frequency of 51.66 to 52.00 MHz are obtained. Obtained (yield 100%).
Further, this crystal oscillator is attached to the crystal oscillator fixing frame shown in FIGS. 1 to 3 to obtain a final product. The mass sensor is immersed in water kept at 25 ± 0.1 ° C., and resonates after 20 minutes. As a result of measuring the characteristics, all mass sensors having sharp resonance characteristics in the vicinity of the fundamental frequency of 52 MHz were obtained (yield 100%).
Moreover, after applying a toluene solution of 10 ng of polystyrene to the surface electrodes of this mass sensor (three pieces) and placing it in water in the same manner as described above, the amount of decrease in resonance frequency is measured to be 3.232 to 3.370 kHz. Thus, a mass sensor having an average sensitivity of 3.027 pg / Hz (10 ng / 3.304 kHz) was obtained.
Example 2
As Example 2, an example in which a BT-cut crystal piece is used and the diameter of the crystal oscillator is reduced to 75% of Example 1 and manufactured according to the present invention will be described.
A BT-cut crystal piece is polished to a thickness of 50 μm, then processed to a diameter of 4.5 mm, and further precision polished to a thickness of 42.56 μm with a fundamental frequency of 60.385 MHz and an oscillation intensity of 40 to 50 dB. A crystal oscillator was obtained.
In order to etch this crystal oscillator in a reverse mesa shape, masking with a hole diameter of 2.25 mm is performed, and a high frequency power of 200 W · C is applied by the RIE method. 2 F 6 Gas pressure 13Pa, then high frequency power 100W · C 2 F 6 At a gas pressure of 26 Pa, dry etching was performed in two steps of strength and weakness.
At this stage, a crystal oscillator having a fundamental frequency of 108.806 to 110.9888 MHz and an oscillation intensity of 30 to 40 dB and having less divided vibration than that of Example 1 was obtained.
Next, wet etching was performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a fundamental frequency of 123.44 to 123.82 MHz and an oscillation intensity of 20 to 30 dB. The thickness of the reverse mesa portion at this time was 20.756 to 20.820 μm.
Next, finish polishing was performed to obtain a convex lens-shaped inverted mesa crystal oscillator having a fundamental frequency of 144.25 to 144.70 MHz, an oscillation intensity of 40 to 50 dB, and no split vibration.
An example of the measurement result is shown in FIG.
From the above, as in Example 1, the effect of performing two levels of strength and weakness dry etching and wet etching, and the effectiveness of forming a convex lens by finishing polishing were confirmed.
Next, after forming a deposition electrode having a diameter of 1.25 mm on this convex lens-shaped inverted mesa crystal oscillator and measuring the resonance characteristics, crystal oscillation with a sharp resonance characteristic of a fundamental frequency of 142.76 to 143.28 MHz. All the children were obtained (yield 100%).
Furthermore, this crystal oscillator is attached to the crystal oscillator fixed frame shown in FIGS. 1 to 3 to obtain a final product, and this mass sensor is immersed in water kept at 25 ± 0.1 ° C. to measure resonance characteristics. As a result, all mass sensors having sharp resonance characteristics in the vicinity of the fundamental frequency of 143 MHz were obtained (yield 100%).
Moreover, after applying a toluene solution of 4 ng of polystyrene to the surface electrodes of these mass sensors (3) and drying them, the amount of decrease in the resonance frequency is measured in the same manner as described above, and it becomes 14.900 to 14.972 kHz. Thus, a mass sensor having an average sensitivity of 0.309 pg / Hz was obtained.
That is, by using a BT-cut crystal piece and setting the crystal oscillator diameter to 75% of Example 1, etc., a mass sensor having a fundamental frequency of 2.75 times and a sensitivity of 9.80 times can be manufactured. became.
Example 3
As Example 3, an AT-cut crystal piece is used as in Example 1, and the diameter of the crystal oscillator is reduced to 50% of Example 1, and an example manufactured according to the present invention is given.
The same AT-cut quartz crystal as in Example 1 was polished to a thickness of 45 μm, then processed to a diameter of 3.0 mm, and further polished to a thickness of 36 μm to obtain a fundamental frequency of 46.389 MHz. A crystal oscillator of 40 to 50 dB was obtained.
In order to etch this crystal oscillator into a reverse mesa type, masking with a hole diameter of 1.5 mm is performed, and a high frequency power of 150 W · C is applied by the RIE method. 2 F 6 Gas pressure 13Pa, then high frequency power 100W · C 2 F 6 At a gas pressure of 26 Pa, dry etching was performed in two steps of strength and weakness.
At this stage, a crystal oscillator having a fundamental frequency of 86.22 to 86.58 MHz and an oscillation intensity of 20 to 30 dB was obtained.
Next, wet etching was performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a fundamental frequency of 91.79 to 92.25 MHz and an oscillation intensity of 20 to 30 dB. At this time, the thickness of the reverse mesa portion was 18.103 to 18.194 μm.
Next, final polishing was performed to obtain a convex lens-shaped inverted mesa crystal oscillator having a fundamental frequency of 96.10 to 96.48 MHz, an oscillation intensity of 30 to 50 dB, and no split vibration.
An example of the measurement result is shown in FIG.
From the above, as in Example 1, the effect of performing two levels of strength and weakness dry etching and wet etching, and the effectiveness of forming a convex lens by finishing polishing were confirmed.
When a 0.75 mm diameter deposited electrode is fabricated on this convex lens-shaped inverted mesa crystal oscillator and then the resonance characteristics are measured, all the crystal oscillators having sharp resonance characteristics with a fundamental frequency of 95.48 to 95.86 MHz are obtained. (Yield 100%).
Furthermore, this crystal oscillator is attached to the crystal oscillator fixed frame shown in FIGS. 1 to 3 to obtain a final product, and this mass sensor is immersed in water kept at 25 ± 0.1 ° C. to measure resonance characteristics. As a result, a total of mass sensors having sharp resonance characteristics in the vicinity of the fundamental frequency of 95 MHz were obtained (yield 100%).
In addition, after applying 2.5 ng of a toluene solution of polystyrene to the surface electrodes of the mass sensors (three pieces) and drying the solution, it was placed in water as described above, and the amount of decrease in the resonance frequency after 20 minutes was measured. This resulted in a mass sensor with an average sensitivity of 0.224 pg / Hz.
In other words, by using an AT-cut crystal piece and setting the diameter of the crystal resonator to 50% of the first embodiment, the AT frequency is 1.83 times and the sensitivity is 13.54 times. As a result, it has become possible to manufacture extremely small high-frequency mass sensors.
Example 4
Using a crystal piece of BT cut similar to that of Example 2, precision polishing finish to a thickness of 30.0 μm, and a crystal oscillator with a fundamental frequency of 85.63 MHz that is 16 mm × 20 mm □ for 48 crystal oscillators, In order to etch into a reverse mesa type, masking is performed with a mask having 48 hole diameters of 0.8 mm, and a high frequency power of 150 W · C is applied by the RIE method. 2 F 6 Gas pressure 13Pa, then high frequency power 75W · C 2 F 6 At a gas pressure of 26 Pa, dry etching was performed in two steps of strength and weakness.
At this stage, a crystal oscillator having a fundamental frequency of 264.54 to 265.46 MHz and an oscillation intensity of 10 to 20 dB and having a lot of divided vibrations was obtained.
Next, wet etching was performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a crystal oscillator with a fundamental frequency of 318.22 to 319.18 MHz and an oscillation intensity of 10 to 20 dB with little split vibration.
Next, finish polishing is performed, and a convex lens-shaped inverted mesa crystal having a fundamental frequency of 336.64 to 337.51 MHz, an oscillation intensity of 40 to 50 dB, and a slight divided vibration but no problematic divided vibration. An oscillator was obtained.
An example of the measurement result is shown in FIG.
Forty-eight 0.4 mm diameter deposition electrodes were fabricated on the convex lens-shaped inverted mesa crystal oscillator, and then 48 crystal oscillators of 1.8 mm × 1.6 mm □ were cut out, and a conductive line from the front electrode to the back surface and Conductive wires are printed on the back side, the crystal oscillator fixing frame shown in Fig. 4 is attached, and the final product is immersed in water kept at 25 ± 0.1 ° C. 46 out of 48 mass sensors (yield 96%) having sharp resonance characteristics in the vicinity of 333 MHz were obtained.
In addition, after applying 0.1 ng of a toluene solution of polystyrene to the surface electrodes of the three mass sensors and drying the solution, it was placed in water in the same manner as described above, and after 20 minutes, the amount of decrease in the resonance frequency was measured. This gave a mass sensor with an average sensitivity of 0.0050 pg / Hz.
That is, compared with the second embodiment, the crystal oscillator has a rectangular outer shape, but by setting the diameter of the reverse mesa portion to 36%, the oscillation frequency is 2.33 times the fundamental frequency and 62 times the sensitivity. An ultra-compact mass sensor at an extremely high frequency of 333 MHz can be manufactured.
[0028]
Hereinafter, four comparative examples will be described.
In all of the four comparative examples, finish polishing for producing a convex lens-like surface is not performed.
Comparative Example 1
As Comparative Example 1, one of experimental examples conducted to confirm the effect of presence / absence of reverse mesa processing and the quality of the crystal oscillator holder among various confirmation experiments will be given.
A quartz crystal having an AT cut diameter of 6.0 mm and a thickness of 50 μm shown in Example 1 and having a fundamental frequency of 33.40 MHz and an oscillation intensity of 40 to 50 dB is not etched by a reverse mesa type, and the diameter is 1. When the resonance characteristics were measured after the 5 mm deposition electrode was produced, a total number of crystal resonators with sharp resonance characteristics having a fundamental frequency of 32.95 to 33.13 MHz were obtained.
This crystal oscillator is a normal one used as an electronic component.
This crystal oscillator was attached to a commercially available small-sized vibrator holder (usually model number UM-1 / 2P2L) used for an oscillator of a normal electronic component, and the vapor deposition electrode and the electrode lead wire of the holder were soldered. These resonators (48) showed good resonance characteristics in the air, but when immersed in water kept at 25 ± 0.1 ° C, the frequency fluctuated irregularly and showed all stable resonance frequencies. There was no (yield 0%).
As a result, in the case of Comparative Example 1, it was found that at least the commercially available small vibrator holder for electronic parts cannot withstand use in water, regardless of the effect of the presence or absence of reverse mesa processing.
Comparative Example 2
Furthermore, an experimental example carried out to check the quality of the holding frame of the crystal oscillator is given as Comparative Example 2.
Using the crystal oscillator in which the vapor deposition electrode of Comparative Example 1 and the electrical lead wire of the holder were soldered, the plastic plate and the silicon rubber adhesive were used for fixing and sealing by the method disclosed in Patent Document 2.
When measured in water in the same manner as described above, 21 out of 45 showed stable resonance frequencies around 33 MHz, but the remaining 24 showed unstable resonance frequencies and a yield of 46%.
As a result, it was found from the case of Comparative Example 2 that the holding frame for the crystal oscillator needs to match the performance of the crystal oscillator.
Comparative Example 3
Next, a comparative example 3 will be given as an example of an experiment conducted for confirming the effect of omitting dry etching and wet etching on both sides and the effect of the crystal oscillator holder of the present invention.
Using the same AT-cut quartz piece as in Example 1 and Example 3, it was processed to the same diameter of 3.0 mm as in Example 3, and further precision polished to a thickness of 61.85 μm to a fundamental frequency of 27. A crystal oscillator with 00 MHz and oscillation intensity of 40 to 50 dB was obtained.
In order to etch this crystal oscillator into a double-sided mesa type, masking with a hole diameter of 1.5 mm is performed on both sides, and wet etching is performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a fundamental frequency of 92.14 to 92.86 MHz. An oscillation intensity of 10 to 20 dB was obtained. The total amount of etching on both sides was 43.80 μm.
A vapor-deposited electrode having a diameter of 0.75 mm was produced on this crystal oscillator, and then attached to the crystal oscillator fixing frame shown in FIGS.
This mass sensor was immersed in water kept at 25 ± 0.1 ° C., and the resonance characteristics were measured.
As a result, although the fundamental frequency was around 92 MHz, the mass sensor was noisy and barely stable frequency was obtained within 20 minutes in 12 out of 90 (yield 13.3%).
As a result, in Comparative Example 3, the effect of the crystal resonator holder of the present invention is not limited, and when the dry etching is omitted and the wet etching is performed on both sides to form a double-sided mesa type, the effect of the etching surface is caused. It turned out that it was difficult to produce good products.
Comparative Example 4
Next, a comparative example 4 will be given of an experimental example performed to examine the effect when the convex lens processing combined finish polishing is not performed.
Using the same AT-cut crystal piece (45 μm after polishing, diameter 3.0 mm, thickness 36 μm after precision polishing, fundamental frequency 46.389 MHz, oscillation intensity 40-50 dB) as in Example 3, reverse mesa In order to etch into the mold, masking with a hole diameter of 1.5 mm and high frequency power of 150 W · C by RIE method 2 F 6 Gas pressure 13Pa, then high frequency power 100W · C 2 F 6 Two-stage dry etching was performed at a gas pressure of 26 Pa.
At this stage, a crystal oscillator having a fundamental frequency of 86.22 to 86.58 MHz and an oscillation intensity of 20 to 30 dB was obtained.
Next, wet etching is performed in a saturated aqueous solution of ammonium hydrogen fluoride to obtain a crystal oscillator having a slightly low oscillation intensity as shown in FIG. 10 having a fundamental frequency of 70.08 to 70.56 MHz and an oscillation intensity of 20 to 30 dB. It was. The thickness of the inverted mesa portion of this crystal oscillator was 23.668 to 23.830 μm.
This convex lens-shaped inverted mesa crystal oscillator is not subjected to final polishing, and a deposited electrode having a diameter of 0.75 mm is prepared, and then attached to the crystal oscillator fixing frame shown in FIGS. Was immersed in water kept at 25 ± 0.1 ° C., and the resonance characteristics were measured.
As a result, 78 out of 90 pieces (yield 87%) showed clear resonance characteristics around the fundamental frequency of 95 MHz, but the remaining 12 pieces did not show stable resonance characteristics.
In Comparative Example 4, it was confirmed that the effectiveness of convex lens processing by finish polishing was extremely high.
[0033]
【The invention's effect】
In the present invention, by adopting an inverted mesa crystal oscillator, the fixed portion of the crystal oscillator has been improved, and as a result, high frequency (higher sensitivity), which was difficult with a parallel plate oscillator, has become possible. .
[0034]
Further, in the present invention, after the reverse mesa mold processing, the other surface is finished and polished so that a convex lens-shaped thin film is formed in the reverse mesa mold processed portion and the surface smoothness is increased. It became possible to manufacture crystal oscillators.
[0035]
Furthermore, since the dry etching process of two or more steps was performed before wet etching, a high-frequency crystal oscillator that could not be achieved by wet etching alone could be manufactured with accurate dimensions.
[0036]
As a result of employing the above-described inverted mesa crystal oscillator, convex lens-shaped thin film crystal oscillator, and two or more dry etching processes before and after wet etching, a crystal oscillator having high-frequency and sharp resonance characteristics is obtained. Therefore, the sensitivity of the mass sensor according to the present invention can be as high as 3 to 0.005 pg / Hz, compared with the sensitivity of the conventional mass sensor for measuring the active substance concentration in aqueous solution of 1 ng to 30 pg / Hz. It was possible to measure a very small amount of mass.
[0037]
In the present invention, since the reverse mesa structure is adopted on one side, the reverse mesa side is sealed and the opposite flat side is used for the detection body, the following convenience is achieved.
In biosensors that measure physiologically active substances in water, it is necessary to clean the electrode surface with a piranha solution (hydrogen peroxide: sulfuric acid = 1: 3 (Vol ratio)), and sometimes the electrode surface is rubbed and cleaned. In the double-sided reverse mesa structure, there is an electrode at the bottom of the concave portion, so that it is difficult to clean sufficiently, whereas in the single-sided reverse mesa structure of the present invention, it is sufficient to clean the flat surface of the other surface. It can be carried out.
In addition, it is easy to re-apply the molecular recognition coating agent or convert it to another type of coating agent.
[0038]
The generation and leakage of electromagnetic waves associated with higher frequencies can be solved by adopting an appropriate crystal oscillator fixing frame with high rigidity and a structure that reduces defects in electrode contact areas and a structure that improves insulation. It became possible to perform highly accurate and stable measurement.
[0039]
By using single-sided etching, a convex lens-shaped thin film crystal oscillator by finish polishing, two or more levels of dry etching before and after wet etching, and an appropriate crystal oscillator fixing frame, the yield of the product is almost 100%. I was able to.
[0040]
By adopting the above-mentioned inverted mesa type crystal oscillator and an appropriate crystal oscillator fixing frame, the size can be reduced to 1/2 to 1/5 of the conventional size, resulting in uniform product quality. This has made it possible to reduce the cost and reduce the price, and it has become possible to measure a small amount of sample.
[Brief description of the drawings]
FIG. 1 is a plan view of a mass sensor incorporating a round crystal oscillator.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1;
FIG. 4 is a plan view of a mass sensor incorporating a square crystal resonator.
5 is a diagram showing resonance characteristics after dry etching in Example 1. FIG.
6 is a diagram showing resonance characteristics after dry etching, wet etching, and finish polishing in Example 1. FIG.
7 is a diagram showing resonance characteristics after dry etching, wet etching, and finish polishing in Example 2. FIG.
8 is a diagram showing resonance characteristics after dry etching, wet etching, and finish polishing in Example 3. FIG.
9 is a diagram showing resonance characteristics after dry etching, wet etching, and finish polishing in Example 4. FIG.
10 is a diagram showing resonance characteristics after dry etching and wet etching in Comparative Example 4. FIG.
[Explanation of symbols]
10 Crystal oscillator
11 Convex lens-shaped part
12 Reverse mesa
13 Frame part
15 Front electrode
17 Back electrode
19 Adhesive seal
20 Crystal oscillator holding frame
21 Hermetic seal pin
22 Conductive rod
23 Conductive rod holding frame
24 Conductive rod holding frame

Claims (5)

水晶発振子の一面の中央部及びそれに対向する他面に電極を対面させて蒸着し、一面の蒸着膜の一部を他面にまで伸長製作して他面で二つの電極接触面とし導電棒と接触導通し、該他面を密封した質量センサであって、水晶発振子に平行平板水晶発振子の片面をエッチング加工により切頭錐体状に掘り下げた水晶発振子を用い、エッチング加工面を密封し、他一面を検出体用に露出させたこと、を特徴とする質量センサ。Electrode is deposited with the electrodes facing the central part of one side of the quartz oscillator and the other side opposite to it, and a part of the deposited film on one side is extended to the other side to make two electrode contact surfaces on the other side. Is a mass sensor that is in contact with and is sealed on the other surface, and uses a crystal oscillator in which one side of a parallel plate crystal oscillator is dug into a truncated pyramid by etching, and the etched surface is A mass sensor, characterized in that it is sealed and the other surface is exposed for a detection body. 請求項1記載の発明の水晶発振子に、エッチング加工後さらにエッチング加工面と対面する他面を平面研磨することにより水晶発振子中央部の薄板部分が凸レンズ状になった水晶発振子を用いたこと、を特徴とする質量センサ。The crystal oscillator according to the first aspect of the present invention is a crystal oscillator in which the thin plate portion at the center of the crystal oscillator is formed into a convex lens shape by polishing the other surface facing the etched surface after etching. A mass sensor. 請求項1ないし請求項2記載の発明に適用するエッチング加工方法であって、先ず強弱2段階以上のドライエッチング加工を行い、次にウェットエッチング加工を行うこと、を特徴とする水晶発振子のエッチング加工方法An etching method applied to the invention according to claim 1 or 2, characterized in that first, dry etching processing in two or more steps is performed, and then wet etching processing is performed. Processing method 水晶発振子面に設けられた金属蒸着膜に接触導通させる請求項1記載の導電棒を埋めこんだ水晶発振子固定枠において、導電棒相互の間隔及び平面度を保つ保持機構を設けたこと、を特徴とする水晶発振子固定枠。In the crystal oscillator fixing frame embedded with the conductive rods according to claim 1, wherein a holding mechanism is provided for maintaining the spacing and flatness between the conductive rods, wherein the conductive rod is embedded in contact with a metal vapor deposition film provided on the crystal oscillator surface. A crystal oscillator fixed frame characterized by 請求項1ないし請求項2記載の発明に、請求項3記載のエッチング加工または及び請求項4記載の保持機構を適用したことを特徴とする質量センサ。A mass sensor, wherein the etching process according to claim 3 or the holding mechanism according to claim 4 is applied to the invention according to claim 1 or 2.
JP2002266987A 2002-09-12 2002-09-12 Micro-mass sensor and holding mechanism of its oscillator Withdrawn JP2006078179A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002266987A JP2006078179A (en) 2002-09-12 2002-09-12 Micro-mass sensor and holding mechanism of its oscillator
AU2003262005A AU2003262005A1 (en) 2002-09-12 2003-09-08 Micro mass sensor and oscillator-holding mechanism thereof
PCT/JP2003/011464 WO2004025274A1 (en) 2002-09-12 2003-09-08 Micro mass sensor and oscillator-holding mechanism thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266987A JP2006078179A (en) 2002-09-12 2002-09-12 Micro-mass sensor and holding mechanism of its oscillator

Publications (1)

Publication Number Publication Date
JP2006078179A true JP2006078179A (en) 2006-03-23

Family

ID=31986677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266987A Withdrawn JP2006078179A (en) 2002-09-12 2002-09-12 Micro-mass sensor and holding mechanism of its oscillator

Country Status (3)

Country Link
JP (1) JP2006078179A (en)
AU (1) AU2003262005A1 (en)
WO (1) WO2004025274A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008845A (en) * 2006-06-30 2008-01-17 Kyocera Kinseki Corp Qcm sensor
JP2008032617A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Qcm sensor
JP2008215993A (en) * 2007-03-02 2008-09-18 Tohoku Univ Piezoelectric oscillator
JP2009162528A (en) * 2007-12-28 2009-07-23 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor and sensing apparatus
JP2009250896A (en) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology Ammonia measuring element, ammonia measuring device, ammonia measuring method, chlorine measuring element, chlorine measuring device and chlorine measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015512B4 (en) * 2006-03-31 2010-01-21 Andreas Hettich Gmbh & Co. Kg Device comprising a measuring chamber and a resonator for the liquid sensor system which can be integrated into the measuring chamber via a quick-action closure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114525A (en) * 1997-06-19 1999-01-22 Showa Crystal:Kk Piezoelectric element holding construction
JP3731348B2 (en) * 1998-06-09 2006-01-05 松下電器産業株式会社 Piezoelectric vibrator
JP3717696B2 (en) * 1999-03-04 2005-11-16 北斗電工株式会社 QCM sensor device
JP2001038607A (en) * 1999-07-28 2001-02-13 Okayama Prefecture Working method of quartz oscillator for high frequency
JP2001153777A (en) * 1999-11-26 2001-06-08 Initium:Kk Quartz oscillator
JP3520839B2 (en) * 2000-01-21 2004-04-19 セイコーエプソン株式会社 Manufacturing method of piezoelectric vibrating reed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008845A (en) * 2006-06-30 2008-01-17 Kyocera Kinseki Corp Qcm sensor
JP2008032617A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Qcm sensor
JP2008215993A (en) * 2007-03-02 2008-09-18 Tohoku Univ Piezoelectric oscillator
JP2009162528A (en) * 2007-12-28 2009-07-23 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor and sensing apparatus
JP2009250896A (en) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology Ammonia measuring element, ammonia measuring device, ammonia measuring method, chlorine measuring element, chlorine measuring device and chlorine measuring method

Also Published As

Publication number Publication date
WO2004025274A1 (en) 2004-03-25
AU2003262005A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7518291B2 (en) Piezoelectric device
KR100802865B1 (en) Piezoelectric resonator element and piezoelectric device
US8334639B2 (en) Package for electronic component, piezoelectric device and manufacturing method thereof
JP3319912B2 (en) Pedestal for semiconductor sensor and processing method thereof
KR20180102615A (en) Bonded body and acoustic wave element
JP2006078179A (en) Micro-mass sensor and holding mechanism of its oscillator
JP5720152B2 (en) Method for manufacturing vibrator, vibrator and oscillator
JPH10335974A (en) Elastic boundary wave element
Rabe et al. Design, manufacturing, and characterization of high-frequency thickness-shear mode resonators
JP5170405B2 (en) Method for manufacturing piezoelectric vibrator
JP3826665B2 (en) Quartz vibrating piece, method for manufacturing quartz vibrating piece, and quartz device
JP4031171B2 (en) Through hole formation method
JPH07111435A (en) Production of crystal piezoelectric device
JP2003174352A (en) Piezoelectric vibrating reed, piezoelectric vibrator and piezoelectric oscillator
JP3541810B2 (en) High frequency vibrator and method of manufacturing the same
JP3351119B2 (en) Manufacturing method of piezoelectric resonator
JP2004128979A (en) Quartz oscillator for viscosity sensor
JP2003168941A (en) Convex working method for small piezoelectric blank plate
Buettgenbach et al. High-frequency thickness-shear mode resonators for sensor application in liquids
JP3489494B2 (en) Semiconductor substrate manufacturing method
JP3345779B2 (en) SAW chip and method of manufacturing SAW device using the same
WO1995011548A1 (en) Rectangular at-cut quartz crystal plate, quartz crystal unit, and quartz oscillator and manufacture of quartz crystal plate
JP2008118597A (en) Cover body, manufacturing method of cover body, piezoelectric device, and manufacturing method of piezoelectric device
JPS6294008A (en) Piezoelectric thin film resonator
JP2000223999A5 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404