JP2006075110A - New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient - Google Patents

New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient Download PDF

Info

Publication number
JP2006075110A
JP2006075110A JP2004264447A JP2004264447A JP2006075110A JP 2006075110 A JP2006075110 A JP 2006075110A JP 2004264447 A JP2004264447 A JP 2004264447A JP 2004264447 A JP2004264447 A JP 2004264447A JP 2006075110 A JP2006075110 A JP 2006075110A
Authority
JP
Japan
Prior art keywords
oligonucleotide
group
oligonucleotide conjugate
conjugate
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264447A
Other languages
Japanese (ja)
Inventor
Hideki Oba
英樹 大庭
Masayuki Fujii
政幸 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004264447A priority Critical patent/JP2006075110A/en
Priority to PCT/JP2005/016483 priority patent/WO2006028160A1/en
Publication of JP2006075110A publication Critical patent/JP2006075110A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07049RNA-directed DNA polymerase (2.7.7.49), i.e. telomerase or reverse-transcriptase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new conjugate which especially exhibits a high activity-inhibiting action against a telomerase in human leukemic cell extracts and gives a double strand hybrid between complementary DNAs in a stable state. <P>SOLUTION: This phosphorothioate oligonucleotide conjugate is represented by the general formula [A<SP>1</SP>is an alkylene or an alkylene interrupted by an oxygen atom; A<SP>2</SP>is an alkylene; R is the residue of a peptide, sugar or functional amine; (n) is 0 or 1]. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒト白血病細胞抽出液中のテロメラーゼ活性を阻害する新規なホスホロチオエートオリゴヌクレオチドコンジュゲート及びそれを有効成分としたアンチセンス剤に関するものである。   The present invention relates to a novel phosphorothioate oligonucleotide conjugate that inhibits telomerase activity in human leukemia cell extract and an antisense agent comprising the same as an active ingredient.

オリゴヌクレオチドとペプチドとの複合体は、遺伝子発現のアンチセンス剤として使用するためのポテンシャルを有し、そのペプチドにより活性オリゴヌクレオチドの細胞間濃度の増大を助長させるので、その形成のために多くの試みがなされている。   Oligonucleotide and peptide complexes have the potential to be used as antisense agents for gene expression, and the peptide facilitates an increase in the intercellular concentration of active oligonucleotides, so many Attempts have been made.

例えば、合成オリゴヌクレオチドの5´‐末端にチオール基を導入することにより、DNAとペプチドサイフォンとのコンジュゲートが得られている(非特許文献1参照)。そのほか、タンパク質分子中に存在するアミノ基、カルボン酸基、水酸基、フェノール基などの官能基を利用し、ジアルキル化試薬、ジマレイミド、ジアルデヒドなどの二官能性リンカーを介して機能性有機化合物、例えばアンジオテンシンI、インスリン、プラジキニン、トプラマイシン、その他の抗ガン性物質を複合させたものも知られ、また芳香族ジチオイソシアネートをリンカーとして用いることも提案されている(非特許文献2参照)。   For example, a conjugate of DNA and peptide siphon has been obtained by introducing a thiol group at the 5′-end of a synthetic oligonucleotide (see Non-Patent Document 1). In addition, functional organic compounds such as amino groups, carboxylic acid groups, hydroxyl groups, phenol groups, etc. present in protein molecules are utilized via bifunctional linkers such as dialkylating reagents, dimaleimides, dialdehydes, etc. A combination of angiotensin I, insulin, prazikinin, topramycin, and other anticancer substances is also known, and the use of aromatic dithioisocyanate as a linker has also been proposed (see Non-Patent Document 2).

しかしながら、これらのオリゴヌクレオチドとペプチドとの複合体は、その製造において必要な原料のコストが高い上に、製造過程も煩雑で、収率が低く、しかもアンチセンス特性も不十分であるため、実用的には必ずしも満足できるものではなかった。   However, these oligonucleotide and peptide conjugates are expensive because of the high cost of raw materials required for their production, complicated production processes, low yields, and insufficient antisense properties. However, it was not always satisfactory.

「バイオコンジュゲート・ケミストリー(Bioconjugate Chemistry)」、1994年、第5巻、p.373−378“Bioconjugate Chemistry”, 1994, Vol. 5, p. 373-378 「サイエンス(Science)」、1964年、第144巻、p.1344“Science”, 1964, vol. 144, p. 1344

本発明は、特にヒト白血病細胞抽出液中のテロメラーゼに対し、高い活性阻害作用を示し、かつ相補的なDNAとの間の2本鎖ハイブリッドを安定した状態で与える新規なコンジュゲートを提供することを目的としてなされたものである。   The present invention provides a novel conjugate that exhibits a high activity inhibitory action, particularly on telomerase in human leukemia cell extract, and that stably provides a double-stranded hybrid with complementary DNA. It was made for the purpose.

本発明者らは、新規なDNAコンジュゲートを開発するために鋭意研究を重ね、先に天然型オリゴDNAにω‐アミノアルキルホスホロエートを介して核局在化シグナルポリペプチドを縮合させることにより、優れたアンチセンス特性を有し、相補的なDNAとの間で安定した2本鎖ハイブリッドを形成するDNAコンジュゲートを得ることに成功したが、さらに研究を進めた結果、ホスホロチオエートオリゴヌクレオチド(以下S‐オリゴヌクレオチドと略す)に核局在化シグナルペプチドを縮合させることにより、ヒト白血病細胞抽出液中のテロメラーゼに対し、高い活性阻害作用を示すS‐オリゴヌクレオチドコンジュゲートが得られることを見出し、この知見に基づいて本発明をなすに至った。   The present inventors have conducted extensive research to develop a novel DNA conjugate, and first condensed a nuclear localization signal polypeptide to natural oligo DNA via ω-aminoalkyl phosphoroate. Have succeeded in obtaining DNA conjugates that have excellent antisense properties and form stable double-stranded hybrids with complementary DNA. As a result of further research, phosphorothioate oligonucleotides (hereinafter referred to as “phosphorothioate oligonucleotides”) It was found that by condensing a nuclear localization signal peptide to (abbreviated as S-oligonucleotide), an S-oligonucleotide conjugate exhibiting a high activity inhibitory action against telomerase in human leukemia cell extract was obtained, The present invention has been made based on this finding.

すなわち、本発明は、一般式

Figure 2006075110
(式中のA1はアルキレン基又は酸素原子で中断されたアルキレン基、A2はアルキレン基、Rはペブチド、糖又は機能性アミンの残基、nは0又は1である)
で表わされるS‐オリゴヌクレオチドコンジュゲート、及びそれを有効成分としてなるアンチセンス剤を提供するものである。 That is, the present invention has the general formula
Figure 2006075110
(In the formula, A 1 is an alkylene group or an alkylene group interrupted by an oxygen atom, A 2 is an alkylene group, R is a residue of a peptide, sugar or functional amine, and n is 0 or 1)
And an antisense agent comprising the same as an active ingredient.

本発明におけるS‐オリゴヌクレオチドは、天然型オリゴヌクレオチドにおけるリン酸ジエステル構造がホスホリン酸ジエステル構造に変ったものである。
このオリゴヌクレオチドとしては、10〜15個の塩基単位からなるヌクレオチドの残基、例えば配列表配列番号1‐3´及び配列表配列番号2‐3´などが好ましい。
The S-oligonucleotide in the present invention is obtained by changing a phosphodiester structure in a natural oligonucleotide to a phosphophosphate diester structure.
The oligonucleotide is preferably a nucleotide residue consisting of 10 to 15 base units, such as SEQ ID NO: 1-3 ′ and SEQ ID NO: 2-3 ′.

前記の一般式(I)におけるS‐オリゴヌクレオチドの由来については、特に制限はなく、各種動物細胞由来のオリゴヌクレオチド、各種細菌類由来のオリゴヌクレオチドあるいはそれらを酵素で細断して得られるヌクレオチドセグメントなどの中から、その使用目的に応じ任意に選んで使用することができるが、本発明においては、5´‐末端水酸基にアミノ化剤を反応させてアミノ基を導入したものを用いることが必要である。   The origin of the S-oligonucleotide in the general formula (I) is not particularly limited, and oligonucleotide segments derived from various animal cells, oligonucleotides derived from various bacteria, or nucleotide segments obtained by chopping them with enzymes. In the present invention, it is necessary to use an amino group introduced by reacting a 5'-terminal hydroxyl group with an aminating agent. It is.

次に、一般式(I)中のA1結合のアルキレン基としては、炭素数2〜10、好ましくは4〜8のポリメチレン基、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などを挙げることができる。このアルキレン基は、炭素鎖が酸素原子で中断されたもの、例えば2‐オキサプロピレン基、3‐オキサペンチレン基、4‐オキサヘプチレン基などであってもよい。
また、一般式(I)中のA2結合のアルキレン基としては、炭素数4〜12のポリメチレン基又は分枝状アルキレン基が好ましい。
Next, as the alkylene group of the A 1 bond in the general formula (I), a polymethylene group having 2 to 10 carbon atoms, preferably 4 to 8 carbon atoms such as an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, etc. Can be mentioned. The alkylene group may be one having a carbon chain interrupted by an oxygen atom, such as a 2-oxapropylene group, a 3-oxapentylene group, or a 4-oxaheptylene group.
Further, the alkylene group having an A 2 bond in the general formula (I) is preferably a polymethylene group having 4 to 12 carbon atoms or a branched alkylene group.

そして、前記のS‐オリゴヌクレオチドにリンカーを介して導入されるペプチドとしては、各種タンパク質の分解により得られるペプチド、例えば核外輸送シグナルペプチド、抗原由来の核局在化シグナルペプチド、合成された両親媒性α‐へリックス、β‐シートペプチドなどを、糖類としては、ショ糖、ガラクトサミンなどを、また機能性アミンとしては、スペルミン、リポフェクトアミンなどを挙げることができる。   The peptides introduced into the S-oligonucleotide via a linker include peptides obtained by degradation of various proteins, such as nuclear export signal peptides, antigen-derived nuclear localization signal peptides, synthesized parents Examples of the medium α-helix and β-sheet peptide include saccharides such as sucrose and galactosamine, and functional amines include spermine and lipofectamine.

本発明のS‐オリゴヌクレオチドコンジュゲートのうち、一般式(I)において、n=1のものは、固相フラグメント縮合法に従い、固相担体例えば多孔性ガラス、制御多孔性ガラス(CPG)、ポリエチレングリコール−ポリスチレンなどに、5´末端に水酸基をもつS‐オリゴヌクレオチドを縮合させたのち、触媒の存在下、一般式

Figure 2006075110
(式中のR1及びR2は保護基、A1は前記と同じ意味をもつ)
で表わされる亜リン酸エステルを反応させ、5´末端を化学修飾し、一般式
Figure 2006075110
(式中のR1、R2及びA1は前記と同じ意味をもつ)
で表わされるDNA誘導体を形成させたのち、酸化して、一般式
Figure 2006075110
(式中のR1、R2及びA1は前記と同じ意味をもつ)
で表わされるS‐オリゴヌクレオチド誘導体とし、次いで一般式
OCN−A2−NCO (V)
(A2は前記と同じ意味をもつ)
で表わされる脂肪族ジイソシアネートを反応させることにより、一般式
Figure 2006075110
(式中のR1、A1及びA2は前記と同じ意味をもつ)
で表わされる化合物を製造したのち、これにペプチド、糖又は機能性アミンを反応させ、最後にアルカリ例えばアンモニア水で処理して固相担体からの切りはなし、及び保護基の脱離を行うことにより製造することができる(以下合成法1という)。 Among the S-oligonucleotide conjugates of the present invention, those with n = 1 in the general formula (I) are in accordance with a solid phase fragment condensation method, such as solid phase carriers such as porous glass, controlled porous glass (CPG), polyethylene. After condensing an S-oligonucleotide having a hydroxyl group at the 5 ′ end to glycol-polystyrene, etc., in the presence of a catalyst, the general formula
Figure 2006075110
(Wherein R 1 and R 2 are protecting groups, and A 1 has the same meaning as above)
A phosphite ester represented by the following formula:
Figure 2006075110
(Wherein R 1 , R 2 and A 1 have the same meaning as above)
After the formation of a DNA derivative represented by
Figure 2006075110
(Wherein R 1 , R 2 and A 1 have the same meaning as above)
S-oligonucleotide derivatives represented by the general formula OCN-A 2 -NCO (V)
(A 2 has the same meaning as above)
Is reacted with an aliphatic diisocyanate represented by the general formula
Figure 2006075110
(Wherein R 1 , A 1 and A 2 have the same meaning as described above)
By reacting this with a peptide, sugar or functional amine, and finally treating with an alkali such as ammonia water to cut off the solid phase carrier and removing the protecting group. Can be produced (hereinafter referred to as Synthesis Method 1).

一方、一般式(I)において、n=0のものは、前記一般式(V)で表わされる脂肪族ジイソシアネートの代りに、式

Figure 2006075110
で表わされるカルボニルジイミダゾールを用いて、一般式
Figure 2006075110
(式中のR1、A1は前記と同じ意味をもつ)
で表わされる化合物を製造したのち、これにペプチド、糖又は機能性アミンを反応させ、さらにアルカリ処理することにより製造することができる(以下合成法2という)。
これらの反応は、適当な溶媒、例えばアセトニトリル、ジメチルホルムアミドなどを用いて行われる。 On the other hand, in the general formula (I), those in which n = 0 are substituted with the aliphatic diisocyanate represented by the general formula (V).
Figure 2006075110
Using the carbonyldiimidazole represented by the general formula
Figure 2006075110
(Wherein R 1 and A 1 have the same meaning as described above)
Can be produced by reacting it with a peptide, sugar or functional amine and further subjecting it to an alkali treatment (hereinafter referred to as synthesis method 2).
These reactions are performed using a suitable solvent such as acetonitrile, dimethylformamide and the like.

次いで、このようにして得た反応生成物にアンモニア水を加え、固体担体からDNAコンジュゲートを切り出すとともに、場合により存在するペプチドの保護基の脱離を行う。
1及びR2で示される保護基としては、例えば2‐シアノエチル基のようなω‐シアノアルキル基や、4‐メトキシフェニルジフェニルメチル基のようなトリフェニルメチル誘導体残基が用いられる。
Next, aqueous ammonia is added to the reaction product thus obtained to excise the DNA conjugate from the solid support, and optionally remove the protecting group of the peptide present.
As the protecting group represented by R 1 and R 2 , for example, a ω-cyanoalkyl group such as 2-cyanoethyl group or a triphenylmethyl derivative residue such as 4-methoxyphenyldiphenylmethyl group is used.

このようにして得られる一般式
S‐オリゴヌクレオチド−PO3CH2CH2OCH2CH2NH−R
で表わされる本発明のS‐オリゴヌクレオチドコンジュゲートの例としては、S‐オリゴヌクレオチド及びRが以下の表1に示す構造をもつC1〜C3を挙げることができる。
Formula S- oligonucleotides -PO thus obtained 3 CH 2 CH 2 OCH 2 CH 2 NH-R
As examples of the S-oligonucleotide conjugates of the present invention represented by the formula (1), C 1 to C 3 having the structures shown in Table 1 below can be mentioned.

Figure 2006075110
Figure 2006075110

天然オリゴヌクレオチドは、細胞導入剤がないと細胞内に全く導入されない。
しかしながら、これに核局在化シグナルペプチドをコンジュゲートさせると、細胞導入剤なしに細胞内に容易に導入され、かつ核内に局在化するし、核外輸送シグナルペプチドをコンジュゲートさせると細胞内に容易に導入され、かつ細胞質(核外)に局在化する。
これに対し、S‐オリゴヌクレオチドに核局在化シグナルペプチドをコンジュゲートさせた本発明のS‐オリゴヌクレオチドコンジュゲートは、細胞導入剤なしに細胞内に容易に導入され、しかも細胞質と核内の両方に局在化する。
Natural oligonucleotides are not introduced into cells without a cell introduction agent.
However, when a nuclear localization signal peptide is conjugated to this, it can be easily introduced into a cell without a cell introduction agent and localized in the nucleus, and when a nuclear export signal peptide is conjugated to a cell Easily introduced into and localized in the cytoplasm (extranuclear).
In contrast, the S-oligonucleotide conjugates of the present invention in which a nuclear localization signal peptide is conjugated to S-oligonucleotides can be easily introduced into cells without a cell introduction agent, and can be introduced into the cytoplasm and nucleus. Localizes to both.

本発明によると、簡単な反応操作により、特にテロメラーゼ活性に対して高い阻害作用を示し、優れたアンチセンス特性をもち、相補的なDNAとの間で安定した2本鎖ハイブリッドを形成しうる、アンチセンス剤として好適なS‐オリゴヌクレオチドコンジュゲートを製造することができる。   According to the present invention, it is possible to form a stable double-stranded hybrid with a complementary DNA by a simple reaction operation, particularly exhibiting a high inhibitory effect on telomerase activity, having excellent antisense characteristics, S-oligonucleotide conjugates suitable as antisense agents can be produced.

次に、実施例により本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

先ずDNA自動合成機(クルアケム(Cruachem)社製、製品名「PS250」)を用い、制御多孔性ガラス(グレンリサーチ社製、製品名「500Åサポート」、以下CPGと略す)に、5´末端の水酸基をジメトキシトリチル基で保護したS‐オリゴヌクレオチド(5´‐配列表配列番号3‐3´)を担持させたのち、トリクロロ酢酸の3質量%アセトニトリル溶液で処理して、その保護基を脱離し、その遊離水酸基に市販のアミノ化試薬であるN‐メトキシトリチル‐2‐(2‐アミノエチルオキシ)エチルホスホアミダイトを1Hテトラゾールを含むジメチルホルムアミド溶液により室温下、30分間反応させることによりアミノ化した。   First, using an automatic DNA synthesizer (product name “PS250” manufactured by Kurachem), a control porous glass (product name “500 mm support”, hereinafter abbreviated as CPG) is added to the 5 ′ end. After supporting the S-oligonucleotide (5'-Sequence Listing SEQ ID NO: 3-3 ') whose hydroxyl group was protected with a dimethoxytrityl group, the protective group was removed by treatment with a 3% by mass acetonitrile solution of trichloroacetic acid. The aminated hydroxyl group was aminated by reacting a commercially available amination reagent N-methoxytrityl-2- (2-aminoethyloxy) ethyl phosphoramidite with a 1H tetrazole-containing dimethylformamide solution at room temperature for 30 minutes. .

次いで未反応の5´‐水酸基を無水酢酸によりキャッピングしたのち、ヨウ素酢酸溶液によりリン原子部分を酸化してリン酸エステルを形成させた。このようにして得た中間体化合物にトリクロロ酢酸の3質量%アセトニトリル溶液を反応させて末端アミノ基の保護基であるメトキシトリチル基を除去し、次にヘキサメチレンジイソシアネート(HMI)又はカルボニルジイミダゾール(CDI)とジイソプロピルエチルアミンを含むジメチルホルムアミド中、室温下2〜12時間反応させたのち、SV40T抗原核局在化シグナル(配列表配列番号7)をジイソプロピルエチルアミンを含むジメチルホルムアミド中、室温下24時間反応させた。   Next, after capping the unreacted 5'-hydroxyl group with acetic anhydride, the phosphorus atom portion was oxidized with an ioacetic acid solution to form a phosphate ester. The intermediate compound thus obtained was reacted with a 3% by mass acetonitrile solution of trichloroacetic acid to remove the methoxytrityl group, which is a protecting group for the terminal amino group, and then hexamethylene diisocyanate (HMI) or carbonyldiimidazole ( CDI) and dimethylformamide containing diisopropylethylamine for 2 to 12 hours at room temperature, and then reacting SV40T antigen nuclear localization signal (SEQ ID NO: 7) in dimethylformamide containing diisopropylethylamine for 24 hours at room temperature. I let you.

次に、このようにして得た反応生成物を濃アンモニア水中、55℃において4時間処理することにより、CPGからの切り出しとオリゴヌクレオチド及びペプチドに結合している保護基の除去を行い、所望のS‐オリゴヌクレオチドコンジュゲートを粗製物として得た。
この粗製物を逆相液体クロマトグラフを用いて精製し、得られた化合物を液体クロマトグラフ及びレーザー励起飛行時間型質量スペクトル分析(MALDI−TOF MS)により分析した。この際の収率は30.45%、TOF−MSは5642.63であった。
Next, the reaction product thus obtained is treated in concentrated aqueous ammonia at 55 ° C. for 4 hours to excise from CPG and remove the protecting group bonded to the oligonucleotide and peptide. The S-oligonucleotide conjugate was obtained as a crude product.
This crude product was purified using a reverse phase liquid chromatograph, and the resulting compound was analyzed by liquid chromatography and laser-excited time-of-flight mass spectrometry (MALDI-TOF MS). The yield at this time was 30.45%, and the TOF-MS was 564.63.

比較例
実施例1におけるS‐オリゴヌクレオチドの代りに、天然オリゴヌクレオチド(配列表配列番号2‐3´)を用いる以外は、実施例1と同様に処理してオリゴヌクレオチドコンジュゲートNo.2を製造した。この際の収率は18.21wt%、TOF−MSは5384.26であった。
Comparative Example An oligonucleotide conjugate No. 1 was treated in the same manner as in Example 1 except that a natural oligonucleotide (SEQ ID NO: 2-3 ′) was used instead of the S-oligonucleotide in Example 1. 2 was produced. The yield at this time was 18.21 wt%, and TOF-MS was 5384.26.

実施例1で得たS‐オリゴヌクレオチドコンジュゲート試料No.1及び比較例で得たオリゴヌクレオチドコンジュゲートNo.2について、相補鎖DNAとの安定性を次のようにして試験した。
UV検出器(日本分光社製、製品名「V−560UV/Visスペクトロメータ」)を用い、100mM NaCl、50mM Tris−HCl、20mM MgCl2からなる緩衝溶液(pH7.0)中に各試料を1μM濃度で溶解し、これに相補鎖DNAを加え、92℃で5分間加熱することにより、いったん2本鎖を融解したのち、4℃まで徐冷して2本鎖を再結合させた。
次いで、これを5℃から80℃まで0.5℃/分の上昇速度で加熱し、UV検出器により260nmにおける吸光度変化を測定し、50%吸光度上昇地点の温度を融解温度として算出した。その結果を表2に示す。
なお、表中の+Mgは測定溶液にMgCl2が存在する場合、−MgはMgCl2が存在しない場合を示す。
The S-oligonucleotide conjugate sample No. 1 obtained in Example 1 was used. 1 and the oligonucleotide conjugate No. obtained in Comparative Example. 2 was tested for stability with complementary DNA as follows.
Using a UV detector (manufactured by JASCO Corporation, product name “V-560 UV / Vis spectrometer”), each sample was 1 μM in a buffer solution (pH 7.0) composed of 100 mM NaCl, 50 mM Tris-HCl, 20 mM MgCl 2. After dissolving at a concentration and adding complementary strand DNA thereto and heating at 92 ° C. for 5 minutes, the double strand was once melted and then slowly cooled to 4 ° C. to recombine the double strand.
Next, this was heated from 5 ° C. to 80 ° C. at a rate of 0.5 ° C./min, the change in absorbance at 260 nm was measured with a UV detector, and the temperature at the 50% absorbance rise point was calculated as the melting temperature. The results are shown in Table 2.
Note that + Mg in the table indicates that MgCl 2 is present in the measurement solution, and −Mg indicates that MgCl 2 is not present.

Figure 2006075110
この表から、本発明のS‐オリゴヌクレオチドコンジュゲート分子は、相補的なRNAとの間でハイブリッド2本鎖を形成しうることが分る。
Figure 2006075110
From this table it can be seen that the S-oligonucleotide conjugate molecules of the present invention can form hybrid duplexes with complementary RNA.

本発明のS‐オリゴヌクレオチドコンジュゲートのDNA分解酵素DNアーゼ1に対する耐性試験を行った。
すなわち、実施例1で得た試料No.1を0.1M NaClで濃度1μMに調整し、この中に160Kunit単位のDNアーゼ1(シグマ社製)5mlを加え、37℃に保持して、経時的にその分解率を測定したところ、180分間における分解率は13%であった。
また、比較のために、比較例で得た天然オリゴヌクレオチドコンジュゲートを用いて同様に分解率を測定したところ、分解率は100%であった。
なお、1Kunitとは25℃、pH5.0において1ml中のヌクレオチドについて、UVスペクトル260nmの吸光度を1分間で0.001上昇させる単位である。
The resistance test of the S-oligonucleotide conjugates of the present invention against DNase 1 was performed.
That is, the sample No. obtained in Example 1 was obtained. 1 was adjusted to a concentration of 1 μM with 0.1 M NaCl, and 5 ml of 160 Kunit units of DNase 1 (manufactured by Sigma) was added thereto and maintained at 37 ° C., and the degradation rate was measured over time. The degradation rate in minutes was 13%.
For comparison, when the degradation rate was measured in the same manner using the natural oligonucleotide conjugate obtained in the comparative example, the degradation rate was 100%.
1 Kunit is a unit that increases the absorbance of the UV spectrum at 260 nm by 0.001 per minute for nucleotides in 1 ml at 25 ° C. and pH 5.0.

実施例1で得た試料No.1と比較例で得た試料No.2についてリボヌクレアーゼHに対する分解試験を行った。
すなわち、各試料と相補的なRNAの5´‐末端を蛍光ラベルで修飾したものを10μM濃度に調整し、ハイブリッド2本鎖を形成させたのち、リボヌクレアーゼH(シグマ・アルドリッチ社製)2.5単位を加え、反応緩衝液中における分解率を20%ポリアクリルアミドゲル電気泳動で経時的に測定したところ、両者は全く同様の活性を示した。
Sample No. obtained in Example 1 1 and the sample No. obtained in the comparative example. 2 was subjected to a degradation test against ribonuclease H.
That is, the 5′-end of RNA complementary to each sample was modified with a fluorescent label, adjusted to a concentration of 10 μM to form a hybrid duplex, and then ribonuclease H (manufactured by Sigma-Aldrich) 2.5 When units were added and the degradation rate in the reaction buffer was measured over time by 20% polyacrylamide gel electrophoresis, they showed exactly the same activity.

実施例1で得た試料No.1と比較例で得た試料No.2について血清中での安定性を調べた。
各試料を120μlの超純水に1nM濃度で溶かし、10%の非動化済みウシ胎児血清20μlを加え、RP−HPLCを用いてオリゴヌクレオチドの分解状態を経時的にモニターした。この際、所定時間ごとに試料を0.1M Tris−HCl、0.09Mホウ酸、7M尿素からなる反応溶液(pH8.4)中に加え、液体窒素を用いて凍結することによって反応を停止させた。
モニターは、RP−HPLC(ヒューレット−パッカード社製、シリーズ1100)とODSカラム(5×125×4mm)を用い、260nmにおける変化を測定することによって行った。その結果、試料No.2は24時間後にほぼ100%分解したのに対し、試料No.1は15%の分解に止まった。
Sample No. obtained in Example 1 1 and the sample No. obtained in the comparative example. 2 was examined for stability in serum.
Each sample was dissolved in 120 μl of ultrapure water at a concentration of 1 nM, 20 μl of 10% non-immobilized fetal bovine serum was added, and the degradation state of the oligonucleotide was monitored over time using RP-HPLC. At this time, the sample was added to a reaction solution (pH 8.4) composed of 0.1 M Tris-HCl, 0.09 M boric acid and 7 M urea every predetermined time, and the reaction was stopped by freezing with liquid nitrogen. It was.
The monitoring was performed by measuring changes at 260 nm using RP-HPLC (manufactured by Hewlett-Packard, series 1100) and ODS column (5 × 125 × 4 mm). As a result, sample no. 2 decomposed almost 100% after 24 hours, whereas sample no. 1 stopped at 15% decomposition.

実施例1で得た試料No.1と比較例で得た試料No.2について細胞抽出液中でのヒトテロメラーゼ阻害活性を測定した。なお、ここで用いたヒトテロメラーゼはガン細胞中に特異的に発現し、細胞の不死化を引き起す酵素である。
白血病細胞由来のジャーカット(Jurkat)細胞から抽出した液を用い、50%阻害に要する濃度(IC50)で表わした。
その結果、試料No.2は1030nMであったのに対し、試料No.1は0.5nMという非常に低い濃度で十分な活性を示すことが分った。
このことから、本発明のS‐オリゴヌクレオチドコンジュゲートは、オリゴヌクレオチドコンジュゲートに比べて著しく高いヒトテロメラーゼ阻害活性を示す。
Sample No. obtained in Example 1 1 and the sample No. obtained in the comparative example. Regarding 2, the human telomerase inhibitory activity in the cell extract was measured. The human telomerase used here is an enzyme that is specifically expressed in cancer cells and causes immortalization of the cells.
Using a solution extracted from leukemia cell-derived Jurkat cells, it was expressed as the concentration required for 50% inhibition (IC 50 ).
As a result, sample no. 2 was 1030 nM, whereas sample no. 1 was found to show sufficient activity at very low concentrations of 0.5 nM.
From this, the S-oligonucleotide conjugate of the present invention exhibits a significantly higher human telomerase inhibitory activity than the oligonucleotide conjugate.

本発明のS‐オリゴヌクレオチドコンジュゲートは、優れたアンチセンス特性を有し、相補的なRNAと安定なハイブリッド2本鎖を形成するので、アンチセンス剤として有用である。
また、ガン細胞の不死化に寄与するテロメラーゼの活性を阻害するので、ガン患者に投与すればガン細胞の増殖を阻害するために効果的である。
The S-oligonucleotide conjugates of the present invention are useful as antisense agents because they have excellent antisense properties and form stable hybrid duplexes with complementary RNA.
Moreover, since it inhibits the activity of telomerase that contributes to immortalization of cancer cells, it is effective to inhibit the proliferation of cancer cells when administered to cancer patients.

Claims (2)

一般式
Figure 2006075110
(式中のA1はアルキレン基又は酸素原子で中断されたアルキレン基、A2はアルキレン基、Rはペブチド、糖又は機能性アミンの残基、nは0又は1である)
で表わされるホスホロチオエートオリゴヌクレオチドコンジュゲート
General formula
Figure 2006075110
(In the formula, A 1 is an alkylene group or an alkylene group interrupted by an oxygen atom, A 2 is an alkylene group, R is a residue of a peptide, sugar or functional amine, and n is 0 or 1)
A phosphorothioate oligonucleotide conjugate represented by
請求項1記載のホスホロチオエートオリゴヌクレオチドコンジュゲートを有効成分としてなるアンチセンス剤。
An antisense agent comprising the phosphorothioate oligonucleotide conjugate according to claim 1 as an active ingredient.
JP2004264447A 2004-09-10 2004-09-10 New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient Pending JP2006075110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004264447A JP2006075110A (en) 2004-09-10 2004-09-10 New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient
PCT/JP2005/016483 WO2006028160A1 (en) 2004-09-10 2005-09-08 S-oligonucleotide conjugate and antisense agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264447A JP2006075110A (en) 2004-09-10 2004-09-10 New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient

Publications (1)

Publication Number Publication Date
JP2006075110A true JP2006075110A (en) 2006-03-23

Family

ID=36036441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264447A Pending JP2006075110A (en) 2004-09-10 2004-09-10 New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient

Country Status (2)

Country Link
JP (1) JP2006075110A (en)
WO (1) WO2006028160A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3329004B1 (en) 2015-07-29 2020-01-15 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutic oligonucleotides
EP3124609A1 (en) 2015-07-29 2017-02-01 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutics oligonucleotides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275140A (en) * 2003-03-18 2004-10-07 National Institute Of Advanced Industrial & Technology Method for producing dna or rna conjugate
JP2005027569A (en) * 2003-07-04 2005-02-03 National Institute Of Advanced Industrial & Technology New dna conjugate and antisense agent with the same as active ingredient
JP2005229946A (en) * 2004-02-20 2005-09-02 National Institute Of Advanced Industrial & Technology Cytoplasm localized dna and method for producing the same

Also Published As

Publication number Publication date
WO2006028160A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
Sharma et al. Versatility of peptide nucleic acids (PNA s): Role in chemical biology, drug discovery, and origins of life
US9902953B2 (en) Oligonucleotides comprising alternating segments and uses thereof
KR101388320B1 (en) Cationic oligonucleotides, automated methods for preparing same and their uses
EP0214908B1 (en) Compounds containing an oligonucleotide sequence linked to an intercalating agent and to an activable chemical group, their synthesis and applications to artificial sequence-specific nucleases
WO1995023162A1 (en) Modified oligonucleotide duplexes having anticancer activity
EP1731615A1 (en) Cytoplasmic localization dna and rna
FI111266B (en) Protection of nucleic acids and methods of analysis
WO2005113571A2 (en) Methods for the delivery of oligomeric compounds
JP2004500330A (en) Guanidinium-functionalized oligomers and their preparation
WO1995026733A1 (en) Oligonucleoside cleavage compounds and therapies
Musumeci et al. DNA-and RNA-binding ability of oligoDapT, a nucleobase-decorated peptide, for biomedical applications
US10844376B2 (en) Structurally-enhanced miRNA inhibitor S-TuD
JP2016130232A (en) Oligonucleotide
Gao et al. Double-stranded cyclic oligonucleotides with non-nucleotide bridges
JP3725405B2 (en) Molecules that can bind to telomeres, etc., and methods using them
Pensato et al. γ-Hydroxymethyl PNAs: Synthesis, interaction with DNA and inhibition of protein/DNA interactions
Eritja Solid-phase synthesis of modified oligonucleotides
JP2006075110A (en) New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient
Aviñó et al. Synthesis and structural properties of oligonucleotides covalently linked to acridine and quindoline derivatives through a threoninol linker
JP2005027569A (en) New dna conjugate and antisense agent with the same as active ingredient
US20210032282A1 (en) Nucleic acid complex, method for forming nucleic acid hybridization, pharmaceutical composition, nucleic acid probe, and complementary-strand nucleic acid complex
Carnero et al. The impact of an extended nucleobase-2′-deoxyribose linker in the biophysical and biological properties of oligonucleotides
Gaglione et al. Current methods in synthesis of cyclic oligonucleotides and analogues
Greco et al. Cytosine-rich oligonucleotides incorporating a non-nucleotide loop: A further step towards the obtainment of physiologically stable i-motif DNA
Engels et al. Chemistry of oligonucleotides