JP2006060870A - Modulation method and wireless communication system - Google Patents

Modulation method and wireless communication system Download PDF

Info

Publication number
JP2006060870A
JP2006060870A JP2005310405A JP2005310405A JP2006060870A JP 2006060870 A JP2006060870 A JP 2006060870A JP 2005310405 A JP2005310405 A JP 2005310405A JP 2005310405 A JP2005310405 A JP 2005310405A JP 2006060870 A JP2006060870 A JP 2006060870A
Authority
JP
Japan
Prior art keywords
modulation
symbols
symbol
transmitter
signal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005310405A
Other languages
Japanese (ja)
Inventor
Yutaka Murakami
豊 村上
Masayuki Orihashi
雅之 折橋
Akihiko Matsuoka
昭彦 松岡
Morikazu Sagawa
守一 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005310405A priority Critical patent/JP2006060870A/en
Publication of JP2006060870A publication Critical patent/JP2006060870A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a data transmission amount from being reduced by having roles of data transmission as well as a pilot symbol in a digital modulation scheme used in wireless communication and a wireless communication system using the same. <P>SOLUTION: A PSK modulation method is periodically inserted into an octonary or more multi-level modulation method, and data are transmitted in the PSK modulation scheme and at the same time, a frequency offset amount and an amplitude distortion amount between a transmitter and a receiver are estimated at a demodulation side by an amplitude distortion amount estimation part 25 and a frequency offset amount estimation part 26 respectively, thereby the data transmission amount is suppressed from being reduced in comparison with a scheme wherein known data are used as a pilot symbol. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無線通信に用いられるディジタル変調方式と、それを用いた送信装置に関する。   The present invention relates to a digital modulation method used for wireless communication and a transmission apparatus using the same.

従来、ディジタル移動無線通信方式において準同期検波を行う際のパイロットシンボルに関する方法として知られているものがあった(例えば、特許文献1参照)。図26が従来の伝送される信号のフレームの構成を示しており、図26において、1フレームはN個のシンボルから構成されており、フレームの先頭に既知データからなるパイロットシンボルが2つ挿入されており、その後(N−2)個の情報シンボルが続いており、伝送される信号では、これが各フレーム毎に繰り返される。
特開平9−93302号公報
Conventionally, there has been known a method related to a pilot symbol when performing quasi-synchronous detection in a digital mobile radio communication system (see, for example, Patent Document 1). FIG. 26 shows a conventional frame structure of a signal to be transmitted. In FIG. 26, one frame is composed of N symbols, and two pilot symbols composed of known data are inserted at the head of the frame. Followed by (N-2) information symbols, which are repeated for each frame in the transmitted signal.
JP-A-9-93302

しかし、従来の方法はパイロットシンボルは既知のデータであるため、データ伝送量が低下するという欠点がある。   However, the conventional method has a drawback in that the amount of data transmission is reduced because pilot symbols are known data.

本発明は、8値以上の多値変調方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボルを用いてデータを伝送すると同時にパイロットシンボルとしての役割を持たせることによりデータ伝送量の低下を抑えることを目的とする。   The present invention inserts a PSK modulation system periodically into a multi-level modulation system of 8 or more values, transmits data using PSK modulation symbols, and simultaneously serves as a pilot symbol, thereby increasing the amount of data transmission. The purpose is to suppress the decrease of the.

この問題を解決するために本発明は、8値以上の多値変調方式の中に、定期的にPSK変調方式を挿入し、PSK変調方式のシンボル間では差動符号化して、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、準同期検波を行う。   In order to solve this problem, the present invention inserts a PSK modulation system periodically into a multi-level modulation system of 8 or more values, and differentially encodes between PSK modulation system symbols to transmit data. At the same time, quasi-synchronous detection is performed by using pilot symbols for estimating the frequency offset amount and amplitude distortion amount between the transmitter and the receiver on the demodulation side.

これにより、PSK変調方式によってデータが伝送されるため、既知のデータをパイロットシンボルとする方式と比較し、データ伝送量の低下を抑えることが可能となるという効果が得られる。   Thereby, since data is transmitted by the PSK modulation method, it is possible to suppress a decrease in the amount of data transmission compared to a method using known data as a pilot symbol.

以上のように本発明によれば、8値以上の多値変調方式の中に、定期的にPSK変調方式を挿入し、前記PSK変調方式のシンボル間では差動符号化することで、PSK変調方式においてデータを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとして準同期検波を行うことで、既知のデータをパイロットシンボルとする方式と比較し、データ伝送量の低下を抑えることができるという有利な効果が得られる。   As described above, according to the present invention, PSK modulation is performed by periodically inserting a PSK modulation scheme into a multi-level modulation scheme of 8 or more values and differentially encoding between symbols of the PSK modulation scheme. By performing quasi-synchronous detection as a pilot symbol for estimating the frequency offset amount and amplitude distortion amount between the transmitter and receiver on the demodulation side at the same time as transmitting data in the method, compared with a method using known data as a pilot symbol, An advantageous effect that a decrease in the amount of data transmission can be suppressed is obtained.

本発明は、無線通信に用いられ、第1の変調方式である多値直交変調方式(多値QAM;Quadrature Amplitude Modulation)に、規則的に第2の変調方式である位相変調(P
SK;Phase Shift keying)方式をパイロット信号として挿入する変調方式であって、前記第2の変調方式の信号に情報を付加するとともに、前記第1の変調方式の信号の振幅及び位相歪み量を、前記パイロット信号を用いて直接求めることを特徴とする変調方式であり、PSK変調方式において、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより準同期検波を行うことで、既知のデータをパイロットシンボルとする方式と比較し、データ伝送量の低下を抑えることができるという作用を有する。
The present invention is used for wireless communication, and a first modulation scheme, a multilevel orthogonal modulation scheme (multilevel QAM; Quadrature Amplitude Modulation), is regularly added to a second modulation scheme, phase modulation (P
SK (Phase Shift Keying) method is a modulation method in which a pilot signal is inserted, and information is added to the signal of the second modulation method, and the amplitude and phase distortion amount of the signal of the first modulation method are A modulation scheme characterized in that it is obtained directly using the pilot signal, and in the PSK modulation scheme, pilot symbols for estimating the frequency offset amount and the amplitude distortion amount between the transmitter and the receiver on the demodulation side at the same time as transmitting data Thus, by performing quasi-synchronous detection, it is possible to suppress a decrease in the amount of data transmission compared to a method using known data as a pilot symbol.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本実施の形態における無線通信システムの構成概念図である。図1において、10は送信機であり、11は送信ディジタル信号、12は直交ベースバンド変調部で、送信ディジタル信号11を入力して送信直交ベースバンド信号の同相成分13と直交成分14を出力し、この同相成分13と直交成分14を送信無線部15で送信信号16に変換し、アンテナ17から送信する。20は受信機であり、21はアンテナ、22は受信無線部で、アンテナで受信した信号を入力して受信直交ベースバンド信号の同相成分23と直交成分24を出力する。25は振幅歪み量推定部で、同相成分23と直交成分24を入力して、振幅歪み量を推定し、振幅歪み量推定信号27を出力する。26は周波数オフセット量推定部で、同相成分23と直交成分24を入力して、周波数オフセット量を推定し、周波数オフセット量推定信号28を出力する。29は準同期検波部で、同相成分23と直交成分24、及び振幅歪み量推定信号27と周波数オフセット量推定信号28を入力して、準同期検波を行い、受信ディジタル信号を出力する。
(Embodiment 1)
FIG. 1 is a conceptual diagram of a configuration of a radio communication system according to the present embodiment. In FIG. 1, 10 is a transmitter, 11 is a transmission digital signal, and 12 is a quadrature baseband modulation unit, which inputs the transmission digital signal 11 and outputs an in-phase component 13 and a quadrature component 14 of the transmission quadrature baseband signal. The in-phase component 13 and the quadrature component 14 are converted into a transmission signal 16 by the transmission radio unit 15 and transmitted from the antenna 17. Reference numeral 20 denotes a receiver, 21 denotes an antenna, and 22 denotes a reception radio unit, which inputs a signal received by the antenna and outputs an in-phase component 23 and a quadrature component 24 of the received quadrature baseband signal. An amplitude distortion amount estimation unit 25 receives the in-phase component 23 and the quadrature component 24, estimates the amplitude distortion amount, and outputs an amplitude distortion amount estimation signal 27. A frequency offset amount estimation unit 26 receives the in-phase component 23 and the quadrature component 24, estimates the frequency offset amount, and outputs a frequency offset amount estimation signal 28. A quasi-synchronous detection unit 29 receives the in-phase component 23 and the quadrature component 24, the amplitude distortion amount estimation signal 27 and the frequency offset amount estimation signal 28, performs quasi-synchronization detection, and outputs a received digital signal.

図2は、8値以上の多値変調方式の一例である8相PSK変調方式の同相I−直交Q平面における信号点配置を示し、図2において、101は8相PSK変調方式の信号点である。図3は、PSK変調方式の一例である二値位相変調(BPSK: Binary Phase Shift Keying)方式の同相I−直交Q平面における信号点配置を示し、図3において、201はBPSK変調方式の信号点である。図4は、8相PSK変調シンボルとBPSK変調シンボルのNシンボル内の構成の一例を示している。そして、図5は、差動符号化した際のBPSK変調方式の信号点の情報系列配置の一例を示している。図6(a)および(b)は直前のBPSK変調シンボルの信号点と8相PSK変調方式の信号点の情報系列の関係の一例であり、図6において、501はBPSK変調方式の信号点、502は8相PSK変調方式の信号点である。   FIG. 2 shows signal point arrangements in the in-phase I-orthogonal Q plane of the 8-phase PSK modulation system, which is an example of a multi-level modulation system with 8 levels or more. In FIG. is there. FIG. 3 shows a signal point arrangement on the in-phase I-orthogonal Q plane of the binary phase modulation (BPSK: Binary Phase Shift Keying) system which is an example of the PSK modulation system. In FIG. 3, reference numeral 201 denotes a signal point of the BPSK modulation system. It is. FIG. 4 shows an example of a configuration in N symbols of an 8-phase PSK modulation symbol and a BPSK modulation symbol. FIG. 5 shows an example of information sequence arrangement of signal points of the BPSK modulation method when differential encoding is performed. 6 (a) and 6 (b) are examples of the relationship between the signal points of the immediately preceding BPSK modulation symbol and the signal points of the 8-phase PSK modulation system, and in FIG. 6, reference numeral 501 denotes the signal point of the BPSK modulation system, Reference numeral 502 denotes an 8-phase PSK modulation signal point.

図1〜図6を用いて、8値以上の多値変調方式の中に、定期的にPSK変調方式を挿入する変調方式において、PSK変調シンボル間では差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   1 to 6, in a modulation scheme in which a PSK modulation scheme is periodically inserted into a multi-level modulation scheme of 8 or more values, differential encoding is performed between PSK modulation symbols, and a multi-level of 8 or more values is obtained. A modulation scheme in which an information sequence of modulation scheme signal points is arranged based on the signal point position of the immediately preceding PSK modulation symbol will be described.

図2は、同相I−直交Q平面における8相PSK変調方式の信号点101の配置を示しており、信号点101の配置位置は(数1)で表される。ただし、8相PSK変調方式の信号点101は(I8PSK,Q8PSK)で表し、kは整数、およびpは定数とする。   FIG. 2 shows the arrangement of signal points 101 of the 8-phase PSK modulation system in the in-phase I-orthogonal Q plane, and the arrangement position of the signal points 101 is expressed by (Equation 1). However, the signal point 101 of the 8-phase PSK modulation system is represented by (I8PSK, Q8PSK), k is an integer, and p is a constant.

Figure 2006060870
Figure 2006060870

図3は、同相I−直交Q平面におけるBPSK変調方式の信号点201の配置を示しており、信号点201の配置位置は(数2)で表される。ただし、BPSK変調方式の信号点201は(IBPSK,QBPSK)で表し、kは整数、およびrは定数とする。   FIG. 3 shows the arrangement of signal points 201 of the BPSK modulation method in the in-phase I-orthogonal Q plane, and the arrangement positions of the signal points 201 are expressed by (Equation 2). However, the signal point 201 of the BPSK modulation method is represented by (IBPSK, QBPSK), k is an integer, and r is a constant.

Figure 2006060870
Figure 2006060870

図4は、Nシンボル内における8相PSK変調シンボルとBPSK変調シンボルの構成の一例を示したものである。このとき、i番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図5のように定めることができる。   FIG. 4 shows an example of the configuration of 8-phase PSK modulation symbols and BPSK modulation symbols in N symbols. At this time, if the phase in the in-phase I-quadrature Q plane of the i-th BPSK modulation symbol is φi and the phase in the in-phase I-quadrature Q-plane of the i + N-th BPSK modulation symbol is φi + N, the i + N-th in the xy plane If the phase θi + N is (Equation 3), the information sequence can be determined by θi + N as shown in FIG.

Figure 2006060870
Figure 2006060870

図6は、直前のBPSK変調シンボルの信号点501と8相PSK変調方式の信号点502の情報系列の関係の一例を示したものである。i番目のBPSK変調シンボルの信号点501とi+1からi+N−1番目の8相PSK変調シンボルの信号点502の情報系列は、図6(a)または(b)のように、直前のBPSK変調シンボルの信号点によって8相PSK変調シンボルの信号点の情報系列が定まる。   FIG. 6 shows an example of the relationship between the information sequence of the signal point 501 of the immediately preceding BPSK modulation symbol and the signal point 502 of the 8-phase PSK modulation system. The information sequence of the signal point 501 of the i-th BPSK modulation symbol and the signal point 502 of the (i + 1) to (i + 1) to (i + N-1) -th 8-phase PSK modulation symbol is the previous BPSK modulation symbol as shown in FIG. The signal sequence of the signal points of the 8-phase PSK modulation symbol is determined by the signal points.

このように、8相PSK変調方式ではデータを伝送し、BPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の8相PSK変調シンボルとBPSK変調シンボルの構成は、図4に限ったものではない。また、8値以上の多値変調方式の例として8相PSK変調方式で説明したが、8値以上の多値変調方式はこれに限ったものではなく、PSK変調方式の例としてBPSK変調方式で説明したが、PSK変調方式はこれに限ったものではない。   In this way, data is transmitted in the 8-phase PSK modulation method, and data is transmitted in the BPSK modulation method. At the same time, the demodulation side estimates the frequency offset amount and amplitude distortion amount between the transmitter and the receiver as pilot symbols, and performs quasi-synchronous detection. . Here, the configuration of the 8-phase PSK modulation symbol and the BPSK modulation symbol in the N symbols is not limited to that shown in FIG. Further, although an 8-phase PSK modulation system has been described as an example of an 8-level or more multi-level modulation system, the 8-level or more multi-level modulation system is not limited to this, and an example of a PSK modulation system is a BPSK modulation system. As described above, the PSK modulation method is not limited to this.

以上のように本実施の形態によれば、8値以上の多値変調方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボル間では差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式で、PSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a PSK modulation system is periodically inserted into an 8-level or higher multi-level modulation system, differential encoding is performed between PSK modulation symbols, and a multi-level of 8 or higher levels. A modulation scheme in which an information sequence of modulation scheme signal points is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol. In the PSK modulation scheme, the frequency offset amount and amplitude distortion between the transmitter and the receiver are transmitted at the same time as data is transmitted. By using pilot symbols for estimating the amount of data, the amount of data transmission can be reduced without reducing the amount of data transmission compared to a method using known data as pilot symbols to estimate the amount of frequency offset and amplitude distortion between transmitters and receivers. Synchronous detection can be performed.

なお、本実施の形態では、PSK変調シンボル間で差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、PSK変調シンボル間で差動符号化したPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a system is described in which differential encoding is performed between PSK modulation symbols, and an information sequence of signal points of a multi-level modulation system of 8 or more values is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol. However, the same effect can be obtained by inserting PSK modulation symbols that are differentially encoded between PSK modulation symbols.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態2)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 2)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

図7は、8値以上の多値QAM方式の一例である22m値QAM方式の同相I−直交Q平面における信号点配置を示し、図7において、601は22m値QAM方式の信号点である。また、PSK変調方式の一例であるBPSK変調方式の同相I−直交Q平面における信号点配置は実施の形態1の図3と同様である。図8は16QAM方式の同相I−直交Q平面における信号点配置を示し、図8において、701は16QAM方式の信号点である。図9は、16QAMシンボルとBPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際のBPSK変調方式の信号点の情報系列配置の一例は実施の形態1の図5と同様である。図10(a)および(b)は直前のBPSK変調シンボルの信号点と16QAM方式の信号点の情報系列の関係の一例であり、図10において、901はBPSK変調方式の信号点、902は16QAM方式の信号点である。 7 shows a signal point arrangement in the phase I- quadrature Q plane 2 2m-QAM scheme, which is an example of a multi-level QAM system than 8 values, 7, 601 denotes a signal point of 2 2m-QAM scheme is there. Further, the signal point arrangement in the in-phase I-orthogonal Q plane of the BPSK modulation method which is an example of the PSK modulation method is the same as that in FIG. 3 of the first embodiment. FIG. 8 shows a signal point arrangement in the in-phase I-quadrature Q plane of the 16QAM system. In FIG. 8, reference numeral 701 denotes a signal point of the 16QAM system. FIG. 9 shows an example of a configuration in N symbols of 16QAM symbols and BPSK modulation symbols. An example of the information sequence arrangement of signal points of the BPSK modulation method when differential encoding is performed is the same as that in FIG. 5 of the first embodiment. FIGS. 10A and 10B are examples of the relationship between the signal sequence of the immediately preceding BPSK modulation symbol and the information sequence of 16QAM signal points. In FIG. 10, 901 is the signal point of the BPSK modulation method, and 902 is 16QAM. Signal point of the system.

図1、図3、図5、図7〜図10を用いて、8値以上の多値QAM方式の中に、定期的にPSK変調方式を挿入する変調方式において、PSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的にPSK変調方式を挿入する変調方式において、PSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   1, 3, 5, and 7 to 10, in a modulation scheme in which a PSK modulation scheme is periodically inserted in a multi-level QAM scheme of 8 or more values, a difference is generated between PSK modulation symbols. Encodes and periodically inserts PSK modulation system into modulation system in which information sequence of multi-point QAM system signal point of 8 or more values is arranged with reference to signal point position of immediately preceding PSK modulation symbol, or 16QAM system In this modulation scheme, a modulation scheme in which PSK modulation symbols are differentially encoded and an information sequence of 16QAM signal points is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol will be described.

図7は、同相I−直交Q平面における22m値QAM方式の信号点601の配置を示しており、信号点601の配置位置は(数4)で表される。ただし、22m値QAM方式の信号点401は(IQAM,QQAM)で表し、mは整数、(a1,b1),(a2,b2),・・・,(am,bm)は1,−1のバイナリ符号、rは定数とする。 FIG. 7 shows the arrangement of 22 m- value QAM signal points 601 in the in-phase I-quadrature Q plane, and the arrangement position of the signal points 601 is expressed by (Equation 4). However, the signal point 401 of 2 2m-QAM scheme is represented by (IQAM, QQAM), m is an integer, (a1, b1), ( a2, b2), ···, (am, bm) is 1, -1 Binary code, r is a constant.

Figure 2006060870
Figure 2006060870

図8は、同相I−直交Q平面における16QAM方式の信号点701の配置を示しており、信号点701の配置位置は(数5)で表される。ただし、16QAM方式の信号点701は(I16QAM,Q16QAM)で表し、(a1,b1),(a2,b2)は1,−1のバイナリ符号、sは定数とする。   FIG. 8 shows the arrangement of 16QAM signal points 701 in the in-phase I-quadrature Q plane, and the arrangement positions of the signal points 701 are expressed by (Equation 5). However, the signal point 701 of the 16QAM system is represented by (I16QAM, Q16QAM), (a1, b1), (a2, b2) are binary codes of 1, -1 and s is a constant.

Figure 2006060870
Figure 2006060870

また、BPSK変調方式の信号点配置は図3に示したもので、実施の形態1の説明と同様である。   Further, the signal point arrangement of the BPSK modulation method is as shown in FIG. 3, and is the same as that described in the first embodiment.

図9は、Nシンボル内における16QAMシンボルとBPSK変調シンボルの構成の一例を示したものである。このとき、i番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図5のように定めることができる。   FIG. 9 shows an example of the configuration of 16QAM symbols and BPSK modulation symbols in N symbols. At this time, if the phase in the in-phase I-quadrature Q plane of the i-th BPSK modulation symbol is φi and the phase in the in-phase I-quadrature Q-plane of the i + N-th BPSK modulation symbol is φi + N, the i + N-th in the xy plane If the phase θi + N is (Equation 3), the information sequence can be determined by θi + N as shown in FIG.

図10は、直前のBPSK変調シンボルの信号点901と16QAM方式の信号点902の情報系列の関係の一例を示したものである。i番目のBPSK変調シンボルの信号点901とi+1からi+N−1番目の16QAMシンボルの信号点902の情報系列は、図10(a)または図10(b)の2通りで表される。   FIG. 10 shows an example of the relationship between the information sequence of the signal point 901 of the immediately preceding BPSK modulation symbol and the signal point 902 of the 16QAM system. The information series of the signal point 901 of the i-th BPSK modulation symbol and the signal point 902 of the (i + 1) to (i + 1) to (i + N-1) -th 16QAM symbol are expressed in two ways as shown in FIG. 10 (a) or FIG. 10 (b).

このように、16QAM方式ではデータ伝送し、BPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の16QAMシンボルとBPSK変調シンボルの構成は、図9に限ったものではない。また、16QAM方式を例に説明したが、22m値QAM方式についても同様で、このとき8値以上の多値QAM方式は22m値QAM方式に限ったものではない。そして、PSK変調方式の例としてBPSK変調方式で説明したが、PSK変調方式はこれに限ったものではない。 In this way, data transmission is performed in the 16QAM system, and data is transmitted in the BPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and amplitude distortion amount between the transmitter and the receiver as pilot symbols, and performs quasi-synchronous detection. Here, the configuration of 16QAM symbols and BPSK modulation symbols in N symbols is not limited to that shown in FIG. Although the 16QAM system has been described as an example, the same applies to the 2 2m- value QAM system. At this time, the multi-value QAM system of 8 or more values is not limited to the 2 2m- value QAM system. The BPSK modulation method has been described as an example of the PSK modulation method, but the PSK modulation method is not limited to this.

以上のように本実施の形態によれば、8値以上の多値QAM方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式で、PSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a PSK modulation scheme is periodically inserted into a multilevel QAM scheme of eight or more values, differential encoding is performed between PSK modulation symbols, and a multilevel of eight or more values is obtained. A modulation system in which an information sequence of QAM system signal points is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol, or a PSK modulation system is periodically inserted into the 16QAM system, and differential between PSK modulation symbols. This is a modulation method in which an information sequence of 16QAM signal points is encoded and arranged with reference to the signal point position of the immediately preceding PSK modulation symbol. In the PSK modulation method, the frequency offset amount between the transmitter and the receiver is transmitted at the same time as the data is transmitted. And pilot symbols for estimating the amplitude distortion amount, the known data is passed to estimate the frequency offset amount and amplitude distortion amount between the transmitter and the receiver. Compared to method of the lot symbols can be performed quasi-synchronized detection without reducing the amount of data transmission.

なお、本実施の形態では、PSK変調シンボル間で差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する方式、あるいは16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれもPSK変調シンボル間では差動符号化したPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a differential encoding is performed between PSK modulation symbols, and a multi-level QAM signal point information sequence of eight or more values is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol, or In the above description, the 16QAM signal point information sequence is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol. However, in any case, if a differentially encoded PSK modulation symbol is inserted between PSK modulation symbols, An effect is obtained.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態3)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 3)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

図11は、同相I−直交Q平面において8値以上の多値QAM方式の信号点をπ/4ラジアン回転させた8値以上の多値QAM方式の一例である同相I−直交Q平面において22m値QAM方式の信号点をπ/4ラジアン回転させた22m値QAM方式の同相I−直交Q平面における信号点配置を示し、図11において、1001は前記22m値QAM方式の信号点である。また、PSK変調方式の一例であるBPSK変調方式の同相I−直交Q平面における信号点配置は実施の形態1の図3と同様である。図12は、同相I−直交Q平面において16QAM方式の信号点をπ/4ラジアン回転させた16QAM方式の同相I−直交Q平面における信号点配置を示し、図12において1101は前記16QAM方式の信号点である。前記16QAMシンボルとBPSK変調シンボルのNシンボル内の構成は、実施の形態2の図9と同様である。差動符号化した際のBPSK変調方式の信号点の情報系列配置の一例は実施の形態1の図5と同様である。図13(a)および(b)は直前のBPSK変調シンボルの信号点と前記16QAM方式の信号点の情報系列の関係の一例であり、図13において、1201はBPSK変調方式の信号点、1202は前記16QAM方式の信号点である。 FIG. 11 shows an example of an 8-phase or higher multi-level QAM system obtained by rotating a signal point of 8-level or higher multi-level QAM system by π / 4 radians on the in-phase I-quadrature Q plane. The signal point arrangement in the in-phase I-orthogonal Q plane of the 2 2m value QAM system obtained by rotating the signal point of the 2m value QAM system by π / 4 radians is shown. In FIG. 11, reference numeral 1001 denotes the signal point of the 2 2m value QAM system. is there. Further, the signal point arrangement in the in-phase I-orthogonal Q plane of the BPSK modulation method which is an example of the PSK modulation method is the same as that in FIG. 3 of the first embodiment. FIG. 12 shows a signal point arrangement on a 16QAM system in-phase I-quadrature Q plane obtained by rotating a 16QAM system signal point on the in-phase I-quadrature Q plane by π / 4 radians. In FIG. 12, reference numeral 1101 denotes the 16QAM system signal. Is a point. The configurations of the 16QAM symbols and BPSK modulation symbols in N symbols are the same as those in FIG. 9 of the second embodiment. An example of the information sequence arrangement of signal points of the BPSK modulation method when differential encoding is performed is the same as that in FIG. 5 of the first embodiment. FIGS. 13A and 13B show an example of the relationship between the signal point of the immediately preceding BPSK modulation symbol and the information sequence of the 16QAM signal point. In FIG. 13, 1201 is the signal point of the BPSK modulation method, 1202 This is a signal point of the 16QAM system.

図1、図3、図5、図9、図11〜13を用いて、前記8値以上の多値QAM方式の中に、定期的にPSK変調方式を挿入する変調方式において、PSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的にPSK変調方式を挿入する変調方式において、PSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   1, 3, 5, 9, and 11 to 13, in a modulation scheme in which a PSK modulation scheme is periodically inserted in the multilevel QAM scheme of 8 or more values, between PSK modulation symbols In the modulation scheme in which the information sequence of the signal points of the multi-level QAM scheme of 8 or more values is arranged based on the signal point position of the immediately preceding PSK modulation symbol, or the 16QAM scheme, is periodically encoded. In the modulation scheme in which the PSK modulation scheme is inserted, a modulation scheme in which differential encoding is performed between PSK modulation symbols and the information sequence of the 16QAM signal points is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol will be described.

図11は、同相I−直交Q平面における前記22m値QAM方式の信号点1001の配置を示しており、信号点1001の配置位置は(数6)で表される。ただし、前記22m値QAM方式の信号点1001は(IQAMR,QQAMR)で表し、(IQAM,QQAM)は(数4)で表され、nは整数とする。 FIG. 11 shows the arrangement of the signal point 1001 of the 22 m- value QAM system on the in-phase I-orthogonal Q plane, and the arrangement position of the signal point 1001 is expressed by (Equation 6). However, the signal point 1001 of the 2 2m value QAM system is represented by (IQAMR, QQAMR), (IQAM, QQAM) is represented by (Equation 4), and n is an integer.

Figure 2006060870
Figure 2006060870

図12は、同相I−直交Q平面における前記16QAM方式の信号点1101の配置を示しており、信号点1101の配置位置は(数7)で表される。ただし、前記16QAM方式の信号点1101は(I16QAMR,Q16QAMR)で表し、(I16QAM,Q16QAM)は(数5)で表され、nは整数とする。   FIG. 12 shows the arrangement of the 16QAM signal points 1101 on the in-phase I-orthogonal Q plane, and the arrangement positions of the signal points 1101 are expressed by (Expression 7). However, the signal point 1101 of the 16QAM system is represented by (I16QAMR, Q16QAMR), (I16QAM, Q16QAM) is represented by (Equation 5), and n is an integer.

Figure 2006060870
Figure 2006060870

また、BPSK変調方式の信号点配置は図3に示したもので、実施の形態1の説明と同様である。   Further, the signal point arrangement of the BPSK modulation method is as shown in FIG. 3, and is the same as that described in the first embodiment.

図9は、Nシンボル内における前記16QAMシンボルとBPSK変調シンボルの構成の一例を示したものである。このとき、i番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のBPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図5のように定めることができる。   FIG. 9 shows an example of the configuration of the 16QAM symbol and the BPSK modulation symbol in N symbols. At this time, if the phase in the in-phase I-quadrature Q plane of the i-th BPSK modulation symbol is φi and the phase in the in-phase I-quadrature Q-plane of the i + N-th BPSK modulation symbol is φi + N, the i + N-th in the xy plane If the phase θi + N is (Equation 3), the information sequence can be determined by θi + N as shown in FIG.

図13は、直前のBPSK変調シンボルの信号点1201と前記16QAM方式の信号点1202の情報系列の関係の一例を示したものである。i番目のBPSK変調シンボルの信号点1201とi+1からi+N−1番目の前記16QAMシンボルの信号点1202の情報系列は、図13(a)または図13(b)の2通りで表される。   FIG. 13 shows an example of the relationship between the information sequence of the signal point 1201 of the immediately preceding BPSK modulation symbol and the signal point 1202 of the 16QAM system. The information series of the signal point 1201 of the i-th BPSK modulation symbol and the signal point 1202 of the 16QAM symbol of the (i + 1) to (i + 1) to (i + N-1) -th are expressed in two ways as shown in FIG. 13 (a) or FIG. 13 (b).

このように、前記16QAM方式ではデータ伝送し、BPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の前記16QAMシンボルとBPSK変調シンボルの構成は、図9に限ったものではない。また、前記16QAM方式を例に説明したが、前記22m値QAM方式についても同様で、このとき前記8値以上の多値QAM方式は前記22m値QAM方式に限ったものではない。そして、PSK変調方式の例としてBPSK変調方式で説明したが、PSK変調方式はこれに限ったものではない。 In this way, data transmission is performed in the 16QAM system, and data is transmitted in the BPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and amplitude distortion amount between the transmitter and the receiver as pilot symbols, and performs quasi-synchronous detection. Here, the configurations of the 16QAM symbol and the BPSK modulation symbol in the N symbols are not limited to those in FIG. Although described the 16QAM scheme as an example, the same applies to the 2 2m-QAM scheme, multilevel QAM scheme or the 8 value this time is not limited to the 2 2m-QAM scheme. The BPSK modulation method has been described as an example of the PSK modulation method, but the PSK modulation method is not limited to this.

以上のように本実施の形態によれば、前記8値以上の多値QAM方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的にPSK変調方式を挿入し、PSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する変調方式で、PSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a PSK modulation scheme is periodically inserted into the multi-level QAM scheme of eight or more values, differential encoding is performed between PSK modulation symbols, and A modulation system in which an information sequence of signal points of a multilevel QAM system is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol, or a PSK modulation system is periodically inserted into the 16QAM system, and PSK modulation symbols Is a modulation system in which the 16QAM system signal point information sequence is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol. In the PSK modulation system, data is transmitted at the same time between the transmitter and the receiver. In order to estimate the frequency offset amount and amplitude distortion amount between the transmitter and receiver by using the pilot symbol for estimating the frequency offset amount and amplitude distortion amount of Known data in comparison with the method in which a pilot symbol, it is possible to perform quasi-synchronous detection without reducing the amount of data transmission.

なお、本実施の形態では、PSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する方式、あるいは前記16QAM方式の信号点の情報系列を直前のPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれもPSK変調シンボル間で差動符号化したPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a differential encoding is performed between PSK modulation symbols, and the information sequence of the signal points of the multilevel QAM scheme of 8 values or more is arranged with reference to the signal point position of the immediately preceding PSK modulation symbol, Alternatively, the 16QAM signal point information series has been described with reference to the signal point position of the immediately preceding PSK modulation symbol. However, in any case, a PSK modulation symbol differentially encoded between PSK modulation symbols may be inserted. Similar effects can be obtained.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態4)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 4)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

8値以上の多値変調方式の一例である8相PSK変調方式の同相I−直交Q平面における信号点配置は実施の形態1の図2と同様である。図14は、同相I−直交Q平面におけるQPSK変調方式の信号点配置を示し、図14において1301はQPSK変調方式の信号点である。図15は、8相PSK変調シンボルとQPSK変調シンボルのNシンボル内の構成の一例を示している。図16は、差動符号化した際QPSK変調方式の信号点の情報系列配置の一例を示している。   The signal point arrangement on the in-phase I-orthogonal Q plane of the 8-phase PSK modulation system, which is an example of a multi-level modulation system with 8 or more values, is the same as in FIG. 2 of the first embodiment. FIG. 14 shows the signal point arrangement of the QPSK modulation method in the in-phase I-orthogonal Q plane. In FIG. 14, reference numeral 1301 denotes the signal point of the QPSK modulation method. FIG. 15 shows an example of a configuration in N symbols of an 8-phase PSK modulation symbol and a QPSK modulation symbol. FIG. 16 shows an example of an information sequence arrangement of signal points of the QPSK modulation method when differential encoding is performed.

図17(a)、(b)、(c)および(d)は直前のQPSK変調シンボルの信号点と8相PSK変調方式の信号点の情報系列の関係の一例であり、図17において、1601はQPSK変調方式の信号点、1602は8相PSK変調方式の信号点である。   FIGS. 17A, 17B, 17C, and 17D are examples of the relationship between the information sequence of the signal point of the immediately preceding QPSK modulation symbol and the signal point of the 8-phase PSK modulation system. Is a signal point of the QPSK modulation system, and 1602 is a signal point of the 8-phase PSK modulation system.

図1、図2、図14〜図17を用いて、8値以上の多値変調方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   1, 2, and 14 to 17, in a modulation scheme in which a QPSK modulation scheme is periodically inserted in an 8-level or more multi-level modulation scheme, differential encoding is performed between QPSK modulation symbols, A modulation system in which an information sequence of signal points of an 8-level or more multi-level modulation system is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol will be described.

8相PSK変調方式の信号点配置は図2に示したとおりで、実施の形態1と同様である。   The signal point arrangement of the 8-phase PSK modulation method is as shown in FIG. 2 and is the same as in the first embodiment.

図14は、同相I−直交Q平面におけるQPSK変調方式の信号点1301の配置を示しており、信号点1301の配置位置は、(数8)で表される。ただし、QPSK変調方式の信号点1301は(IQPSK,QQPSK)で表し、kは整数、およびuは定数とする。   FIG. 14 shows the arrangement of signal points 1301 of the QPSK modulation method in the in-phase I-quadrature Q plane, and the arrangement position of the signal points 1301 is expressed by (Equation 8). However, the signal point 1301 of the QPSK modulation system is represented by (IQPSK, QQPSK), k is an integer, and u is a constant.

Figure 2006060870
Figure 2006060870

図15は、Nシンボル内における8相PSK変調シンボルとQPSK変調シンボルの構成の一例を示したものである。このとき、i番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 15 shows an example of the configuration of 8-phase PSK modulation symbols and QPSK modulation symbols in N symbols. At this time, assuming that the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, the i + N-th in the xy plane If the phase θi + N of (1) is (Equation 3), the information sequence can be defined by θi + N as shown in FIG.

図17は、直前のQPSK変調シンボルの信号点1601と8相PSK変調方式の信号点1602の情報系列の関係の一例を示したものである。i番目のQPSK変調シンボルの信号点1601とi+1からi+N−1番目の8相PSK変調シンボルの信号点1602の情報系列は、図17(a)、(b)、(c)または(d)のように、直前のQPSK変調シンボルの信号点によって8相PSK変調シンボルの信号点の情報系列が定まる。   FIG. 17 shows an example of the relationship between the information sequence of the signal point 1601 of the immediately preceding QPSK modulation symbol and the signal point 1602 of the 8-phase PSK modulation system. The information sequence of the signal point 1601 of the i-th QPSK modulation symbol and the signal point 1602 of the (i + 1) to (i + 1) to (i + N-1) -th 8-phase PSK modulation symbol is shown in FIG. 17 (a), (b), (c) or (d). Thus, the information sequence of the signal points of the 8-phase PSK modulation symbol is determined by the signal points of the immediately preceding QPSK modulation symbol.

このように、8相PSK変調方式ではデータを伝送し、QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の8相PSK変調シンボルとQPSK変調シンボルの構成は、図15に限ったものではない。また、8値以上の多値変調方式の例として8相PSK変調方式で説明したが、8値以上の多値変調方式はこれに限ったものではない。   As described above, in the 8-phase PSK modulation system, data is transmitted, and in the QPSK modulation system, data is transmitted, and at the same time, the frequency offset amount and the amplitude distortion amount between the transceivers are estimated as pilot symbols on the demodulation side, and quasi-synchronous detection is performed. . Here, the configuration of the 8-phase PSK modulation symbol and the QPSK modulation symbol in the N symbols is not limited to FIG. Further, although an eight-phase PSK modulation method has been described as an example of a multi-level modulation method with eight or more values, a multi-value modulation method with eight or more values is not limited to this.

以上のように本実施の形態によれば、8値以上の多値変調方式の中に、定期的にQPSK変調方式を挿入し、QPSK変調シンボル間では差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式で、QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a QPSK modulation scheme is periodically inserted into a multi-level modulation scheme of eight or more values, differential encoding is performed between QPSK modulation symbols, and a multi-level of eight or more values is obtained. A modulation method in which an information sequence of modulation signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation method, the frequency offset amount and amplitude distortion between the transmitter and the receiver are transmitted simultaneously with data transmission. By using pilot symbols for estimating the amount of data, the amount of data transmission can be reduced without reducing the amount of data transmission compared to a method using known data as pilot symbols to estimate the amount of frequency offset and amplitude distortion between transmitters and receivers. Synchronous detection can be performed.

なお、本実施の形態では、QPSK変調シンボル間で差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、QPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a system is described in which differential encoding is performed between QPSK modulation symbols, and an information sequence of signal points of a multilevel modulation scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. However, the same effect can be obtained by inserting a QPSK modulation symbol differentially encoded between QPSK modulation symbols.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態5)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 5)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

8値以上の多値QAM方式の一例である22m値QAM方式の同相I−直交Q平面における信号点配置は、実施の形態2の図7と同様である。また、QPSK変調方式の同相I−直交Q平面における信号点配置は、実施の形態4の図14と同様である。16QAM方式の同相I−直交Q平面における信号点配置は、実施の形態2の図8と同様である。図18は、16QAMシンボルとQPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際のQPSK変調方式の信号点の情報系列配置の一例は、実施の形態4の図16と同様である。 The signal point arrangement on the in-phase I-orthogonal Q plane of the 22 m- value QAM method, which is an example of a multi-value QAM method of 8 or more values, is the same as that of FIG. Further, the signal point arrangement in the in-phase I-quadrature Q plane of the QPSK modulation method is the same as that in FIG. 14 of the fourth embodiment. The signal point arrangement in the in-phase I-quadrature Q plane of the 16QAM system is the same as that in FIG. FIG. 18 shows an example of a configuration in N symbols of 16QAM symbols and QPSK modulation symbols. An example of the information sequence arrangement of signal points of the QPSK modulation method when differential encoding is performed is the same as that in FIG. 16 of the fourth embodiment.

図19(a)、(b)、(c)および(d)は直前のQPSK変調シンボルの信号点と16QAMの信号点の情報系列の関係の一例であり、図19において、1801はQPSK変調方式の信号点、1802は16QAM方式の信号点である。   19 (a), (b), (c) and (d) are examples of the relationship between the signal sequence of the immediately preceding QPSK modulation symbol and the 16QAM signal point. In FIG. 19, reference numeral 1801 denotes the QPSK modulation scheme. The signal point 1802 is a 16QAM signal point.

図1、図7、図8、図14、図16、図18、図19を用いて、8値以上の多値QAM方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   Referring to FIGS. 1, 7, 8, 14, 16, 18, and 19, in a modulation scheme in which a QPSK modulation scheme is periodically inserted into a multilevel QAM scheme of eight or more levels, It is differentially encoded between modulation symbols, and a modulation system in which an information sequence of signal points of a multilevel QAM system of 8 or more values is arranged on the basis of the signal point position of the immediately preceding QPSK modulation symbol, or periodically in the 16QAM system In the modulation scheme in which a QPSK modulation scheme is inserted, a modulation scheme is described in which differential encoding is performed between QPSK modulation symbols and an information sequence of 16QAM scheme signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol.

2m値QAM方式の信号点配置は図7に示したとおりで、実施の形態2の説明と同様である。16QAM方式の信号点配置は図8に示したとおりで、実施の形態2の説明と同様である。そして、QPSK変調方式の信号点配置は図14に示したとおりで、実施の形態4の説明と同様である。 The signal point arrangement of the 22 m- value QAM system is as shown in FIG. 7 and is the same as that described in the second embodiment. The signal point arrangement of the 16QAM system is as shown in FIG. 8, and is the same as that described in the second embodiment. The signal point arrangement of the QPSK modulation method is as shown in FIG. 14 and is the same as that described in the fourth embodiment.

図18は、Nシンボル内における16QAMシンボルとQPSK変調シンボルの構成の一例を示したものである。このとき、i番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 18 shows an example of the configuration of 16QAM symbols and QPSK modulation symbols in N symbols. At this time, assuming that the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, the i + N-th in the xy plane If the phase θi + N of (1) is (Equation 3), the information sequence can be defined by θi + N as shown in FIG.

図19は、直前のQPSK変調シンボルの信号点1801と16QAM方式の信号点1802の情報系列の関係の一例を示したものである。i番目のQPSK変調シンボルの信号点1801とi+1からi+N−1番目の16QAMシンボルの信号点1802の情報系列は図19(a)、(b)、(c)または(d)の4通りに定まるというように、直前のQPSK変調シンボルの信号点によって16QAMシンボルの信号点の情報系列が定まる。   FIG. 19 shows an example of the relationship between the information sequence of signal point 1801 of the immediately preceding QPSK modulation symbol and signal point 1802 of the 16QAM system. The information sequence of the signal point 1801 of the i-th QPSK modulation symbol and the signal point 1802 of the (i + 1) to (i + 1) to (i + N-1) -th 16QAM symbol is determined in four ways as shown in FIG. 19 (a), (b), (c) or (d). Thus, the information sequence of the signal points of 16QAM symbols is determined by the signal points of the immediately preceding QPSK modulation symbol.

このように、16QAM方式ではデータを伝送し、QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の16QAMシンボルとQPSK変調シンボルの構成は、図18に限ったものではない。また、16QAM方式を例に説明したが22m値QAM方式についても同様で、このとき8値以上の多値QAMは22m値QAM方式に限ったものではない。 As described above, data is transmitted in the 16QAM system, and data is transmitted in the QPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and the amplitude distortion amount between the transmitter and the receiver as pilot symbols, and performs quasi-synchronous detection. Here, the configuration of 16QAM symbols and QPSK modulation symbols in N symbols is not limited to that shown in FIG. Although the 16 QAM system has been described as an example, the same applies to the 2 2m- value QAM system. At this time, multi-value QAM of 8 values or more is not limited to the 2 2m- value QAM system.

以上のように本実施の形態によれば、8値以上の多値QAM方式の中に、定期的にQPSK変調方式を挿入し、QPSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式で、QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a QPSK modulation scheme is periodically inserted into a multilevel QAM scheme of 8 or more values, differential encoding is performed between QPSK modulation symbols, and a multilevel of 8 or more values is obtained. In a modulation system in which an information sequence of QAM signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, or in a modulation system in which a QPSK modulation system is periodically inserted into the 16 QAM system, between QPSK modulation symbols Is a modulation method in which an information sequence of 16QAM signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation method, data is transmitted at the same time between the transmitter and the receiver. By using pilot symbols to estimate frequency offset and amplitude distortion, frequency offset and amplitude distortion between transceivers Can be compared to the method in which a pilot symbol of known data in order to estimate, performs quasi-synchronous detection without reducing the amount of data transmission.

なお、本実施の形態では、QPSK変調シンボル間で差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する方式、あるいは16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれもQPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a method of differentially encoding between QPSK modulation symbols and arranging an information series of multi-level QAM signal points of 8 or more values with reference to the signal point position of the immediately preceding QPSK modulation symbol, or The 16QAM signal point information series has been described with reference to the signal point position of the immediately preceding QPSK modulation symbol. However, in any case, a QPSK modulation symbol differentially encoded between QPSK modulation symbols can be inserted. An effect is obtained.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態6)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 6)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

8値以上の多値変調方式の一例である8相PSK変調方式の同相I−直交Q平面における信号点配置は、実施の形態1の図2と同様である。図20は、同相I−直交Q平面において同相I軸および直交Q軸上に信号点をもつQPSK変調方式の信号点配置を示し、図20において1901は前記QPSK変調方式の信号点である。図15は、8相PSK変調シンボルと前記QPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際の前記QPSK変調方式の信号点の情報系列配置の一例は、実施の形態4の図16と同様である。図21(a)、(b)、(c)および(d)は直前の前記QPSK変調シンボルの信号点と8相PSK変調方式の信号点の情報系列の関係の一例であり、図21において、2001は前記QPSK変調方式の信号点、2002は8相PSK変調方式の信号点である。   The signal point arrangement in the in-phase I-orthogonal Q plane of the 8-phase PSK modulation system, which is an example of a multi-level modulation system with 8 or more values, is the same as in FIG. 2 of the first embodiment. FIG. 20 shows the signal point arrangement of the QPSK modulation method having signal points on the in-phase I axis and the orthogonal Q axis in the in-phase I-orthogonal Q plane. In FIG. 20, reference numeral 1901 denotes the signal point of the QPSK modulation method. FIG. 15 shows an example of a configuration in N symbols of an 8-phase PSK modulation symbol and the QPSK modulation symbol. An example of the information sequence arrangement of the signal points of the QPSK modulation method at the time of differential encoding is the same as FIG. 16 of the fourth embodiment. 21 (a), (b), (c) and (d) are examples of the relationship between the information sequence of the signal point of the immediately preceding QPSK modulation symbol and the signal point of the 8-phase PSK modulation system. 2001 is a signal point of the QPSK modulation system, and 2002 is a signal point of the 8-phase PSK modulation system.

図1、図2、図15、図16、図20、図21を用いて、8値以上の多値変調方式の中に、定期的に前記QPSK変調方式を挿入する変調方式において、前記QPSK変調シンボルでは差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   1, 2, 15, 16, 20, and 21, the QPSK modulation is performed in a modulation scheme in which the QPSK modulation scheme is periodically inserted into a multi-level modulation scheme having eight or more values. A modulation scheme in which symbols are differentially encoded and an information sequence of signal points of a multilevel modulation scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol will be described.

8相PSK変調方式の信号点配置は図2に示したとおりで、実施の形態1の説明と同様である。   The signal point arrangement of the 8-phase PSK modulation method is as shown in FIG. 2 and is the same as that described in the first embodiment.

図20は、同相I−直交Q平面における前記QPSK変調方式の信号点1901の配置を示しており、信号点1901の配置は、(数9)で表される。ただし、前記QPSK変調方式の信号点1901は(IQPSKR,QQPSKR)で表し、(IQPSK,QQPSK)は(数2)で表され、nは整数とする。   FIG. 20 shows an arrangement of the signal points 1901 of the QPSK modulation method in the in-phase I-quadrature Q plane, and the arrangement of the signal points 1901 is expressed by (Equation 9). However, the signal point 1901 of the QPSK modulation method is represented by (IQPSKR, QQPSKR), (IQPSK, QQPSK) is represented by (Expression 2), and n is an integer.

Figure 2006060870
Figure 2006060870

図15は、Nシンボル内における8相PSK変調シンボルと前記QPSK変調シンボルの構成の一例を示したものである。このとき、i番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 15 shows an example of the configuration of an 8-phase PSK modulation symbol and the QPSK modulation symbol in N symbols. At this time, if the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi, and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, then in the xy plane Assuming that the i + N-th phase θi + N is (Expression 3), the information sequence can be determined by θi + N as shown in FIG.

図21は、直前の前記QPSK変調シンボルの信号点2001と8相PSK変調方式の信号点2002の情報系列の関係の一例を示したものである。i番目の前記QPSK変調シンボルの信号点2001とi+1からi+N−1番目の8相PSK変調シンボルの信号点2002の情報系列は、図21(a)、(b)、(c)または(d)のように、直前の前記QPSK変調シンボルの信号点によって8相PSK変調シンボルの信号点の情報系列が定まる。   FIG. 21 shows an example of the relationship between the information sequence of the signal point 2001 of the immediately preceding QPSK modulation symbol and the signal point 2002 of the 8-phase PSK modulation system. The information sequence of the signal point 2001 of the i-th QPSK modulation symbol and the signal point 2002 of the (i + 1) to (i + 1) to (i + N-1) -th 8-phase PSK modulation symbol is shown in FIG. 21 (a), (b), (c) or (d). As described above, the information sequence of the signal points of the 8-phase PSK modulation symbol is determined by the signal points of the immediately preceding QPSK modulation symbol.

このように、8相PSK変調方式ではデータを伝送し、前記QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の8相PSK変調シンボルと前記QPSK変調シンボルの構成は図15に限ったものではない。また、8値以上の多値変調方式の例として8相PSK変調方式で説明したが、8値以上の多値変調方式はこれに限ったものではない。   In this way, data is transmitted in the 8-phase PSK modulation method, and data is transmitted in the QPSK modulation method. At the same time, the demodulation side estimates the frequency offset amount and the amplitude distortion amount between the transceivers as pilot symbols, and performs quasi-synchronous detection. Do. Here, the configuration of the 8-phase PSK modulation symbol in the N symbols and the QPSK modulation symbol is not limited to that shown in FIG. Further, although an eight-phase PSK modulation method has been described as an example of a multi-level modulation method with eight or more values, a multi-value modulation method with eight or more values is not limited to this.

以上のように本実施の形態によれば、8値以上の多値変調方式の中に、定期的に前記QPSK変調方式を挿入し、前記QPSK変調シンボル間では差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式で、前記QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, the QPSK modulation scheme is periodically inserted into the multi-level modulation scheme of eight or more values, differential encoding is performed between the QPSK modulation symbols, and eight or more values are coded. A modulation scheme in which an information sequence of signal points of a multi-level modulation scheme is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation scheme, a frequency offset between a transmitter and a transmitter is simultaneously transmitted on the demodulation side. By using pilot symbols to estimate the amount and amplitude distortion, the amount of data transmission is reduced compared to the method using known data as pilot symbols to estimate the frequency offset and amplitude distortion between the transceivers Quasi-synchronous detection can be performed without doing so.

なお、本実施の形態では、前記QPSK変調シンボル間で差動符号化し、8値以上の多値変調方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、前記QPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a differential encoding is performed between the QPSK modulation symbols, and an information sequence of signal points of a multilevel modulation scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. However, the same effect can be obtained by inserting QPSK modulation symbols differentially encoded between the QPSK modulation symbols.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態7)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 7)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

8値以上の多値QAM方式の一例である22m値QAM方式の同相I−直交Q平面における信号点配置は、実施の形態2の図7と同様である。同相I−直交Q平面において同相I軸および直交Q軸上に信号点をもつQPSK変調方式の信号点配置は、実施の形態6の図20と同様である。16QAM方式の同相I−直交Q平面における信号点配置は、実施の形態2の図8と同様である。図18は、16QAMシンボルと前記QPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際の前記QPSK変調方式の信号点の情報系列配置の一例は、実施の形態4の図16と同様である。図22(a)、(b)、(c)および(d)は直前の前記QPSK変調シンボルの信号点と16QAMの信号点の情報系列の関係の一例であり、図22において、2101は前記QPSK変調方式の信号点、2102は16QAM方式の信号点である。 The signal point arrangement on the in-phase I-orthogonal Q plane of the 22 m- value QAM method, which is an example of a multi-value QAM method of 8 or more values, is the same as that of FIG. The signal point arrangement of the QPSK modulation method having signal points on the in-phase I axis and the orthogonal Q axis in the in-phase I-orthogonal Q plane is the same as that in FIG. 20 of the sixth embodiment. The signal point arrangement in the in-phase I-quadrature Q plane of the 16QAM system is the same as that in FIG. FIG. 18 shows an example of a configuration in N symbols of 16QAM symbols and the QPSK modulation symbols. An example of the information sequence arrangement of the signal points of the QPSK modulation method at the time of differential encoding is the same as FIG. 16 of the fourth embodiment. 22 (a), (b), (c), and (d) are examples of the relationship between the information sequence of the signal point of the immediately preceding QPSK modulation symbol and the signal point of 16QAM. In FIG. 22, 2101 indicates the QPSK. Modulation signal points 2102 are 16QAM signal points.

図1、図7、図8、図16、図18、図20、図22を用いて、8値以上の多値QAM方式の中に、定期的に前記QPSK変調方式を挿入する変調方式において、前記QPSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的に前記QPSK変調方式を挿入する変調方式において、前記QPSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   In the modulation scheme in which the QPSK modulation scheme is periodically inserted into the multi-level QAM scheme of 8 or more values using FIG. 1, FIG. 7, FIG. 8, FIG. 16, FIG. 18, FIG. Among the QPSK modulation symbols, differential encoding is performed, and an information sequence of multi-level QAM system signal points of 8 or more values is arranged based on the signal point position of the immediately preceding QPSK modulation symbol, or 16QAM system In the modulation scheme in which the QPSK modulation scheme is periodically inserted, differential encoding is performed between the QPSK modulation symbols, and an information sequence of 16QAM scheme signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol The modulation method will be described.

2m値QAM方式の信号点配置は図7に示したとおりで、実施の形態2の説明と同様である。16QAM方式の信号点配置は図8に示したとおりで、実施の形態2の説明と同様である。前記QPSK変調方式の信号点配置は図20に示したとおりで、実施の形態6の説明と同様である。 The signal point arrangement of the 22 m- value QAM system is as shown in FIG. 7 and is the same as that described in the second embodiment. The signal point arrangement of the 16QAM system is as shown in FIG. 8, and is the same as that described in the second embodiment. The signal point arrangement of the QPSK modulation method is as shown in FIG. 20, and is the same as that described in the sixth embodiment.

図18は、Nシンボル内における16QAMシンボルと前記QPSK変調シンボルの構成の一例を示したものである。このとき、i番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相をθi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 18 shows an example of the configuration of 16QAM symbols and QPSK modulation symbols in N symbols. At this time, if the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi, and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, then in the xy plane When the i + N-th phase is θi + N (Equation 3), the information sequence can be determined by θi + N as shown in FIG.

図22は、直前の前記QPSK変調シンボルの信号点2101と16QAM方式の信号点2102の情報系列の関係の一例を示したものである。i番目の前記QPSK変調シンボルの信号点2101とi+1からi+N−1番目の16QAMシンボルの信号点2102の情報系列は、図22(a)、(b)、(c)または(d)のように、直前の前記QPSK変調シンボルの信号点によって16QAMシンボルの信号点の情報系列が定まる。   FIG. 22 shows an example of the relationship between the information sequence of the signal point 2101 of the immediately preceding QPSK modulation symbol and the signal point 2102 of the 16QAM system. The information sequence of the signal point 2101 of the i-th QPSK modulation symbol and the signal point 2102 of the (i + 1) to (i + 1) to (i + N-1) -th 16QAM symbols is as shown in FIG. 22 (a), (b), (c) or (d). The information sequence of 16QAM symbol signal points is determined by the signal point of the immediately preceding QPSK modulation symbol.

このように、16QAM方式ではデータを伝送し、前記QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の16QAMシンボルと前記QPSK変調シンボルの構成は図18に限ったものではない。また、16QAM方式を例に説明したが22m値QAM方式についても同様で、このとき8値以上の多値QAMは22m値QAM方式に限ったものではない。 In this way, data is transmitted in the 16QAM system, and data is transmitted in the QPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and amplitude distortion amount between the transmitter and the receiver as pilot symbols, and performs quasi-synchronous detection. Here, the configuration of the 16QAM symbols in the N symbols and the QPSK modulation symbols is not limited to that shown in FIG. Although the 16 QAM system has been described as an example, the same applies to the 2 2m- value QAM system. At this time, multi-value QAM of 8 values or more is not limited to the 2 2m- value QAM system.

以上のように本実施の形態によれば、8値以上の多値QAM方式の中に、定期的に前記QPSK変調方式を挿入し、前記QPSK変調シンボル間では差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは16QAM方式の中に、定期的に前記QPSK変調方式を挿入し、前記QPSK変調シンボル間では差動符号化し、16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式で、前記QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, the QPSK modulation scheme is periodically inserted into the multi-level QAM scheme of eight or more values, differential encoding is performed between the QPSK modulation symbols, and eight or more values are used. The QPSK modulation scheme is periodically inserted into a modulation scheme in which an information sequence of signal points of a multilevel QAM scheme is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, or the 16QAM scheme, and the QPSK modulation This is a modulation method in which a differential encoding is performed between symbols and an information sequence of 16QAM signal points is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation method, data is transmitted and simultaneously demodulated. By using pilot symbols for estimating the frequency offset and amplitude distortion between the transceivers, the frequency offset between the transceivers and Compared to method of the pilot symbol known data to estimate the amplitude distortion amount, it is possible to perform quasi-synchronous detection without reducing the amount of data transmission.

なお、本実施の形態では、前記QPSK変調シンボル間で差動符号化し、8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する方式、あるいは16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれも前記QPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a differential encoding is performed between the QPSK modulation symbols, and an information sequence of multi-level QAM system signal points of eight or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. Alternatively, the description has been given of the method in which the information sequence of 16QAM signal points is arranged based on the signal point position of the immediately preceding QPSK modulation symbol. In either case, a QPSK modulation symbol differentially encoded between the QPSK modulation symbols is inserted. The same effect can be obtained.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態8)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 8)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

同相I−直交Q平面において8値以上の多値QAM方式の信号点をπ/4ラジアン回転させた8値以上の多値QAM方式の一例である同相I−直交Q平面において22m値QAM方式の信号点をπ/4ラジアン回転させた22m値QAM方式の同相I−直交Q平面における信号点配置は、実施の形態3の図11と同様である。同相I−直交Q平面におけるQPSK変調方式の信号点配置は、実施の形態4の図14と同様である。同相I−直交Q平面において16QAM方式の信号点をπ/4ラジアン回転させた16QAM方式の同相I−直交Q平面における信号点配置は、実施の形態3の図12と同様である。図18は、前記16QAMシンボルとQPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際のQPSK変調方式の信号点の情報系列配置の一例は、実施の形態4の図16と同様である。図23(a)、(b)、(c)および(d)は直前のQPSK変調シンボルの信号点と前記16QAMの信号点の情報系列の関係の一例であり、図23において、2201はQPSK変調方式の信号点、2202は前記16QAM方式の信号点である。 In the in-phase I-orthogonal Q plane, a 22 m- value QAM system is used in the in-phase I-orthogonal Q plane, which is an example of the 8-level or more multi-level QAM system obtained by rotating a signal point of the 8-level or more multi-level QAM system by π / 4 radians. The signal point arrangement in the in-phase I-orthogonal Q plane of the 22 m- value QAM system obtained by rotating the signal point of π / 4 radians is the same as in FIG. 11 of the third embodiment. The signal point arrangement of the QPSK modulation method in the in-phase I-orthogonal Q plane is the same as in FIG. 14 of the fourth embodiment. The signal point arrangement on the in-phase I-orthogonal Q plane of the 16QAM system obtained by rotating the 16QAM system signal points by π / 4 radians on the in-phase I-orthogonal Q plane is the same as that of FIG. FIG. 18 shows an example of a configuration in N symbols of the 16QAM symbol and the QPSK modulation symbol. An example of the information sequence arrangement of signal points of the QPSK modulation method when differential encoding is performed is the same as that in FIG. 16 of the fourth embodiment. 23 (a), (b), (c), and (d) are examples of the relationship between the signal sequence of the immediately preceding QPSK modulation symbol and the information sequence of the 16QAM signal point. In FIG. 23, 2201 indicates QPSK modulation. Signal points of the system 2202 are signal points of the 16QAM system.

図1、図11、図12、図14、図16、図18、図23を用いて、前記8値以上の多値QAM方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的にQPSK変調方式を挿入する変調方式において、QPSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   In the modulation scheme in which a QPSK modulation scheme is periodically inserted into the multilevel QAM scheme of 8 or more values using FIG. 1, FIG. 11, FIG. 12, FIG. 14, FIG. QPSK modulation symbols are differentially encoded, and the modulation system in which the information sequence of the signal points of the multi-level QAM scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, or the 16QAM scheme In a modulation system that periodically inserts a QPSK modulation system, a modulation system that differentially encodes between QPSK modulation symbols and places an information sequence of signal points of the 16QAM system on the basis of the signal point position of the immediately preceding QPSK modulation symbol Will be described.

前記22m値QAM方式の信号点配置は図11に示したとおりで、実施の形態3の説明と同様である。前記16QAM方式の信号点配置は図12に示したとおりで、実施の形態3の説明と同様である。QPSK変調方式の信号点配置は、図14に示したとおりで、実施の形態4の説明と同様である。 The signal point arrangement of the 22 m- value QAM system is as shown in FIG. 11 and is the same as that described in the third embodiment. The signal point arrangement of the 16QAM system is as shown in FIG. 12, and is the same as that described in the third embodiment. The signal point arrangement of the QPSK modulation method is as shown in FIG. 14 and is the same as that described in the fourth embodiment.

図18は、Nシンボル内における前記16QAMシンボルとQPSK変調シンボルの構成の一例を示したものである。このとき、i番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目のQPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 18 shows an example of the configuration of the 16QAM symbol and the QPSK modulation symbol in N symbols. At this time, assuming that the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, the i + N-th in the xy plane If the phase θi + N of (1) is (Equation 3), the information sequence can be defined by θi + N as shown in FIG.

図23は、直前のQPSK変調シンボルの信号点2201と前記16QAM方式の信号点2202の情報系列の関係の一例を示したものである。i番目のQPSK変調シンボルの信号点2201とi+1からi+N−1番目の前記16QAMシンボルの信号点2202の情報系列は、図23(a)、(b)、(c)または(d)のように、直前のQPSK変調シンボルの信号点によって前記16QAMシンボルの信号点の情報系列が定まる。   FIG. 23 shows an example of the relationship between the information sequence of the signal point 2201 of the immediately preceding QPSK modulation symbol and the signal point 2202 of the 16QAM system. The information series of the signal point 2201 of the i-th QPSK modulation symbol and the signal point 2202 of the 16QAM symbol of the (i + 1) to (i + 1) to (i + N) -th are as shown in FIG. 23 (a), (b), (c) or (d). The information sequence of the signal point of the 16QAM symbol is determined by the signal point of the immediately preceding QPSK modulation symbol.

このように、前記16QAM方式ではデータを伝送し、QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の前記16QAMシンボルとQPSK変調シンボルの構成は図18に限ったものではない。また、前記16QAM方式を例に説明したが前記22m値QAM方式についても同様で、このとき前記8値以上の多値QAMは前記22m値QAM方式に限ったものではない。 In this way, data is transmitted in the 16QAM system, and data is transmitted in the QPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and the amplitude distortion amount between the transceivers as pilot symbols, and performs quasi-synchronous detection. Here, the configuration of the 16QAM symbols and QPSK modulation symbols in the N symbols is not limited to that shown in FIG. Furthermore, the 16QAM scheme also applies to the but the 2 2m-QAM scheme described as an example, the multi-level QAM over the 8 value this time is not limited to the 2 2m-QAM scheme.

以上のように本実施の形態によれば、前記8値以上の多値QAM方式の中に、定期的にQPSK変調方式を挿入し、QPSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的にQPSK変調方式を挿入し、QPSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する変調方式で、QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, a QPSK modulation scheme is periodically inserted into the multilevel QAM scheme of eight or more values, differential encoding is performed between QPSK modulation symbols, and A modulation system in which an information sequence of signal points of the multi-level QAM system is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, or a QPSK modulation system is periodically inserted into the 16QAM system, and between QPSK modulation symbols Is a modulation system in which the 16QAM system signal point information sequence is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation system, data is transmitted and the transmitter and the By using pilot symbols to estimate the frequency offset amount and amplitude distortion amount, the frequency offset amount and amplitude distortion amount between the transmitter and the receiver Compared to method of the pilot symbol known data to estimate, it is possible to perform quasi-synchronous detection without reducing the amount of data transmission.

なお、本実施の形態では、QPSK変調シンボル間で差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する方式、あるいは前記16QAM方式の信号点の情報系列を直前のQPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれもQPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, a differential encoding is performed between QPSK modulation symbols, and an information sequence of signal points of the multi-level QAM scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, Alternatively, the 16QAM signal point information series has been described with reference to the signal point position of the immediately preceding QPSK modulation symbol. However, in any case, if a QPSK modulation symbol differentially encoded between QPSK modulation symbols is inserted, Similar effects can be obtained.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

(実施の形態9)
本実施の形態における無線通信システムの構成は、実施の形態1における図1に示すものと同様である。
(Embodiment 9)
The configuration of the wireless communication system in the present embodiment is the same as that shown in FIG.

同相I−直交Q平面において8値以上の多値QAM方式の信号点をπ/4ラジアン回転させた8値以上の多値QAM方式の一例である同相I−直交Q平面において22m値QAM方式の信号点をπ/4ラジアン回転させた22m値QAM方式の同相I−直交Q平面における信号点配置は、実施の形態3の図11と同様である。同相I−直交Q平面において同相I軸および直交Q軸上に信号点をもつQPSK変調方式の信号点配置は、実施の形態6の図20と同様である。同相I−直交Q平面において16QAM方式の信号点をπ/4ラジアン回転させた16QAM方式の同相I−直交Q平面における信号点配置は、実施の形態3の図12と同様である。図18は、前記16QAMシンボルと前記QPSK変調シンボルのNシンボル内の構成の一例を示している。差動符号化した際の前記QPSK変調方式の信号点の情報系列配置の一例は、実施の形態4の図16と同様である。図24(a)、(b)、(c)および(d)は直前の前記QPSK変調シンボルの信号点と前記16QAMの信号点の情報系列の関係の一例であり、図24において、2301は前記QPSK変調方式の信号点、2302は前記16QAM方式の信号点である。 In the in-phase I-orthogonal Q plane, a 22 m- value QAM system is used in the in-phase I-orthogonal Q plane, which is an example of the 8-level or more multi-level QAM system obtained by rotating a signal point of the 8-level or more multi-level QAM system by π / 4 radians. The signal point arrangement in the in-phase I-orthogonal Q plane of the 22 m- value QAM system obtained by rotating the signal point of π / 4 radians is the same as in FIG. 11 of the third embodiment. The signal point arrangement of the QPSK modulation method having signal points on the in-phase I axis and the orthogonal Q axis in the in-phase I-orthogonal Q plane is the same as that in FIG. 20 of the sixth embodiment. The signal point arrangement on the in-phase I-orthogonal Q plane of the 16QAM system obtained by rotating the 16QAM system signal points by π / 4 radians on the in-phase I-orthogonal Q plane is the same as that of FIG. FIG. 18 shows an example of a configuration in N symbols of the 16QAM symbol and the QPSK modulation symbol. An example of the information sequence arrangement of the signal points of the QPSK modulation method at the time of differential encoding is the same as FIG. 16 of the fourth embodiment. 24 (a), (b), (c) and (d) are examples of the relationship between the information sequence of the signal point of the immediately preceding QPSK modulation symbol and the signal point of 16QAM. In FIG. QPSK modulation signal points 2302 are the 16QAM signal points.

図1、図11、図12、図16、図18、図20、図24を用いて、前記8値以上の多値QAM方式の中に、定期的に前記QPSK変調方式を挿入する変調方式において、前記QPSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的に前記QPSK変調方式を挿入する変調方式において、前記QPSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式について説明する。   In FIG. 1, FIG. 11, FIG. 12, FIG. 16, FIG. 18, FIG. 20, FIG. 24, in the modulation scheme in which the QPSK modulation scheme is periodically inserted into the multi-level QAM scheme of 8 or more values. A modulation scheme in which differential encoding is performed between the QPSK modulation symbols, and an information sequence of signal points of the multilevel QAM scheme of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol, or the 16QAM scheme In the modulation scheme in which the QPSK modulation scheme is periodically inserted, differential coding is performed between the QPSK modulation symbols, and the signal point position of the immediately preceding QPSK modulation symbol is converted from the information sequence of the 16QAM signal points. A modulation scheme arranged as a reference will be described.

前記22m値QAM方式の信号点配置は図11に示したとおりで、実施の形態3の説明と同様である。前記16QAM方式の信号点配置は図12に示したとおりで、実施の形態3の説明と同様である。前記QPSK変調方式の信号点配置は図20に示したとおりで、実施の形態6の説明と同様である。 The signal point arrangement of the 22 m- value QAM system is as shown in FIG. 11 and is the same as that described in the third embodiment. The signal point arrangement of the 16QAM system is as shown in FIG. 12, and is the same as that described in the third embodiment. The signal point arrangement of the QPSK modulation method is as shown in FIG. 20, and is the same as that described in the sixth embodiment.

図18は、Nシンボル内における前記16QAMシンボルと前記QPSK変調シンボルの構成の一例を示したものである。このとき、i番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi、i+N番目の前記QPSK変調シンボルの同相I−直交Q平面における位相をφi+Nとすると、x−y平面におけるi+N番目の位相θi+Nを(数3)とすると、θi+Nにより情報系列を図16のように定めることができる。   FIG. 18 shows an example of the configuration of the 16QAM symbol and the QPSK modulation symbol in N symbols. At this time, if the phase of the i-th QPSK modulation symbol in the in-phase I-quadrature Q plane is φi, and the phase of the i + N-th QPSK modulation symbol in the in-phase I-quadrature Q-plane is φi + N, then in the xy plane Assuming that the i + N-th phase θi + N is (Expression 3), the information sequence can be determined by θi + N as shown in FIG.

図24は、直前の前記QPSK変調シンボルの信号点2301と前記16QAM方式の信号点2302の情報系列の関係の一例を示したものである。i番目の前記QPSK変調シンボルの信号点2301とi+1からi+N−1番目の前記16QAMシンボルの信号点2302の情報系列は、図24(a)、(b)、(c)または(d)のように、直前の前記QPSK変調シンボルの信号点によって前記16QAMシンボルの信号点の情報系列が定まる。   FIG. 24 shows an example of the relationship between the information sequence of the signal point 2301 of the immediately preceding QPSK modulation symbol and the signal point 2302 of the 16QAM system. The information sequence of the signal point 2301 of the i-th QPSK modulation symbol and the signal point 2302 of the 16th QAM symbol of the (i + 1 to i + N-1) th is as shown in FIG. 24 (a), (b), (c) or (d). In addition, the information sequence of the signal points of the 16QAM symbol is determined by the signal points of the immediately preceding QPSK modulation symbol.

このように、前記16QAM方式ではデータを伝送し、前記QPSK変調方式ではデータを伝送すると同時に復調側ではパイロットシンボルとして送受信機間の周波数オフセット量および振幅歪み量を推定し、準同期検波を行う。ここで、Nシンボル中の前記16QAMシンボルと前記QPSK変調シンボルの構成は図18に限ったものではない。また、前記16QAM方式を例に説明したが前記22m値QAM方式についても同様で、このとき前記8値以上の多値QAMは前記22m値QAM方式に限ったものではない。 In this way, data is transmitted in the 16QAM system, and data is transmitted in the QPSK modulation system. At the same time, the demodulation side estimates the frequency offset amount and the amplitude distortion amount between the transceivers as pilot symbols, and performs quasi-synchronous detection. Here, the configurations of the 16QAM symbols and the QPSK modulation symbols in the N symbols are not limited to those in FIG. Furthermore, the 16QAM scheme also applies to the but the 2 2m-QAM scheme described as an example, the multi-level QAM over the 8 value this time is not limited to the 2 2m-QAM scheme.

以上のように本実施の形態によれば、前記8値以上の多値QAM方式の中に、定期的に前記QPSK変調方式を挿入し、前記QPSK変調シンボル間では差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式、あるいは前記16QAM方式の中に、定期的に前記QPSK変調方式を挿入し、前記QPSK変調シンボル間では差動符号化し、前記16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する変調方式で、前記QPSK変調方式では、データを伝送すると同時に復調側で送受信機間の周波数オフセット量および振幅歪み量を推定するためのパイロットシンボルとすることにより、送受信機間の周波数オフセット量および振幅歪み量を推定するために既知データをパイロットシンボルとする方式に比べて、データ伝送量を低下させずに準同期検波を行うことができる。   As described above, according to the present embodiment, the QPSK modulation scheme is periodically inserted into the multilevel QAM scheme of 8 or more values, differential encoding is performed between the QPSK modulation symbols, and the 8-level The QPSK modulation scheme is periodically inserted into the modulation scheme in which the information sequence of the signal points of the multi-level QAM scheme is arranged based on the signal point position of the immediately preceding QPSK modulation symbol, or the 16QAM scheme, The QPSK modulation symbol is differentially encoded, and the 16QAM system signal point information sequence is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. In the QPSK modulation system, data is transmitted. At the same time, the frequency between transmitters and receivers is determined by using pilot symbols to estimate the frequency offset and amplitude distortion between transmitters and receivers on the demodulation side. Compared to method of the pilot symbol known data to estimate the offset amount and the amplitude distortion amount, it is possible to perform quasi-synchronous detection without reducing the amount of data transmission.

なお、本実施の形態では、前記QPSK変調シンボル間で差動符号化し、前記8値以上の多値QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する方式、あるいは前記16QAM方式の信号点の情報系列を直前の前記QPSK変調シンボルの信号点位置を基準に配置する方式を説明したが、いずれも前記QPSK変調シンボル間で差動符号化したQPSK変調シンボルを挿入すれば同様の効果が得られる。   In the present embodiment, differential encoding is performed between the QPSK modulation symbols, and an information sequence of multi-level QAM signal points of 8 or more values is arranged with reference to the signal point position of the immediately preceding QPSK modulation symbol. The system, or the system in which the information sequence of the signal points of the 16QAM system is arranged on the basis of the signal point position of the immediately preceding QPSK modulation symbol, has been explained, but both are QPSK modulation symbols differentially encoded between the QPSK modulation symbols The same effect can be obtained by inserting.

また、このような変調方式を用いることにより、データ伝送量の低下を抑えた通信システムを構築することができる。   Further, by using such a modulation method, it is possible to construct a communication system that suppresses a decrease in the amount of data transmission.

次に、本発明について具体的にシミュレーションを行った例を説明する。   Next, an example in which a simulation is specifically performed for the present invention will be described.

本実施例では、多値QAM方式の一例として16QAM方式を選択し、パイロットシンボルの挿入方法について、従来のシンボル挿入方式と本発明によるQPSK変調シンボル挿入方式の2つの方法を比較検討した結果を示す。その際、既知またはQPSK変調シンボル長を1とし、データシンボル長をnとした。   In this embodiment, a 16QAM scheme is selected as an example of the multi-level QAM scheme, and the pilot symbol insertion method is compared with the conventional symbol insertion scheme and the QPSK modulation symbol insertion scheme according to the present invention. . At this time, the known or QPSK modulation symbol length is set to 1, and the data symbol length is set to n.

従来のシンボル挿入方式は、16QAMの最大信号点振幅の一信号点をパイロットシンボルとした方法で、受信側では、16QAMを準同期検波する。   The conventional symbol insertion method is a method in which one signal point of the maximum signal point amplitude of 16QAM is a pilot symbol, and 16QAM is quasi-synchronously detected on the receiving side.

本発明によるQPSK変調シンボルの挿入方式は、QPSK変調シンボルを、パイロットシンボルとすると同時にデータ伝送を行う方法で、16QAMのマッピングは直前のQPSK変調シンボルに依存する。また、QPSK変調シンボル同士は差動符号化する。受信側では、16QAMを準同期検波し、QPSKを遅延検波する。   The QPSK modulation symbol insertion method according to the present invention is a method in which QPSK modulation symbols are used as pilot symbols and data transmission is performed simultaneously, and 16QAM mapping depends on the immediately preceding QPSK modulation symbol. Further, QPSK modulation symbols are differentially encoded. On the receiving side, 16QAM is detected quasi-synchronously and QPSK is delayed.

図25は本実施例による変調方式の1ビットあたりの信号エネルギー(Eb)に対する雑音電力密度(N0)におけるビット誤り率(BER:Bit Error Ratio )特性図を示し、上述の方法において、n=1,7,15としたときのそれぞれの特性を示す。図25より、既知である従来のシンボル挿入方式と本発明のQPSK変調シンボル挿入方式のデータシンボル長が等しい場合を比較すると、QPSK変調シンボル挿入方式は、QPSK変調シンボルでデータ伝送を行う分、データ伝送効率が優れており、BER特性が優れていることがわかる。   FIG. 25 shows a bit error ratio (BER) characteristic diagram in the noise power density (N0) with respect to the signal energy (Eb) per bit of the modulation system according to the present embodiment. In the above method, n = 1. , 7, and 15 show the respective characteristics. FIG. 25 shows that when the data symbol lengths of the known conventional symbol insertion scheme and the QPSK modulation symbol insertion scheme of the present invention are equal, the QPSK modulation symbol insertion scheme performs data transmission by performing data transmission with QPSK modulation symbols. It can be seen that the transmission efficiency is excellent and the BER characteristics are excellent.

本発明の一実施の形態による無線通信システムの構成を示す図The figure which shows the structure of the radio | wireless communications system by one embodiment of this invention. 本発明の一実施の形態による8相PSK変調方式の信号点配置図Signal point arrangement diagram of 8-phase PSK modulation system according to one embodiment of the present invention 本発明の一実施の形態によるBPSK変調方式の信号点配置図BPSK modulation scheme signal point arrangement diagram according to an embodiment of the present invention 本発明の一実施の形態による信号のフレーム構成を示す図The figure which shows the frame structure of the signal by one embodiment of this invention 本発明の一実施の形態による差動符号化した際のx−y平面におけるBPSK変調方式の信号点と情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of an BPSK modulation system in xy plane at the time of differential encoding by one embodiment of this invention, and an information sequence 本発明の一実施の形態によるBPSK変調方式の信号点と8相PSK変調方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of an BPSK modulation system, the signal point of an 8-phase PSK modulation system, and an information series by one embodiment of this invention 本発明の一実施の形態による22m値QAM方式の信号点配置図Signal point arrangement diagram of 22 m- value QAM system according to one embodiment of the present invention 本発明の一実施の形態による16QAM方式の信号点配置図16QAM signal point arrangement diagram according to an embodiment of the present invention 本発明の一実施の形態による信号のフレーム構成を示す図The figure which shows the frame structure of the signal by one embodiment of this invention 本発明の一実施の形態によるBPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of a BPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一実施の形態による22m値QAM方式の信号点配置図Signal point arrangement diagram of 22 m- value QAM system according to one embodiment of the present invention 本発明の一実施の形態による16QAM方式の信号点配置図16QAM signal point arrangement diagram according to an embodiment of the present invention 本発明の一実施の形態によるBPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of a BPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点配置図Signal point arrangement diagram of QPSK modulation system according to one embodiment of the present invention 本発明の一実施の形態によるNシンボル内の8相PSK変調シンボルとQPSK変調シンボルの構成の一例を示す図The figure which shows an example of a structure of the 8-phase PSK modulation symbol and QPSK modulation symbol in N symbols by one embodiment of this invention 本発明の一実施の形態による差動符号化した際のx−y平面におけるQPSK変調方式の信号点と情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of a QPSK modulation system in xy plane at the time of differential encoding by one embodiment of this invention, and an information sequence 本発明の一実施の形態によるQPSK変調方式の信号点と8相PSK変調方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship of the signal point of QPSK modulation system, the signal point of 8-phase PSK modulation system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるNシンボル内の16QAMシンボルとQPSK変調シンボルの構成の一例を示す図The figure which shows an example of a structure of 16QAM symbol and QPSK modulation symbol in N symbol by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of QPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点配置図Signal point arrangement diagram of QPSK modulation system according to one embodiment of the present invention 本発明の一実施の形態によるQPSK変調方式の信号点と8相PSK変調方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship of the signal point of QPSK modulation system, the signal point of 8-phase PSK modulation system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of QPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of QPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一実施の形態によるQPSK変調方式の信号点と16QAM方式の信号点および情報系列の関係の一例を示す図The figure which shows an example of the relationship between the signal point of QPSK modulation system, the signal point of 16QAM system, and an information sequence by one embodiment of this invention 本発明の一本実施例による変調方式の1ビットあたりの信号エネルギーに対する雑音電力密度におけるビット誤り率特性を示す図The figure which shows the bit error rate characteristic in the noise power density with respect to the signal energy per bit of the modulation system by one Example of this invention. 従来の伝送される信号のフレーム構成を示す図The figure which shows the frame structure of the signal transmitted conventionally.

符号の説明Explanation of symbols

11 送信ディジタル信号
12 直交ベースバンド変調部
13 送信直交ベースバンド信号同相成分
14 送信直交ベースバンド信号直交成分
15 送信無線部
16 送信信号
17,21 アンテナ
22 受信無線部
23 受信直交ベースハンド信号同相成分
24 受信直交ベースバンド信号直交成分
25 振幅歪み量推定部
26 周波数オフセット量推定部
27 振幅歪み量推定信号
28 周波数オフセット量推定信号
29 準同期検波部
30 受信ディジタル信号
101,502,1602,1801,2002 8相PSK変調方式の信号点
201,501,901,1201 BPSK変調方式の信号点
601 22m値QAM方式の信号点
701,902,1802,2102 16QAM方式の信号点
1001 同相I−直交Q平面において22m値QAM方式の信号点をπ/4ラジアン回転させた22m値QAM方式の信号点
1101,1202,2202,2302 同相I−直交Q平面において16QAM方式の信号点をπ/4ラジアン回転させた16QAM方式の信号点
1301,1601,2201 QPSK変調方式の信号点
1901,2001,2101,2301 同相I−直交Q平面において同相I軸および直交Q軸上に信号点をもつQPSK変調方式の信号点
DESCRIPTION OF SYMBOLS 11 Transmission digital signal 12 Quadrature baseband modulation part 13 Transmission quadrature baseband signal in-phase component 14 Transmission quadrature baseband signal quadrature component 15 Transmission radio part 16 Transmission signal 17, 21 Antenna 22 Reception radio part 23 Reception quadrature base hand signal in-phase component 24 Received quadrature baseband signal quadrature component 25 Amplitude distortion amount estimation unit 26 Frequency offset amount estimation unit 27 Amplitude distortion amount estimation signal 28 Frequency offset amount estimation signal 29 Quasi-synchronous detection unit 30 Received digital signal 101, 502, 1602, 1801, 2002 8 Phase PSK modulation system signal points 201, 501, 901, 1201 BPSK modulation system signal points 601 2 2m- value QAM system signal points 701, 902, 1802, 2102 16QAM system signal points 1001 2 in the in-phase I-orthogonal Q plane 2m Signal points of a QAM scheme [pi / 4 radians the rotated 2 2m-QAM scheme signal point 1101,1202,2202,2302 phase I- quadrature Q 16QAM scheme signal points of 16QAM scheme was [pi / 4 radians rotation in the plane of Signal points of 1301, 1601, 2201 QPSK modulation method Signal points 1901, 2001, 2101, 2301 Signal points of QPSK modulation method having signal points on the in-phase I axis and the orthogonal Q axis in the in-phase I-orthogonal Q plane

Claims (9)

無線通信に用いられ、送信の場合に、第1の変調方式である多値変調方式に、規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式を挿入し、前記第2の変調方式のシンボル間で差動符号化し、受信の場合に、受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を前記第2の変調方式のシンボルから求める変調方式。   A phase shift keying (PSK) method, which is a second modulation method, is regularly inserted into a multi-level modulation method, which is a first modulation method, for use in wireless communication and transmission, In the case of reception, at least the amplitude distortion amount between the transmitter and the transmitter among the frequency offset amount of the received signal and the amplitude distortion amount between the transmitter and the receiver is received. Modulation method determined from symbols. 無線通信に用いられ、送信の場合に、第1の変調方式である多値変調方式に、規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式をパイロット信号として挿入し、前記第2の変調方式のシンボル間で差動符号化し、受信の場合に、受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を前記パイロット信号から求める変調方式。   Used in wireless communication, in the case of transmission, a phase modulation (PSK: Phase Shift Keying) method that is a second modulation method is regularly inserted as a pilot signal into a multi-level modulation method that is a first modulation method. In the case of reception, differential encoding is performed between the symbols of the second modulation scheme, and at the time of reception, at least the amplitude distortion amount between the transmitter and the transmitter among the frequency offset amount of the received signal and the amplitude distortion amount between the transmitter and the receiver is calculated from the pilot signal. The desired modulation method. 無線通信に用いられ、送信の場合に、第1の変調方式である多値変調方式のシンボルにデータを付加し、前記第1の変調方式のシンボル間に規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式のシンボルを挿入し、前記第2の変調方式のシンボル間で差動符号化し、受信の場合に、前記第2の変調方式のシンボルを用いて受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定して除去し、前記第1の変調方式のシンボルを復調する変調方式。   Used in wireless communication, in the case of transmission, data is added to a symbol of a multi-level modulation scheme that is the first modulation scheme, and the second modulation scheme is regularly between the symbols of the first modulation scheme. Phase shift keying (PSK) system symbols are inserted, differential encoding is performed between symbols of the second modulation system, and in the case of reception, the received signal is converted using the symbols of the second modulation system. A modulation scheme that demodulates the symbols of the first modulation scheme by estimating and removing at least the amplitude distortion amount between the transmitter and the transmitter out of the frequency offset amount and the amplitude distortion amount between the transmitter and the receiver. 無線通信に用いられ、送信の場合に、第1の変調方式である多値変調方式のシンボルにデータを付加し、前記第1の変調方式のシンボル間に規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式のシンボルをパイロット信号として挿入し、前記第2の変調方式のシンボル間で差動符号化し、受信の場合に、前記パイロット信号を用いて受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定して除去し、前記第1の変調方式のシンボルを復調する変調方式。   Used in wireless communication, in the case of transmission, data is added to a symbol of a multi-level modulation scheme that is the first modulation scheme, and the second modulation scheme is regularly between the symbols of the first modulation scheme. A phase shift keying (PSK) system symbol is inserted as a pilot signal, differentially encoded between the symbols of the second modulation system, and in the case of reception, a frequency offset of the received signal using the pilot signal A modulation scheme that demodulates symbols of the first modulation scheme by estimating and removing at least the amplitude distortion amount between the transmitter and the transmitter, and the amplitude distortion amount between the transmitter and the receiver. 送信の場合に、前記第2の変調方式のシンボルにデータを付加し、受信の場合に、遅延検波を行うことで前記第2の変調方式のシンボルを復調する請求項1から請求項4のいずれかに記載の変調方式。   5. The symbol according to claim 1, wherein data is added to the symbol of the second modulation scheme in the case of transmission, and the symbol of the second modulation scheme is demodulated by performing delay detection in the case of reception. The modulation method described in the above. 通信相手の送信機において、第1の変調方式である多値変調方式に、規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式を挿入し、前記第2の変調方式のシンボル間で差動符号化した信号を、前記送信機から受信し、
前記受信信号から抽出した前記第2シンボルを用いて受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定する受信機の受信方法。
In the transmitter of the communication partner, a phase modulation (PSK) system that is the second modulation system is regularly inserted into the multi-level modulation system that is the first modulation system, and the second modulation system A signal differentially encoded between the symbols is received from the transmitter,
A receiver receiving method for estimating at least an amplitude distortion amount between a transmitter and a receiver among a frequency offset amount of the received signal and an amplitude distortion amount between the transmitter and a receiver using the second symbol extracted from the received signal.
通信相手の送信機において、第1の変調方式である多値変調方式に、規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式をパイロット信号として挿入し、前記第2の変調方式のシンボル間で差動符号化した信号を、前記送信機から受信し、
前記受信信号から抽出した前記パイロット信号を用いて受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定する受信機の受信方法。
In the transmitter of the communication partner, a phase modulation (PSK) system that is the second modulation system is regularly inserted as a pilot signal into the multi-level modulation system that is the first modulation system, and the second A signal differentially encoded between symbols of the modulation scheme is received from the transmitter,
A receiver receiving method for estimating at least an amplitude distortion amount between a transmitter and a receiver among a frequency offset amount of the received signal and an amplitude distortion amount between the transmitter and a receiver using the pilot signal extracted from the received signal.
通信相手の送信機において、第1の変調方式である多値変調方式のシンボルにデータを付加し、前記第1の変調方式のシンボル間に規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式のシンボルを挿入し、前記第2の変調方式のシンボル間で差動符号化した信号を、前記送信機から受信し、
前記受信信号から抽出した前記第2シンボルを用いて受信信号の周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定し、
前記第1シンボルの受信信号から、前記推定された周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を除去し、前記第1シンボルに付加されたデータを復調する受信機の受信方法。
At the transmitter of the communication partner, data is added to the symbols of the multi-level modulation scheme that is the first modulation scheme, and phase modulation (PSK) that is the second modulation scheme regularly between the symbols of the first modulation scheme. : Phase Shift Keying) system symbol is inserted, and a signal differentially encoded between the symbols of the second modulation system is received from the transmitter,
Using the second symbol extracted from the received signal, estimate at least the amplitude distortion amount between the transmitter and the transmitter among the frequency offset amount of the received signal and the amplitude distortion amount between the transmitter and the receiver,
From the received signal of the first symbol, at least the amount of amplitude distortion between transmitters / receivers is removed from the estimated amount of frequency offset and the amount of amplitude distortion between transmitters / receivers, and the data added to the first symbol is demodulated. Receiver receiving method.
通信相手の送信機において、第1の変調方式である多値変調方式のシンボルにデータを付加し、前記第1の変調方式のシンボル間に規則的に第2の変調方式である位相変調(PSK:Phase Shift Keying)方式のシンボルをパイロット信号として挿入し、前記第2の変調方式のシンボル間で差動符号化した信号を、前記送信機から受信し、
前記受信信号から抽出した前記パイロット信号を用いて送受信機間の振幅歪み量および周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を推定し、
前記第1シンボルの受信信号から、前記推定された周波数オフセット量及び送受信機間の振幅歪量のうち少なくとも送受信機間の振幅歪量を除去し、前記第1シンボルに付加されたデータを復調する受信機の受信方法。
At the transmitter of the communication partner, data is added to the symbols of the multi-level modulation scheme that is the first modulation scheme, and phase modulation (PSK) that is the second modulation scheme regularly between the symbols of the first modulation scheme. : Phase Shift Keying) symbol is inserted as a pilot signal, and a signal differentially encoded between the symbols of the second modulation scheme is received from the transmitter,
Estimating at least the amplitude distortion amount between the transceivers among the amplitude distortion amount and the frequency offset amount between the transceivers and the amplitude distortion amount between the transceivers using the pilot signal extracted from the received signal,
From the received signal of the first symbol, at least the amount of amplitude distortion between transmitters / receivers is removed from the estimated amount of frequency offset and the amount of amplitude distortion between transmitters / receivers, and the data added to the first symbol is demodulated. Receiver receiving method.
JP2005310405A 2005-10-25 2005-10-25 Modulation method and wireless communication system Withdrawn JP2006060870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310405A JP2006060870A (en) 2005-10-25 2005-10-25 Modulation method and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310405A JP2006060870A (en) 2005-10-25 2005-10-25 Modulation method and wireless communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004353941A Division JP3779311B2 (en) 2004-12-07 2004-12-07 Modulation method and wireless communication system

Publications (1)

Publication Number Publication Date
JP2006060870A true JP2006060870A (en) 2006-03-02

Family

ID=36107897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310405A Withdrawn JP2006060870A (en) 2005-10-25 2005-10-25 Modulation method and wireless communication system

Country Status (1)

Country Link
JP (1) JP2006060870A (en)

Similar Documents

Publication Publication Date Title
JP5048138B2 (en) Transmitting apparatus, receiving apparatus, data transmitting method and data receiving method
JP4714743B2 (en) Method and transmitter structure for reducing ambiguity by repetition rearrangement in bit domain
EP1204256B1 (en) Adaptive modulation communication system
US8958309B2 (en) Method and apparatus of communication using random linear coding
US20070058756A1 (en) Reduced complexity soft output demapping
JP6292755B2 (en) Transmitter, receiver and transmission method
US20050220203A1 (en) System &amp; method for spreading on fading channels
JP3779311B2 (en) Modulation method and wireless communication system
JP4611864B2 (en) Transmission method
EP1807960B1 (en) Method for reducing ambiguity levels of transmitted symbols
CA2625111A1 (en) A soft demodulating method for 16qam in communication system
JP2006060870A (en) Modulation method and wireless communication system
JP3233092B2 (en) Modulation system and wireless communication system using the same
JPH11220505A (en) Modulation system and radio communication system using the same
JP3489574B2 (en) Receiver
US8050355B2 (en) Transmitter and receiver using pseudo-orthogonal code
JP2004007785A (en) Modulation system and transmitter
JP4093581B2 (en) Wireless receiver
JP2004007786A (en) Receiver
JP3489570B2 (en) Modulation system, receiving apparatus thereof, and wireless communication system using the same
WO2008140827A1 (en) Simultaneous messaging from multiple sources using hierarchical modulation
JP5220816B2 (en) Transmission method
WO2002065722A1 (en) Digital modulation system, radio communication system, radio communication device
Yun et al. Towards Zero-Cost Retransmission through Physical-Layer Network Coding in Wireless Networks
JP2005328463A (en) Radio transmitting device, radio receiving device, radio transmitting method and radio receiving method

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060417