JP2006049158A - Lithium polymer battery and its manufacturing method - Google Patents

Lithium polymer battery and its manufacturing method Download PDF

Info

Publication number
JP2006049158A
JP2006049158A JP2004230049A JP2004230049A JP2006049158A JP 2006049158 A JP2006049158 A JP 2006049158A JP 2004230049 A JP2004230049 A JP 2004230049A JP 2004230049 A JP2004230049 A JP 2004230049A JP 2006049158 A JP2006049158 A JP 2006049158A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
molten salt
lithium
salt
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004230049A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Tsutomu Sada
勉 佐田
Naoya Ogata
直哉 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trekion Co Ltd
Original Assignee
Trekion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trekion Co Ltd filed Critical Trekion Co Ltd
Priority to JP2004230049A priority Critical patent/JP2006049158A/en
Publication of JP2006049158A publication Critical patent/JP2006049158A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium polymer battery using a composite electrode fully satisfying the mechanical properties and having a low impedance and high capacity, and to provide a manufacturing method of the lithium polymer battery. <P>SOLUTION: In the lithium polymer battery having a fused salt polymer electrolyte layer sandwiched between the positive electrode and the negative electrode, an active material of at least one electrode of the positive electrode and the negative electrode is dispersed in a continuous phase of a fused salt polymer electrolyte together with a conductive material, and the continuous phase is integrated with the fused salt polymer electrolyte layer arranged between the electrodes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、常温溶融塩からなるポリマー電解質を用いたリチウム・ポリマー電池およびその製造方法に関する。 The present invention relates to a lithium polymer battery using a polymer electrolyte comprising a room temperature molten salt and a method for producing the same.

リチウムイオン電池には、リチウム塩を含んでいる非水電解液が一般に使用されている。この溶液は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどのカーボネート類、γ−ブチロラクトンなどのラクトン、テトラヒドロフランなどのエーテルのような非プロトン性の極性溶媒にリチウム塩を溶かしたものである。しかしながらこれら有機溶媒は揮発し易く、引火性であり、過充電、過放電、及び短絡などの際に安全性の問題がある。また、液体電解液は電池を液密にシールする際の取扱いが困難である。ゲル化した非水電解液を使用しても有機溶媒の揮発および引火危険性の問題は解消せず、ゲルから相分離した電解液が漏れる問題は依然として残っている。 In the lithium ion battery, a non-aqueous electrolyte containing a lithium salt is generally used. This solution was prepared by dissolving a lithium salt in an aprotic polar solvent such as carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as γ-butyrolactone, and ethers such as tetrahydrofuran. Is. However, these organic solvents are volatile, flammable, and have safety problems during overcharge, overdischarge, short circuit, and the like. Also, the liquid electrolyte is difficult to handle when sealing the battery in a liquid-tight manner. The use of the gelled non-aqueous electrolyte does not solve the problem of volatilization of organic solvents and the danger of ignition, and the problem that the electrolyte separated from the gel leaks still remains.

最近、4級アンモニウムカチオンを含む常温溶融塩にリチウム塩を溶かした非水電解質を使ったリチウム二次電池が提案されている。例えば、特開平10−92467号、特開平10−265674号、特開平11−92467号及び特開2002−11230号公報参照。常温溶融塩は常温で液状でありながら、不揮発性で且つ不燃性であるため安全であるが、マトリックスポリマーによりゲルとしても液体を含むため力学的性質が不十分であり、かつ液体が相分離することがあるので、取扱上の問題および電池設計上の問題は依然として残っている。 Recently, a lithium secondary battery using a non-aqueous electrolyte in which a lithium salt is dissolved in a room temperature molten salt containing a quaternary ammonium cation has been proposed. For example, see JP-A-10-92467, JP-A-10-265675, JP-A-11-92467, and JP-A-2002-11230. Room temperature molten salt is safe because it is liquid at room temperature but is non-volatile and non-flammable, but it contains liquid as a gel due to the matrix polymer, and its mechanical properties are insufficient, and the liquid undergoes phase separation. As such, handling and battery design issues still remain.

イオン伝導性溶融塩を形成するイミダゾリウム塩にビニル基を導入し、この単量体を重合して全固体高分子電解質を製造する提案もなされている。特開平10−83821号及び特開2000−11753号公報参照。しかしながら、この高分子電解質も充分な力学的強度を持っていない。 There has also been a proposal for producing an all solid polymer electrolyte by introducing a vinyl group into an imidazolium salt forming an ion conductive molten salt and polymerizing the monomer. See Japanese Patent Application Laid-Open Nos. 10-83821 and 2000-11753. However, this polymer electrolyte also does not have sufficient mechanical strength.

従って、高いイオン伝導度と満足な力学的性質を持っている安全な高分子電解質に対する要望は依然として残っている。 Thus, there remains a need for safe polyelectrolytes with high ionic conductivity and satisfactory mechanical properties.

一方、ポリマー電解質を用いたリチウム二次電池を作製する場合、以下のような問題点がある。 On the other hand, when producing a lithium secondary battery using a polymer electrolyte, there are the following problems.

すなわち、従来の有機電解液を用いた電池の場合、活物質、導電剤および結着剤からなる混合粉体を加圧成型した正極または負極を使用し、その内部に微細に形成された隙間に電解液が浸透して活物質との電気化学界面を形成する。この時、各粒子は密接に接触して電子伝導のパスを保持するため、液体電解質と電極内の活物質との間に良好な電気化学界面を形成し、その結果、正極または負極内部での電子伝導に基づくインピーダンスは小さい。 That is, in the case of a battery using a conventional organic electrolyte, a positive electrode or a negative electrode obtained by pressure-molding a mixed powder composed of an active material, a conductive agent, and a binder is used, and a gap formed finely in the inside is used. The electrolyte solution penetrates to form an electrochemical interface with the active material. At this time, each particle is in close contact with each other and maintains a path for electron conduction, so that a good electrochemical interface is formed between the liquid electrolyte and the active material in the electrode. The impedance based on electron conduction is small.

ところが、ポリマー電解質を電池の正極または負極に適用した場合は、その複合電極に形成された粒子間に電解質が存在しやすく、そのためポリマー電解質と電極内の活物質との間に不安定な電気化学界面が形成され、その結果、粒子間の伝導性が劣りインピーダンスは前記の正極または負極に比べて大きく、電池作動時のIR損増大の要因となる。また、インピーダンスを低減させるためには導電剤の増加が必要であるが、その増加分、電極中の活物質量が減少し、結果として電極容量の低下を招くこととなる。 However, when the polymer electrolyte is applied to the positive electrode or negative electrode of a battery, the electrolyte tends to exist between the particles formed on the composite electrode, and therefore, unstable electrochemistry is caused between the polymer electrolyte and the active material in the electrode. As a result, the conductivity between the particles is inferior and the impedance is larger than that of the positive electrode or the negative electrode, which causes an increase in IR loss during battery operation. Further, in order to reduce the impedance, it is necessary to increase the conductive agent. However, the increase in the amount of the active material in the electrode decreases, resulting in a decrease in electrode capacity.

さらに、前記の問題を解決するために、例えば、特開平8−287949号公報に記載の環状エーテルの重合体からなるポリマー電解質を利用することが提案されている。 Furthermore, in order to solve the above problems, for example, it has been proposed to use a polymer electrolyte made of a cyclic ether polymer described in JP-A-8-287949.

このポリマー電解質は、環状エーテルの開環重合によって得られたポリマーを基本骨格とする固体電解質であり、重合前の電解質は少なくとも環状エーテルに支持塩が溶解した通常の有機電解液である。この液体を正極に注液し、次いでこれを化学的手法あるいは電気化学的手法で重合硬化することでポリマー電解質複合正極が得られる。 This polymer electrolyte is a solid electrolyte having a polymer obtained by ring-opening polymerization of a cyclic ether as a basic skeleton, and the electrolyte before polymerization is a normal organic electrolytic solution in which a supporting salt is dissolved in at least the cyclic ether. This liquid is poured into the positive electrode, and then polymerized and cured by a chemical method or an electrochemical method to obtain a polymer electrolyte composite positive electrode.

しかしながら、このポリマー電解質は力学的に十分な性質を持っているとはいえず、このため、力学的性質が十分に満足でき、そして低インピーダンスで高容量の複合正極および複合負極の開発が待ち望まれていた。
特開平8−287949号公報 特開平10−83821号公報 特開平10−92467号公報 特開平10−265674号公報 特開平11−92467号公報 特開2000−11753号公報 特開2002−11230号公報
However, it cannot be said that this polymer electrolyte has sufficient mechanical properties. Therefore, development of a composite positive electrode and a composite negative electrode having sufficiently high mechanical properties and low impedance and high capacity is awaited. It was.
JP-A-8-287949 Japanese Patent Laid-Open No. 10-83821 Japanese Patent Laid-Open No. 10-92467 JP-A-10-265673 JP-A-11-92467 JP 2000-11754 A JP 2002-11230 A

そこで本発明の目的は、力学的性質が十分に満足でき、かつ低インピーダンスで高容量の複合正極および複合負極を用いたリチウム・ポリマー電池およびその製造方法を提案することにある。 SUMMARY OF THE INVENTION An object of the present invention is to propose a lithium polymer battery using a composite positive electrode and a composite negative electrode having sufficiently high mechanical properties and low impedance and high capacity, and a method for producing the same.

本発明は、正極と負極の間にサンドイッチされた溶融塩ポリマー電解質層を備えるリチウム電池において、正極および負極の少なくとも一方の活物質は導電材と共に溶融塩ポリマー電解質の連続相中に分散しており、かつ該連続相は電極間に配置された前記溶融塩ポリマー電解質層と一体化されたリチウム電池を提供することにより上記の目的を達成する。 The present invention provides a lithium battery including a molten salt polymer electrolyte layer sandwiched between a positive electrode and a negative electrode, wherein at least one active material of the positive electrode and the negative electrode is dispersed in a continuous phase of the molten salt polymer electrolyte together with a conductive material. And the continuous phase achieves the above object by providing a lithium battery integrated with the molten salt polymer electrolyte layer disposed between the electrodes.

また、このとき前記連続相は、電気化学的に良好な界面を得るために正極側および負極側の両方に形成されていることが好ましい。 At this time, the continuous phase is preferably formed on both the positive electrode side and the negative electrode side in order to obtain an electrochemically good interface.

また、本発明によるポリマー電解質は、その力学的性質が十分に満足できるものを得るために、リチウム塩を含む、重合性官能基を含む4級アンモニウム塩および重合性官能基を含まない4級アンモニウム塩の混合物の重合物であることが好ましく、さらにポリマー電解質の力学的性質を向上させるためには、電気化学的に不活性な高分子補強材料を含んでいることがより好ましい。 Further, in order to obtain a polymer electrolyte according to the present invention having sufficiently satisfactory mechanical properties, a quaternary ammonium salt containing a polymerizable functional group and a quaternary ammonium containing no polymerizable functional group, including a lithium salt. It is preferably a polymer of a salt mixture, and more preferably contains an electrochemically inert polymer reinforcing material in order to further improve the mechanical properties of the polymer electrolyte.

具体的には、本発明によるポリマー電解質は、
a)1−エチル−3−ビニルイミダゾリウム、N−(2−(メタ)アクリロイルオキシエチル)−N,N,N−トリメチルアンモニウム、N−(3−(メタ)アクリロイルオキシプロピル)−N,N,N−トリメチルアンモニウム、N−(4−ビニルベンジル)−N,N,N−トリメチルアンモニウム、およびN,N−ジアリル−N,N−ジメチルアンモニウムからなる群から選ばれた4級アンモニウムカチオンと、ビス〔(トリフロロメチル)スルフォニル〕アミドアニオンまたはテトラフルオロボレートアニオンより選ばれたフッ素含有アニオンとの塩からなる重合性溶融塩モノマー10〜20重量%、
b)N−メチル−N−プロピルピペリジニウムまたはN−(2−メトキシエチル)−N,N,N−トリエチルアンモニウムまたはN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムから選ばれた4級アンモニウムカチオン、ビス〔(トリフルオロメチル)スルホン〕アミドアニオンまたはテトラフルオロボレートアニオンとの塩よりなる非重合性溶融塩30〜40重量%、
c)ポリフッ化ビニリデン20〜30重量%、および
d)LiBFまたはLi(CFSONから選ばれたリチウム塩20〜30重量%、
を含む溶液を重合することにより製造されたリチウム電池用複合高分子電解質を利用することにより、本発明の目的が達成される。
Specifically, the polymer electrolyte according to the present invention is:
a) 1-ethyl-3-vinylimidazolium, N- (2- (meth) acryloyloxyethyl) -N, N, N-trimethylammonium, N- (3- (meth) acryloyloxypropyl) -N, N A quaternary ammonium cation selected from the group consisting of N, N-trimethylammonium, N- (4-vinylbenzyl) -N, N, N-trimethylammonium, and N, N-diallyl-N, N-dimethylammonium; 10 to 20% by weight of a polymerizable molten salt monomer comprising a salt with a fluorine-containing anion selected from bis [(trifluoromethyl) sulfonyl] amide anion or tetrafluoroborate anion,
b) N-methyl-N-propylpiperidinium or N- (2-methoxyethyl) -N, N, N-triethylammonium or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium 30 to 40% by weight of a non-polymerizable molten salt comprising a salt with a quaternary ammonium cation selected from: bis [(trifluoromethyl) sulfone] amide anion or tetrafluoroborate anion
c) 20-30% by weight of polyvinylidene fluoride, and d) 20-30% by weight of a lithium salt selected from LiBF 4 or Li (CF 3 SO 2 ) 2 N,
The object of the present invention is achieved by utilizing a composite polymer electrolyte for a lithium battery produced by polymerizing a solution containing.

また、前記ポリフッ化ビニリデンは、炭素−炭素間二重結合を含んでいるものを使用することもできる。 Moreover, what contains the carbon-carbon double bond can also be used for the said polyvinylidene fluoride.

さらに高容量の電極を得るために、本発明に用いられる正極活物質は、V、V13+y(0≦y≦0.16)、LiCoO、LiNiO、LiMnOおよびLiMn(0.1<x<0.5)から選ばれたものであることが好ましく、負極活物質は、黒鉛のような電気化学的にリチウムを吸蔵および放出し得る物質か、または金属リチウムおよびリチウムを含む合金から選ばれたものであることが好ましい。 In order to obtain a higher capacity electrode, the positive electrode active material used in the present invention is V 2 O 5 , V 6 O 13 + y (0 ≦ y ≦ 0.16), LiCoO 2 , LiNiO 2 , LiMnO 2 and Li x. Preferably, the material is selected from Mn 2 O 4 (0.1 <x <0.5), and the negative electrode active material is a material that can electrochemically occlude and release lithium, such as graphite, or It is preferably selected from metallic lithium and lithium-containing alloys.

本発明による正極と負極の間にサンドイッチされた溶融塩ポリマー電解質層を備えたリチウム電池を製造するための方法は、
a)重合性官能基を有する4級アンモニウム塩、重合性官能基を含まない4級アンモニウム塩、リチウム塩、電気化学的に不活性な高分子補強材料、および重合開始剤を含む溶融塩ポリマー電解質前駆体重合液を用意するステップ、
b)各電極の集電体上に、活物質および導電材の分散相と、溶融塩ポリマー電解質の連続相よりなる活物質層を有する複合電極を製造するため、活物質および導電材の存在下前記前駆体重合液を乾燥と同時に熱重合するステップ、
c)前記前駆体重合液を溶融塩ポリマー電解質膜に成膜するステップ、
d)ステップb)で得られたそれぞれの複合電極とステップc)で得られた溶融塩ポリマー電解質膜を、複合電極中の前記溶融塩ポリマー電解質の連続相が前記溶融塩ポリマー電解質膜と一体化するように熱融着・熱重合するステップ、
を含むことを特徴とする。
A method for producing a lithium battery comprising a molten salt polymer electrolyte layer sandwiched between a positive electrode and a negative electrode according to the present invention comprises:
a) Molten salt polymer electrolyte containing a quaternary ammonium salt having a polymerizable functional group, a quaternary ammonium salt not containing a polymerizable functional group, a lithium salt, an electrochemically inactive polymer reinforcing material, and a polymerization initiator Preparing a precursor polymerization solution;
b) On the current collector of each electrode, in order to produce a composite electrode having an active material layer composed of a dispersed phase of an active material and a conductive material and a continuous phase of a molten salt polymer electrolyte, in the presence of the active material and the conductive material Thermally polymerizing the precursor polymerization liquid simultaneously with drying;
c) depositing the precursor polymerization solution on a molten salt polymer electrolyte membrane;
d) Each of the composite electrodes obtained in step b) and the molten salt polymer electrolyte membrane obtained in step c) are integrated with the molten salt polymer electrolyte membrane in a continuous phase of the molten salt polymer electrolyte in the composite electrode. Heat fusion and thermal polymerization step,
It is characterized by including.

この時、ステップb)は、前記前駆体重合液中の活物質および導電材の分散液を電極集電体に塗布し、該分散液のフィルムを乾燥と同時に熱重合することによって行なわれる。 At this time, step b) is performed by applying a dispersion of the active material and the conductive material in the precursor polymerization liquid to the electrode current collector, and thermally polymerizing the film of the dispersion simultaneously with drying.

また、ステップb)において、結着剤ポリマーを用いて電極集電体にあらかじめ固着された活物質および導電材に前記前駆体重合液を含浸し、乾燥と同時に熱重合することによって行なってもよい。 Further, in step b), the precursor polymerization liquid may be impregnated into an active material and a conductive material that are fixed to the electrode current collector in advance using a binder polymer, and thermal polymerization may be performed simultaneously with drying. .

この結果、ポリマー電解質の重合と同時に電極との複合化が行なわれ、そのためポリマー電解質と電極内の活物質との間に良好な電気化学界面が形成される。 As a result, at the same time as the polymerization of the polymer electrolyte, it is combined with the electrode, so that a good electrochemical interface is formed between the polymer electrolyte and the active material in the electrode.

ステップb)における乾燥および熱重合は、作製される複合電極の形状制御性および温度制御性等を考慮して行なわれることが好ましい。また、ステップb)における加熱は真空下で行なっても良く、温度は100℃以上200℃以下であることが好ましい。 The drying and thermal polymerization in step b) are preferably performed in consideration of the shape controllability and temperature controllability of the composite electrode to be produced. The heating in step b) may be performed under vacuum, and the temperature is preferably 100 ° C. or higher and 200 ° C. or lower.

また、より好ましい実施態様においては、硬化した後の複合高分子電解質を含む電極をさらに真空下でヒートプレスすることができ、この処理によって、塗工層に含まれる空孔の少なくとも大部分が潰れてコンパクト化するので、内部抵抗を低減させることができる。 In a more preferred embodiment, the electrode containing the cured composite polymer electrolyte can be further heat-pressed under vacuum, and at least most of the pores contained in the coating layer are crushed by this treatment. Therefore, the internal resistance can be reduced.

ステップd)では、ポリマー電解質と電極内の活物質との間により良好な電気化学界面が形成させるために、真空ヒートプレスを用いて前記複合化された正極および負極と前記ポリマー電解質とを熱重合を伴って熱融着させながら一体成形することが好ましい。 In step d), in order to form a better electrochemical interface between the polymer electrolyte and the active material in the electrode, the composite positive electrode and negative electrode and the polymer electrolyte are thermally polymerized using a vacuum heat press. It is preferable to perform integral molding while heat-sealing.

以上のように、本発明によれば、ポリマー電解質の重合と同時に電極との複合化が行なわれ、そのためポリマー電解質と電極内の活物質との間に良好な電気化学界面が形成された複合電極を製造することができる。 As described above, according to the present invention, a composite electrode is formed simultaneously with the polymerization of the polymer electrolyte, so that a good electrochemical interface is formed between the polymer electrolyte and the active material in the electrode. Can be manufactured.

この結果、本発明によれば、力学的性質を十分に満足し、複合正極および複合負極のインピーダンスの低減および高容量化を達成したポリマー電解質を用いたリチウム電池を提供することができる。 As a result, according to the present invention, it is possible to provide a lithium battery using a polymer electrolyte that sufficiently satisfies the mechanical properties and achieves reduction in impedance and increase in capacity of the composite positive electrode and composite negative electrode.

本発明に用いられる溶融塩ポリマー電解質の特徴およびその製造方法について説明する。 The characteristics of the molten salt polymer electrolyte used in the present invention and the production method thereof will be described.

本発明に用いられる重合性溶融塩モノマーのカチオン種は、1−エチル−3−ビニルイミダゾリウム、N−(2−(メタ)アクリロイルオキシエチル)−N,N,N−トリメチルアンモニウム、N−(3−(メタ)アクリロイルオキシプロピル)−N,N,N−トリメチルアンモニウム、N−(4−ビニルベンジル)−N,N,N−トリメチルアンモニウム、またはN,N−ジアリル−N,N−ジメチルアンモニウムから選ばれる。アニオン種はビス〔(トリフルオロメチル)スルホニル〕アミドまたはテトラフルオロボレートアニオンから選ばれる。 The cationic species of the polymerizable molten salt monomer used in the present invention is 1-ethyl-3-vinylimidazolium, N- (2- (meth) acryloyloxyethyl) -N, N, N-trimethylammonium, N- ( 3- (meth) acryloyloxypropyl) -N, N, N-trimethylammonium, N- (4-vinylbenzyl) -N, N, N-trimethylammonium, or N, N-diallyl-N, N-dimethylammonium Chosen from. The anionic species is selected from bis [(trifluoromethyl) sulfonyl] amide or tetrafluoroborate anions.

リチウム塩のみを支持させた重合性溶融塩モノマーの重合体では、イオン伝導度および機械的強度が満足でない。そこで電気化学窓の広い非重合性溶融塩を重合性溶融塩モノマーにブレンドして用いる。その例は、N−メチル−N−プロピルピペリジウム、N−(2−メトキシエチル)−N,N,N−トリエチルアンモニウムまたはN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムから選ばれたカチオン種と、ビス〔(トリフルオロメチル)スルホニル〕アミドまたはテトラフルオロボレートから選ばれたアニオン種との塩である。 A polymer of a polymerizable molten salt monomer supporting only a lithium salt is not satisfactory in ionic conductivity and mechanical strength. Therefore, a non-polymerizable molten salt having a wide electrochemical window is used by blending with a polymerizable molten salt monomer. Examples thereof are N-methyl-N-propylpiperidium, N- (2-methoxyethyl) -N, N, N-triethylammonium or N, N-diethyl-N-methyl-N- (2-methoxyethyl). A salt of a cationic species selected from ammonium and an anionic species selected from bis [(trifluoromethyl) sulfonyl] amide or tetrafluoroborate.

高分子電解質のイオン伝導性を向上させるためには、ポリフッ化ビニリデンを高分子電解質と複合化させるのが有効である。複合化は高分子電解質の重合前の前駆体溶液へポリフッ化ビニリデンを溶液として加えておくことによって達成される。ポリフッ化ビニリデンとして、炭素−炭素間二重結合を含むように変性したものを用いると、重合性溶融塩モノマーが二重結合にグラフト重合し、イオン伝導性が向上する。 In order to improve the ionic conductivity of the polymer electrolyte, it is effective to combine polyvinylidene fluoride with the polymer electrolyte. Compounding is achieved by adding polyvinylidene fluoride as a solution to the precursor solution before polymerization of the polyelectrolyte. When polyvinylidene fluoride modified so as to include a carbon-carbon double bond is used, the polymerizable molten salt monomer is graft-polymerized to the double bond, and the ionic conductivity is improved.

重合前の前駆体溶液は、リチウム塩および重合開始剤を含まなければならない。好適なリチウム塩はLiBF、Li(CFSONのようなフッ素含有リチウム塩である。本発明においては重合性溶融塩モノマーの重合と溶媒の除去を加熱して行うので、重合開始剤はベンゾイルパーオキサイド、2,2’−アゾビスイソブチロニトリルなどの熱重合開始剤を使用することができる。 The precursor solution before polymerization must contain a lithium salt and a polymerization initiator. Suitable lithium salts are fluorine-containing lithium salts such as LiBF 4 , Li (CF 3 SO 2 ) 2 N. In the present invention, the polymerization of the polymerizable molten salt monomer and the removal of the solvent are performed by heating, so that the polymerization initiator uses a thermal polymerization initiator such as benzoyl peroxide or 2,2′-azobisisobutyronitrile. be able to.

溶融塩電解質のイオン伝導度と、ポリフッ化ビニリデンの補強効果の間の最適なバランスを得るためには、重量比で、ポリフッ化ビニリデン/重合性溶融塩モノマー/非重合性溶融塩/リチウム塩の比が20〜30/10〜20/30〜40/20〜30の範囲にあることが必要であることが判った。 In order to obtain an optimal balance between the ionic conductivity of the molten salt electrolyte and the reinforcing effect of the polyvinylidene fluoride, the weight ratio of polyvinylidene fluoride / polymerizable molten salt monomer / non-polymerizable molten salt / lithium salt It has been found that the ratio needs to be in the range of 20-30 / 10-20 / 30-40 / 20-30.

本発明の複合高分子電解質の製造は、ポリフッ化ビニリデンをジメチルアセタミドのような適切な溶媒に溶かし、これへ他の成分を前記の割合で加え、重合開始剤を添加し前駆体溶液を調製する。次に、この溶液をガラスプレートのような支持基板上に流延、塗布などの方法によりフィルム状に展開し、基板に支持した状態で加熱して重合と溶媒の乾燥を同時に行う。加熱を真空下で行っても良く、温度は100℃以上200℃以下が好ましい。基板上で硬化、乾燥させた複合高分子電解質の膜は、冷却後基板から剥離して電池の組立てまで保存して置くことができる。 In the production of the composite polymer electrolyte of the present invention, polyvinylidene fluoride is dissolved in a suitable solvent such as dimethylacetamide, and other components are added thereto in the above proportions, a polymerization initiator is added, and a precursor solution is prepared. Prepare. Next, this solution is spread out on a support substrate such as a glass plate by a method such as casting or coating, and heated while being supported on the substrate, and polymerization and solvent drying are simultaneously performed. Heating may be performed under vacuum, and the temperature is preferably 100 ° C. or higher and 200 ° C. or lower. The film of the composite polymer electrolyte cured and dried on the substrate can be peeled off from the substrate after cooling and stored until the battery is assembled.

より好ましい実施態様においては、硬化した後の複合高分子電解質を基板から剥離する前に、真空下でヒートプレスすることができる。この処理によって膜に含まれる空孔の少なくとも大部分が潰れ、膜がコンパクト化するのでイオン伝導度をさらに向上させることができる。 In a more preferred embodiment, the cured composite polymer electrolyte can be heat-pressed under vacuum before peeling from the substrate. By this treatment, at least most of the vacancies contained in the membrane are crushed and the membrane is made compact, so that the ionic conductivity can be further improved.

次に、本発明によるポリマー電解質複合正極および複合負極の製造方法について説明する。 Next, the manufacturing method of the polymer electrolyte composite positive electrode and composite negative electrode according to the present invention will be described.

本発明による正極および負極の複合化に用いられるポリマー電解質は上記に述べられた溶融塩ポリマー電解質と同じであり、ポリフッ化ビニリデンをジメチルアセタミドのような適切な溶媒に溶かし、これへ他の成分を上述された割合で加え、重合開始剤を加えて調整した複合高分子電解質前駆体溶液を用いる。この溶液を正極および/または負極に注液し、加熱して重合・乾燥すると、電極内部のみならず表面にも電解質組成物からなる層が形成されたポリマー電解質複合正極および/または複合負極が得られる。 The polymer electrolyte used for the composite of the positive electrode and the negative electrode according to the present invention is the same as the molten salt polymer electrolyte described above, in which polyvinylidene fluoride is dissolved in a suitable solvent such as dimethylacetamide, A composite polymer electrolyte precursor solution prepared by adding the components in the above-described proportions and adding a polymerization initiator is used. When this solution is poured into the positive electrode and / or negative electrode, heated, polymerized and dried, a polymer electrolyte composite positive electrode and / or composite negative electrode in which a layer made of the electrolyte composition is formed not only inside the electrode but also on the surface is obtained. It is done.

また、この前駆体溶液は粘性の低い液体であるため、この溶液に活物質を混合した活物質塗工用スラリーを調整し、得られた活物質塗工用スラリーを電極集電体表面に塗布した後、加熱して重合、乾燥することによってもポリマー電解質複合正極および複合負極を作製することができる。 Also, since this precursor solution is a low-viscosity liquid, an active material coating slurry in which an active material is mixed with this solution is prepared, and the obtained active material coating slurry is applied to the surface of the electrode current collector. Then, the polymer electrolyte composite positive electrode and composite negative electrode can also be produced by heating and polymerizing and drying.

この結果、ポリマー電解質の重合と同時に電極との複合化が行なわれ、そのためポリマー電解質と電極内の活物質との間に良好な電気化学界面が形成される。 As a result, at the same time as the polymerization of the polymer electrolyte, it is combined with the electrode, so that a good electrochemical interface is formed between the polymer electrolyte and the active material in the electrode.

前駆体溶液が注液された電極、または電極集電体表面に塗布された活物質塗工用スラリーを加熱して重合、乾燥するための条件としては、作製される複合電極の形状制御性および温度制御性等を考慮して行なわれることが好ましく、また、加熱は真空下で行なっても良く、温度は100℃以上200℃以下であることが好ましい。 The conditions for heating and polymerizing and drying the electrode into which the precursor solution has been injected or the active material coating slurry applied to the surface of the electrode current collector are polymerized and dried. It is preferable that the temperature controllability is taken into consideration, and the heating may be performed under vacuum, and the temperature is preferably 100 ° C. or higher and 200 ° C. or lower.

また、より好ましい実施態様においては、硬化した後の複合高分子電解質を含む電極をさらに真空下でヒートプレスすることができ、この処理によって、塗工層に含まれる空孔の少なくとも大部分が潰れてコンパクト化するので、内部抵抗を低減させることができる。 In a more preferred embodiment, the electrode containing the cured composite polymer electrolyte can be further heat-pressed under vacuum, and at least most of the pores contained in the coating layer are crushed by this treatment. Therefore, the internal resistance can be reduced.

最後に、本発明によるポリマー電解質膜と複合正極および複合電極を交互に組み合わせて積層し、この積層体を真空ヒートプレスして一体成形した後、金属箔ラミネートフィルムよりなるケース内に封入することによりリチウム・ポリマー電池を構成することができる。 Finally, the polymer electrolyte membrane according to the present invention, the composite positive electrode and the composite electrode are alternately laminated and laminated, and this laminate is integrally formed by vacuum heat pressing, and then enclosed in a case made of a metal foil laminate film. A lithium polymer battery can be constructed.

以下に、限定を意図しない実施例によって本発明を例証する。これら実施例はリチウム・ポリマー電池の複合電極および電解質を意図したものであるが,当業者は電荷移動イオン源を変更することによって他の電気化学デバイスに適用するためこれら実施例を容易に修飾することができる。 In the following, the present invention is illustrated by means of non-limiting examples. Although these examples are intended for lithium polymer battery composite electrodes and electrolytes, those skilled in the art can readily modify these examples for application to other electrochemical devices by changing the charge transfer ion source. be able to.

実施例中すべての部および%は、特記しない限り重量基準による。また、実施例中の測定は、以下の方法により行った。 All parts and percentages in the examples are by weight unless otherwise specified. Moreover, the measurement in an Example was performed with the following method.

電池抵抗(Ω):TSURUGA製デジタル抵抗計3566により、交流四端子法、1kHzにて行った。 Battery resistance (Ω): An AC four-terminal method and 1 kHz were performed using a digital resistance meter 3566 made by TSURUGA.

電池の放電容量(mAh/g):ソーラトロン社製電気化学測定装置1255WBにより、20℃、定電流0.5mA/cm、カット電圧3〜4.2V、放電容量計算は正極活物質重量にて行った。 Battery discharge capacity (mAh / g): 20 ° C., constant current 0.5 mA / cm 2 , cut voltage 3 to 4.2 V, discharge capacity calculated by the weight of positive electrode active material, using an electrochemical measuring device 1255WB manufactured by Solartron went.

ポリマー電解質膜のイオン伝導度(σ):ポリマー電解質膜を金メッキしたニッケル電極の間に挟み、ヒューレットパッカード社製のインピーダンス測定機4192を用いて、10mA、5Hz〜1300kHz、20℃の条件で測定した。但し、σ(S/cm)=L/(R×S)、Sは試料の面積(cm)、Lは試料の厚み(cm)である。 Ionic conductivity (σ) of polymer electrolyte membrane: The polymer electrolyte membrane was sandwiched between gold-plated nickel electrodes, and measured using an impedance measuring instrument 4192 manufactured by Hewlett-Packard Co. at 10 mA, 5 Hz to 1300 kHz, and 20 ° C. . However, σ (S / cm) = L / (R × S), S is the area (cm 2 ) of the sample, and L is the thickness (cm) of the sample.

引張り強度(MPa):A&D社製,引張り試験機テンシロンRT1350を用いて、23℃、5cm/minの条件で測定した。なお、実施例中で合成した化合物はIRスペクトル,NMRスペクトルで同定した。 Tensile strength (MPa): Measured using a tensile tester Tensilon RT 1350 manufactured by A & D under conditions of 23 ° C. and 5 cm / min. In addition, the compound synthesize | combined in the Example was identified by IR spectrum and NMR spectrum.

(1)ポリマー電解質複合正極の作製 (1) Production of polymer electrolyte composite positive electrode

図1に本発明により製造されるリチウム・ポリマー電池の縦断面図を示す。図1において、1は複合正極、2はポリマー電解質膜、そして3は複合負極である。この中で、1は正極活物質4であるLiMnO85重量%と導電剤であるケッチェンブラック7重量%と結着剤であるポリフッ化ビニリデン8重量%からなる混合粉体を加圧成形した正極1である。 FIG. 1 is a longitudinal sectional view of a lithium polymer battery manufactured according to the present invention. In FIG. 1, 1 is a composite positive electrode, 2 is a polymer electrolyte membrane, and 3 is a composite negative electrode. Among these, 1 is a pressure-molded mixed powder composed of 85% by weight of LiMnO 2 as the positive electrode active material 4, 7% by weight of ketjen black as a conductive agent, and 8% by weight of polyvinylidene fluoride as a binder. The positive electrode 1.

5は、正極1中の微細な空孔に充填されたポリマー電解質である。この電解質は、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、ジアリル−ジメチルアンモニウム塩(DAAと略す)を;非重合性溶融塩(IL)として、N−メチル−N−プロピルピペリジウム塩(MPPと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、DAA:10.5g、MPP:10.5g、LiTFSI:15gをジメチルアセタミド113gに溶かし、これにベンゾイルパーオキサイド0.21gを添加して調製した前駆体溶液を1の正極へ注液し、正極1と共に110℃で30分間真空乾燥して乾燥及び重合反応を同時に行うことにより生成させた。続いて、90℃×21kg/cmの条件で10分間真空ヒートプレスして、電極表面にポリマー電解質相が形成された厚み90μmの複合正極1を作製した。 Reference numeral 5 denotes a polymer electrolyte filled in fine pores in the positive electrode 1. This electrolyte comprises, as a polymer, polyvinylidene fluoride (abbreviated as PVdF); a polymerizable molten salt monomer (PIL); a diallyl-dimethylammonium salt (abbreviated as DAA); a non-polymerizable molten salt (IL), N -Methyl-N-propylpiperidium salt (abbreviated as MPP); bis [(trifluoromethyl) sulfonyl] amide lithium (abbreviated as LiTFSI) as a lithium salt, PVdF: 14 g, DAA: 10.5 g A precursor solution prepared by dissolving MPP: 10.5 g and LiTFSI: 15 g in dimethylacetamide 113 g, and adding 0.21 g of benzoyl peroxide to this was poured into one positive electrode, and 110 ° C. together with the positive electrode 1 at 110 ° C. It was produced by performing vacuum drying for 30 minutes and simultaneously performing drying and polymerization reaction. Subsequently, vacuum heat pressing was performed for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 to prepare a composite positive electrode 1 having a thickness of 90 μm in which a polymer electrolyte phase was formed on the electrode surface.

(2)ポリマー電解質複合負極の作製 (2) Preparation of polymer electrolyte composite negative electrode

図1において、3は負極活物質6である天然グラファイト88重量%と導電剤であるケッチェンブラック4重量%と結着剤であるポリフッ化ビニリデン8重量%からなる混合粉体を加圧成形した負極3である。 In FIG. 1, 3 is a pressure-molded mixed powder composed of 88% by weight of natural graphite as the negative electrode active material 6, 4% by weight of ketjen black as a conductive agent, and 8% by weight of polyvinylidene fluoride as a binder. Negative electrode 3.

7は、負極3中の微細な空孔に充填されたポリマー電解質である。この電解質は、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、ジアリル−ジメチルアンモニウム塩(DAAと略す)を;非重合性溶融塩(IL)として、N−メチル−N−プロピルピペリジウム塩(MPPと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、DAA:10.5g、MPP:10.5g、LiTFSI:15gをジメチルアセタミド113gに溶かし、これにベンゾイルパーオキサイド0.21gを添加して調製した前駆体溶液を3の負極へ注液し、負極3と共に110℃で30分間真空乾燥して乾燥及び重合反応を同時に行うことにより生成させた。続いて、90℃×21kg/cmの条件で10分間真空ヒートプレスして、電極表面にポリマー電解質相が形成された厚み40μmの複合負極3を作製した。 7 is a polymer electrolyte filled in fine pores in the negative electrode 3. This electrolyte comprises, as a polymer, polyvinylidene fluoride (abbreviated as PVdF); a polymerizable molten salt monomer (PIL); a diallyl-dimethylammonium salt (abbreviated as DAA); a non-polymerizable molten salt (IL), N -Methyl-N-propylpiperidium salt (abbreviated as MPP); bis [(trifluoromethyl) sulfonyl] amide lithium (abbreviated as LiTFSI) as a lithium salt, PVdF: 14 g, DAA: 10.5 g A precursor solution prepared by dissolving MPP: 10.5 g and LiTFSI: 15 g in dimethylacetamide 113 g and adding 0.21 g of benzoyl peroxide to this was poured into the negative electrode 3, and at 110 ° C. together with the negative electrode 3 It was produced by performing vacuum drying for 30 minutes and simultaneously performing drying and polymerization reaction. Subsequently, vacuum heat pressing was performed for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 to prepare a composite negative electrode 3 having a thickness of 40 μm in which a polymer electrolyte phase was formed on the electrode surface.

(3)ポリマー電解質膜の作製 (3) Preparation of polymer electrolyte membrane

2はポリマー電解質層である。この電解質層2は、1の正極および3の負極とポリマーとの複合化に用いられた複合高分子電解質5,7と同じく、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、ジアリル−ジメチルアンモニウム塩(DAAと略す)を;非重合性溶融塩(IL)として、N−メチル−N−プロピルピペリジウム塩(MPPと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、DAA:10.5g、MPP:10.5g、LiTFSI:15gをジメチルアセタミド113gに溶かし、これにベンゾイルパーオキサイド0.21gを添加して調製した前駆体溶液であり、この溶液を厚み3mmのガラス板上にアプリケーターを用いて25〜50μmの厚さに塗布する。次いで、この塗布された複合高分子電解質をガラス板と共に110℃で30分間真空乾燥し、乾燥及び重合反応とを行うことにより生成させた。続いて、硬化した膜をガラス板上で90℃×21kg/cmの条件で10分間真空ヒートプレスし、ガラス板から剥離させて膜厚30μmのポリマー電解質膜2を作製した。 2 is a polymer electrolyte layer. This electrolyte layer 2 is composed of polyvinylidene fluoride (abbreviated as PVdF) as a polymer, like the composite polymer electrolytes 5 and 7 used for the composite of the positive electrode 1 and the negative electrode 3 and the polymer; As monomer (PIL), diallyl-dimethylammonium salt (abbreviated as DAA); as non-polymerizable molten salt (IL), as N-methyl-N-propylpiperidium salt (abbreviated as MPP); as lithium salt; [(Trifluoromethyl) sulfonyl] amide / lithium (abbreviated as LiTFSI), PVdF: 14 g, DAA: 10.5 g, MPP: 10.5 g, LiTFSI: 15 g were dissolved in dimethylacetamide 113 g, and benzoyl This is a precursor solution prepared by adding 0.21 g of peroxide, and this solution is made of glass having a thickness of 3 mm. It is applied to a thickness of 25~50μm using an applicator on. Next, the applied composite polymer electrolyte was vacuum-dried at 110 ° C. for 30 minutes together with a glass plate, and dried and subjected to a polymerization reaction. Subsequently, the cured film was vacuum heat pressed on a glass plate for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 , and peeled from the glass plate to produce a polymer electrolyte membrane 2 having a thickness of 30 μm.

このとき作製されたポリマー電解質膜2のイオン伝導度は、20℃で1.8×10−3S/cmであり、その引張り強度は4.7MPaであった。 The ionic conductivity of the polymer electrolyte membrane 2 produced at this time was 1.8 × 10 −3 S / cm at 20 ° C., and the tensile strength was 4.7 MPa.

(4)リチウム・ポリマー二次電池の作製 (4) Fabrication of lithium polymer secondary battery

最後に、本発明によるポリマー電解質膜2と複合正極1および複合負極3を交互に組み合わせて積層し、この積層体を150℃×10kg/cmの条件で30分間真空ヒートプレスして熱融着・熱重合により一体成形した後、金属箔ラミネートフィルムよりなるケース内に封入することにより実施例1のリチウム・ポリマー二次電池を構成した。 Finally, the polymer electrolyte membrane 2 according to the present invention, the composite positive electrode 1 and the composite negative electrode 3 are laminated alternately and laminated, and this laminate is heat-sealed by vacuum heat pressing at 150 ° C. × 10 kg / cm 2 for 30 minutes. -The lithium polymer secondary battery of Example 1 was constituted by integrally molding by thermal polymerization and then enclosing it in a case made of a metal foil laminate film.

(1)ポリマー電解質複合正極の製作 (1) Fabrication of polymer electrolyte composite positive electrode

実施例2におけるリチウム・ポリマー電池の断面構造は、図1に示される実施例1のリチウム・ポリマー電池の断面構造と同じである。すなわち、1は複合正極、2はポリマー電解質膜、そして3は複合負極であり、この中で、1は正極活物質4であるLiMnO85重量%と導電剤であるケッチェンブラック7重量%と結着剤であるポリフッ化ビニリデン8重量%からなる混合粉体を加圧成形した正極である。 The cross-sectional structure of the lithium polymer battery in Example 2 is the same as the cross-sectional structure of the lithium polymer battery in Example 1 shown in FIG. That is, 1 is a composite positive electrode, 2 is a polymer electrolyte membrane, and 3 is a composite negative electrode, in which 1 is 85% by weight of LiMnO 2 that is the positive electrode active material 4 and 7% by weight of ketjen black that is a conductive agent. It is a positive electrode obtained by pressure-molding a mixed powder composed of 8% by weight of polyvinylidene fluoride as a binder.

2は、正極1中の微細な空孔に充填されたポリマー電解質である。この電解質は、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、メタクリロイルオキシエチル−トリメチルアンモニウム塩(MOETMAと略す)を;非重合性溶融塩(IL)として、ジエチル−メチル−メトキシエチルアンモニウム塩(DEMEと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、DAA:10.5g、MPP:10.5g、LiTFSI:15gをジメチルアセタミド113gに溶かし、これにベンゾイルパーオキサイド0.21gを添加して調製した前駆体溶液を1の正極へ注液し、正極1と共に110℃で30分真空乾燥して乾燥及び重合反応を同時に行うことにより生成させた。続いて、90℃×21kg/cmの条件で10分間真空ヒートプレスして、電極表面にポリマー電解質相が形成された厚み90μmの複合正極1を作製した。 Reference numeral 2 denotes a polymer electrolyte filled in fine pores in the positive electrode 1. This electrolyte has, as a polymer, polyvinylidene fluoride (abbreviated as PVdF); as a polymerizable molten salt monomer (PIL); as a methacryloyloxyethyl-trimethylammonium salt (abbreviated as MOETMA); as a non-polymerizable molten salt (IL). Diethyl-methyl-methoxyethylammonium salt (abbreviated as DEME); bis [(trifluoromethyl) sulfonyl] amido lithium (abbreviated as LiTFSI) as the lithium salt, PVdF: 14 g, DAA: 10.5 g, A precursor solution prepared by dissolving MPP: 10.5 g and LiTFSI: 15 g in dimethylacetamide 113 g, and adding 0.21 g of benzoyl peroxide to this was poured into one positive electrode, and 110 ° C. together with the positive electrode 1 at 110 ° C. Dry and polymerize at the same time by vacuum drying for 30 minutes. It was generated by. Subsequently, vacuum heat pressing was performed for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 to prepare a composite positive electrode 1 having a thickness of 90 μm in which a polymer electrolyte phase was formed on the electrode surface.

(2)ポリマー電解質複合負極の作製 (2) Preparation of polymer electrolyte composite negative electrode

図1において、3は負極活物質6である天然グラファイト88重量%と導電剤であるケッチェンブラック4重量%と結着剤であるポリフッ化ビニリデン8重量%からなる混合粉体を加圧成形した負極3である。 In FIG. 1, 3 is a pressure-molded mixed powder composed of 88% by weight of natural graphite as the negative electrode active material 6, 4% by weight of ketjen black as a conductive agent, and 8% by weight of polyvinylidene fluoride as a binder. Negative electrode 3.

7は、負極3中の微細な空孔に充填されたポリマー電解質である。この電解質は、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、メタクリロイルオキシエチル−トリメチルアンモニウム塩(MOETMAと略す)を;非重合性溶融塩(IL)として、ジエチル−メチル−メトキシエチルアンモニウム塩(DEMEと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、DAA:10.5g、MPP:10.5g、LiTFSI:15gをジメチルアセタミド113gに溶かし、これにベンゾイルパーオキサイド0.21gを添加して調製した前駆体溶液を3の負極へ注液し、負極3と共に110℃で30分真空乾燥して乾燥及び重合反応を同時に行うことにより生成させた。続いて、90℃×21kg/cmの条件で10分間真空ヒートプレスして、電極表面にポリマー電解質相が形成された厚み40μmの複合負極3を作製した。 7 is a polymer electrolyte filled in fine pores in the negative electrode 3. This electrolyte has, as a polymer, polyvinylidene fluoride (abbreviated as PVdF); as a polymerizable molten salt monomer (PIL); as a methacryloyloxyethyl-trimethylammonium salt (abbreviated as MOETMA); as a non-polymerizable molten salt (IL). Diethyl-methyl-methoxyethylammonium salt (abbreviated as DEME); bis [(trifluoromethyl) sulfonyl] amido lithium (abbreviated as LiTFSI) as the lithium salt, PVdF: 14 g, DAA: 10.5 g, A precursor solution prepared by dissolving MPP: 10.5 g and LiTFSI: 15 g in dimethylacetamide 113 g and adding 0.21 g of benzoyl peroxide to this was poured into the negative electrode 3, and at 110 ° C. together with the negative electrode 3 Dry and polymerize at the same time by vacuum drying for 30 minutes. It was generated by. Subsequently, vacuum heat pressing was performed for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 to prepare a composite negative electrode 3 having a thickness of 40 μm in which a polymer electrolyte phase was formed on the electrode surface.

(3)ポリマー電解質膜の作製 (3) Preparation of polymer electrolyte membrane

2はポリマー電解質層である。この電解質層は、1の正極および3の負極とポリマーとの複合化に用いられた複合高分子電解質と同じく、ポリマーとして、ポリフッ化ビニリデン(PVdFと略す)を;重合性溶融塩モノマー(PIL)として、ジアリル−ジメチルアンモニウム塩(DAAと略す)を;非重合性溶融塩(IL)として、N−メチル−N−プロピルピペリジウム塩(MPPと略す)を;リチウム塩として、ビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用い、PVdF:14g、MOETMA:10.5g、DEME:10.5g、LiTFSI:15gをジメチルアセタミド80gに溶かし、これにベンゾイルパーオキサイド0.15gを添加して調製した前駆体溶液であり、この溶液を厚み3mmのガラス板上にアプリケーターを用いて25〜50μmの厚さに塗布する。次いで、この塗布された複合高分子電解質をガラス板と共に110℃で30分真空乾燥し、乾燥及び重合反応とを行うことにより生成させた。続いて、硬化した膜をガラス板上で90℃×21kg/cmの条件で10分間真空ヒートプレスし、ガラス板から剥離させて膜厚30μmのポリマー電解質膜2を作製した。 2 is a polymer electrolyte layer. This electrolyte layer is composed of polyvinylidene fluoride (abbreviated as PVdF) as a polymer, as in the case of the composite polymer electrolyte used for combining the positive electrode 1 and the negative electrode 3 with the polymer; polymerizable molten salt monomer (PIL) Diallyl-dimethylammonium salt (abbreviated as DAA); non-polymerizable molten salt (IL); N-methyl-N-propylpiperidium salt (abbreviated as MPP); lithium salt as bis [(trifluoro Methyl) sulfonyl] amide lithium (abbreviated as LiTFSI), PVdF: 14 g, MOETMA: 10.5 g, DEME: 10.5 g, LiTFSI: 15 g were dissolved in dimethylacetamide 80 g, and benzoyl peroxide 0. 15 g of a precursor solution prepared by adding a 3 mm thick glass plate It is applied to a thickness of 25~50μm using applicator. Next, the applied composite polymer electrolyte was vacuum-dried at 110 ° C. for 30 minutes together with a glass plate, and was produced by drying and polymerization reaction. Subsequently, the cured film was vacuum heat pressed on a glass plate for 10 minutes under the condition of 90 ° C. × 21 kg / cm 2 , and peeled from the glass plate to produce a polymer electrolyte membrane 2 having a thickness of 30 μm.

このとき作製されたポリマー電解質膜2のイオン伝導度は、20℃で1.9×10−3S/cmであり、その引張り強度は3.5MPaであった。 The ionic conductivity of the polymer electrolyte membrane 2 produced at this time was 1.9 × 10 −3 S / cm at 20 ° C., and the tensile strength was 3.5 MPa.

(4)リチウム・ポリマー二次電池の作製 (4) Fabrication of lithium polymer secondary battery

最後に、本発明によるポリマー電解質膜2と複合正極1および複合負極3を交互に組み合わせて積層し、この積層体を150℃×10kg/cmの条件で30分間真空ヒートプレスして熱融着により一体成形した後、金属箔ラミネートフィルムよりなるケース内に封入することにより実施例2のリチウム・ポリマー二次電池を構成した。 Finally, the polymer electrolyte membrane 2 according to the present invention, the composite positive electrode 1 and the composite negative electrode 3 are laminated alternately and laminated, and this laminate is heat-sealed by vacuum heat pressing at 150 ° C. × 10 kg / cm 2 for 30 minutes. Then, the lithium polymer secondary battery of Example 2 was constructed by enclosing it in a case made of a metal foil laminate film.

比較例Comparative example

(1)ポリマー電解質複合正極の作製 (1) Production of polymer electrolyte composite positive electrode

比較例におけるリチウム・ポリマー電池の断面構造は、図1に示される実施例1および2のリチウム・ポリマー電池の断面構造と同じである。しかしながら、複合正極の製造方法において、実施例1、2とは異なり以下の方法を用いる。まず、正極活物質4であるLiMnO90重量%、導電剤であるアセチレンブラック3重量%、ポリマー電解質であるポリエチレンオキシドとLiBFの錯体7重量%を、アセトニトリルに懸濁した液を調整する。次いで、この懸濁液をアルミニウム箔上に流し、アセトニトリルを蒸発させてシート状の厚み90μmの複合正極1を得た。また、作製された比較例の複合正極1は、真空ヒートプレスを行わなかった。 The cross-sectional structure of the lithium polymer battery in the comparative example is the same as the cross-sectional structure of the lithium polymer battery of Examples 1 and 2 shown in FIG. However, unlike the first and second embodiments, the following method is used in the method for manufacturing the composite positive electrode. First, a liquid in which 90% by weight of LiMnO 2 that is the positive electrode active material 4, 3% by weight of acetylene black that is a conductive agent, and 7% by weight of a complex of polyethylene oxide and LiBF 4 that is a polymer electrolyte is prepared in acetonitrile is prepared. Next, this suspension was poured onto an aluminum foil, and acetonitrile was evaporated to obtain a composite positive electrode 1 having a sheet thickness of 90 μm. Moreover, the composite cathode 1 of the produced comparative example was not subjected to vacuum heat press.

(2)ポリマー電解質複合負極の作製 (2) Preparation of polymer electrolyte composite negative electrode

複合負極の製造方法においては、まず、負極活物質4である天然グラファイト90重量%、導電剤であるケッチェンブラック3重量%、ポリマー電解質であるポリエチレンオキシドとLiBFの錯体7重量%を、アセトニトリルに懸濁した液を調整する。次いで、この懸濁液を銅箔上に流し、アセトニトリルを蒸発させてシート状の厚み40μmの複合負極3を得た。また、作製された比較例の複合負極3は、真空ヒートプレスを行わなかった。 In the method for producing a composite negative electrode, first, 90% by weight of natural graphite as negative electrode active material 4, 3% by weight of ketjen black as a conductive agent, 7% by weight of a complex of polyethylene oxide and LiBF 4 as a polymer electrolyte are mixed with acetonitrile. Adjust the liquid suspended in Next, this suspension was poured onto a copper foil, and acetonitrile was evaporated to obtain a sheet-like composite negative electrode 3 having a thickness of 40 μm. Moreover, the composite negative electrode 3 of the produced comparative example was not subjected to vacuum heat press.

(3)ポリマー電解質膜の作製 (3) Preparation of polymer electrolyte membrane

ポリマー電解質膜2の作製は、ポリマー電解質であるポリエチレンオキシドとLiBFの錯体を、アセトニトリルに懸濁した液を調整する。次いで、この懸濁液を厚み3mmのガラス板上に流し、アセトニトリルを蒸発させてシート状のポリマー電解質膜2を生成させた。続いて、硬化した膜をヒートプレスすることなしにガラス板から剥離させて膜厚30μmのポリマー電解質膜2を作製した。 The polymer electrolyte membrane 2 is prepared by adjusting a liquid in which a complex of polyethylene oxide, which is a polymer electrolyte, and LiBF 4 is suspended in acetonitrile. Next, this suspension was poured onto a glass plate having a thickness of 3 mm, and acetonitrile was evaporated to produce a sheet-like polymer electrolyte membrane 2. Subsequently, the cured film was peeled off from the glass plate without heat pressing to produce a polymer electrolyte membrane 2 having a thickness of 30 μm.

このとき作製されたポリマー電解質膜2のイオン伝導度は、20℃で0.1×10−3S/cmであり、その引張り強度は5.1MPaであった。 The ionic conductivity of the polymer electrolyte membrane 2 produced at this time was 0.1 × 10 −3 S / cm at 20 ° C., and its tensile strength was 5.1 MPa.

(4)リチウム・ポリマー二次電池の作製 (4) Fabrication of lithium polymer secondary battery

最後に、作製されたポリマー電解質膜2と複合正極1および複合負極3を交互に組み合わせて積層し、この積層体を150℃×10kg/cmの条件で30分間真空ヒートプレスして一体成形した後、金属箔ラミネートフィルムよりなるケース内に封入することにより比較例のリチウム・ポリマー二次電池を構成した。 Finally, the produced polymer electrolyte membrane 2, the composite positive electrode 1 and the composite negative electrode 3 were laminated alternately and laminated, and this laminate was integrally formed by vacuum heat pressing for 30 minutes at 150 ° C. × 10 kg / cm 2 . Then, a lithium polymer secondary battery of a comparative example was constructed by enclosing it in a case made of a metal foil laminate film.

上記以外の条件は、実施例1、2および比較例とも同じである。比較例と実施例1、2で得られた複合正極および複合負極について、その電池抵抗と放電容量を表1に示す。 Conditions other than the above are the same as in Examples 1 and 2 and the comparative example. Table 1 shows the battery resistance and discharge capacity of the composite positive electrode and composite negative electrode obtained in Comparative Example and Examples 1 and 2.

Figure 2006049158
Figure 2006049158

なお、本実施例1、2では、重合性溶融塩モノマー(PIL)としてDAAまたはMOETMAを用いたが、これは、1−エチル−3−ビニルイミダゾリウム、N−(3−(メタ)アクリロイルオキシプロピル)−N,N,N−トリメチルアンモニウム、およびN−(4−ビニルベンジル)−N,N,N−トリメチルアンモニウムからなる群から選ばれた4級アンモニウムカチオンと、ビス〔(トリフロロメチル)スルフォニル〕アミドアニオンまたはテトラフルオロボレートアニオンより選ばれたフッ素含有アニオンとの塩からなる重合性溶融塩モノマーであってもよい。 In Examples 1 and 2, DAA or MOETMA was used as the polymerizable molten salt monomer (PIL), but this is not limited to 1-ethyl-3-vinylimidazolium, N- (3- (meth) acryloyloxy. A quaternary ammonium cation selected from the group consisting of propyl) -N, N, N-trimethylammonium and N- (4-vinylbenzyl) -N, N, N-trimethylammonium; and bis [(trifluoromethyl) A polymerizable molten salt monomer composed of a salt with a fluorine-containing anion selected from a [sulfonyl] amide anion or a tetrafluoroborate anion.

また、非重合性溶融塩(IL)としてMPPまたはDEMEを用いたが、これは、N−(2−メトキシエチル)−N,N,N−トリエチルアンモニウムからなる4級アンモニウムカチオン、ビス〔(トリフルオロメチル)スルホン〕アミドアニオンまたはテトラフルオロボレートアニオンとの塩よりなる非重合性溶融塩であってもよく、具体的には、N,N,N−トリエチル−N−メトキシエチルアンモニウム・ビス〔(トリフルオロメチル)スルフォニル〕アミド(TEME・TFSIと略す)がある。 Further, MPP or DEME was used as the non-polymerizable molten salt (IL), which is a quaternary ammonium cation composed of N- (2-methoxyethyl) -N, N, N-triethylammonium, bis [(tri Fluoromethyl) sulfone] amide anion or tetrafluoroborate anion or non-polymerizable molten salt may be used. Specifically, N, N, N-triethyl-N-methoxyethylammonium bis [( Trifluoromethyl) sulfonyl] amide (abbreviated as TEME TFSI).

また、ポリマーとしてポリフッ化ビニリデン(PVdFと略す)を用いたが、高分子補強材料は,耐酸化性,耐還元性,耐溶剤性,低吸水性,難燃性などの電気化学的/化学的安定性や耐熱性,耐寒性などの温度特性,さらに力学的特性(強伸度,柔軟性)に優れ,且つ加工性に優れたポリマーであればよく、例えば,ポリテトラフルオロエチレンなどのフッ素系ポリマー,ポリエチレン,ポリプロピレンなどのポリオレフィン,ポリアクリロニトリル,ポリスチレンなどのビニル系ポリマー,ポリスルフォン,ポリエーテルスルフォンなどのポリスルフォン系ポリマー,ポリエーテルケトン,ポリエーテルエーテルケトンなどのポリエーテルケトン系ポリマー,ポリエーテルイミド,ポリアミドイミド,ポリイミドなどのポリイミド系ポリマー(いずれも共重合ポリマーを含む)を挙げることが出来る。 Polyvinylidene fluoride (abbreviated as PVdF) was used as the polymer, but the polymer reinforcing material is electrochemical / chemical such as oxidation resistance, reduction resistance, solvent resistance, low water absorption, and flame resistance. Any polymer that has excellent temperature characteristics such as stability, heat resistance, and cold resistance, as well as excellent mechanical properties (strong elongation, flexibility) and excellent workability, such as fluorine-based polymers such as polytetrafluoroethylene. Polymers, polyolefins such as polyethylene and polypropylene, vinyl polymers such as polyacrylonitrile and polystyrene, polysulfone polymers such as polysulfone and polyethersulfone, polyetherketone polymers such as polyetherketone and polyetheretherketone, polyethers Polyimide-based poly, such as imide, polyamide-imide, and polyimide It can be exemplified by chromatography (both containing copolymer).

また、リチウム塩としてビス〔(トリフルオロメチル)スルフォニル〕アミド・リチウム(LiTFSIと略す)を用いたが、これは、Li(CFSONよりなるリチウム塩であってもよい。 Further, although bis [(trifluoromethyl) sulfonyl] amide lithium (abbreviated as LiTFSI) is used as the lithium salt, this may be a lithium salt made of Li (CF 3 SO 2 ) 2 N.

本発明によるリチウム・ポリマー二次電池の部分断面図を示す。1 is a partial cross-sectional view of a lithium polymer secondary battery according to the present invention.

符号の説明Explanation of symbols

1 ポリマー電解質複合正極
2 ポリマー電解質膜
3 ポリマー電解質複合負極
4 正極活物質
5 ポリマー電解質
6 負極活物質
7 ポリマー電解質
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte composite positive electrode 2 Polymer electrolyte membrane 3 Polymer electrolyte composite negative electrode 4 Positive electrode active material 5 Polymer electrolyte 6 Negative electrode active material 7 Polymer electrolyte

Claims (16)

正極と負極の間にサンドイッチされた溶融塩ポリマー電解質層を備えるリチウム電池において、正極および負極の少なくとも一方の活物質は導電材と共に溶融塩ポリマー電解質の連続相中に分散しており、かつ該連続相は電極間に配置された前記溶融塩ポリマー電解質層と一体であることを特徴とするリチウム電池。 In a lithium battery including a molten salt polymer electrolyte layer sandwiched between a positive electrode and a negative electrode, at least one active material of the positive electrode and the negative electrode is dispersed in a continuous phase of the molten salt polymer electrolyte together with a conductive material, and the continuous A lithium battery, wherein the phase is integral with the molten salt polymer electrolyte layer disposed between the electrodes. 前記連続相は、正極側および負極側の両方に形成されている請求項1に記載のリチウム電池。 The lithium battery according to claim 1, wherein the continuous phase is formed on both the positive electrode side and the negative electrode side. 前記溶融塩ポリマー電解質は、リチウム塩を含む、重合性官能基を含む4級アンモニウム塩および重合性官能基を含まない4級アンモニウム塩の混合物の重合物である請求項1又は2に記載のリチウム電池。 3. The lithium according to claim 1, wherein the molten salt polymer electrolyte is a polymer of a mixture of a quaternary ammonium salt containing a polymerizable functional group containing a lithium salt and a quaternary ammonium salt containing no polymerizable functional group. battery. 前記溶融塩ポリマー電解質は、電気化学的に不活性な高分子補強材料を含んでいる請求項1ないし3のいずれかに記載のリチウム電池。 The lithium battery according to any one of claims 1 to 3, wherein the molten salt polymer electrolyte includes an electrochemically inactive polymer reinforcing material. 前記溶融塩ポリマー電解質は、
a)1−エチル−3−ビニルイミダゾリウム、N−(2−(メタ)アクリロイルオキシエチル)−N,N,N−トリメチルアンモニウム、N−(3−(メタ)アクリロイルオキシプロピル)−N,N,N−トリメチルアンモニウム、N−(4−ビニルベンジル)−N,N,N−トリメチルアンモニウム、およびN,N−ジアリル−N,N−ジメチルアンモニウムからなる群から選ばれた4級アンモニウムカチオンと、ビス〔(トリフロロメチル)スルフォニル〕アミドアニオンまたはテトラフルオロボレートアニオンより選ばれたフッ素含有アニオンとの塩からなる重合性溶融塩モノマー10〜20重量%、
b)N−メチル−N−プロピルピペリジニウムまたはN−(2−メトキシエチル)−N,N,N−トリエチルアンモニウムまたはN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムから選ばれた4級アンモニウムカチオン、ビス〔(トリフルオロメチル)スルホン〕アミドアニオンまたはテトラフルオロボレートアニオンとの塩よりなる非重合性溶融塩30〜40重量%、
c)ポリフッ化ビニリデン20〜30重量%、および
d)LiBFまたはLi(CFSONから選ばれたリチウム塩20〜30重量%、
を含む重合液を重合することにより製造される請求項1ないし4のいずれかに記載のリチウム電池。
The molten salt polymer electrolyte is
a) 1-ethyl-3-vinylimidazolium, N- (2- (meth) acryloyloxyethyl) -N, N, N-trimethylammonium, N- (3- (meth) acryloyloxypropyl) -N, N A quaternary ammonium cation selected from the group consisting of N, N-trimethylammonium, N- (4-vinylbenzyl) -N, N, N-trimethylammonium, and N, N-diallyl-N, N-dimethylammonium; 10 to 20% by weight of a polymerizable molten salt monomer comprising a salt with a fluorine-containing anion selected from bis [(trifluoromethyl) sulfonyl] amide anion or tetrafluoroborate anion,
b) N-methyl-N-propylpiperidinium or N- (2-methoxyethyl) -N, N, N-triethylammonium or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium 30 to 40% by weight of a non-polymerizable molten salt comprising a salt with a quaternary ammonium cation selected from: bis [(trifluoromethyl) sulfone] amide anion or tetrafluoroborate anion
c) 20-30% by weight of polyvinylidene fluoride, and d) 20-30% by weight of a lithium salt selected from LiBF 4 or Li (CF 3 SO 2 ) 2 N,
The lithium battery according to claim 1, which is produced by polymerizing a polymerization solution containing
前記ポリフッ化ビニリデンは、炭素−炭素間二重結合を含んでいる請求項5に記載のリチウム電池。 The lithium battery according to claim 5, wherein the polyvinylidene fluoride includes a carbon-carbon double bond. 正極活物質が、V、V13+y(0≦y≦0.16)、LiCoO、LiNiO、LiMnOおよびLiMn(0.1<x<0.5)から選ばれた請求項1ないし6のいずれかに記載のリチウム電池。 The positive electrode active material is V 2 O 5 , V 6 O 13 + y (0 ≦ y ≦ 0.16), LiCoO 2 , LiNiO 2 , LiMnO 2 and Li x Mn 2 O 4 (0.1 <x <0.5). The lithium battery according to any one of claims 1 to 6 selected from. 負極活物質が、電気化学的にリチウムを吸蔵および放出し得る物質か、または金属リチウムおよびリチウムを含む合金から選ばれた請求項1ないし7のいずれかに記載のリチウム電池。 The lithium battery according to any one of claims 1 to 7, wherein the negative electrode active material is selected from a material capable of electrochemically inserting and extracting lithium, or a metal lithium and an alloy containing lithium. 正極と負極の間にサンドイッチされた溶融塩ポリマー電解質層を備えるリチウム電池の製造方法であって、
a)重合性官能基を有する4級アンモニウム塩、重合性官能基を含まない4級アンモニウム塩、リチウム塩、電気化学的に不活性な高分子補強材料、および重合開始剤を含む溶融塩ポリマー電解質前駆体重合液を用意するステップ、
b)各電極の集電体上に、活物質および導電材の分散相と、溶融塩ポリマー電解質の連続相よりなる活物質層を有する複合電極を製造するため、活物質および導電材の存在下前記前駆体重合液を乾燥と同時に熱重合するステップ、
c)前記前駆体重合液を溶融塩ポリマー電解質膜に成膜するステップ、
d)ステップb)で得られたそれぞれの複合電極とステップc)で得られた溶融塩ポリマー電解質膜を、複合電極中の前記溶融塩ポリマー電解質の連続相が前記溶融塩ポリマー電解質膜と一体化するように熱融着・熱重合するステップ、
を含むことを特徴とするリチウム電池の製造方法。
A method for producing a lithium battery comprising a molten salt polymer electrolyte layer sandwiched between a positive electrode and a negative electrode,
a) Molten salt polymer electrolyte containing a quaternary ammonium salt having a polymerizable functional group, a quaternary ammonium salt not containing a polymerizable functional group, a lithium salt, an electrochemically inactive polymer reinforcing material, and a polymerization initiator Preparing a precursor polymerization solution;
b) On the current collector of each electrode, in order to produce a composite electrode having an active material layer composed of a dispersed phase of an active material and a conductive material and a continuous phase of a molten salt polymer electrolyte, in the presence of the active material and the conductive material Thermally polymerizing the precursor polymerization liquid simultaneously with drying;
c) depositing the precursor polymerization solution on a molten salt polymer electrolyte membrane;
d) Each of the composite electrodes obtained in step b) and the molten salt polymer electrolyte membrane obtained in step c) are integrated with the molten salt polymer electrolyte membrane in a continuous phase of the molten salt polymer electrolyte in the composite electrode. Heat fusion and thermal polymerization step,
A method for producing a lithium battery, comprising:
ステップb)は、前記前駆体重合液中の活物質および導電材の分散液を集電体に塗布し、該分散液のフィルムを乾燥と同時に熱重合することによって行なわれる請求項9に記載の方法。 The step b) is performed by applying a dispersion of an active material and a conductive material in the precursor polymerization liquid to a current collector, and thermally polymerizing a film of the dispersion simultaneously with drying. Method. ステップb)は、結着剤ポリマーを用いて集電体にあらかじめ固着された活物質および導電材を前記前駆体重合液で含浸し、乾燥と同時に熱重合することによって行なわれる請求項9に記載の方法。 The step b) is performed by impregnating an active material and a conductive material previously fixed to a current collector using a binder polymer with the precursor polymerization liquid and performing thermal polymerization simultaneously with drying. the method of. 前記溶融塩ポリマー電解質は、
a)1−エチル−3−ビニルイミダゾリウム、N−(2−(メタ)アクリロイルオキシエチル)−N,N,N−トリメチルアンモニウム、N−(3−(メタ)アクリロイルオキシプロピル)−N,N,N−トリメチルアンモニウム、N−(4−ビニルベンジル)−N,N,N−トリメチルアンモニウム、およびN,N−ジアリル−N,N−ジメチルアンモニウムからなる群から選ばれた4級アンモニウムカチオンと、ビス〔(トリフロロメチル)スルフォニル〕アミドアニオンまたはテトラフルオロボレートアニオンより選ばれたフッ素含有アニオンとの塩からなる重合性溶融塩モノマー10〜20重量%、
b)N−メチル−N−プロピルピペリジニウムまたはN−(2−メトキシエチル)−N,N,N−トリエチルアンモニウムまたはN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムから選ばれた4級アンモニウムカチオン、ビス〔(トリフルオロメチル)スルホン〕アミドアニオンまたはテトラフルオロボレートアニオンとの塩よりなる非重合性溶融塩30〜40重量%、
c)ポリフッ化ビニリデン20〜30重量%、および
d)LiBFまたはLi(CFSONから選ばれたリチウム塩20〜30重量%、
を含む重合液を重合することにより製造される請求項9ないし11のいずれかに記載の方法。
The molten salt polymer electrolyte is
a) 1-ethyl-3-vinylimidazolium, N- (2- (meth) acryloyloxyethyl) -N, N, N-trimethylammonium, N- (3- (meth) acryloyloxypropyl) -N, N A quaternary ammonium cation selected from the group consisting of N, N-trimethylammonium, N- (4-vinylbenzyl) -N, N, N-trimethylammonium, and N, N-diallyl-N, N-dimethylammonium; 10 to 20% by weight of a polymerizable molten salt monomer comprising a salt with a fluorine-containing anion selected from bis [(trifluoromethyl) sulfonyl] amide anion or tetrafluoroborate anion,
b) N-methyl-N-propylpiperidinium or N- (2-methoxyethyl) -N, N, N-triethylammonium or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium 30 to 40% by weight of a non-polymerizable molten salt comprising a salt with a quaternary ammonium cation selected from: bis [(trifluoromethyl) sulfone] amide anion or tetrafluoroborate anion
c) 20-30% by weight of polyvinylidene fluoride, and d) 20-30% by weight of a lithium salt selected from LiBF 4 or Li (CF 3 SO 2 ) 2 N,
The method according to claim 9, which is produced by polymerizing a polymerization solution containing
前記ポリフッ化ビニリデンは、炭素−炭素間二重結合を含んでいる請求項12に記載の方法。 The method according to claim 12, wherein the polyvinylidene fluoride contains a carbon-carbon double bond. 正極活物質が、V、V13+y(0≦y≦0.16)、LiCoO、LiNiO、LiMnOおよびLiMn(0.1<x<0.5)から選ばれる請求項9ないし13のいずれかに記載の方法。 The positive electrode active material is V 2 O 5 , V 6 O 13 + y (0 ≦ y ≦ 0.16), LiCoO 2 , LiNiO 2 , LiMnO 2 and Li x Mn 2 O 4 (0.1 <x <0.5). 14. A method according to any one of claims 9 to 13 selected from. 負極活物質が、電気化学的にリチウムを吸蔵および放出し得る物質か、または金属リチウムおよびリチウムを含む合金から選ばれる請求項9ないし14のいずれかに記載の方法。 15. The method according to any one of claims 9 to 14, wherein the negative electrode active material is selected from materials capable of electrochemically inserting and extracting lithium, or metal lithium and an alloy containing lithium. 前記正極および負極を熱重合を伴ってポリマー電解質と一体成形するステップが、真空ヒートプレスを用いる請求項9ないし15のいずれかに記載の方法。 The method according to any one of claims 9 to 15, wherein the step of integrally forming the positive electrode and the negative electrode with a polymer electrolyte accompanied by thermal polymerization uses a vacuum heat press.
JP2004230049A 2004-08-06 2004-08-06 Lithium polymer battery and its manufacturing method Withdrawn JP2006049158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230049A JP2006049158A (en) 2004-08-06 2004-08-06 Lithium polymer battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230049A JP2006049158A (en) 2004-08-06 2004-08-06 Lithium polymer battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006049158A true JP2006049158A (en) 2006-02-16

Family

ID=36027460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230049A Withdrawn JP2006049158A (en) 2004-08-06 2004-08-06 Lithium polymer battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006049158A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056585A1 (en) * 2006-11-07 2008-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP2009176519A (en) * 2008-01-23 2009-08-06 Sony Corp Nonaqueous electrolyte battery, electrode, and method of manufacturing them
JP2009193784A (en) * 2008-02-13 2009-08-27 Sony Corp Nonaqueous electrolyte battery and method of manufacturing the same
JP2011228114A (en) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc Electrode of secondary battery, manufacturing method thereof and secondary battery
CN102405542A (en) * 2009-02-13 2012-04-04 国家科研中心 High-energy non-aqueous batteries containing ion-conducting gels, and method for preparing and using same
EP2450985A1 (en) * 2009-07-01 2012-05-09 Zeon Corporation Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
JP2012142196A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
JP2013541143A (en) * 2010-09-13 2013-11-07 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Ionic gel electrolytes, energy storage devices, and methods for their production
JP2015038870A (en) * 2013-07-19 2015-02-26 パイオトレック株式会社 Conductive coupling agent usable for positive electrode and/or negative electrode
EP2991153A1 (en) * 2014-08-28 2016-03-02 Samsung Electronics Co., Ltd. Composite electrolyte and lithium battery including the same
WO2017017910A1 (en) * 2015-07-30 2017-02-02 ソニー株式会社 Battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
KR101747864B1 (en) * 2014-08-28 2017-06-27 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte
WO2017126701A1 (en) * 2016-01-19 2017-07-27 パイオトレック株式会社 High-efficient ionic conduction type lithium ion battery or lithium ion capacitor
WO2018043760A3 (en) * 2016-09-05 2018-05-03 パイオトレック株式会社 Conductive material and use therefor
WO2018193683A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Member for electrochemical devices, and electrochemical device
WO2018193631A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
WO2018194159A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
WO2018193628A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition, and polymer secondary battery
WO2018193627A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition, and polymer secondary battery
WO2018220802A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrode for electrochemical device and method for producing same, and electrochemical device
JP2019021539A (en) * 2017-07-19 2019-02-07 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JP2019021538A (en) * 2017-07-19 2019-02-07 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
CN110100344A (en) * 2017-03-16 2019-08-06 株式会社Lg化学 All-solid-state battery electrode assembly and its manufacturing method
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
JPWO2019146137A1 (en) * 2018-01-24 2021-01-28 パイオトレック株式会社 Separatorless conductive polymer solid electrolyte secondary battery
WO2022055331A1 (en) * 2020-09-14 2022-03-17 주식회사 엘지에너지솔루션 Method for manufacturing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery manufactured thereby

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056585A1 (en) * 2006-11-07 2008-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
US8178009B2 (en) 2006-11-07 2012-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, electrode for secondary battery, process for production of electrode for secondary battery, and secondary battery
JP5338318B2 (en) * 2006-11-07 2013-11-13 住友ベークライト株式会社 Secondary battery electrode slurry, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JPWO2008056585A1 (en) * 2006-11-07 2010-02-25 住友ベークライト株式会社 Secondary battery electrode slurry, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
TWI470861B (en) * 2006-11-07 2015-01-21 Sumitomo Bakelite Co Secondary battery electrode paste, secondary battery electrode, secondary battery electrode manufacturing method and secondary battery
JP4561839B2 (en) * 2008-01-23 2010-10-13 ソニー株式会社 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and method for producing the same
JP2009176519A (en) * 2008-01-23 2009-08-06 Sony Corp Nonaqueous electrolyte battery, electrode, and method of manufacturing them
US8372546B2 (en) 2008-02-13 2013-02-12 Sony Corporation Non-aqueous electrolyte battery and method for manufacturing the same
JP2009193784A (en) * 2008-02-13 2009-08-27 Sony Corp Nonaqueous electrolyte battery and method of manufacturing the same
CN102405542A (en) * 2009-02-13 2012-04-04 国家科研中心 High-energy non-aqueous batteries containing ion-conducting gels, and method for preparing and using same
JP2012518248A (en) * 2009-02-13 2012-08-09 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク High energy non-aqueous battery based on ionic conductive gel, its production method and its use
US8877376B2 (en) 2009-07-01 2014-11-04 Zeon Corporation Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
EP2450985A1 (en) * 2009-07-01 2012-05-09 Zeon Corporation Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
EP2450985A4 (en) * 2009-07-01 2014-02-26 Zeon Corp Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
JP2011228114A (en) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc Electrode of secondary battery, manufacturing method thereof and secondary battery
JP2013541143A (en) * 2010-09-13 2013-11-07 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Ionic gel electrolytes, energy storage devices, and methods for their production
JP2018049833A (en) * 2010-09-13 2018-03-29 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10297862B2 (en) 2010-09-13 2019-05-21 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9368283B2 (en) 2010-09-13 2016-06-14 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10826119B2 (en) 2010-09-13 2020-11-03 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US11264643B2 (en) 2010-09-13 2022-03-01 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9742030B2 (en) 2010-09-13 2017-08-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP2012142196A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
JP2015038870A (en) * 2013-07-19 2015-02-26 パイオトレック株式会社 Conductive coupling agent usable for positive electrode and/or negative electrode
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
EP2991153A1 (en) * 2014-08-28 2016-03-02 Samsung Electronics Co., Ltd. Composite electrolyte and lithium battery including the same
KR101747864B1 (en) * 2014-08-28 2017-06-27 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte
US10205190B2 (en) 2014-08-28 2019-02-12 Samsung Electronics Co., Ltd. Composite electrolyte including polymeric ionic liquid and inorganic particles and lithium battery including the same
US10714790B2 (en) 2015-07-30 2020-07-14 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JP2017033722A (en) * 2015-07-30 2017-02-09 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2017017910A1 (en) * 2015-07-30 2017-02-02 ソニー株式会社 Battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
WO2017126701A1 (en) * 2016-01-19 2017-07-27 パイオトレック株式会社 High-efficient ionic conduction type lithium ion battery or lithium ion capacitor
JPWO2017126701A1 (en) * 2016-01-19 2019-01-24 パイオトレック株式会社 High-efficiency ion-conducting lithium-ion battery or lithium-ion capacitor
WO2018043760A3 (en) * 2016-09-05 2018-05-03 パイオトレック株式会社 Conductive material and use therefor
JP7018555B2 (en) 2016-09-05 2022-02-14 パイオトレック株式会社 Conductive materials and their uses
JPWO2018043760A1 (en) * 2016-09-05 2019-07-11 パイオトレック株式会社 Conductive material and its use
CN110100344B (en) * 2017-03-16 2022-03-29 株式会社Lg新能源 Electrode assembly for all-solid-state battery and method for manufacturing same
CN110100344A (en) * 2017-03-16 2019-08-06 株式会社Lg化学 All-solid-state battery electrode assembly and its manufacturing method
JPWO2018193627A1 (en) * 2017-04-21 2020-02-27 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
US11296356B2 (en) 2017-04-21 2022-04-05 Showa Denko Materials Co., Ltd. Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
KR102595311B1 (en) * 2017-04-21 2023-10-26 주식회사 엘지에너지솔루션 Electrode for electrochemical device and method for manufacturing same, electrochemical device, and polymer electrolyte composition
CN110537286A (en) * 2017-04-21 2019-12-03 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
CN110537282A (en) * 2017-04-21 2019-12-03 日立化成株式会社 Component and electrochemical appliance used for electrochemical equipment
KR20190133704A (en) * 2017-04-21 2019-12-03 히타치가세이가부시끼가이샤 Polymer Electrolyte Compositions and Polymer Secondary Batteries
CN110537283A (en) * 2017-04-21 2019-12-03 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
KR20190139221A (en) * 2017-04-21 2019-12-17 히타치가세이가부시끼가이샤 Electrodes for electrochemical devices and methods of making the same, electrochemical devices, and polymer electrolyte compositions
US11777137B2 (en) 2017-04-21 2023-10-03 Lg Energy Solution, Ltd. Member for electrochemical devices, and electrochemical device
JPWO2018193683A1 (en) * 2017-04-21 2020-02-27 日立化成株式会社 Electrochemical device member and electrochemical device
JPWO2018193628A1 (en) * 2017-04-21 2020-02-27 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JPWO2018193631A1 (en) * 2017-04-21 2020-02-27 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JPWO2018194159A1 (en) * 2017-04-21 2020-02-27 日立化成株式会社 Electrode for electrochemical device and method for producing the same, electrochemical device, and polymer electrolyte composition
WO2018193627A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition, and polymer secondary battery
TWI794224B (en) * 2017-04-21 2023-03-01 南韓商Lg新能源股份有限公司 Electrode for electrochemical device, manufacturing method thereof, electrochemical device, and polymer electrolyte composition
WO2018193628A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition, and polymer secondary battery
WO2018193630A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and electrochemical device
KR102488635B1 (en) 2017-04-21 2023-01-13 주식회사 엘지에너지솔루션 Polymer electrolyte composition and polymer secondary battery
WO2018194159A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
WO2018193631A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JP7163909B2 (en) 2017-04-21 2022-11-01 昭和電工マテリアルズ株式会社 Method for manufacturing electrode for electrochemical device
WO2018193683A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Member for electrochemical devices, and electrochemical device
US11462767B2 (en) 2017-04-21 2022-10-04 Showa Denko Materials Co., Ltd. Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device
JPWO2018220802A1 (en) * 2017-06-01 2020-04-02 日立化成株式会社 Electrode for electrochemical device, method for producing the same, and electrochemical device
WO2018220802A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrode for electrochemical device and method for producing same, and electrochemical device
JP2019021538A (en) * 2017-07-19 2019-02-07 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JP2019021539A (en) * 2017-07-19 2019-02-07 日立化成株式会社 Polymer electrolyte composition and polymer secondary battery
JPWO2019146137A1 (en) * 2018-01-24 2021-01-28 パイオトレック株式会社 Separatorless conductive polymer solid electrolyte secondary battery
JP7285419B2 (en) 2018-01-24 2023-06-02 パイオトレック株式会社 Separatorless conductive polymer solid electrolyte secondary battery
US11735763B2 (en) 2018-01-24 2023-08-22 Piotrek Co., Ltd. Solid state electrolyte rechargeable battery in no use of separator
WO2022055331A1 (en) * 2020-09-14 2022-03-17 주식회사 엘지에너지솔루션 Method for manufacturing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery manufactured thereby

Similar Documents

Publication Publication Date Title
JP2006049158A (en) Lithium polymer battery and its manufacturing method
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP5289735B2 (en) Lithium secondary battery
CN100583541C (en) Battery
CN102088109A (en) Nonaqueous electrolyte secondary battery and separator
JP5463817B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6734059B2 (en) Non-aqueous electrolyte secondary battery
WO2008050599A1 (en) Electrolyte solution for lithium ion secondary battery
JP6686229B2 (en) Semi-solid electrolyte layer, battery cell sheet and secondary battery
JP2014127242A (en) Lithium secondary battery
KR101846767B1 (en) Nonaqueous electrolyte secondary battery
CN101494302A (en) Battery
JP2005056800A (en) Separator for electronic parts and electronic parts
JP4412808B2 (en) Lithium polymer secondary battery
JP2009135010A (en) Nonaqueous electrolyte secondary battery
JP2008027879A (en) Lithium secondary battery and electrode therefor
Yuan et al. Baseline Si electrode fabrication and performance for the battery for Advanced Transportation Technologies Program
JP4180335B2 (en) Non-aqueous electrolyte battery
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP4120439B2 (en) Lithium ion secondary battery
Zhang et al. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries
JP2004247180A (en) Electrode mix, electrode structure using it, and nonaqueous electrochemical element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106