JP2006074335A - Transmission method, transmission system, and transmitter - Google Patents

Transmission method, transmission system, and transmitter Download PDF

Info

Publication number
JP2006074335A
JP2006074335A JP2004254082A JP2004254082A JP2006074335A JP 2006074335 A JP2006074335 A JP 2006074335A JP 2004254082 A JP2004254082 A JP 2004254082A JP 2004254082 A JP2004254082 A JP 2004254082A JP 2006074335 A JP2006074335 A JP 2006074335A
Authority
JP
Japan
Prior art keywords
transmission
interleaving
depth
signal
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254082A
Other languages
Japanese (ja)
Inventor
Shiyuuta Ueno
衆太 上野
Naoto Takahashi
直人 高橋
Ryutaro Omoto
隆太郎 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004254082A priority Critical patent/JP2006074335A/en
Publication of JP2006074335A publication Critical patent/JP2006074335A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission method, a transmission system, and a transmitter by which required transmission quality can be secured corresponding to the state of a transmission path, and a transmission delay can be minimized. <P>SOLUTION: The transmission method is for the transmission system including a first transmitter, which transmits transmission data by interleaving them after executing error correction encoding to them, and a second transmitter which executes error correction after de-interleaving a received signal from the first transmitter. The second transmitter detects the receiving quality of the received signal from the first transmitter, calculates an interleave depth on the basis of the detected receiving quality, transmits the calculated interleave depth as depth information after inserting it to a transmitting signal to the first transmitter, and de-interleaves with the calculated interleave depth. The first transmitter extracts the depth information which is inserted to the transmitting signal by the second transmitter, and interleaves with the interleave depth designated by the extracted depth information. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、誤り訂正とインタリーブを併用して、伝送品質を確保すると共に、伝送遅延を小さくする伝送方法、伝送システム及び伝送装置に関する。   The present invention relates to a transmission method, a transmission system, and a transmission apparatus that use both error correction and interleaving to ensure transmission quality and reduce transmission delay.

信号を無線により、光ファイバにより、或いは、DSLシステム等で用いられる銅線を使用して送信する場合に、伝送品質を所定の値以上とするため、誤り訂正符号が使用されている。更に、バースト誤りが生じた場合でも、誤り訂正ブロック内の誤りビット数を、誤り訂正能力以内に抑えることを目的とし、送信側において、誤り訂正ビットを付加した後に送信信号をインタリーブし、受信側において、誤り訂正処理前にデインタリーブすることが行われている。   When signals are transmitted wirelessly, by optical fiber, or using a copper wire used in a DSL system or the like, an error correction code is used to make the transmission quality equal to or higher than a predetermined value. Furthermore, even if a burst error occurs, the transmission side interleaves the transmission signal after adding the error correction bit on the transmission side, with the aim of suppressing the number of error bits in the error correction block within the error correction capability, and the reception side In FIG. 2, deinterleaving is performed before error correction processing.

以下、無線システムである場合を例にして説明を行う。図6は、従来の技術による無線伝送装置のブロック図である。符号化部1は、送信するデータに対して誤り訂正ビットの付加といった、所定の誤り訂正符号による符号化を行い、インタリーブ部2は、符号化部1からの符号化データのインタリーブ、即ち、順番の並び替えを行う。変調部3及び送信部4は、インタリーブ部2からのインタリーブされた信号を無線信号に変換し、前記無線信号はアンテナ5から対向装置へと送信される。   Hereinafter, a description will be given by taking the case of a wireless system as an example. FIG. 6 is a block diagram of a conventional wireless transmission apparatus. The encoding unit 1 performs encoding with a predetermined error correction code such as addition of error correction bits to the data to be transmitted, and the interleaving unit 2 interleaves the encoded data from the encoding unit 1, that is, the order. Sort the. The modulation unit 3 and the transmission unit 4 convert the interleaved signal from the interleaving unit 2 into a radio signal, and the radio signal is transmitted from the antenna 5 to the opposite device.

一方、受信側においては、アンテナ5が受信する無線信号を、受信部6及び復調部7が復調して、復調したデータをデインタリーブ部8に入力する。デインタリーブ部8は、入力されたデータをデインタリーブ、即ち、送信側のインタリーブ部2で並び替えが行われた符号化データを、元の順に並び替えを行う。復号化部9は、デインタリーブ部8で元の順へと並び替えられた符号化データについて誤り訂正処理を行う。   On the other hand, on the receiving side, the radio signal received by the antenna 5 is demodulated by the receiving unit 6 and the demodulating unit 7 and the demodulated data is input to the deinterleaving unit 8. The deinterleaving unit 8 deinterleaves the input data, that is, the encoded data that has been rearranged by the interleaving unit 2 on the transmission side is rearranged in the original order. The decoding unit 9 performs error correction processing on the encoded data rearranged in the original order by the deinterleaving unit 8.

図7(a)はインタリーブ動作を、(b)はデインタリーブ動作を説明する図である。簡単のためにインタリーブの深さが5ビット、長さが4ビットの場合を例にして説明する。図7(a)に示すように、送信側の入力データの順番(1、2、3、4、5、6、7、8、9、・・・)を、インタリーブ部2は、(1、5、9、13、17、2、6、10、14、・・・)と並び替える。伝送路の劣化により、1、5、9、13の連続4ビット(図7(b)において下線を引いたビット)に誤りが発生したものとする。受信側のデインタリーブ部8が、再度並び替えを行うことにより、伝送路上での連続4ビットの誤りは、4ビット毎に生じる1ビットの誤りへと分散化されることとなる。例えば使用している誤り訂正符号の誤り訂正能力が、4ビット毎に1ビットの誤り訂正である場合には、受信側の復号化部9において上記誤りは総て訂正可能となる。   FIG. 7A illustrates the interleaving operation, and FIG. 7B illustrates the deinterleaving operation. For the sake of simplicity, the case where the interleaving depth is 5 bits and the length is 4 bits will be described as an example. As shown in FIG. 7 (a), the interleaving unit 2 determines the order of input data on the transmission side (1, 2, 3, 4, 5, 6, 7, 8, 9,...) 5, 9, 13, 17, 2, 6, 10, 14,. It is assumed that an error has occurred in four consecutive bits of 1, 5, 9, and 13 (bits underlined in FIG. 7B) due to deterioration of the transmission path. When the deinterleaving unit 8 on the receiving side performs the rearrangement again, consecutive 4-bit errors on the transmission path are dispersed into 1-bit errors that occur every 4 bits. For example, when the error correction capability of the error correction code used is 1 bit error correction every 4 bits, all the above errors can be corrected in the decoding unit 9 on the receiving side.

上述したように、インタリーブは、伝送路上で生じるバースト誤りを分散化し、誤り訂正符号で誤り訂正できる確率を高める効果がある。   As described above, interleaving has the effect of dispersing burst errors that occur on the transmission path and increasing the probability of error correction using an error correction code.

インタリーブの深さは、伝送路上で発生するバースト誤りのバースト長に基づき設計され、インタリーブの長さは、誤り訂正符号のブロック長に基づき設計が行われる。尚、インタリーブ部の詳細については、特許文献1に開示されている。   The depth of interleaving is designed based on the burst length of a burst error that occurs on the transmission path, and the length of interleaving is designed based on the block length of the error correction code. The details of the interleaving unit are disclosed in Patent Document 1.

特開2001−24520号公報JP 2001-24520 A

伝送品質を確保するために、インタリーブ深さは、伝送路で生じるバースト誤りの最悪値に基づき設定が行われている。しかしインタリーブ深さを大きく設定することは、インタリーブ操作のためにバッファに蓄積するデータ量が増えることであり、その結果インタリーブ操作による遅延が増大する。これは、伝送品質が良好な状態においても、常に最悪値に基づく遅延が常に固定的に与えられていることを意味する。しかし、リアルタイム性が重視される音声、画像等の伝送では、伝送遅延は極力小さくすることが望ましい。   In order to ensure transmission quality, the interleaving depth is set based on the worst value of the burst error that occurs in the transmission path. However, setting the interleave depth large means that the amount of data stored in the buffer for the interleave operation increases, and as a result, the delay due to the interleave operation increases. This means that a delay based on the worst value is always fixedly provided even in a state where the transmission quality is good. However, it is desirable to reduce the transmission delay as much as possible in the transmission of audio, images, etc. where real-time characteristics are important.

図8は、無線伝送システムの受信電力の時間変動例を示す図である。図8は、無線伝播路上に樹木が存在し、その樹木が風等に揺られることで変動する受信電力を測定したものである。図8によると、風がある時間帯では、受信電力は激しく変動し、瞬間的に受信電力が大きく落ち込む場合があることが分かる。一方、風のない時間帯においては、受信電力は比較的安定している。インタリーブ深さを大きく設定することで、風がある時間帯においても所定の伝送品質を確保することが可能となるが、風のない時間帯においては、不必要に伝送品質を確保することで不必要な伝送遅延を与えていることになる。しかし、インタリーブ深さを小さく設定すると、風のない時間帯においては、伝送品質を確保しつつ伝送遅延を少なくすることができるが、風のある時間帯では必要な伝送品質を確保できなくなる。   FIG. 8 is a diagram illustrating an example of temporal variation in received power of the wireless transmission system. FIG. 8 shows a measurement of reception power that fluctuates when a tree exists on the wireless propagation path and the tree is shaken by wind or the like. According to FIG. 8, it can be seen that the received power fluctuates violently in a certain time zone with the wind, and the received power may drop greatly instantaneously. On the other hand, the received power is relatively stable in a time zone without wind. By setting the interleave depth to a large value, it is possible to ensure a predetermined transmission quality even in a time zone with wind, but it is not possible to ensure transmission quality unnecessarily in a time zone without wind. This gives the necessary transmission delay. However, if the interleaving depth is set small, the transmission delay can be reduced while ensuring the transmission quality in the windless time zone, but the necessary transmission quality cannot be ensured in the windy time zone.

従って、本発明は、伝送路の状態に応じて、必要な伝送品質を確保すると共に、伝送遅延を極力小さくする伝送方法、伝送システム及び伝送装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a transmission method, a transmission system, and a transmission apparatus that ensure necessary transmission quality according to the state of the transmission path and minimize transmission delay.

本発明における伝送方法によれば、
送信するデータに対して誤り訂正符号による符号化を行った後、インタリーブして送信する第1の伝送装置と、第1の伝送装置からの受信信号に対してデインタリーブを行った後、誤り訂正を行う第2の伝送装置とを含む伝送システムにおける伝送方法において、第2の伝送装置は、第1の伝送装置からの受信信号の受信品質を検出し、前記検出した受信品質に基づきインタリーブ深さを算出し、前記算出したインタリーブ深さを、深さ情報として第1の伝送装置への送信信号に挿入して送信し、前記算出したインタリーブ深さでデインタリーブを行い、第1の伝送装置は、第2の伝送装置が送信信号に挿入した前記深さ情報を抽出し、前記抽出した深さ情報で指定されたインタリーブ深さでインタリーブを行うことを特徴とする。
According to the transmission method of the present invention,
A first transmission apparatus that interleaves and transmits data after encoding data to be transmitted with an error correction code, and deinterleaves a received signal from the first transmission apparatus and then error correction. In the transmission method in the transmission system including the second transmission device that performs the transmission, the second transmission device detects the reception quality of the reception signal from the first transmission device, and the interleaving depth is based on the detected reception quality. The calculated interleaving depth is inserted into the transmission signal to the first transmission device as depth information and transmitted, and deinterleaving is performed at the calculated interleaving depth. The first transmission device The second transmission device extracts the depth information inserted into the transmission signal, and performs interleaving at an interleaving depth specified by the extracted depth information.

本発明の伝送方法における他の実施形態によれば、
第2の伝送装置は、送信するデータに対して誤り訂正符号による符号化を行った後、前記算出したインタリーブ深さでインタリーブして第1の伝送装置に送信し、第1の伝送装置は、第2の伝送装置からの受信信号に対して前記抽出した深さ情報で指定されたインタリーブ深さでデインタリーブを行った後、誤り訂正を行うことも好ましい。
According to another embodiment of the transmission method of the present invention,
The second transmission device encodes the data to be transmitted with an error correction code, then interleaves the calculated interleave depth and transmits the data to the first transmission device. The first transmission device It is also preferable to perform error correction after deinterleaving the received signal from the second transmission apparatus with the interleave depth specified by the extracted depth information.

本発明における伝送システムによれば、
送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、前記符号化手段からの符号化データをインタリーブして出力するインタリーブ手段とを有し、前記インタリーブした信号を送信する第1の伝送装置と、第1の伝送装置より受信する信号を入力とし、前記入力信号のデインタリーブを行うデインタリーブ手段と、デインタリーブされた信号の誤り訂正を行う復号化手段とを有する第2の伝送装置とを含む伝送システムにおいて、第2の伝送装置は、第1の伝送装置からの受信信号の受信品質を検出する手段と、前記検出した受信品質に基づき、インタリーブ深さを算出する深さ制御手段と、前記算出したインタリーブ深さを、深さ情報として送信信号に挿入する深さ情報挿入手段とを有し、第1の伝送装置は、第2の伝送装置が送信信号に挿入した前記深さ情報を抽出する手段を有し、第1の伝送装置のインタリーブ手段は、前記抽出した深さ情報で指定されたインタリーブ深さでインタリーブを行い、第2の伝送装置のデインターブ手段は、前記算出したインタリーブ深さでデインタリーブを行うことを特徴とする。
According to the transmission system of the present invention,
First means for transmitting the interleaved signal, comprising: encoding means for encoding data to be transmitted with an error correction code; and interleaving means for interleaving and outputting encoded data from the encoding means. A second transmission device having a signal received from the first transmission device as input and a deinterleaving means for deinterleaving the input signal; and a decoding means for correcting an error of the deinterleaved signal. In the transmission system including the transmission device, the second transmission device detects the reception quality of the received signal from the first transmission device, and the depth for calculating the interleaving depth based on the detected reception quality. Control means, and depth information insertion means for inserting the calculated interleave depth into the transmission signal as depth information, and the first transmission device includes the second transmission device. A device having means for extracting the depth information inserted into the transmission signal, wherein the interleaving means of the first transmission device performs interleaving at an interleave depth specified by the extracted depth information, and The deinterleaving means of the transmission apparatus performs deinterleaving with the calculated interleaving depth.

本発明の伝送システムにおける他の実施形態によれば、
第2の伝送装置は、第1の伝送装置に送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、前記符号化手段からの符号化データを前記算出したインタリーブ深さでインタリーブして出力するインタリーブ手段とを有し、第1の伝送装置は、第2の伝送装置から受信する信号を入力とし、前記抽出した深さ情報で指定されたインタリーブ深さで、前記入力信号のデインタリーブを行うデインタリーブ手段と、前記デインタリーブされた信号の誤り訂正を行う復号化手段とを有することも好ましい。
According to another embodiment of the transmission system of the present invention,
The second transmission device interleaves the data to be transmitted to the first transmission device using an error correction code, and interleaves the encoded data from the encoding device with the calculated interleave depth. And an interleaving means for outputting the received signal, and the first transmission device receives the signal received from the second transmission device as an input, and at the interleaving depth specified by the extracted depth information, It is also preferable to have deinterleaving means for performing deinterleaving and decoding means for correcting an error of the deinterleaved signal.

本発明による伝送装置は、前記伝送システムにおいて使用される。   The transmission apparatus according to the present invention is used in the transmission system.

伝送路の変動に応じてインタリーブ深さを可変とすることで、伝送路に適した誤り訂正能力を確保すると共に、極力伝送遅延を小さくすることができる。より詳しくは、伝送品質が劣化したときは、インタリーブ深さを大きく設定し、誤り訂正能力を高めて品質を確保し、伝送路状態が良好なときには、インタリーブ深さを小さく設定することで伝送遅延を小さくすることができる。   By making the interleaving depth variable according to the fluctuation of the transmission path, it is possible to secure an error correction capability suitable for the transmission path and reduce the transmission delay as much as possible. More specifically, when the transmission quality deteriorates, the transmission delay is set by increasing the interleaving depth to increase the error correction capability to ensure the quality, and when the transmission path condition is good, the interleaving depth is set small. Can be reduced.

本発明を実施するための最良の実施形態について、以下では図面を用いて詳細に説明する。以下の説明においては、無線伝送システム及び装置を例にして説明を行うが、本発明は、有線による伝送システムに対しても適用可能である。   The best mode for carrying out the present invention will be described in detail below with reference to the drawings. In the following description, a wireless transmission system and apparatus will be described as an example, but the present invention can also be applied to a wired transmission system.

図1は、本発明の第一実施形態による無線伝送装置のブロック図である。図1によると、無線伝送装置100と無線伝送装置101とが無線による通信を行っている。   FIG. 1 is a block diagram of a wireless transmission device according to a first embodiment of the present invention. According to FIG. 1, the wireless transmission device 100 and the wireless transmission device 101 perform wireless communication.

無線伝送装置100は、アンテナ5と、受信部6と、復調部7と、デインタリーブ部81と、複号化部9と、受信電力検出部10と、深さ制御部11と、符号化部1と、インタリーブ部2と、深さ情報挿入部12と、変調部3と、送信部4とを有する。   The wireless transmission device 100 includes an antenna 5, a receiving unit 6, a demodulating unit 7, a deinterleaving unit 81, a decoding unit 9, a received power detecting unit 10, a depth control unit 11, and an encoding unit. 1, an interleave unit 2, a depth information insertion unit 12, a modulation unit 3, and a transmission unit 4.

無線伝送装置101は、符号化部1と、インタリーブ部21と、変調部3と、送信部4と、アンテナ5と、受信部6と、復調部7と、深さ情報抽出部13と、デインタリーブ部8と、複号化部9とを有する。   The wireless transmission device 101 includes an encoding unit 1, an interleaving unit 21, a modulating unit 3, a transmitting unit 4, an antenna 5, a receiving unit 6, a demodulating unit 7, a depth information extracting unit 13, and a demultiplexing unit. It has an interleaving unit 8 and a decoding unit 9.

無線伝送装置100の受信電力検出部10は、受信部6がアンテナ5経由で受信する受信信号の受信電力を検出し、前記検出した受信電力を電圧に変換して、深さ制御部11に入力する。深さ制御部11は、所定の時間L内で、受信電力が連続して閾値R以下である時間を計測し、その計測した時間のうち最長の時間を、ビット長に変換し、この長さをインタリーブ深さ情報D1として算出する。ここで閾値Rは、そのシステムの最低受信感度のように、受信電力がこの値を下回ると受信データに誤りが生じるような品質規格値を用いる。   The reception power detection unit 10 of the wireless transmission device 100 detects reception power of a reception signal received by the reception unit 6 via the antenna 5, converts the detected reception power into a voltage, and inputs the voltage to the depth control unit 11. To do. The depth control unit 11 measures the time during which the received power is continuously equal to or less than the threshold value R within a predetermined time L, converts the longest time among the measured times into a bit length, and sets this length. Is calculated as interleave depth information D1. Here, as the threshold value R, a quality standard value that causes an error in received data when the received power falls below this value, such as the minimum receiving sensitivity of the system, is used.

図2は、深さ制御部の構成例を示す図であり、図3は、深さ情報算出例を説明する図である。図2によると、深さ制御部11は、識別回路14と、カウンタ回路15と、シフトレジスタ16と、比較判定回路17とを含む。   FIG. 2 is a diagram illustrating a configuration example of the depth control unit, and FIG. 3 is a diagram illustrating a depth information calculation example. According to FIG. 2, the depth control unit 11 includes an identification circuit 14, a counter circuit 15, a shift register 16, and a comparison determination circuit 17.

識別回路14は、受信電力検出部10からの入力信号に基づき、受信電力レベルが閾値R以下であるか否かの判定を行う。そして、図3(b)に示すように、閾値R以下の場合は“1”を、それ以外の場合は“0”を出力する。カウンタ回路15は、識別回路14からの入力の“1”の数をカウントし出力する。また、“0”が入力された場合は、カウンタ回路15は、0にリセットされる(図3(c)参照)。これにより、受信電力が閾値R以下となっている連続時間が計測される。図3の例では、閾値R以下の連続時間t1=2、t2=4、t3=3である。シフトレジスタ16は、長さLを有し、カウンタ回路15からの入力信号を順次シフトし、同時に、格納されているL個のデータを比較判定回路17に出力する。比較判定回路17は、シフトレジスタ16からのL個のデータの最大値を出力する。ただし、インタリーブの深さは1以上であるため、最大値が0である場合、つまり、L個のデータが総て0である場合は、1を出力する。図3(d)は、シフトレジスタの長さLが15である場合の比較判定回路17の出力を示している。上述したように、信号品質が低下する連続時間を計測し、これをバースト長に対応させてインタリーブ深さ情報としている。   The identification circuit 14 determines whether or not the received power level is equal to or less than the threshold value R based on the input signal from the received power detection unit 10. Then, as shown in FIG. 3B, “1” is output when the value is equal to or less than the threshold value R, and “0” is output otherwise. The counter circuit 15 counts and outputs the number of inputs “1” from the identification circuit 14. When “0” is input, the counter circuit 15 is reset to 0 (see FIG. 3C). Thereby, the continuous time when the received power is equal to or less than the threshold value R is measured. In the example of FIG. 3, the continuous time t1 = 2, t2 = 4, and t3 = 3 below the threshold R. The shift register 16 has a length L, sequentially shifts the input signal from the counter circuit 15, and outputs L pieces of stored data to the comparison determination circuit 17 at the same time. The comparison determination circuit 17 outputs the maximum value of L data from the shift register 16. However, since the depth of interleaving is 1 or more, 1 is output when the maximum value is 0, that is, when L data is all 0. FIG. 3D shows the output of the comparison determination circuit 17 when the length L of the shift register is 15. As described above, the continuous time during which the signal quality deteriorates is measured, and this is used as interleave depth information corresponding to the burst length.

図1に戻り、無線伝送装置100のデインタリーブ部81は、深さ制御部11からの深さ情報D1で指定されたインタリーブ深さで、復調部7からのデータのデインタリーブを行う。また、深さ制御部11からの深さ情報D1は、深さ情報挿入部12に入力され、深さ情報挿入部12は、深さ情報D1を送信信号に挿入して、変調部3及び送信部4を経由して対向する無線伝送装置101に送信する。   Returning to FIG. 1, the deinterleaving unit 81 of the wireless transmission device 100 deinterleaves the data from the demodulating unit 7 with the interleaving depth specified by the depth information D1 from the depth control unit 11. Also, the depth information D1 from the depth control unit 11 is input to the depth information insertion unit 12, and the depth information insertion unit 12 inserts the depth information D1 into the transmission signal, and the modulation unit 3 and the transmission The data is transmitted to the opposite wireless transmission apparatus 101 via the unit 4.

無線伝送装置101の深さ情報抽出部13は、復調部7より入力されるデータから、無線伝送装置100が送信した深さ情報D1を抽出し、インタリーブ部21に通知する。インタリーブ部21は、深さ情報D1で指定されたインタリーブ深さで、送信する符号化データのインタリーブを行う。   The depth information extraction unit 13 of the wireless transmission device 101 extracts the depth information D1 transmitted from the wireless transmission device 100 from the data input from the demodulation unit 7 and notifies the interleaving unit 21 of it. The interleaving unit 21 interleaves the encoded data to be transmitted with the interleaving depth specified by the depth information D1.

ここで、無線伝送装置100のデインタリーブ部81と、無線伝送装置101のインタリーブ部21は、インタリーブ深さの変更を同時に行う必要がある。これは、無線伝送装置100と、無線伝送装置101で、公知の方法により同期をとり変更することで可能となる。   Here, the deinterleaving unit 81 of the wireless transmission device 100 and the interleaving unit 21 of the wireless transmission device 101 need to change the interleaving depth at the same time. This can be achieved by changing the synchronization between the wireless transmission device 100 and the wireless transmission device 101 by a known method.

図4は、深さ情報信号のフォーマット例を示す図である。無線伝送装置100の深さ制御部11で算出した深さ情報D1を、送信データのヘッダ情報として挿入して無線伝送装置101に送信する。   FIG. 4 is a diagram illustrating a format example of the depth information signal. The depth information D1 calculated by the depth control unit 11 of the wireless transmission device 100 is inserted as header information of transmission data and transmitted to the wireless transmission device 101.

その他の機能ブロックでの動作は、既に説明したとおりであるので省略する。   The operations in the other functional blocks are the same as described above, and will be omitted.

以上、無線伝送装置101から無線伝送装置100への信号の伝送において、無線伝送装置100が、受信信号の受信品質状態に応じて、適切なインタリーブ深さを算出し、前記算出したインタリーブ深さを、無線伝送装置101に伝え、前記算出したインタリーブ深さにより信号伝送を行うことで、伝送路の状態に応じ、適応的に誤り訂正の能力と伝送遅延を変更することができる。   As described above, in signal transmission from the wireless transmission device 101 to the wireless transmission device 100, the wireless transmission device 100 calculates an appropriate interleaving depth according to the reception quality state of the received signal, and calculates the calculated interleaving depth. By transmitting the signal to the wireless transmission device 101 and performing signal transmission with the calculated interleave depth, it is possible to adaptively change the error correction capability and transmission delay according to the state of the transmission path.

図8に示すように、受信電力が時間変動する場合、信号品質が低下する時間帯は、通常数10sec以上継続するため、msec単位のフレーム毎に受信電力の変動を測定してインタリーブ深さを決定して、前記決定した値に設定変更することで、瞬時に伝送遅延と誤り訂正能力の最適化ができる。   As shown in FIG. 8, when the received power fluctuates over time, the time zone in which the signal quality is lowered usually lasts for several tens of seconds, so the fluctuation of the received power is measured for each frame in units of msec and the interleave depth is set. By determining and changing the setting to the determined value, transmission delay and error correction capability can be optimized instantaneously.

図5は、本発明の第二実施形態による無線伝送装置のブロック図である。第一実施形態との違いは、無線伝送装置200において、深さ制御部11で算出された深さ情報D2が無線伝送装置200のインタリーブ部21へも入力され、無線伝送装置201において、深さ情報抽出部13が抽出した深さ情報D2がデインタリーブ部81へも入力されていることである。無線伝送装置200のインタリーブ部21及び無線伝送装置201のデインタリーブ部81は、入力される深さ情報D2で指定されたインタリーブ深さで、それぞれ、インタリーブ、デインタリーブを行う。これにより、無線伝送装置200で算出した深さ情報D2により、無線伝送装置201から無線伝送装置200方向のインタリーブ深さのみならず、無線伝送装置200から無線伝送装置201方向のインタリーブ深さも動的に変更することが可能となる。   FIG. 5 is a block diagram of a wireless transmission device according to the second embodiment of the present invention. The difference from the first embodiment is that, in the wireless transmission device 200, the depth information D2 calculated by the depth control unit 11 is also input to the interleaving unit 21 of the wireless transmission device 200. This is that the depth information D2 extracted by the information extraction unit 13 is also input to the deinterleaving unit 81. The interleaving unit 21 of the wireless transmission device 200 and the deinterleaving unit 81 of the wireless transmission device 201 perform interleaving and deinterleaving, respectively, at the interleaving depth specified by the input depth information D2. Thereby, not only the interleaving depth from the wireless transmission device 201 to the wireless transmission device 200 but also the interleaving depth from the wireless transmission device 200 to the wireless transmission device 201 is dynamically determined based on the depth information D2 calculated by the wireless transmission device 200. It becomes possible to change to.

本実施形態は、時分割複信(TDD)方式のような双方向通信で、伝送方向の交替が短時間に行われ、その間の伝播路変動が少ない場合に有効である。   The present embodiment is effective when the transmission direction is switched in a short time in a bidirectional communication such as a time division duplex (TDD) system and there is little propagation path fluctuation during that time.

以上、受信電力に基づき、インタリーブ深さを動的に変更する例を用いて説明したが、受信電力のみならず、受信側で既知の信号を基に算出することができるS/N比や、バースト性の干渉雑音に対するS/I比、復号化部9で検出される訂正可能ビット数又は訂正不可ビット数といった、他の受信品質を評価できる値に基づきインタリーブ深さを動的に変更することも可能である。   As described above, the example in which the interleaving depth is dynamically changed based on the received power has been described. However, not only the received power but also the S / N ratio that can be calculated based on a known signal, Dynamically changing the interleaving depth based on other values that can evaluate received quality, such as the S / I ratio for bursty interference noise, the number of correctable bits detected by the decoding unit 9, or the number of uncorrectable bits. Is also possible.

本発明の第一実施形態による無線伝送装置のブロック図である。1 is a block diagram of a wireless transmission device according to a first embodiment of the present invention. 深さ制御部の構成例を示す図である。It is a figure which shows the structural example of a depth control part. 深さ情報算出例を説明する図である。It is a figure explaining the example of depth information calculation. 深さ情報信号のフォーマット例を示す図である。It is a figure which shows the example of a format of a depth information signal. 本発明の第二実施形態による無線伝送装置のブロック図である。It is a block diagram of the wireless transmission apparatus by 2nd embodiment of this invention. 従来の技術による無線伝送装置のブロック図である。It is a block diagram of the wireless transmission apparatus by a prior art. インタリーブ動作を説明する図である。It is a figure explaining an interleaving operation. 受信電力の時間変動例を示す図である。It is a figure which shows the example of a time fluctuation of received power.

符号の説明Explanation of symbols

1 符号化部
2、21 インタリーブ部
3 変調部
4 送信部
5 アンテナ
6 受信部
7 復調部
8、81 デインタリーブ部
9 復号化部
10 受信電力検出部
11 深さ制御部
12 深さ情報挿入部
13 深さ情報抽出部
14 識別回路
15 カウンタ回路
16 シフトレジスタ
17 比較判定回路
100、101、200,201 無線伝送装置
DESCRIPTION OF SYMBOLS 1 Coding part 2, 21 Interleaving part 3 Modulating part 4 Transmitting part 5 Antenna 6 Receiving part 7 Demodulating part 8, 81 Deinterleaving part 9 Decoding part 10 Received power detection part 11 Depth control part 12 Depth information insertion part 13 Depth information extraction unit 14 Identification circuit 15 Counter circuit 16 Shift register 17 Comparison determination circuit 100, 101, 200, 201 Wireless transmission device

Claims (9)

送信するデータに対して誤り訂正符号による符号化を行った後、インタリーブして送信する第1の伝送装置と、
第1の伝送装置からの受信信号に対してデインタリーブを行った後、誤り訂正を行う第2の伝送装置とを含む伝送システムにおける伝送方法において、
第2の伝送装置は、第1の伝送装置からの受信信号の受信品質を検出し、前記検出した受信品質に基づきインタリーブ深さを算出し、前記算出したインタリーブ深さを、深さ情報として第1の伝送装置への送信信号に挿入して送信し、前記算出したインタリーブ深さでデインタリーブを行い、
第1の伝送装置は、第2の伝送装置が送信信号に挿入した前記深さ情報を抽出し、前記抽出した深さ情報で指定されたインタリーブ深さでインタリーブを行うことを特徴とする伝送方法。
A first transmission device that performs interleaved transmission after encoding data to be transmitted with an error correction code;
In a transmission method in a transmission system including a second transmission device that performs error correction after deinterleaving a received signal from a first transmission device,
The second transmission device detects the reception quality of the received signal from the first transmission device, calculates an interleaving depth based on the detected reception quality, and uses the calculated interleaving depth as depth information. 1 inserted into the transmission signal to the transmission device 1 and transmitted, deinterleaved with the calculated interleaving depth,
The first transmission apparatus extracts the depth information inserted into the transmission signal by the second transmission apparatus, and performs interleaving at an interleaving depth specified by the extracted depth information. .
第2の伝送装置は、送信するデータに対して誤り訂正符号による符号化を行った後、前記算出したインタリーブ深さでインタリーブして第1の伝送装置に送信し、
第1の伝送装置は、第2の伝送装置からの受信信号に対して前記抽出した深さ情報で指定されたインタリーブ深さでデインタリーブを行った後、誤り訂正を行うことを特徴とする請求項1に記載の伝送方法。
The second transmission device encodes the data to be transmitted with an error correction code, and then interleaves the calculated interleave depth and transmits the data to the first transmission device.
The first transmission apparatus performs error correction after deinterleaving the received signal from the second transmission apparatus at an interleave depth specified by the extracted depth information. Item 2. The transmission method according to Item 1.
前記受信品質は、受信信号の受信電力であることを特徴とする請求項1又は2に記載の伝送方法。   The transmission method according to claim 1, wherein the reception quality is reception power of a reception signal. 送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、前記符号化手段からの符号化データをインタリーブして出力するインタリーブ手段とを有し、前記インタリーブした信号を送信する第1の伝送装置と、
第1の伝送装置より受信する信号を入力とし、前記入力信号のデインタリーブを行うデインタリーブ手段と、デインタリーブされた信号の誤り訂正を行う復号化手段とを有する第2の伝送装置とを含む伝送システムにおいて、
第2の伝送装置は、第1の伝送装置からの受信信号の受信品質を検出する手段と、前記検出した受信品質に基づき、インタリーブ深さを算出する深さ制御手段と、前記算出したインタリーブ深さを、深さ情報として送信信号に挿入する深さ情報挿入手段とを有し、
第1の伝送装置は、第2の伝送装置が送信信号に挿入した前記深さ情報を抽出する手段を有し、
第1の伝送装置のインタリーブ手段は、前記抽出した深さ情報で指定されたインタリーブ深さでインタリーブを行い、
第2の伝送装置のデインタリーブ手段は、前記算出したインタリーブ深さでデインタリーブを行うことを特徴とする伝送システム。
First means for transmitting the interleaved signal, comprising: encoding means for encoding data to be transmitted with an error correction code; and interleaving means for interleaving and outputting encoded data from the encoding means. A transmission device of
A second transmission device having a signal received from the first transmission device as input and having deinterleaving means for deinterleaving the input signal and decoding means for error correction of the deinterleaved signal In the transmission system,
The second transmission apparatus includes: means for detecting reception quality of a received signal from the first transmission apparatus; depth control means for calculating an interleaving depth based on the detected reception quality; and the calculated interleaving depth. Depth information insertion means for inserting the depth information into the transmission signal as depth information,
The first transmission device has means for extracting the depth information inserted into the transmission signal by the second transmission device,
The interleaving means of the first transmission device performs interleaving at an interleaving depth specified by the extracted depth information,
The deinterleaving means of the second transmission apparatus performs deinterleaving with the calculated interleaving depth.
第2の伝送装置は、第1の伝送装置に送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、前記符号化手段からの符号化データを前記算出したインタリーブ深さでインタリーブして出力するインタリーブ手段とを有し、
第1の伝送装置は、第2の伝送装置から受信する信号を入力とし、前記抽出した深さ情報で指定されたインタリーブ深さで、前記入力信号のデインタリーブを行うデインタリーブ手段と、前記デインタリーブされた信号の誤り訂正を行う復号化手段とを有することを特徴とする請求項4に記載の伝送システム。
The second transmission device interleaves the data to be transmitted to the first transmission device using an error correction code, and interleaves the encoded data from the encoding device with the calculated interleave depth. And interleaving means for outputting,
The first transmission device has a signal received from the second transmission device as an input, deinterleaving means for deinterleaving the input signal at an interleaving depth specified by the extracted depth information, and the deinterleaving means. 5. The transmission system according to claim 4, further comprising decoding means for correcting an error of the interleaved signal.
対向装置より受信する誤り訂正符号化後にインタリーブされた信号を入力とし、前記入力信号のデインタリーブを行うデインタリーブ手段と、
デインタリーブされた信号の誤り訂正を行う復号化手段とを有する伝送装置において、
対向装置からの受信信号の受信品質を検出する手段と、
前記検出した受信品質に基づき、インタリーブ深さを算出する深さ制御手段と、
前記算出したインタリーブ深さを、深さ情報として送信信号に挿入する深さ情報挿入手段とを有し、
デインタリーブ手段は、前記算出したインタリーブ深さでデインタリーブを行うことを特徴とする伝送装置。
Deinterleaving means for deinterleaving the input signal, using as input the signal interleaved after error correction coding received from the opposite device;
In a transmission apparatus having decoding means for correcting an error of a deinterleaved signal,
Means for detecting the reception quality of the received signal from the opposite device;
A depth control means for calculating an interleaving depth based on the detected reception quality;
Depth information insertion means for inserting the calculated interleave depth into the transmission signal as depth information;
The deinterleaving means performs deinterleaving with the calculated interleaving depth.
対向装置に送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、
前記符号化手段からの符号化データを、前記算出したインタリーブ深さでインタリーブして出力するインタリーブ手段とを有することを特徴とする請求項6に記載の伝送装置。
Encoding means for encoding data to be transmitted to the opposite apparatus using an error correction code;
The transmission apparatus according to claim 6, further comprising: an interleaving unit that interleaves the encoded data from the encoding unit with the calculated interleaving depth and outputs the interleaved unit.
対向装置に送信するデータに対して誤り訂正符号による符号化を行う符号化手段と、
前記符号化手段からの符号化データをインタリーブして出力するインタリーブ手段とを有し、前記インタリーブした信号を送信する伝送装置において、
対向装置からの受信信号に含まれる深さ情報を抽出する手段を有し、
インタリーブ手段は、前記抽出した深さ情報で指定されたインタリーブ深さでインタリーブを行うことを特徴とする伝送装置。
Encoding means for encoding data to be transmitted to the opposite apparatus using an error correction code;
Interleaving means for interleaving and outputting encoded data from the encoding means, and transmitting the interleaved signal,
Means for extracting depth information contained in the received signal from the opposing device;
The interleaving means performs interleaving at an interleaving depth specified by the extracted depth information.
対向装置より受信する誤り訂正符号化後にインタリーブされた信号を入力とし、前記抽出した深さ情報で指定されたインタリーブ深さで前記入力信号のデインタリーブを行うデインタリーブ手段と、
デインタリーブされた信号の誤り訂正を行う復号化手段とを有することを特徴とする請求項8に記載の伝送装置。
Deinterleaving means for deinterleaving the input signal at an interleave depth specified by the extracted depth information, with the signal interleaved after error correction coding received from the opposite device as an input;
9. The transmission apparatus according to claim 8, further comprising decoding means for correcting an error of the deinterleaved signal.
JP2004254082A 2004-09-01 2004-09-01 Transmission method, transmission system, and transmitter Pending JP2006074335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254082A JP2006074335A (en) 2004-09-01 2004-09-01 Transmission method, transmission system, and transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254082A JP2006074335A (en) 2004-09-01 2004-09-01 Transmission method, transmission system, and transmitter

Publications (1)

Publication Number Publication Date
JP2006074335A true JP2006074335A (en) 2006-03-16

Family

ID=36154484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254082A Pending JP2006074335A (en) 2004-09-01 2004-09-01 Transmission method, transmission system, and transmitter

Country Status (1)

Country Link
JP (1) JP2006074335A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324876A (en) * 2006-05-31 2007-12-13 Ntt Communications Kk Data transmitter, data receiver, data transmitting method, data receiving method, and program
JP2010535435A (en) * 2007-04-16 2010-11-18 デジタル ファウンテン, インコーポレイテッド Dynamic stream interleaving and substream-based delivery
USRE43741E1 (en) 2002-10-05 2012-10-16 Qualcomm Incorporated Systematic encoding and decoding of chain reaction codes
US8806050B2 (en) 2010-08-10 2014-08-12 Qualcomm Incorporated Manifest file updates for network streaming of coded multimedia data
US8887020B2 (en) 2003-10-06 2014-11-11 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US8918533B2 (en) 2010-07-13 2014-12-23 Qualcomm Incorporated Video switching for streaming video data
US8958375B2 (en) 2011-02-11 2015-02-17 Qualcomm Incorporated Framing for an improved radio link protocol including FEC
US9136983B2 (en) 2006-02-13 2015-09-15 Digital Fountain, Inc. Streaming and buffering using variable FEC overhead and protection periods
US9136878B2 (en) 2004-05-07 2015-09-15 Digital Fountain, Inc. File download and streaming system
US9185439B2 (en) 2010-07-15 2015-11-10 Qualcomm Incorporated Signaling data for multiplexing video components
US9191151B2 (en) 2006-06-09 2015-11-17 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9236976B2 (en) 2001-12-21 2016-01-12 Digital Fountain, Inc. Multi stage code generator and decoder for communication systems
US9237101B2 (en) 2007-09-12 2016-01-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US9240810B2 (en) 2002-06-11 2016-01-19 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
US9246633B2 (en) 1998-09-23 2016-01-26 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US9253233B2 (en) 2011-08-31 2016-02-02 Qualcomm Incorporated Switch signaling methods providing improved switching between representations for adaptive HTTP streaming
US9264069B2 (en) 2006-05-10 2016-02-16 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient uses of the communications systems
US9270414B2 (en) 2006-02-21 2016-02-23 Digital Fountain, Inc. Multiple-field based code generator and decoder for communications systems
US9270299B2 (en) 2011-02-11 2016-02-23 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US9281847B2 (en) 2009-02-27 2016-03-08 Qualcomm Incorporated Mobile reception of digital video broadcasting—terrestrial services
US9288010B2 (en) 2009-08-19 2016-03-15 Qualcomm Incorporated Universal file delivery methods for providing unequal error protection and bundled file delivery services
US9294226B2 (en) 2012-03-26 2016-03-22 Qualcomm Incorporated Universal object delivery and template-based file delivery
US9380096B2 (en) 2006-06-09 2016-06-28 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US9386064B2 (en) 2006-06-09 2016-07-05 Qualcomm Incorporated Enhanced block-request streaming using URL templates and construction rules
US9419749B2 (en) 2009-08-19 2016-08-16 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9432433B2 (en) 2006-06-09 2016-08-30 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9485546B2 (en) 2010-06-29 2016-11-01 Qualcomm Incorporated Signaling video samples for trick mode video representations
US9596447B2 (en) 2010-07-21 2017-03-14 Qualcomm Incorporated Providing frame packing type information for video coding
US9843844B2 (en) 2011-10-05 2017-12-12 Qualcomm Incorporated Network streaming of media data
US9917874B2 (en) 2009-09-22 2018-03-13 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
WO2021234891A1 (en) * 2020-05-21 2021-11-25 日本電信電話株式会社 Wireless communication system, wireless communication device, and wireless communication method

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246633B2 (en) 1998-09-23 2016-01-26 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US9236976B2 (en) 2001-12-21 2016-01-12 Digital Fountain, Inc. Multi stage code generator and decoder for communication systems
US9240810B2 (en) 2002-06-11 2016-01-19 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
USRE43741E1 (en) 2002-10-05 2012-10-16 Qualcomm Incorporated Systematic encoding and decoding of chain reaction codes
US9236885B2 (en) 2002-10-05 2016-01-12 Digital Fountain, Inc. Systematic encoding and decoding of chain reaction codes
US8887020B2 (en) 2003-10-06 2014-11-11 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US9236887B2 (en) 2004-05-07 2016-01-12 Digital Fountain, Inc. File download and streaming system
US9136878B2 (en) 2004-05-07 2015-09-15 Digital Fountain, Inc. File download and streaming system
US9136983B2 (en) 2006-02-13 2015-09-15 Digital Fountain, Inc. Streaming and buffering using variable FEC overhead and protection periods
US9270414B2 (en) 2006-02-21 2016-02-23 Digital Fountain, Inc. Multiple-field based code generator and decoder for communications systems
US9264069B2 (en) 2006-05-10 2016-02-16 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient uses of the communications systems
JP2007324876A (en) * 2006-05-31 2007-12-13 Ntt Communications Kk Data transmitter, data receiver, data transmitting method, data receiving method, and program
US11477253B2 (en) 2006-06-09 2022-10-18 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9178535B2 (en) 2006-06-09 2015-11-03 Digital Fountain, Inc. Dynamic stream interleaving and sub-stream based delivery
US9628536B2 (en) 2006-06-09 2017-04-18 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9191151B2 (en) 2006-06-09 2015-11-17 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9209934B2 (en) 2006-06-09 2015-12-08 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9432433B2 (en) 2006-06-09 2016-08-30 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9386064B2 (en) 2006-06-09 2016-07-05 Qualcomm Incorporated Enhanced block-request streaming using URL templates and construction rules
US9380096B2 (en) 2006-06-09 2016-06-28 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
JP2013042487A (en) * 2007-04-16 2013-02-28 Digital Fountain Inc Dynamic stream interleaving and sub-stream based delivery
JP2013031173A (en) * 2007-04-16 2013-02-07 Digital Fountain Inc Dynamic stream interleaving and sub-stream based delivery
KR101290965B1 (en) 2007-04-16 2013-07-30 디지털 파운튼, 인크. Dynamic stream interleaving and sub-stream based delivery
JP2010535435A (en) * 2007-04-16 2010-11-18 デジタル ファウンテン, インコーポレイテッド Dynamic stream interleaving and substream-based delivery
KR101275432B1 (en) * 2007-04-16 2013-06-14 디지털 파운튼, 인크. Dynamic stream interleaving and sub-stream based delivery
US9237101B2 (en) 2007-09-12 2016-01-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US9281847B2 (en) 2009-02-27 2016-03-08 Qualcomm Incorporated Mobile reception of digital video broadcasting—terrestrial services
US9876607B2 (en) 2009-08-19 2018-01-23 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9419749B2 (en) 2009-08-19 2016-08-16 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9288010B2 (en) 2009-08-19 2016-03-15 Qualcomm Incorporated Universal file delivery methods for providing unequal error protection and bundled file delivery services
US9660763B2 (en) 2009-08-19 2017-05-23 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9917874B2 (en) 2009-09-22 2018-03-13 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US10855736B2 (en) 2009-09-22 2020-12-01 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US11770432B2 (en) 2009-09-22 2023-09-26 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US11743317B2 (en) 2009-09-22 2023-08-29 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US9992555B2 (en) 2010-06-29 2018-06-05 Qualcomm Incorporated Signaling random access points for streaming video data
US9485546B2 (en) 2010-06-29 2016-11-01 Qualcomm Incorporated Signaling video samples for trick mode video representations
US8918533B2 (en) 2010-07-13 2014-12-23 Qualcomm Incorporated Video switching for streaming video data
US9185439B2 (en) 2010-07-15 2015-11-10 Qualcomm Incorporated Signaling data for multiplexing video components
US9596447B2 (en) 2010-07-21 2017-03-14 Qualcomm Incorporated Providing frame packing type information for video coding
US9602802B2 (en) 2010-07-21 2017-03-21 Qualcomm Incorporated Providing frame packing type information for video coding
US9456015B2 (en) 2010-08-10 2016-09-27 Qualcomm Incorporated Representation groups for network streaming of coded multimedia data
US9319448B2 (en) 2010-08-10 2016-04-19 Qualcomm Incorporated Trick modes for network streaming of coded multimedia data
US8806050B2 (en) 2010-08-10 2014-08-12 Qualcomm Incorporated Manifest file updates for network streaming of coded multimedia data
US8958375B2 (en) 2011-02-11 2015-02-17 Qualcomm Incorporated Framing for an improved radio link protocol including FEC
US9270299B2 (en) 2011-02-11 2016-02-23 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US9253233B2 (en) 2011-08-31 2016-02-02 Qualcomm Incorporated Switch signaling methods providing improved switching between representations for adaptive HTTP streaming
US9843844B2 (en) 2011-10-05 2017-12-12 Qualcomm Incorporated Network streaming of media data
US9294226B2 (en) 2012-03-26 2016-03-22 Qualcomm Incorporated Universal object delivery and template-based file delivery
WO2021234891A1 (en) * 2020-05-21 2021-11-25 日本電信電話株式会社 Wireless communication system, wireless communication device, and wireless communication method
JP7425366B2 (en) 2020-05-21 2024-01-31 日本電信電話株式会社 Wireless communication system, wireless communication device, and wireless communication method

Similar Documents

Publication Publication Date Title
JP2006074335A (en) Transmission method, transmission system, and transmitter
US5907563A (en) Error control method and apparatus for wireless data communication
KR100560712B1 (en) Information data multiplexing transmission system, multiplexer and demultiplexer used therefor, and error correcting encoder and decoder
US6160840A (en) Apparatus and methods for puncturing and recovering code in spread spectrum communication system
JP2002050996A (en) Communication system transmitting signals coded using block lengths comprising with integral multiple interrelation via communication transmission path
US8155247B2 (en) Message decoding with a priori information and soft combining
JP3613448B2 (en) Data transmission method, data transmission system, transmission device, and reception device
JPH09298526A (en) Method and device fro controlling error in data communication
KR20080055586A (en) Encoding method and apparatus using a low density parity check code
JP4247774B2 (en) Blind transport format detection method
US8615701B2 (en) Apparatus and method for indicating a packet error in an audio and video communication system
KR101367216B1 (en) Digital broadcast receiver and method thereof
US6332208B1 (en) Data transmitting apparatus and data transmitting method
US6883130B2 (en) Enhanced and adaptive error detection in digital communications
US20060198371A1 (en) Method and apparatus for analyzing reliability of a flag value
US7272131B2 (en) TFCI decoding circuit and decoding method
JP2004349763A (en) Code division multiple access receiving apparatus
US6952463B2 (en) Method of blind transport format detection based on power transition
JP3450788B2 (en) Decoding device and decoding processing method
JPH08204768A (en) Digital signal transmitter and receiver
US9183838B2 (en) Digital audio transmitter and receiver
JP4760397B2 (en) Wireless transmission system, wireless transmission device, and wireless transmission method used therefor
JP2001339466A (en) Variable-rate code receiving device
KR100450952B1 (en) Method and apparatus for receiving multiplexing packet data control channels
JP2006345475A (en) Network data transmission error detection/correction architecture and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407