JP2006077787A - Variable damping force damper - Google Patents

Variable damping force damper Download PDF

Info

Publication number
JP2006077787A
JP2006077787A JP2004259182A JP2004259182A JP2006077787A JP 2006077787 A JP2006077787 A JP 2006077787A JP 2004259182 A JP2004259182 A JP 2004259182A JP 2004259182 A JP2004259182 A JP 2004259182A JP 2006077787 A JP2006077787 A JP 2006077787A
Authority
JP
Japan
Prior art keywords
fluid
damping force
temperature
damper
viscous fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259182A
Other languages
Japanese (ja)
Inventor
Masaki Izawa
正樹 伊澤
Yoshio Onoe
良雄 尾上
Tsukasa Fukusato
司 福里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004259182A priority Critical patent/JP2006077787A/en
Publication of JP2006077787A publication Critical patent/JP2006077787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compensate for a change in damping force of a variable damping force damper caused by variable viscosity of a viscous fluid due to a temperature change. <P>SOLUTION: In a damper 14 of a suspension device of an automobile, a fluid passage 22a is provided in a piston 22 slidably fitted to a cylinder 21 filled with a magnetic viscous fluid, and the fluid passage 22a is provided with a coil 28 for generating a magnetic field, whereby the apparent viscosity of the magnetic viscous fluid is varied by applying an electric current to the coil 28 to arbitrarily control the damping force. At a low temperature causing increase in viscosity of the magnetic viscous fluid, an electric current is applied to the coil 28 to generate heat, and the magnetic viscous fluid is heated to return to an ordinary viscosity, thereby compensating for a change in viscosity of the viscous fluid due to temperature so that the damping force of the damper 14 can be precisely controlled. The current application to the coil 28 to heat the magnetic viscous fluid is performed at the time of stopping not to worsen the ride quality of the vehicle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粘性流体を満たしたシリンダの内部をピストンで第1流体室および第2流体室に区画し、ピストンを貫通するように形成した流体通路で前記第1流体室および第2流体室を相互に連通させた可変減衰力ダンパーに関する。   In the present invention, a cylinder filled with a viscous fluid is partitioned into a first fluid chamber and a second fluid chamber by a piston, and the first fluid chamber and the second fluid chamber are formed by a fluid passage formed so as to penetrate the piston. The present invention relates to a variable damping force damper communicated with each other.

かかる可変減衰力ダンパーにおいて、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたサスペンション装置用の可変減衰力ダンパーが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。
特開昭60−113711号公報
In such a variable damping force damper, a magnetorheological fluid (MRF: Magneto-Rheological Fluids) whose viscosity is changed by the action of a magnetic field is adopted, and the magnetorheological fluid in the fluid passage is fitted to a piston slidably fitted in the cylinder. A variable damping force damper for a suspension device provided with a coil for causing a magnetic field to act on is known from Patent Document 1 below. According to this variable damping force damper, the damping force of the damper can be arbitrarily controlled by changing the viscosity of the magnetorheological fluid in the fluid passage by a magnetic field generated by energizing the coil.
JP-A-60-113711

しかしながら上記従来のものは、低温時に粘性流体の温度が低下すると粘性が増加するため、粘性流体がピストンの流体通路を通過し難くなってダンパーの減衰力が目標とする値よりも高くなる問題がある。特に、磁気粘性流体はこの傾向が強いため、低温時にダンパーの減衰力が過剰になって車両の乗り心地を損ねる可能性があった。   However, since the viscosity of the conventional fluid increases when the temperature of the viscous fluid decreases at low temperatures, the viscous fluid becomes difficult to pass through the fluid passage of the piston, and the damping force of the damper becomes higher than the target value. is there. In particular, since this tendency is strong in the magnetorheological fluid, the damping force of the damper becomes excessive at low temperatures, which may impair the riding comfort of the vehicle.

本発明は前述の事情に鑑みてなされたもので、温度変化により粘性流体の粘性が変化して可変減衰力ダンパーの減衰力が変化するのを補償することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to compensate for a change in the damping force of a variable damping force damper due to a change in viscosity of a viscous fluid due to a temperature change.

上記目的を達成するために、請求項1に記載された発明によれば、粘性流体を満たしたシリンダの内部をピストンで第1流体室および第2流体室に区画し、ピストンを貫通するように形成した流体通路で前記第1流体室および第2流体室を相互に連通させた可変減衰力ダンパーにおいて、粘性流体の温度を検出する温度検出手段と、粘性流体の温度を変化させる温度可変手段と、温度検出手段で検出した温度に基づいて温度可変手段を制御する制御手段とを備えたことを特徴とする可変減衰力ダンパーが提案される。   To achieve the above object, according to the first aspect of the present invention, the interior of the cylinder filled with the viscous fluid is partitioned by the piston into the first fluid chamber and the second fluid chamber so as to penetrate the piston. In the variable damping force damper in which the first fluid chamber and the second fluid chamber communicate with each other through the formed fluid passage, temperature detecting means for detecting the temperature of the viscous fluid, and temperature variable means for changing the temperature of the viscous fluid There is proposed a variable damping force damper comprising control means for controlling the temperature variable means based on the temperature detected by the temperature detection means.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記粘性流体は磁界の作用により粘性が変化する磁気粘性流体であり、前記温度可変手段は流体通路中の磁気粘性流体に磁界を作用させるコイルであることを特徴とする可変減衰力ダンパーが提案される。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the viscous fluid is a magnetorheological fluid whose viscosity is changed by the action of a magnetic field, and the temperature varying means is a magnetic fluid in the fluid passage. A variable damping force damper is proposed, which is a coil that applies a magnetic field to a viscous fluid.

また請求項3に記載された発明によれば、請求項2の構成に加えて、前記可変減衰力ダンパーは車両のサスペンション装置用であり、温度検出手段で検出した温度に基づく温度可変手段の制御は、車両の停止中に行われることを特徴とする可変減衰力ダンパーが提案される。   According to a third aspect of the invention, in addition to the configuration of the second aspect, the variable damping force damper is for a vehicle suspension device, and controls the temperature variable means based on the temperature detected by the temperature detection means. A variable damping force damper is proposed, which is performed while the vehicle is stopped.

尚、実施例の磁気粘性流体は本発明の粘性流体に対応し、実施例の温度センサSaは本発明の温度検出手段に対応し、実施例の電子制御ユニットUは本発明の制御手段に対応し、実施例のコイル28は本発明の温度可変手段に対応する。   The magnetorheological fluid of the embodiment corresponds to the viscous fluid of the present invention, the temperature sensor Sa of the embodiment corresponds to the temperature detecting means of the present invention, and the electronic control unit U of the embodiment corresponds to the control means of the present invention. The coil 28 of the embodiment corresponds to the temperature variable means of the present invention.

請求項1の構成によれば、流体通路を有するピストンをシリンダに摺動自在に嵌合させ、ピストンの両側に区画された第1、第2流体室をピストンの流体通路で連通させて減衰力を発生させる際に、温度検出手段で検出した粘性流体の温度に基づいて、制御手段が温度可変手段を制御して粘性流体の温度を変化させるので、温度による粘性流体の粘性の変化を補償して可変減衰力ダンパーの減衰力を的確に制御することができる。   According to the configuration of the first aspect, the piston having the fluid passage is slidably fitted to the cylinder, and the first and second fluid chambers defined on both sides of the piston are communicated with each other through the fluid passage of the piston, thereby reducing the damping force. When the fluid is generated, the control means controls the temperature variable means to change the temperature of the viscous fluid based on the temperature of the viscous fluid detected by the temperature detection means, so that the change in the viscosity of the viscous fluid due to the temperature is compensated. Thus, the damping force of the variable damping force damper can be accurately controlled.

請求項2の構成によれば、粘性流体として磁界の作用により粘性が変化する磁気粘性流体を採用したので、コイルに通電して磁界を発生させることでピストンの流体通路中の磁気粘性流体の粘性を変化させて減衰力を任意に制御することができる。そしてコイルに通電すると発熱することに着目し、このコイルを温度可変手段として利用することで、ヒータのような特別の発熱手段を不要にして部品点数や設置スペースを削減することができる。   According to the configuration of the second aspect, since the magnetorheological fluid whose viscosity is changed by the action of the magnetic field is adopted as the viscous fluid, the viscosity of the magnetorheological fluid in the fluid passage of the piston is generated by energizing the coil to generate the magnetic field. The damping force can be arbitrarily controlled by changing. Focusing on the fact that heat is generated when the coil is energized, and using this coil as a temperature variable means makes it possible to eliminate the need for special heat generating means such as a heater and reduce the number of components and installation space.

請求項3の構成によれば、車両のサスペンション装置用として使用される可変減衰力ダンパーにおいて、温度検出手段で検出した磁気粘性流体の温度に基づくコイルへの通電を車両の停止中に行うので、発熱のためのコイルへの通電が車両の走行中に実行されてダンパーの減衰力が不必要に増加するのを回避し、車両の乗り心地が低下するのを防止することができる。   According to the configuration of claim 3, in the variable damping force damper used for the suspension device of the vehicle, the coil is energized while the vehicle is stopped based on the temperature of the magnetorheological fluid detected by the temperature detecting means. It is possible to avoid energizing the coil for heat generation while the vehicle is running and thereby increasing the damping force of the damper unnecessarily, thereby preventing the ride comfort of the vehicle from being lowered.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1および図2は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図である。   1 and 2 show an embodiment of the present invention. FIG. 1 is a front view of a vehicle suspension device, and FIG. 2 is an enlarged sectional view of a variable damping force damper.

図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、ダンパー14に封入された磁気粘性流体の温度を検出する温度センサSaからの信号と、バネ上加速度を検出するバネ上加速度センサSbからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサScからの信号と、車両の横加速度を検出する横加速度センサSdからの信号と、車両の前後加速度を検出する前後加速度センサSeからの信号とが入力される。   As shown in FIG. 1, a suspension device S that suspends a wheel W of a four-wheeled vehicle has a suspension arm 13 that supports a knuckle 12 in a vertically movable manner on a vehicle body 11, and a variable damping that connects the suspension arm 13 and the vehicle body 11. A force damper 14 and a coil spring 15 connecting the suspension arm 13 and the vehicle body 11 are provided. The electronic control unit U that controls the damping force of the damper 14 includes a signal from the temperature sensor Sa that detects the temperature of the magnetorheological fluid sealed in the damper 14 and a sprung acceleration sensor Sb that detects the sprung acceleration. A signal, a signal from a damper displacement sensor Sc that detects the displacement (stroke) of the damper 14, a signal from a lateral acceleration sensor Sd that detects the lateral acceleration of the vehicle, and a longitudinal acceleration sensor Se that detects the longitudinal acceleration of the vehicle. Are input.

図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたシリンダ21と、シリンダ21に摺動自在に嵌合するピストン22と、ピストン22から上方に延びてシリンダ21の上壁を液密に貫通し、上端を車体に接続されたピストンロッド23と、シリンダの下部に摺動自在に嵌合するフリーピストン24とを備えており、シリンダ21の内部にピストン22により仕切られた上側の第1流体室25および下側の第2流体室26が区画されるとともに、フリーピストン24の下部に圧縮ガスが封入されたガス室27が区画される。   As shown in FIG. 2, the damper 14 includes a cylinder 21 whose lower end is connected to the suspension arm 13, a piston 22 that is slidably fitted into the cylinder 21, and an upper wall of the cylinder 21 that extends upward from the piston 22. And a free piston 24 that is slidably fitted to the lower part of the cylinder, and is partitioned by the piston 22 inside the cylinder 21. An upper first fluid chamber 25 and a lower second fluid chamber 26 are partitioned, and a gas chamber 27 in which a compressed gas is sealed in a lower portion of the free piston 24 is partitioned.

ピストン22にはその上下面を連通させるように複数の流体通路22a…が形成されており、これらの流体通路22a…によって第1、第2流体室25,26が相互に連通する。第1、第2流体室25,26および流体通路22a…に封入される磁気粘性流体は、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたもので、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。ピストン22の内部にコイル28が設けられており、電子制御ユニットUによりコイル28への通電が制御される。コイル28に通電されると矢印で示すように磁束が発生し、流体通路22a…を通過する磁束により磁気粘性流体の粘性が変化する。   A plurality of fluid passages 22a are formed in the piston 22 so that the upper and lower surfaces thereof communicate with each other, and the first and second fluid chambers 25 and 26 communicate with each other through these fluid passages 22a. The magnetorheological fluid sealed in the first and second fluid chambers 25 and 26 and the fluid passages 22a is a dispersion of magnetic fine particles such as iron powder in a viscous fluid such as oil. By aligning the magnetic fine particles along the magnetic field lines, it is difficult for the viscous fluid to flow, and the apparent viscosity increases. A coil 28 is provided inside the piston 22, and energization of the coil 28 is controlled by the electronic control unit U. When the coil 28 is energized, a magnetic flux is generated as indicated by an arrow, and the viscosity of the magnetorheological fluid changes due to the magnetic flux passing through the fluid passages 22a.

ダンパー14が収縮してシリンダ21に対してピストン22が下動すると、第1流体室25の容積が増加して第2流体室26の容積が減少するため、第2流体室26の磁気粘性流体がピストン22の流体通路22a…を通過して第1流体室25に流入し、逆にダンパー14が伸長してシリンダ21に対してピストン22が上動すると、第2流体室26の容積が増加して第1流体室25の容積が減少するため、第1流体室25の磁気粘性流体がピストン22の流体通路22a…を通過して第2流体室26に流入し、その際に流体通路22a…を通過する磁気粘性流体の粘性抵抗によりダンパー14が減衰力を発生する。   When the damper 14 contracts and the piston 22 moves downward with respect to the cylinder 21, the volume of the first fluid chamber 25 increases and the volume of the second fluid chamber 26 decreases. Passes through the fluid passage 22a of the piston 22 and flows into the first fluid chamber 25. Conversely, when the damper 14 extends and the piston 22 moves upward relative to the cylinder 21, the volume of the second fluid chamber 26 increases. Since the volume of the first fluid chamber 25 decreases, the magnetorheological fluid in the first fluid chamber 25 passes through the fluid passage 22a ... of the piston 22 and flows into the second fluid chamber 26, and at that time, the fluid passage 22a The damper 14 generates a damping force due to the viscous resistance of the magnetorheological fluid passing through.

このとき、コイル28に通電して磁界を発生させると、ピストン22の流体通路22a…に存在する磁気粘性流体の見かけの粘性が増加して該流体通路22aを通過し難くなるため、ダンパー14の減衰力が増加する。この減衰力の増加量は、コイル28に供給する電流の大きさにより任意に制御することができる。   At this time, if the coil 28 is energized to generate a magnetic field, the apparent viscosity of the magnetorheological fluid existing in the fluid passage 22a of the piston 22 increases and it becomes difficult to pass through the fluid passage 22a. Damping force increases. The amount of increase in the damping force can be arbitrarily controlled by the magnitude of the current supplied to the coil 28.

尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室26の容積が減少するとき、ガス室27を縮小させながらフリーピストン24が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室26の容積が増加するとき、ガス室27を拡張させながらフリーピストン24が上昇することで衝撃を吸収する。更に、ピストン22が下降してシリンダ21内に収納されるピストンロッド23の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン24が下降する。   When a shocking compressive load is applied to the damper 14 to reduce the volume of the second fluid chamber 26, the free piston 24 descends while the gas chamber 27 is contracted to absorb the impact. Further, when a shocking tensile load is applied to the damper 14 to increase the volume of the second fluid chamber 26, the impact is absorbed by the free piston 24 rising while the gas chamber 27 is expanded. Further, when the piston 22 descends and the volume of the piston rod 23 accommodated in the cylinder 21 increases, the free piston 24 descends so as to absorb the increase in the volume.

しかして、電子制御ユニットUは、バネ上加速度センサSbで検出したバネ上加速度、ダンパー変位センサScで検出したダンパー変位、横加速度センサSdで検出した横加速度および前後加速度センサSeで検出した前後加速度に基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めたり、車両の旋回時のローリングを抑えて操安性能を高めたり、車両の急加速時や急減速時のピッチングを抑えて操安性能を高めたりすることができる。   Thus, the electronic control unit U detects the sprung acceleration detected by the sprung acceleration sensor Sb, the damper displacement detected by the damper displacement sensor Sc, the lateral acceleration detected by the lateral acceleration sensor Sd, and the longitudinal acceleration detected by the longitudinal acceleration sensor Se. Based on the above, the damping force of each of the four dampers 14 of each wheel W is individually controlled, so that the vehicle can be prevented from being shaken when overcoming road irregularities, thereby improving the ride comfort, or when the vehicle is turning The rolling performance of the vehicle can be suppressed to improve the steering performance, and the steering performance can be improved by suppressing the pitching during sudden acceleration or deceleration of the vehicle.

ところで、低温時には磁気粘性流体が温度低下して粘性が増加するためにピストン22の流体通路22a…を通過し難くなり、ダンパー14の減衰力が目標値よりも大きくなって車両の乗り心地性能や操安性能が低下する可能性がある。このような場合には、温度センサSaで検出した磁気粘性流体の温度に応じて、電子制御ユニットUによるダンパー14の減衰力制御の制御ゲインを減少方向に修正し、ダンパー14の減衰力が過大にならないように補正する。   By the way, at low temperatures, the viscosity of the magnetorheological fluid decreases and the viscosity increases, so that it becomes difficult to pass through the fluid passages 22a of the piston 22, and the damping force of the damper 14 becomes larger than the target value, so Stability performance may be reduced. In such a case, the control gain of the damping force control of the damper 14 by the electronic control unit U is corrected in a decreasing direction according to the temperature of the magnetorheological fluid detected by the temperature sensor Sa, and the damping force of the damper 14 is excessive. Correct so that it does not become.

これと並行して、磁気粘性流体を積極的に加熱して温度上昇させることで、その粘性を許容値まで上昇させてダンパー14に正常な減衰力を発生させる制御が行われる。このときの熱源としてはピストン22に設けられたコイル28が利用される。即ち、温度センサSaで検出した磁気粘性流体の温度が所定値未満の場合には、電子制御ユニットUからの指令でコイル28に通電して発熱させ、その熱で磁気粘性流体を加熱して温度上昇させる。この場合、車両の走行中にコイル28に通電するとダンパー14の減衰力が更に増加して車両の乗り心地性能や操安性能に悪影響が及ぶ可能性があるため、磁気粘性流体の加熱のためのコイル28への通電は車両の停止時に限り行われる。   In parallel with this, the magnetorheological fluid is positively heated to raise its temperature, whereby the viscosity is raised to an allowable value and normal damping force is generated in the damper 14. A coil 28 provided on the piston 22 is used as a heat source at this time. That is, when the temperature of the magnetorheological fluid detected by the temperature sensor Sa is less than a predetermined value, the coil 28 is energized by the command from the electronic control unit U to generate heat, and the heat is used to heat the magnetorheological fluid to the temperature. Raise. In this case, if the coil 28 is energized while the vehicle is running, the damping force of the damper 14 is further increased, which may adversely affect the riding comfort performance and the steering performance of the vehicle. Energization of the coil 28 is performed only when the vehicle is stopped.

車両が悪路を走行する場合には、ダンパー14のコイル28に通電される頻度が高くなるため、その発熱によって磁気粘性流体は比較的に速やかに昇温する。しかしながら、平坦な直線路を連続的に走行するような場合には、ダンパー14のコイル28に通電される頻度が低くなるため、磁気粘性流体が昇温するまでに長い時間が掛かることになる。本実施例はこのような場合に特に有効であり、例えばイグニッションスイッチをオンしてから車両が発進するまでの間にコイル28に通電して磁気粘性流体の温度を上昇させておけば、発進直後からダンパー14に適切な減衰力を発生させて車両の乗り心地性能や操安性能を確保することができる。   When the vehicle travels on a rough road, the frequency of energization of the coil 28 of the damper 14 increases, so that the magnetorheological fluid rises relatively quickly due to its heat generation. However, when the vehicle travels continuously on a flat straight road, the coil 28 of the damper 14 is less frequently energized, so it takes a long time for the magnetorheological fluid to rise in temperature. The present embodiment is particularly effective in such a case. For example, if the coil 28 is energized to increase the temperature of the magnetorheological fluid between the time when the ignition switch is turned on and the time when the vehicle starts, immediately after starting. Therefore, it is possible to generate an appropriate damping force on the damper 14 to ensure the ride performance and the steering performance of the vehicle.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では自動車のサスペンション装置S用のダンパー14について説明したが、請求項1に記載された発明における可変減衰力ダンパーは、自動車のサスペンション装置以外の任意の用途に適用可能であり、かつ磁気粘性流体を使用したものに限定されない。磁気粘性流体でない一般の粘性流体を使用する場合には、ピストンに設けた流体通路の開度を制御弁で変化させることで、その減衰力を任意に制御することができる。更に、請求項1に記載された発明では、コイル28に通電する代わりにヒータ等に通電して磁気粘性流体の温度を上昇させることができる。   For example, in the embodiment, the damper 14 for the automobile suspension apparatus S has been described. However, the variable damping force damper according to the invention described in claim 1 can be applied to any application other than the automobile suspension apparatus, and It is not limited to the one using a magnetorheological fluid. When using a general viscous fluid that is not a magnetorheological fluid, the damping force can be arbitrarily controlled by changing the opening degree of the fluid passage provided in the piston with a control valve. Furthermore, in the invention described in claim 1, instead of energizing the coil 28, the temperature of the magnetorheological fluid can be increased by energizing a heater or the like.

また実施例では温度センサSaで磁気粘性流体の温度を直接検出しているが、外気温センサの出力やエンジン水温センサの出力から磁気粘性流体の温度を推定しても良い。   In the embodiment, the temperature of the magnetorheological fluid is directly detected by the temperature sensor Sa, but the temperature of the magnetorheological fluid may be estimated from the output of the outside air temperature sensor or the output of the engine water temperature sensor.

車両のサスペンション装置の正面図Front view of vehicle suspension system 可変減衰力ダンパーの拡大断面図Expanded sectional view of variable damping force damper

符号の説明Explanation of symbols

21 シリンダ
22 ピストン
22a 流体通路
25 第1流体室
26 第2流体室
28 コイル(温度可変手段)
S サスペンション装置
Sa 温度センサ(温度検出手段)
U 電子制御ユニット(制御手段)
21 Cylinder 22 Piston 22a Fluid passage 25 First fluid chamber 26 Second fluid chamber 28 Coil (Temperature variable means)
S suspension device Sa temperature sensor (temperature detection means)
U Electronic control unit (control means)

Claims (3)

粘性流体を満たしたシリンダ(21)の内部をピストン(22)で第1流体室(25)および第2流体室(26)に区画し、ピストン(22)を貫通するように形成した流体通路(22a)で前記第1流体室(25)および第2流体室(26)を相互に連通させた可変減衰力ダンパーにおいて、
粘性流体の温度を検出する温度検出手段(Sa)と、粘性流体の温度を変化させる温度可変手段(28)と、温度検出手段(Sa)で検出した温度に基づいて温度可変手段(28)を制御する制御手段(U)とを備えたことを特徴とする可変減衰力ダンパー。
The fluid passage formed so that the inside of the cylinder (21) filled with the viscous fluid is partitioned by the piston (22) into the first fluid chamber (25) and the second fluid chamber (26), and penetrates the piston (22). 22a), in the variable damping force damper in which the first fluid chamber (25) and the second fluid chamber (26) communicate with each other.
A temperature detecting means (Sa) for detecting the temperature of the viscous fluid, a temperature variable means (28) for changing the temperature of the viscous fluid, and a temperature variable means (28) based on the temperature detected by the temperature detecting means (Sa). A variable damping force damper comprising control means (U) for controlling.
前記粘性流体は磁界の作用により粘性が変化する磁気粘性流体であり、前記温度可変手段(28)は流体通路(22a)中の磁気粘性流体に磁界を作用させるコイルであることを特徴とする、請求項1に記載の可変減衰力ダンパー。   The viscous fluid is a magnetorheological fluid whose viscosity is changed by the action of a magnetic field, and the temperature variable means (28) is a coil for applying a magnetic field to the magnetorheological fluid in the fluid passage (22a), The variable damping force damper according to claim 1. 前記可変減衰力ダンパーは車両のサスペンション装置(S)用であり、温度検出手段(Sa)で検出した温度に基づく温度可変手段(28)の制御は、車両の停止中に行われることを特徴とする、請求項2に記載の可変減衰力ダンパー。
The variable damping force damper is for a suspension device (S) of a vehicle, and control of the temperature variable means (28) based on the temperature detected by the temperature detection means (Sa) is performed while the vehicle is stopped. The variable damping force damper according to claim 2.
JP2004259182A 2004-09-07 2004-09-07 Variable damping force damper Pending JP2006077787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259182A JP2006077787A (en) 2004-09-07 2004-09-07 Variable damping force damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259182A JP2006077787A (en) 2004-09-07 2004-09-07 Variable damping force damper

Publications (1)

Publication Number Publication Date
JP2006077787A true JP2006077787A (en) 2006-03-23

Family

ID=36157419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259182A Pending JP2006077787A (en) 2004-09-07 2004-09-07 Variable damping force damper

Country Status (1)

Country Link
JP (1) JP2006077787A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135795A1 (en) * 2008-06-19 2009-12-23 ThyssenKrupp Presta Aktiengesellschaft Energy absorbing device
JP2010273713A (en) * 2009-05-26 2010-12-09 Toshiba Corp Drum-type washing machine
WO2011027724A1 (en) * 2009-09-02 2011-03-10 カヤバ工業株式会社 Pedal device
JP2011200292A (en) * 2010-03-24 2011-10-13 Toshiba Corp Drum washing machine
CN102278160A (en) * 2010-06-11 2011-12-14 株式会社电装 Valve timing controller
KR101563272B1 (en) 2014-05-29 2015-10-26 알에스오토메이션주식회사 Safety damper providing anti-shock due to rotation of robot arm beyond set range
US9527364B2 (en) 2014-12-08 2016-12-27 Ford Global Technologies, Llc System and method for estimating damper temperature
CN108591346A (en) * 2018-06-18 2018-09-28 北京光宇之勋科技有限公司 A kind of combined type damping
CN108915113A (en) * 2018-07-02 2018-11-30 兰州理工大学 A kind of sectionally assembled energy-dissipating and shock-absorbing viscous damper
US10767722B2 (en) 2017-12-04 2020-09-08 Honda Motor Co., Ltd. Mount for subframe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135795A1 (en) * 2008-06-19 2009-12-23 ThyssenKrupp Presta Aktiengesellschaft Energy absorbing device
JP2010273713A (en) * 2009-05-26 2010-12-09 Toshiba Corp Drum-type washing machine
WO2011027724A1 (en) * 2009-09-02 2011-03-10 カヤバ工業株式会社 Pedal device
JP2011073666A (en) * 2009-09-02 2011-04-14 Kyb Co Ltd Pedal device
JP2011200292A (en) * 2010-03-24 2011-10-13 Toshiba Corp Drum washing machine
CN102278160A (en) * 2010-06-11 2011-12-14 株式会社电装 Valve timing controller
JP2011256841A (en) * 2010-06-11 2011-12-22 Nippon Soken Inc Valve timing controller
KR101563272B1 (en) 2014-05-29 2015-10-26 알에스오토메이션주식회사 Safety damper providing anti-shock due to rotation of robot arm beyond set range
US9527364B2 (en) 2014-12-08 2016-12-27 Ford Global Technologies, Llc System and method for estimating damper temperature
US10767722B2 (en) 2017-12-04 2020-09-08 Honda Motor Co., Ltd. Mount for subframe
CN108591346A (en) * 2018-06-18 2018-09-28 北京光宇之勋科技有限公司 A kind of combined type damping
CN108915113A (en) * 2018-07-02 2018-11-30 兰州理工大学 A kind of sectionally assembled energy-dissipating and shock-absorbing viscous damper

Similar Documents

Publication Publication Date Title
JP4546307B2 (en) Control device for variable damping force damper
JP4234083B2 (en) Variable damping force damper for vehicle suspension system
JP4875377B2 (en) Variable damping force damper
JP2006077787A (en) Variable damping force damper
JP5021348B2 (en) Control device for damping force variable damper
KR102623846B1 (en) Apparatus for controlling damper for vehicle
JP4427555B2 (en) Control device for damping force variable damper
JP2006273222A (en) Controlling device for adjustable damping force damper
JP2006281876A (en) Variable damping force damper control device
JP4546323B2 (en) Variable damping force damper
JP4690759B2 (en) Control device for variable damping force damper
JP5043751B2 (en) Control device for damping force variable damper
JP4371962B2 (en) Variable damping force damper
JP4421985B2 (en) Road surface condition judgment method
JP2006321259A (en) Adjustable damper
JP5131679B2 (en) Control device for damping force variable damper
JP2006273225A (en) Controlling device for adjustable damping force damper
JP4836648B2 (en) Vehicle equipped with damper with variable damping force
JP2006335160A (en) Vibration control system and vibration control method for vehicle body
JP4987762B2 (en) Control device for damping force variable damper
JP6838785B2 (en) Suspension control device
JP4879115B2 (en) Control device for variable damping force damper
KR20090100485A (en) Shock absorber for adjusting damping force using electromagnets
JP2006281875A (en) Variable damping force damper control device
JP5131685B2 (en) Control device for damping force variable damper