JP2006076051A - Barrier film and its manufacturing method - Google Patents

Barrier film and its manufacturing method Download PDF

Info

Publication number
JP2006076051A
JP2006076051A JP2004260631A JP2004260631A JP2006076051A JP 2006076051 A JP2006076051 A JP 2006076051A JP 2004260631 A JP2004260631 A JP 2004260631A JP 2004260631 A JP2004260631 A JP 2004260631A JP 2006076051 A JP2006076051 A JP 2006076051A
Authority
JP
Japan
Prior art keywords
film
barrier
day
layer
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004260631A
Other languages
Japanese (ja)
Other versions
JP4506365B2 (en
Inventor
Masaki Izumi
雅樹 泉
Yutaka Kobayashi
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004260631A priority Critical patent/JP4506365B2/en
Publication of JP2006076051A publication Critical patent/JP2006076051A/en
Application granted granted Critical
Publication of JP4506365B2 publication Critical patent/JP4506365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a barrier film which has a water vapor permeability of 5×10<SP>-3</SP>g/m<SP>2</SP>/day or below and/or an oxygen permeability of 5×10<SP>-3</SP>cc/m<SP>2</SP>/day or below and further, a barrier film required in an EL substrate which has a water vapor permeability of 1×10<SP>-6</SP>g/m<SP>2</SP>/day or below and the oxygen permeability of 1×10<SP>-3</SP>cc/m<SP>2</SP>/day or below. <P>SOLUTION: The barrier film has a structure wherein single barrier layers are formed on both sides of a resin film, each of which comprises a silicon oxide film with a thickness of 5-100 nm and the protective layers, each of which comprises an acrylate or methacrylate film with a thickness of 0.1-3 μm, are provided on both outsides of the barrier layers. The water vapor permeability of the barrier film wherein the barrier layers and the protective layers are formed by a vacuum film forming method is 5×10<SP>-3</SP>g/m<SP>2</SP>/day or below and/or the oxygen permeability thereof is 5×10<SP>-3</SP>cc/m<SP>2</SP>/day or below. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エレクトロルミネッセンス(以下、ELと呼ぶ)素子基板等に利用される極めて高いバリア性を有するバリアフィルム及びその製造方法に関する。   The present invention relates to a barrier film having an extremely high barrier property used for an electroluminescence (hereinafter referred to as EL) element substrate and a method for producing the same.

近年、LCDに変わるディスプレイとしてELディスプレイが実用化されてきている。ELディスプレイは、自発光であるため視認性がよく、LCDで用いられるようなバックライトが必要ない。また、応答速度も速く動画表示に適している。さらに、LCDと比較して単純な構造であり、曲げなどにも強いことから、EL素子基板をガラスから樹脂に変えることで素子をより薄く、軽くすることができ、また、柔軟性を生かした曲面表示やフレキシブルディスプレイが提案されている。ただし、EL素子は水分や酸素の存在で劣化し、ダークスポット(非発光部)を形成し、成長させるため、樹脂基板には極めて高いバリア性が要求される。   In recent years, EL displays have been put into practical use as displays that replace LCDs. Since the EL display is self-luminous, it has good visibility and does not require a backlight as used in an LCD. In addition, the response speed is fast and suitable for moving image display. Furthermore, since it has a simple structure compared to LCD and is strong against bending, it is possible to make the device thinner and lighter by changing the EL element substrate from glass to resin, and to take advantage of flexibility. Curved display and flexible display have been proposed. However, the EL element deteriorates in the presence of moisture and oxygen, and forms a dark spot (non-light emitting portion) and grows. Therefore, an extremely high barrier property is required for the resin substrate.

以下に公知文献を記す。
米国特許第6413645号明細書(第1−3項)
The known literature is described below.
US Pat. No. 6,436,645 (Section 1-3)

従来、LCD用基板や食品包装フィルムなどバリア性が要求される用途で樹脂基板や樹脂フィルムが用いられる場合は、基材に酸化珪素や酸化アルミニウムなどのバリア膜が被覆される。そのバリア性は一般的な食品包装用途で1〜10g/m2/day、また、LCD用途でも0.1〜0.01g/m2/day程度にとどまっている。バリア膜を厚くすることによって、さらにバリア性の高い膜を得ることも可能であるが、バリア膜を厚くしすぎると、膜の応力が大きくなり、クラックが発生して逆にバリア性が低くなってしまったりする。このように、バリア膜を厚くして得られるバリア性能にも限界があり、単膜でEL基板に求められる水蒸気透過率1×10-6g/m2/day以下、酸素透過率1×10-3cc/m2/day以下というバリア性能は現在のところ達成されていない。 Conventionally, when a resin substrate or a resin film is used in an application requiring barrier properties such as an LCD substrate or a food packaging film, the base material is coated with a barrier film such as silicon oxide or aluminum oxide. The barrier property is about 1 to 10 g / m 2 / day for general food packaging applications, and only about 0.1 to 0.01 g / m 2 / day for LCD applications. By increasing the thickness of the barrier film, it is possible to obtain a film having a higher barrier property. However, if the barrier film is too thick, the stress of the film increases, cracks occur, and the barrier property decreases. Or Thus, there is a limit to the barrier performance obtained by increasing the thickness of the barrier film, a water vapor transmission rate of 1 × 10 −6 g / m 2 / day or less required for an EL substrate with a single film, and an oxygen transmission rate of 1 × 10 Barrier performance of −3 cc / m 2 / day or less has not been achieved at present.

これに対して、有機膜を介してバリア膜を複数層積層した有機/無機多層積層膜が提案されている。これによると、1つの層のバリア膜の厚みは、膜の応力が大きくなりすぎない範囲に留めておいて、応力緩和機能に優れた有機膜を介してバリア膜を積層していけば、膜全体の応力を大きくすることなくバリア性を高めることが出来る(特許文献1参照)。   On the other hand, an organic / inorganic multilayer laminated film in which a plurality of barrier films are laminated via an organic film has been proposed. According to this, if the thickness of the barrier film of one layer is kept in a range where the stress of the film does not become too large, and the barrier film is laminated via the organic film having an excellent stress relaxation function, the film The barrier property can be enhanced without increasing the overall stress (see Patent Document 1).

しかしながら、EL基板に求められる極めて高いバリア性を達成するためには、数層積層する必要があり、手間とコストがかかるという問題点があった。例えば、図5に示すようなバッチ式成膜装置装置14はシート状の基材に有機/無機多層積層膜を作製する場合、基材を無機膜成膜室14aと有機膜成膜室14bとで何度も往復させる必要があり、1枚作製するのにも非常に時間がかかってしまう。また、図6に示すようなコーティングドラムの周りに無機膜成膜室15aと有機膜成膜室15bが数室設けられた巻取式成膜装置15でロール状の基材に成膜する場合には、1パスで有機/無機多層積層膜を作製することができるが、積層する層の数だけ成膜ユニットが必要であり、さらに装置が大型化することから初期コストが莫大なものとなってしまう。   However, in order to achieve the extremely high barrier property required for the EL substrate, it is necessary to laminate several layers, and there is a problem that it takes time and cost. For example, when a batch-type film forming apparatus 14 as shown in FIG. 5 produces an organic / inorganic multilayer laminated film on a sheet-like substrate, the substrate is divided into an inorganic film forming chamber 14a and an organic film forming chamber 14b. It is necessary to reciprocate many times, and it takes a very long time to produce one sheet. Further, when a film is formed on a roll-shaped substrate with a winding film forming apparatus 15 in which several inorganic film forming chambers 15a and several organic film forming chambers 15b are provided around a coating drum as shown in FIG. Can produce an organic / inorganic multilayer laminated film in one pass, but requires as many film forming units as the number of layers to be laminated, and the initial size is enormous due to the increase in size of the apparatus. End up.

本発明は上記問題点を解決するためになされたものであり、水蒸気透過率が5×10-3
g/m2/day以下及び/又は酸素透過率が5×10-3cc/m2/day以下、さらには、EL基板に求められる水蒸気透過率1×10-6g/m2/day以下、酸素透過率1×10-3cc/m2/day以下のバリアフィルムを安価に提供するものである。
The present invention has been made to solve the above problems, and has a water vapor transmission rate of 5 × 10 −3.
g / m 2 / day or less and / or oxygen permeability is 5 × 10 −3 cc / m 2 / day or less, and further, water vapor transmission rate required for EL substrate is 1 × 10 −6 g / m 2 / day or less. A barrier film having an oxygen permeability of 1 × 10 −3 cc / m 2 / day or less is provided at a low cost.

本発明の請求項1に係る発明は、樹脂フィルムの両面にバリア層が形成されたバリアフィルムであって、該バリアフィルムの水蒸気透過率が5×10-3g/m2/day以下及び/又は酸素透過率が5×10-3cc/m2/day以下であることを特徴とするバリアフィルムである。 The invention according to claim 1 of the present invention is a barrier film in which a barrier layer is formed on both surfaces of a resin film, and the barrier film has a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less and / or Alternatively, the barrier film is characterized by having an oxygen permeability of 5 × 10 −3 cc / m 2 / day or less.

本発明の請求項2に係る発明は、前記バリア層のうち、少なくとも片面のバリア層の水蒸気透過率が1×10-1g/m2/day以下及び/又は酸素透過率が1×10-1cc/m2/day以下、好ましくは、水蒸気透過率が2×10-2g/m2/day以下及び/又は酸素透過率が2×10-2cc/m2/day以下であることを特徴とする請求項1記載のバリアフィルムである。 The invention according to claim 2 of the present invention is such that at least one of the barrier layers has a water vapor permeability of 1 × 10 −1 g / m 2 / day or less and / or an oxygen permeability of 1 × 10 −. 1 cc / m 2 / day or less, preferably, water vapor transmission rate is 2 × 10 −2 g / m 2 / day or less and / or oxygen transmission rate is 2 × 10 −2 cc / m 2 / day or less. The barrier film according to claim 1.

本発明の請求項3に係る発明は、前記バリア層が、珪素又はアルミニウムの窒化物又は酸化物又は酸窒化物からなることを特徴とする請求項1、又は2記載のバリアフィルムである。   The invention according to claim 3 of the present invention is the barrier film according to claim 1 or 2, wherein the barrier layer is made of nitride, oxide or oxynitride of silicon or aluminum.

本発明の請求項4に係る発明は、前記バリア層が、真空成膜により形成されたことを特徴とする請求項1乃至3のいずれか1項記載のバリアフィルムである。   The invention according to claim 4 of the present invention is the barrier film according to any one of claims 1 to 3, wherein the barrier layer is formed by vacuum film formation.

本発明の請求項5に係る発明は、樹脂フィルムの両面にバリア層と、さらにその外側に保護層を設けたことを特徴とする請求項1乃至4のいずれか1項記載のバリアフィルムである。   The invention according to claim 5 of the present invention is the barrier film according to any one of claims 1 to 4, wherein a barrier layer is provided on both sides of the resin film, and a protective layer is further provided on the outer side thereof. .

本発明のバリアフィルムにおいては、フィルムの両面にバリア層が形成された、バリア層のうち、少なくとも片面のバリア層の水蒸気透過率が1×10-1g/m2/day以下及び/又は酸素透過率が1×10-1cc/m2/day以下、好ましくは、水蒸気透過率が2×10-2g/m2/day以下及び/又は酸素透過率が2×10-2cc/m2/day以下でバリア層が形成された層構成により、本発明の両面にバリア層を形成したバリアフィルムの水蒸気透過率が5×10-3g/m2/day以下及び/又は酸素透過率が5×10-3cc/m2/day以下となることを特徴とする。すなわち、本発明のバリアフィルムは単膜でEL基板に求められるバリア性能を達成する。 In the barrier film of the present invention, the barrier layer is formed on both sides of the film. Among the barrier layers, at least one of the barrier layers has a water vapor permeability of 1 × 10 −1 g / m 2 / day or less and / or oxygen. The permeability is 1 × 10 −1 cc / m 2 / day or less, preferably the water vapor permeability is 2 × 10 −2 g / m 2 / day or less and / or the oxygen permeability is 2 × 10 −2 cc / m. 2 / day or less, a barrier film having a barrier layer formed on both sides of the present invention has a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less and / or an oxygen transmission rate. Is 5 × 10 −3 cc / m 2 / day or less. That is, the barrier film of the present invention is a single film and achieves barrier performance required for an EL substrate.

本発明の請求項6に係る発明は、厚さ50〜200μmからなる透明な樹脂フィルムの両面にバリア層が形成された、その外側に保護層が形成された請求項1乃至5のいずれか1項記載のバリアフィルムの製造方法において、少なくとも以下の工程を含むことを特徴とするバリアフィルムの製造方法である。
(a)前記バリア層が、真空成膜により形成され、酸化珪素膜からなるバリア層を5nm〜100nm厚に形成する工程。
(b)前記保護層が、真空成膜により形成され、アクリレート又はメタクリレート膜からなる保護層を0.1〜3μm厚に形成する工程。
The invention according to claim 6 of the present invention is any one of claims 1 to 5, wherein a barrier layer is formed on both sides of a transparent resin film having a thickness of 50 to 200 μm, and a protective layer is formed on the outer side thereof. The method for producing a barrier film according to the item includes at least the following steps.
(A) The barrier layer is formed by vacuum film formation, and a barrier layer made of a silicon oxide film is formed to a thickness of 5 nm to 100 nm.
(B) A step in which the protective layer is formed by vacuum film formation, and a protective layer made of an acrylate or methacrylate film is formed to a thickness of 0.1 to 3 μm.

本発明によれば、水や酸素の遮断が十分なEL用素子基板のバリアフィルムを提供することができる。すなわち、バリア層を厚くすることがなく、フィルム両面に単膜のバリア層を形成することにより、EL基板に求められる水蒸気透過率1×10-6g/m2/day以下、酸素透過率1×10-3cc/m2/day以下のバリア性能をクリアーできる。 ADVANTAGE OF THE INVENTION According to this invention, the barrier film of the element substrate for EL with sufficient interception of water and oxygen can be provided. That is, by forming a single barrier layer on both sides of the film without increasing the thickness of the barrier layer, the water vapor transmission rate required for an EL substrate is 1 × 10 −6 g / m 2 / day or less, and the oxygen transmission rate is 1 The barrier performance of × 10 −3 cc / m 2 / day or less can be cleared.

本発明によれば、水や酸素の遮断が十分なEL用基板用のバリアフィルムを提供することができる。また、本発明のフィルムの両側に単膜のバリア層を形成したバリアフィルムの製造方法によれば、フィルムの片側に有機層/無機層の多層の積層膜に比べ、製造工程が簡素化されたことによりバリアフィルムを安価に製造し得る。   ADVANTAGE OF THE INVENTION According to this invention, the barrier film for board | substrates for EL with sufficient interception of water and oxygen can be provided. Moreover, according to the method for producing a barrier film in which a single-layer barrier layer is formed on both sides of the film of the present invention, the production process is simplified as compared with a multilayer film of organic / inorganic layers on one side of the film. Thus, the barrier film can be manufactured at a low cost.

以下に、本発明による実施の形態を図面を参照しつつ説明する。図1に示すように、本発明にかかるバリアフィルム1は、樹脂フィルム2の両面にバリア層3を設けた構成からなることを基本構造とするものである。すなわち、バリアフィルム1は/バリア層3/樹脂フィルム2/バリア層3/の層構成を基本構造とする発明である。   Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the barrier film 1 according to the present invention has a basic structure including a configuration in which a barrier layer 3 is provided on both surfaces of a resin film 2. That is, the barrier film 1 is an invention having a basic structure of / barrier layer 3 / resin film 2 / barrier layer 3 /.

本発明に用いる樹脂フィルム2としては特に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリアリレートフィルム、環状ポリオレフィンフィルム等が挙げられる。中でも透明性と耐熱性に優れたポリカーボネートやポリエーテルサルホンが好適に用いられる。これら基材の表面に周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤などが使用されてもよい。またバリア層との密着性を改善するため、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理を施してもよい。   Although it does not specifically limit as the resin film 2 used for this invention, For example, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polycarbonate film, a polyether sulfone film, a polysulfone film, a polyarylate film, a cyclic polyolefin film etc. Can be mentioned. Of these, polycarbonate and polyethersulfone having excellent transparency and heat resistance are preferably used. Various known additives and stabilizers such as an antistatic agent, an ultraviolet ray preventing agent, a plasticizer, and a lubricant may be used on the surface of these substrates. In order to improve the adhesion with the barrier layer, corona treatment, low-temperature plasma treatment, or ion bombardment treatment may be performed as pretreatment.

樹脂フィルム2の厚みは任意であるが、素子の薄型化、軽量化の観点からなるべく薄いほうが望ましい。しかしながら、後工程でのハンドリング性を考慮すると、実用的には50μm〜200μm程度が好ましい。   The thickness of the resin film 2 is arbitrary, but is preferably as thin as possible from the viewpoint of thinning and lightening the element. However, in consideration of handling properties in the subsequent process, practically, about 50 μm to 200 μm is preferable.

本発明のバリア層3は、水蒸気透過率が1×10-1g/m2/day以下及び/又は酸素透過率が1×10-1cc/m2/day以下、好ましくは、水蒸気透過率が2×10-2g/m2/day以下及び/又は酸素透過率が2×10-2cc/m2/day以下の珪素又はアルミニウムの窒化物または酸化物または酸窒化物の蒸着膜である。ただし、本発明のバリア層は上述した蒸着膜に限定されず、上記バリア性を満たす材料であれば用いることができる。また、バリア層の厚みは、5nm〜100nmであることが好ましく、さらに好ましくは10nm〜50nmである。5nm未満ではバリア性が不十分であり、100nmを越えると膜の応力が大きくなりクラックが発生しやすくなる。 The barrier layer 3 of the present invention has a water vapor transmission rate of 1 × 10 −1 g / m 2 / day or less and / or an oxygen transmission rate of 1 × 10 −1 cc / m 2 / day or less, preferably a water vapor transmission rate. Is a deposited film of a nitride or oxide or oxynitride of silicon or aluminum having an oxygen permeability of 2 × 10 −2 g / m 2 / day or less and / or an oxygen permeability of 2 × 10 −2 cc / m 2 / day or less is there. However, the barrier layer of the present invention is not limited to the above-described deposited film, and any material that satisfies the above barrier properties can be used. Moreover, it is preferable that the thickness of a barrier layer is 5-100 nm, More preferably, it is 10-50 nm. If the thickness is less than 5 nm, the barrier property is insufficient, and if it exceeds 100 nm, the stress of the film increases and cracks tend to occur.

本発明の層構成を基本構造とするバリアフィルムは、上記バリア層を真空成膜により樹脂フィルムの両面に設けることによりフィルムのバリア性が格段に向上する。積層体の透過率Ptは各層の透過率をそれぞれP1、P2、P3…Pnとすると、理論的には1/Pt=1/P1+1/P2+1/P3+…+1/Pnとなることが知られている。よって、バリア層を2層積層した場合の水蒸気透過率は、単層の水蒸気透過率の半分程度にまで向上することになり、例えば、単層の水蒸気透過率が2×10-2g/m2/dayのバリア層であれば、2層積層したバリア層の水蒸気透過率は1×10-2g/m2/day程度になる。これに対して本発明のように、真空成膜により樹脂フィルムの両面にバリア層を設けたバリアフィルムの水蒸気透過率は5×10-3g/m2/day以下になる。現在のところ5×10-3g/m2/day以下のバリア膜を正確に評価する手法は完成していないが、最近検討されているカルシウム法によりこのバリアフィルムを評価した場合には、水蒸気透過率が1×10-6g/m2/dayと片面に2層積層した結果よりもはるかに優れた結果が得られる。なぜバリア層を真空成膜により樹脂フィルムの両面に設けることで、このような特別の効果が奏されるのかその理論的解明は十分ではないが、本発明の層構成のバリアフィルムでは、反復実験の結果、反復再現する作用を奏する。 In the barrier film having the layer structure of the present invention as a basic structure, the barrier property of the film is remarkably improved by providing the barrier layer on both surfaces of the resin film by vacuum film formation. It is known that the transmittance Pt of the laminate is theoretically 1 / Pt = 1 / P1 + 1 / P2 + 1 / P3 + ... + 1 / Pn where the transmittance of each layer is P1, P2, P3. . Therefore, the water vapor transmission rate when two barrier layers are laminated is improved to about half of the water vapor transmission rate of a single layer. For example, the water vapor transmission rate of a single layer is 2 × 10 −2 g / m. In the case of a barrier layer of 2 / day, the water vapor transmission rate of the laminated barrier layer is about 1 × 10 −2 g / m 2 / day. On the other hand, as in the present invention, the water vapor permeability of a barrier film in which barrier layers are provided on both surfaces of a resin film by vacuum film formation is 5 × 10 −3 g / m 2 / day or less. At present, a method for accurately evaluating a barrier film of 5 × 10 −3 g / m 2 / day or less has not been completed. However, when this barrier film is evaluated by the recently studied calcium method, The transmittance is 1 × 10 −6 g / m 2 / day, which is much better than the result of laminating two layers on one side. The theoretical clarification of why such a special effect is achieved by providing the barrier layer on both sides of the resin film by vacuum film formation is not sufficient, but the barrier film of the present invention has a repeated experiment. As a result, there is an effect of repeated reproduction.

真空成膜法としては種々あり、真空蒸着法、イオンプレーティング法、スパッタリング法、プラズマCVD法などが挙げられる。本発明においては、主にスパッタリング法、プラズマCVD法が用いられる。また、樹脂フィルムの特徴を活かした巻き取りによる連続成膜を行うことができる巻取式真空成膜装置を用いることが望ましい。   There are various vacuum film forming methods, and examples thereof include a vacuum deposition method, an ion plating method, a sputtering method, and a plasma CVD method. In the present invention, a sputtering method and a plasma CVD method are mainly used. Further, it is desirable to use a winding type vacuum film forming apparatus that can perform continuous film formation by winding utilizing the characteristics of the resin film.

さらに本発明においては、図2に示すように、本発明にかかるバリアフィルム1は、樹脂フィルム2の両面にバリア層3を設け、該バリア層の外側に保護層4を設けた構成からなることを基本構造とするものである。すなわち、バリアフィルム1は/保護層4/バリア層3/樹脂フィルム2/バリア層3/保護層4/の層構成を基本構造とする発明である。   Furthermore, in this invention, as shown in FIG. 2, the barrier film 1 concerning this invention consists of the structure which provided the barrier layer 3 on both surfaces of the resin film 2, and provided the protective layer 4 on the outer side of this barrier layer. Is the basic structure. That is, the barrier film 1 is an invention having a basic structure of / protective layer 4 / barrier layer 3 / resin film 2 / barrier layer 3 / protective layer 4 /.

図2に示すように、バリア層3の外側に保護層4を設けてもよい。この保護層4はバリアフィルムの透明性を妨げるものでなければ材料やその成膜方法は特に限定されるものではない。ただし、巻取りで成膜を行う場合は、バリア膜を成膜した後、成膜面が走行中にローラに接触したり、巻き取られた後にフィルムの裏面と接触することによりバリア膜が劣化してしまうので、これを防ぐためにバリア層の成膜後、成膜面がローラに接触する前にインラインで有機蒸着等の手法を用いて保護層を成膜することが望ましい。   As shown in FIG. 2, a protective layer 4 may be provided outside the barrier layer 3. As long as the protective layer 4 does not interfere with the transparency of the barrier film, the material and the film forming method thereof are not particularly limited. However, when film formation is performed by winding, after the barrier film is formed, the barrier film deteriorates due to contact with the roller while the film formation surface is running or contact with the back surface of the film after winding. Therefore, in order to prevent this, it is desirable to form a protective layer in-line using a technique such as organic vapor deposition after the formation of the barrier layer and before the film formation surface comes into contact with the roller.

次に、本発明におけるバリア層を形成するための巻取式真空成膜装置の例を示す。図3はその概略図であり、バリア層の形成方法としてプラズマCVD法を、保護膜の形成方法として有機蒸着法を適用している。真空成膜装置5は巻取室5aとコーティングドラム7の周りに配置されたバリア層成膜室5bと保護層成膜室5cからなり、各室は遮蔽板(6a〜6c)によって隔離されている。巻取系は巻出し、巻取りローラ(8a、8b)とコーティングドラム及びガイドローラ(9a〜9d)で形成されている。   Next, an example of a winding type vacuum film forming apparatus for forming a barrier layer in the present invention will be shown. FIG. 3 is a schematic view thereof, in which a plasma CVD method is applied as a barrier layer forming method and an organic vapor deposition method is applied as a protective film forming method. The vacuum film forming apparatus 5 includes a winding layer 5a, a barrier layer forming chamber 5b disposed around the coating drum 7, and a protective layer forming chamber 5c. Each chamber is isolated by a shielding plate (6a to 6c). Yes. The winding system is formed by unwinding and winding rollers (8a, 8b), a coating drum and guide rollers (9a-9d).

以下、バリアフィルムの作製方法について説明する。   Hereinafter, a method for producing the barrier film will be described.

巻出しローラ8aにロール状の樹脂フィルム10を装着し、複数のガイドローラ(9a〜9d)及びコーティングドラム7を介して巻取りロール8bに至るフィルム搬送パスを形成する。真空装置5内を真空排気後、樹脂フィルムの内面上にバリア層、保護層の順番に形成する。その後、真空装置5内を大気開放して、内面が成膜されロール状の樹脂フィルム10を巻取りロール8bから取り外す。それを再度巻出しローラ8aに装着する。ただし、今度はフィルムの外面が成膜面となるように搬送パスを図4に示すように変更する。そして、フィルムの内面に各層を形成した場合と同様に真空装置5内を真空排気後、樹脂フィルムの外面上にバリア層、保護層の順番に形成する。以上で、樹脂フィルム10の両面には、バリア層、保護層が形成された。   The roll-shaped resin film 10 is mounted on the unwinding roller 8a, and a film transport path reaching the winding roll 8b through the plurality of guide rollers (9a to 9d) and the coating drum 7 is formed. After the vacuum device 5 is evacuated, a barrier layer and a protective layer are formed in this order on the inner surface of the resin film. Thereafter, the inside of the vacuum device 5 is opened to the atmosphere, and the inner surface is formed into a film, and the roll-shaped resin film 10 is removed from the winding roll 8b. It is mounted again on the unwinding roller 8a. However, this time, the transport path is changed as shown in FIG. 4 so that the outer surface of the film becomes the film formation surface. Then, similarly to the case where each layer is formed on the inner surface of the film, the inside of the vacuum device 5 is evacuated, and then the barrier layer and the protective layer are formed in this order on the outer surface of the resin film. As described above, the barrier layer and the protective layer were formed on both surfaces of the resin film 10.

プラズマCVD法によりバリア膜を形成する方法としては、例えば、有機珪素化合物と酸素ガスを加えたもの、場合によってはそれに不活性ガスを加えたものを原料として用いて酸化珪素膜を成膜することができる。有機珪素化合物としては、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトラメチルシラン(TMS)、ヘキサメチルジシラン、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラザン等の比較的低分子量の材料を一つ、または複数を選択して使用する。これらの有機珪素化合物を酸素ガスと混合し、真空成膜装置のシャワーヘッドを有する電極11へと導入し、コーティングドラム7と電極11の間にプラズマを発生させ、プラズマCVD法にて酸化珪素膜をフィルム上に成膜する。   As a method for forming a barrier film by a plasma CVD method, for example, a silicon oxide film is formed using, as a raw material, an organic silicon compound and oxygen gas added, and optionally an inert gas added thereto. Can do. Examples of organosilicon compounds include relatively low molecular weights such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetramethylsilane (TMS), hexamethyldisilane, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane. Select one or more materials to use. These organosilicon compounds are mixed with oxygen gas, introduced into an electrode 11 having a shower head of a vacuum film forming apparatus, plasma is generated between the coating drum 7 and the electrode 11, and a silicon oxide film is formed by plasma CVD. Is deposited on a film.

有機蒸着法により保護層を形成する方法としては、例えば、アクリレートもしくはメタクリレート、又はそれらの混合樹脂溶液を有機物蒸着装置12で蒸発させ、コーティングドラム7上のフィルム上に凝縮させる。その後、電子線照射装置13にて硬化処理を行う
ことにより保護層を形成することができる。また、電子線硬化の替わりに紫外線硬化を用いてもよい。
次に実施例を挙げて本発明をさらに説明する。
As a method of forming the protective layer by the organic vapor deposition method, for example, acrylate or methacrylate or a mixed resin solution thereof is evaporated by the organic vapor deposition device 12 and condensed on the film on the coating drum 7. Then, a protective layer can be formed by performing a curing process with the electron beam irradiation device 13. Further, ultraviolet curing may be used instead of electron beam curing.
EXAMPLES Next, an Example is given and this invention is demonstrated further.

厚み200μmのポリエーテルスルホンフィルム(以下PESフィルムとする)の両面にバッチ式真空成膜装置を用いてプラズマCVD法により20nmの酸化珪素膜からなるバリア層を形成した。実施例1のバリアフィルムの層構成は、バリア層/PESフィルム/バリア層である。   A barrier layer made of a 20 nm silicon oxide film was formed on both sides of a 200 μm thick polyethersulfone film (hereinafter referred to as PES film) by a plasma CVD method using a batch type vacuum film forming apparatus. The layer structure of the barrier film of Example 1 is barrier layer / PES film / barrier layer.

厚み200μmのPESフィルムの両面に巻取式真空成膜装置を用いてプラズマCVD法により20nmの酸化珪素膜を形成し、さらにその外側に有機蒸着法により1μmの保護膜を形成した。実施例2のバリアフィルムの層構成は、保護膜/バリア層/PESフィルム/バリア層/保護膜である。   A 20 nm silicon oxide film was formed on both sides of a PES film having a thickness of 200 μm by a plasma CVD method using a take-up vacuum film forming apparatus, and a 1 μm protective film was further formed on the outer side by an organic vapor deposition method. The layer structure of the barrier film of Example 2 is protective film / barrier layer / PES film / barrier layer / protective film.

厚み200μmのPESフィルムの両面に巻取式真空成膜装置を用いてプラズマCVD法により20nmの酸化珪素膜を形成した。実施例3のバリアフィルムの層構成は、バリア層/PESフィルム/バリア層である。   A silicon oxide film having a thickness of 20 nm was formed on both surfaces of a PES film having a thickness of 200 μm by a plasma CVD method using a take-up vacuum film forming apparatus. The layer structure of the barrier film of Example 3 is barrier layer / PES film / barrier layer.

以下に、本発明の比較例として、実施例4〜5を説明する   Examples 4 to 5 will be described below as comparative examples of the present invention.

厚み200μmのPESフィルムの片面にバッチ式真空成膜装置を用いてプラズマCVD法により20nmの酸化珪素膜を形成し、その外側に有機蒸着法により1μmの保護膜を形成し、さらにその外側にプラズマCVD法により20nmの酸化珪素膜を形成した。実施例4のバリアフィルムの層構成は、PESフィルム/バリア層/保護膜/バリア層である。   A 20 nm silicon oxide film is formed on one side of a 200 μm thick PES film by a plasma CVD method using a batch-type vacuum film forming apparatus, a 1 μm protective film is formed on the outside by an organic vapor deposition method, and a plasma is formed on the outside. A 20 nm silicon oxide film was formed by CVD. The layer structure of the barrier film of Example 4 is PES film / barrier layer / protective film / barrier layer.

厚み200μmのPESフィルムの両面にバッチ式真空成膜装置を用いてプラズマCVD法により10nmの酸化珪素膜を形成した。実施例5のバリアフィルムの層構成は、バリア層/PESフィルム/バリア層である。   A silicon oxide film having a thickness of 10 nm was formed on both sides of a PES film having a thickness of 200 μm by a plasma CVD method using a batch type vacuum film forming apparatus. The layer structure of the barrier film of Example 5 is barrier layer / PES film / barrier layer.

次ぎに、実施例1〜3及び比較例とした実施例4〜5の試料のバリアフィルムを測定した。実施例1〜5のバリアフィルムの水蒸気透過率及び酸素透過率を以下の方法で測定し、評価した。水蒸気透過率測定方法は、水蒸気透過率測定装置(Modern Control社製、PERMATRAN W3/33)を用いて、温度40℃、湿度90%RHの雰囲気下で測定した。装置の検出限界以下の水蒸気透過率についてはカルシウム法にて測定した。具体的には、ガラス基板上にカルシウム層を成膜し、これを封止剤及びバリアフィルムにて封止を行い、温度40℃、湿度90%RHの雰囲気下に保存する。水分の透過によりカルシウム層は金属色から透明な水酸化カルシウムへと変換されるため、光線透過率を測定することによりカルシウム層の膜厚を算出し、水分と反応したカルシウム量を求め、水蒸気透過率を算出した。酸素透過率測定方法は、酸素透過率測定装置(Modern Control社製、MOCON OXTRAN 10/50A)を用いて、温度30℃、湿度70%RHの雰囲気下で測定した。測定結果は表1に示す。   Next, the barrier films of the samples of Examples 1 to 5 and Examples 4 to 5 as comparative examples were measured. The water vapor permeability and oxygen permeability of the barrier films of Examples 1 to 5 were measured and evaluated by the following methods. The water vapor transmission rate was measured using a water vapor transmission measurement device (manufactured by Modern Control, PERMATRAN W3 / 33) in an atmosphere of a temperature of 40 ° C. and a humidity of 90% RH. The water vapor transmission rate below the detection limit of the apparatus was measured by the calcium method. Specifically, a calcium layer is formed on a glass substrate, which is sealed with a sealant and a barrier film, and stored in an atmosphere of a temperature of 40 ° C. and a humidity of 90% RH. Since the calcium layer is converted from a metallic color to transparent calcium hydroxide by the permeation of moisture, the film thickness of the calcium layer is calculated by measuring the light transmittance, the amount of calcium reacted with the moisture is obtained, and the water vapor transmission The rate was calculated. The oxygen permeability measuring method was measured using an oxygen permeability measuring device (manufactured by Modern Control, MOCON OXTRAN 10 / 50A) in an atmosphere of a temperature of 30 ° C. and a humidity of 70% RH. The measurement results are shown in Table 1.

Figure 2006076051
なお、水蒸気透過率の単位はg/m2/day、酸素透過率の単位は、cc/m2/da
y・atmである。
Figure 2006076051
The unit of water vapor transmission rate is g / m 2 / day, and the unit of oxygen transmission rate is cc / m 2 / day.
y · atm.

表1の結果から、バリア膜を片面に積層するバリアフィルム、例えば、実施例4のバリアフィルムよりもバリアフィルムの両面にバリア層を設けた本発明のバリアフィルム、例えば、実施例1〜3のバリアフィルムのほうが遥かに優れたバリア性を有することがわかる。ただし、比較例とした実施例5のバリアフィルムのように、単層のバリア性が1×10-1g/m2/dayを越えるような場合には、両面にバリア層を設けた場合でもEL用基板等に用いるのに十分なだけのバリア性が発現しない。また、本バリアフィルムを巻取りで作成する場合、例えば実施例2と実施例3では、保護層を設けた、例えば、実施例2のバリアフィルムのほうが優れたバリア性を示す。 From the results of Table 1, the barrier film in which the barrier film is laminated on one side, for example, the barrier film of the present invention in which the barrier layer is provided on both sides of the barrier film rather than the barrier film of Example 4, for example, Examples 1-3 It can be seen that the barrier film has much better barrier properties. However, even when the barrier property of a single layer exceeds 1 × 10 −1 g / m 2 / day as in the barrier film of Example 5 as a comparative example, even when a barrier layer is provided on both sides. Barrier properties sufficient for use in EL substrates and the like are not exhibited. Moreover, when producing this barrier film by winding up, in Example 2 and Example 3, for example, the barrier film of Example 2 which provided the protective layer shows the superior barrier property.

本発明のバリアフィルムの実施の形態例を側断面で表した説明図である。It is explanatory drawing which represented the embodiment of the barrier film of this invention with the side cross section. 本発明のバリアフィルムのバリア層の両外側に保護層を設けた他の実施の形態例を側断面で表した説明図である。It is explanatory drawing which represented the other embodiment which provided the protective layer in the both outer sides of the barrier layer of the barrier film of this invention with the side cross section. 本発明に関わる巻取式真空成膜装置の全体図を示す概略説明図であり、フィルムの内面を成膜する場合の搬送パスを示している。It is a schematic explanatory drawing which shows the whole figure of the winding type vacuum film-forming apparatus in connection with this invention, and has shown the conveyance path | pass in the case of film-forming the inner surface of a film. 本発明に関わる巻取式真空成膜装置の全体図を示す概略説明図であり、フィルムの外面を成膜する場合の搬送パスを示している。It is a schematic explanatory drawing which shows the whole view of the winding type vacuum film-forming apparatus in connection with this invention, and has shown the conveyance path | pass in the case of forming the outer surface of a film. 従来の有機/無機多層積層膜を作製するためのバッチ式真空成膜装置の全体図を示す概略説明図である。It is a schematic explanatory drawing which shows the whole batch type vacuum film-forming apparatus for producing the conventional organic / inorganic multilayer laminated film. 従来の有機/無機多層積層膜を作製するための巻取式真空成膜装置の全体図を示す概略説明図である。It is a schematic explanatory drawing which shows the whole figure of the winding-type vacuum film-forming apparatus for producing the conventional organic / inorganic multilayer laminated film.

符号の説明Explanation of symbols

1…バリアフィルム
2…樹脂フィルム
3…バリア層
4…保護層
5…本発明のバリアフィルムを作製するための巻取式真空成膜装置
5a…バリア層成膜室
5b…保護層成膜室
6a、6b、6c…隔壁
7…コーティングドラム
8a…巻出しローラ、
8b…巻取りローラ
9a、9b、9c、9d…ガイドローラ
10…樹脂フィルムロール
11…CVD電極
12…有機物蒸着装置
13…電子線照射装置
14…有機/無機多層積層膜を作製するためのバッチ式真空成膜装置
14a、14c…無機膜成膜室
14b、14d…有機膜成膜室
15…有機/無機多層積層膜を作製するための巻取式真空成膜装置
15a…無機膜成膜室
15b…有機膜成膜室
DESCRIPTION OF SYMBOLS 1 ... Barrier film 2 ... Resin film 3 ... Barrier layer 4 ... Protective layer 5 ... Winding type vacuum film-forming apparatus 5a for producing the barrier film of this invention ... Barrier layer film-forming chamber 5b ... Protective layer film-forming chamber 6a 6b, 6c ... partition wall 7 ... coating drum 8a ... unwinding roller,
8b: Winding rollers 9a, 9b, 9c, 9d ... Guide roller 10 ... Resin film roll 11 ... CVD electrode 12 ... Organic matter vapor deposition device 13 ... Electron beam irradiation device 14 ... Batch type for producing organic / inorganic multilayer laminated film Vacuum film forming apparatuses 14a, 14c ... Inorganic film forming chambers 14b, 14d ... Organic film forming chambers 15 ... Winding type vacuum film forming apparatus 15a for producing organic / inorganic multilayer laminated films ... Inorganic film forming chambers 15b ... Organic film deposition chamber

Claims (6)

樹脂フィルムの両面にバリア層が形成されたバリアフィルムであって、該バリアフィルムの水蒸気透過率が5×10-3g/m2/day以下及び/又は酸素透過率が5×10-3cc/m2/day以下であることを特徴とするバリアフィルム。 A barrier film having a barrier layer formed on both sides of a resin film, wherein the barrier film has a water vapor transmission rate of 5 × 10 −3 g / m 2 / day or less and / or an oxygen transmission rate of 5 × 10 −3 cc A barrier film characterized by being / m 2 / day or less. 前記バリア層のうち、少なくとも片面のバリア層の水蒸気透過率が1×10-1g/m2/day以下及び/又は酸素透過率が1×10-1cc/m2/day以下、好ましくは、水蒸気透過率が2×10-2g/m2/day以下及び/又は酸素透過率が2×10-2cc/m2/day以下であることを特徴とする請求項1記載のバリアフィルム。 Among the barrier layers, at least one of the barrier layers has a water vapor transmission rate of 1 × 10 −1 g / m 2 / day or less and / or an oxygen transmission rate of 1 × 10 −1 cc / m 2 / day or less, preferably 2. The barrier film according to claim 1, wherein the water vapor transmission rate is 2 × 10 −2 g / m 2 / day or less and / or the oxygen transmission rate is 2 × 10 −2 cc / m 2 / day or less. . 前記バリア層が、珪素又はアルミニウムの窒化物又は酸化物又は酸窒化物からなることを特徴とする請求項1、又は2記載のバリアフィルム。   The barrier film according to claim 1, wherein the barrier layer is made of a nitride or oxide or oxynitride of silicon or aluminum. 前記バリア層が、真空成膜により形成されたことを特徴とする請求項1乃至3のいずれか1項記載のバリアフィルム。   The barrier film according to any one of claims 1 to 3, wherein the barrier layer is formed by vacuum film formation. 樹脂フィルムの両面にバリア層と、さらにその外側に保護層を設けたことを特徴とする請求項1乃至4のいずれか1項記載のバリアフィルム。   The barrier film according to any one of claims 1 to 4, wherein a barrier layer is provided on both surfaces of the resin film, and a protective layer is further provided on the outer side thereof. 厚さ50〜200μmからなる透明な樹脂フィルムの両面にバリア層が形成された、その外側に保護層が形成された請求項1乃至5のいずれか1項記載のバリアフィルムの製造方法において、少なくとも以下の工程を含むことを特徴とするバリアフィルムの製造方法。
(a)前記バリア層が、真空成膜により形成され、酸化珪素膜からなるバリア層を5nm〜100nm厚に形成する工程。
(b)前記保護層が、真空成膜により形成され、アクリレート又はメタクリレート膜からなる保護層を0.1〜3μm厚に形成する工程。
The method for producing a barrier film according to any one of claims 1 to 5, wherein a barrier layer is formed on both sides of a transparent resin film having a thickness of 50 to 200 µm, and a protective layer is formed on the outside thereof. The manufacturing method of the barrier film characterized by including the following processes.
(A) The barrier layer is formed by vacuum film formation, and a barrier layer made of a silicon oxide film is formed to a thickness of 5 nm to 100 nm.
(B) A step in which the protective layer is formed by vacuum film formation, and a protective layer made of an acrylate or methacrylate film is formed to a thickness of 0.1 to 3 μm.
JP2004260631A 2004-09-08 2004-09-08 Barrier film manufacturing method Expired - Fee Related JP4506365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260631A JP4506365B2 (en) 2004-09-08 2004-09-08 Barrier film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260631A JP4506365B2 (en) 2004-09-08 2004-09-08 Barrier film manufacturing method

Publications (2)

Publication Number Publication Date
JP2006076051A true JP2006076051A (en) 2006-03-23
JP4506365B2 JP4506365B2 (en) 2010-07-21

Family

ID=36155916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260631A Expired - Fee Related JP4506365B2 (en) 2004-09-08 2004-09-08 Barrier film manufacturing method

Country Status (1)

Country Link
JP (1) JP4506365B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062481A (en) * 2006-09-06 2008-03-21 Jsr Corp Laminated film
JP2008142941A (en) * 2006-12-06 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The Gas barrier laminate
JP2009023284A (en) * 2007-07-23 2009-02-05 Toppan Printing Co Ltd Gas barrier-laminated film
WO2010086272A1 (en) * 2009-01-28 2010-08-05 Evonik Degussa Gmbh Transparent, weather-resistant barrier film, production by lamination, extrusion lamination or extrusion coating
WO2010133427A1 (en) * 2009-05-19 2010-11-25 Evonik Röhm Gmbh Transparent, weather-resistant barrier foil, production thereof by means of lamination, extrusion lamination or extrusion coating
JP2011063851A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Gas barrier coating and gas barrier film
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
CN102446996A (en) * 2010-10-14 2012-05-09 苏州柔印光电科技有限公司 Flexible transparent high-barrier packaging membrane
WO2013015315A1 (en) * 2011-07-27 2013-01-31 株式会社ダイセル Gas barrier film and device
JP2015088246A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Substrate, substrate for display, and organic electroluminescent element
JP2016501144A (en) * 2012-12-12 2016-01-18 コーロン インダストリーズ インク Transparent polyimide substrate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246688A (en) * 2000-03-02 2001-09-11 Toppan Printing Co Ltd Gas barrier material and its manufacturing method
JP2002018994A (en) * 2000-07-12 2002-01-22 Sony Corp Gas barrier material and organic electroluminescence element
JP2003187963A (en) * 2001-12-14 2003-07-04 Dainippon Printing Co Ltd Electroluminescent element
JP2004139928A (en) * 2002-10-21 2004-05-13 Toppan Printing Co Ltd Barrier film with transparent electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246688A (en) * 2000-03-02 2001-09-11 Toppan Printing Co Ltd Gas barrier material and its manufacturing method
JP2002018994A (en) * 2000-07-12 2002-01-22 Sony Corp Gas barrier material and organic electroluminescence element
JP2003187963A (en) * 2001-12-14 2003-07-04 Dainippon Printing Co Ltd Electroluminescent element
JP2004139928A (en) * 2002-10-21 2004-05-13 Toppan Printing Co Ltd Barrier film with transparent electrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062481A (en) * 2006-09-06 2008-03-21 Jsr Corp Laminated film
JP2008142941A (en) * 2006-12-06 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The Gas barrier laminate
JP2009023284A (en) * 2007-07-23 2009-02-05 Toppan Printing Co Ltd Gas barrier-laminated film
CN102333649A (en) * 2009-01-28 2012-01-25 赢创罗姆有限公司 Transparent, weather-resistant barrier film, production by lamination, extrusion lamination or extrusion coating
WO2010086272A1 (en) * 2009-01-28 2010-08-05 Evonik Degussa Gmbh Transparent, weather-resistant barrier film, production by lamination, extrusion lamination or extrusion coating
JP2012516250A (en) * 2009-01-28 2012-07-19 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacture by transparent weather resistant barrier film, lamination, extrusion lamination or extrusion coating
AU2010209838B2 (en) * 2009-01-28 2013-07-11 Evonik Rohm Gmbh Transparent, weather-resistant barrier film, production by lamination, extrusion lamination or extrusion coating
WO2010133427A1 (en) * 2009-05-19 2010-11-25 Evonik Röhm Gmbh Transparent, weather-resistant barrier foil, production thereof by means of lamination, extrusion lamination or extrusion coating
JP2012527361A (en) * 2009-05-19 2012-11-08 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Transparent weatherproof barrier sheet and production of the barrier sheet by lamination, extrusion lamination or extrusion coating
JP2011063851A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Gas barrier coating and gas barrier film
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
CN102446996A (en) * 2010-10-14 2012-05-09 苏州柔印光电科技有限公司 Flexible transparent high-barrier packaging membrane
WO2013015315A1 (en) * 2011-07-27 2013-01-31 株式会社ダイセル Gas barrier film and device
JP2016501144A (en) * 2012-12-12 2016-01-18 コーロン インダストリーズ インク Transparent polyimide substrate and manufacturing method thereof
JP2015088246A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Substrate, substrate for display, and organic electroluminescent element

Also Published As

Publication number Publication date
JP4506365B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7074501B2 (en) Coatings with low permeation of gases and vapors
EP1629543B1 (en) Barrier films for flexible polymer substrates fabricated by atomic layer deposition
JP5245893B2 (en) Multilayer film and method for producing the same
EP1918412A1 (en) Apparatus for selective deposition of graded coatings
JP2012096432A (en) Barrier film, and method of manufacturing the same
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP5417698B2 (en) Method for producing functional film
JP4506365B2 (en) Barrier film manufacturing method
KR20140106567A (en) Translucent gas barrier film, method for producing translucent gas barrier film, organic el element, solar cell, and thin-film cell
CN107249888B (en) Method for producing gas barrier film, and gas barrier film
CN101743267B (en) Multiple-layer film and method for manufacturing same
JP2012096431A (en) Barrier film, and method of manufacturing the same
JP4106931B2 (en) Transparent gas barrier thin film coating film
CN107428126B (en) Laminate and gas barrier film
JP4525330B2 (en) Method for producing conductive gas barrier laminate
CN110114897B (en) Electronic device
JP6790445B2 (en) Gas barrier film
JP2017109438A (en) Gas barrier film and organic el light-emitting element using the same
JP2019119135A (en) Gas barrier film and manufacturing method thereof
KR20160076836A (en) Transparent gas barrier film and method for manufacturing transparent gas barrier film
JP2004322395A (en) Laminate and its manufacturing method
KR20160081499A (en) Transparent gas barrier film and method for manufacturing transparent gas barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100108

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130514

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees