JP2006037921A - Exhaust system part temperature estimating device of internal combustion engine - Google Patents

Exhaust system part temperature estimating device of internal combustion engine Download PDF

Info

Publication number
JP2006037921A
JP2006037921A JP2004222800A JP2004222800A JP2006037921A JP 2006037921 A JP2006037921 A JP 2006037921A JP 2004222800 A JP2004222800 A JP 2004222800A JP 2004222800 A JP2004222800 A JP 2004222800A JP 2006037921 A JP2006037921 A JP 2006037921A
Authority
JP
Japan
Prior art keywords
temperature
exhaust system
internal combustion
combustion engine
convergence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222800A
Other languages
Japanese (ja)
Inventor
Masakazu Yamamoto
正和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004222800A priority Critical patent/JP2006037921A/en
Publication of JP2006037921A publication Critical patent/JP2006037921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate the temperatures of exhaust system parts according to a fuel injection system without using a temperature sensor in an internal combustion engine switchable between an intake pipe injection and a cylinder injection. <P>SOLUTION: For each of the intake pipe injection and the cylinder injection, a converging temperature map specifying a relation between engine operating conditions (such as engine speed, and intake air volume or fuel injection volume) and the converging temperature of the exhaust system parts is stored in the ROM of an ECU, and during the operation of the engine, the converging temperature map according to a present fuel injection system stored in the ROM is retrieved to provide the converging temperatures of the exhaust parts according to the present fuel injection system and the engine operating conditions (steps 101 to 103). After that, the converging temperatures are filter-treated (annealing treatment, primary delay treatment) with a temperature variation time constant according to the operating conditions of the engine to provide the estimated temperatures of the exhaust system parts (steps 104 and 105). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料を吸気管に噴射する燃料噴射弁と、燃料を筒内に噴射する燃料噴射弁とを備えた内燃機関の排気通路に設けられた排気系部品の温度を推定する内燃機関の排気系部品温度推定装置に関する発明である。   The present invention relates to an internal combustion engine that estimates the temperature of an exhaust system component provided in an exhaust passage of an internal combustion engine that includes a fuel injection valve that injects fuel into an intake pipe and a fuel injection valve that injects fuel into a cylinder. The invention relates to an exhaust system component temperature estimation device.

車両に搭載されている内燃機関の排気通路には、排出ガスを浄化する触媒や排出ガスセンサ等の排気系部品が設けられている。これらの排気系部品は、内燃機関から排出される高温の排出ガスに晒されるため、ある程度の温度上昇は避けられないが、排気系部品の温度が許容上限温度を越えると、部品劣化や故障の原因となるため、排気系部品の温度を許容上限温度以下に抑えるように排出ガスの温度を制御することが望ましい。この制御を実現するためには、排気系部品の温度を何等かの方法でモニターする必要があり、そのために、排気系部品の温度を検出する温度センサを設けると、センサ数が増加して、高コスト化するという欠点がある。   In an exhaust passage of an internal combustion engine mounted on a vehicle, exhaust system parts such as a catalyst for purifying exhaust gas and an exhaust gas sensor are provided. Since these exhaust system parts are exposed to high-temperature exhaust gas exhausted from the internal combustion engine, a certain degree of temperature rise is inevitable.However, if the exhaust system part temperature exceeds the allowable upper limit temperature, parts deterioration or failure may occur. For this reason, it is desirable to control the temperature of the exhaust gas so that the temperature of the exhaust system parts is kept below the allowable upper limit temperature. In order to realize this control, it is necessary to monitor the temperature of the exhaust system parts by some method. For this reason, if a temperature sensor for detecting the temperature of the exhaust system parts is provided, the number of sensors increases, There is a drawback of high cost.

そこで、特許文献1(特許第3262157号公報)に記載されているように、エンジン回転速度と吸気管圧力に基づいて触媒温度を推定することで、温度センサを使用せずに触媒温度をモニターするようにしたものがある。
特許第3262157号公報([0033]〜[0035]等)
Therefore, as described in Patent Document 1 (Japanese Patent No. 3262157), the catalyst temperature is monitored without using a temperature sensor by estimating the catalyst temperature based on the engine rotation speed and the intake pipe pressure. There is something like that.
Japanese Patent No. 3262157 ([0033] to [0035] etc.)

内燃機関の燃料噴射方式は、燃料を吸気管(吸気ポート)に噴射する吸気管噴射(吸気ポート噴射)と、燃料を筒内に噴射する筒内噴射とに大別される。近年、吸気管(吸気ポート)とシリンダ上部にそれぞれ燃料噴射弁を設けて、内燃機関の運転条件に応じて吸気管噴射と筒内噴射とを切り換えることで、低燃費、高出力、排気エミッション低減を実現するようにしたものがある。このような内燃機関では、エンジン回転速度等が同じでも、燃料噴射方式が異なれば、排出ガスの温度や排出ガス流量が異なり、排気系部品の温度上昇量が異なってくる。   Fuel injection systems for internal combustion engines are broadly classified into intake pipe injection (intake port injection) for injecting fuel into an intake pipe (intake port) and in-cylinder injection for injecting fuel into a cylinder. In recent years, fuel injection valves have been installed on the intake pipe (intake port) and the upper part of the cylinder, respectively, and by switching between intake pipe injection and in-cylinder injection according to the operating conditions of the internal combustion engine, low fuel consumption, high output, and reduced exhaust emissions There is something that has been realized. In such an internal combustion engine, even if the engine speed is the same, if the fuel injection method is different, the temperature of the exhaust gas and the flow rate of the exhaust gas are different, and the amount of temperature rise of the exhaust system parts is different.

前述した特許文献1の触媒温度推定技術は、吸気管噴射エンジンにおける触媒温度推定技術であるが、この触媒温度推定技術を燃料噴射方式切換可能な内燃機関に適用した場合、燃料噴射方式が異なっても、エンジン回転速度等が同じであれば、触媒温度が同じ温度に推定されてしまい、触媒温度を精度良く推定することはできない。   The catalyst temperature estimation technique of Patent Document 1 described above is a catalyst temperature estimation technique in an intake pipe injection engine. However, when this catalyst temperature estimation technique is applied to an internal combustion engine that can switch the fuel injection system, the fuel injection system is different. However, if the engine speed is the same, the catalyst temperature is estimated to be the same, and the catalyst temperature cannot be estimated with high accuracy.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃料噴射方式切換可能な内燃機関において、温度センサを使用せずに、燃料噴射方式に応じて排気系部品の温度を精度良く推定することができる内燃機関の排気系部品温度推定装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is not to use a temperature sensor in an internal combustion engine capable of switching the fuel injection system, but to adjust the exhaust system components according to the fuel injection system. An object of the present invention is to provide an exhaust system component temperature estimation device for an internal combustion engine capable of accurately estimating the temperature.

上記目的を達成するために、請求項1に係る発明は、燃料を吸気管に噴射する吸気管噴射を行う燃料噴射弁と、燃料を筒内に噴射する燃料噴射弁とを備えた内燃機関において、排気系部品の温度を内燃機関の運転条件に基づいて推定する排気系温度推定手段は、前記排気系部品の温度を推定する方式を現在の燃料噴射方式に応じて切り換えて排気系部品の温度を推定するようにしたものである。このようにすれば、燃料噴射方式を切り換えると、排出ガスの温度や排出ガス流量が変化して、排気系部品の温度上昇量が変化するのに対応して、排気系部品の温度を推定する方式が切り換えられるため、温度センサを使用せずに、燃料噴射方式に応じて排気系部品の温度を精度良く推定することができる。   In order to achieve the above object, an invention according to claim 1 is an internal combustion engine comprising a fuel injection valve that performs intake pipe injection for injecting fuel into an intake pipe, and a fuel injection valve that injects fuel into a cylinder. The exhaust system temperature estimating means for estimating the temperature of the exhaust system component based on the operating condition of the internal combustion engine switches the method for estimating the temperature of the exhaust system component according to the current fuel injection method, and changes the temperature of the exhaust system component. Is to be estimated. In this way, when the fuel injection method is switched, the exhaust gas temperature and the exhaust gas flow rate change, and the temperature rise of the exhaust system component changes to estimate the temperature of the exhaust system component. Since the method is switched, the temperature of the exhaust system component can be accurately estimated according to the fuel injection method without using a temperature sensor.

具体的には、請求項2のように、各燃料噴射方式毎に内燃機関の運転条件と排気系部品の収束温度との関係を規定する収束温度マップを記憶手段に記憶しておき、内燃機関の運転中に、前記記憶手段に記憶されている現在の燃料噴射方式に応じた収束温度マップを検索して、現在の燃料噴射方式と内燃機関の運転条件に応じた排気系部品の収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで排気系部品の推定温度を求めるようにしても良い。ここで、「収束温度」とは、運転条件が変化しない定常運転時に最終的に一定となる温度のことである。一般的には、排気系部品の温度が収束温度に達する前に運転条件が変化することが多く、運転条件の変化の前後で収束温度が異なってくる。実際には、運転条件が変化してから、排気系部品の温度が変化後の運転条件に対応する収束温度に達するまでには暫く時間がかかるため、本発明では、排気系部品の温度が時間遅れをもって収束温度に達するまでの温度変化の挙動を、一次遅れ等の遅れを持つ温度変化と見なし、現在の運転条件に対応する収束温度を所定の温度変化時定数でフィルタ処理(なまし処理、一次遅れ処理等)することで排気系部品の温度を推定するものであり、これによって、排気系部品温度の推定精度を向上させるものである。   Specifically, as in claim 2, a convergence temperature map that defines the relationship between the operating condition of the internal combustion engine and the convergence temperature of the exhaust system parts for each fuel injection system is stored in the storage means, and the internal combustion engine is stored. During the operation of the engine, the convergence temperature map corresponding to the current fuel injection method stored in the storage means is searched, and the convergence temperature of the exhaust system parts according to the current fuel injection method and the operating condition of the internal combustion engine is obtained. Then, the estimated temperature of the exhaust system component may be obtained by filtering the convergence temperature with a predetermined temperature change time constant. Here, the “convergence temperature” is a temperature that finally becomes constant during steady operation where the operating conditions do not change. In general, the operating conditions often change before the temperature of the exhaust system components reaches the convergence temperature, and the convergence temperature differs before and after the change of the operating conditions. Actually, since it takes some time for the temperature of the exhaust system parts to reach the convergence temperature corresponding to the changed operating conditions after the operating conditions have changed, in the present invention, the temperature of the exhaust system parts is time-consuming. The behavior of the temperature change until the convergence temperature is reached with a delay is regarded as a temperature change with a delay such as a first-order lag, and the convergence temperature corresponding to the current operating condition is filtered with a predetermined temperature change time constant (an annealing process, The temperature of the exhaust system component is estimated by performing a first-order lag process or the like, thereby improving the estimation accuracy of the exhaust system component temperature.

また、請求項3のように、特定の燃料噴射方式について内燃機関の運転条件と排気系部品の収束温度との関係を規定する収束温度マップと、前記特定の燃料噴射方式と他の燃料噴射方式との間の収束温度の差と内燃機関の運転条件との関係を規定する温度差マップを記憶手段に記憶しておき、内燃機関の運転中に前記記憶手段に記憶されている前記収束温度マップを検索して、前記特定の燃料噴射方式における現在の内燃機関の運転条件に応じた排気系部品の収束温度を求め、現在の燃料噴射方式が特定の燃料噴射方式と異なる場合は、前記温度差マップを検索して現在の内燃機関の運転条件に応じた温度差を求め、この温度差によって前記特定の燃料噴射方式における収束温度を補正し、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めるようにしても良い。この場合、現在の燃料噴射方式が特定の燃料噴射方式である場合は、温度差マップを用いた収束温度の補正は不要である。   According to a third aspect of the present invention, there is provided a convergence temperature map that defines the relationship between the operating conditions of the internal combustion engine and the convergence temperature of exhaust system parts for a specific fuel injection system, and the specific fuel injection system and other fuel injection systems. A temperature difference map that defines the relationship between the difference in convergence temperature between the engine and the operating condition of the internal combustion engine is stored in storage means, and the convergence temperature map stored in the storage means during operation of the internal combustion engine To determine the convergence temperature of the exhaust system parts according to the current operating conditions of the internal combustion engine in the specific fuel injection method, and if the current fuel injection method is different from the specific fuel injection method, the temperature difference The map is searched to obtain a temperature difference according to the current operating condition of the internal combustion engine, the convergence temperature in the specific fuel injection method is corrected based on this temperature difference, and the convergence temperature is filtered by a predetermined temperature change time constant. It may be obtained the estimated temperature of the exhaust system component by. In this case, when the current fuel injection method is a specific fuel injection method, it is not necessary to correct the convergence temperature using the temperature difference map.

また、請求項4のように、吸気管噴射と筒内噴射についてそれぞれ内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する2種類の収束温度マップを記憶手段に記憶しておき、内燃機関の運転中に前記記憶手段に記憶されている前記2種類の収束温度マップを検索して、吸気管噴射と筒内噴射についてそれぞれ現在の内燃機関の運転条件に応じた排気系部品の収束温度を求め、これら2つの収束温度を現在の吸気管噴射と筒内噴射との噴射割合に応じて補間補正することで最終的な収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで排気系部品の推定温度を求めるようにしても良い。この場合、吸気管噴射と筒内噴射との噴射割合がどの様に変化しても、2種類の収束温度マップを用いて収束温度を算出することができる利点がある。   In addition, as in claim 4, two types of convergence temperature maps that define the relationship between the operating conditions of the internal combustion engine and the convergence temperatures of the exhaust system parts for the intake pipe injection and the in-cylinder injection are stored in the storage means. In addition, during the operation of the internal combustion engine, the two types of convergence temperature maps stored in the storage means are searched, and the exhaust system parts corresponding to the current operating conditions of the internal combustion engine for intake pipe injection and in-cylinder injection, respectively. The final convergence temperature is obtained by interpolating and correcting these two convergence temperatures according to the injection ratio of the current intake pipe injection and in-cylinder injection. The estimated temperature of the exhaust system parts may be obtained by filtering with a constant. In this case, there is an advantage that the convergence temperature can be calculated using two types of convergence temperature maps regardless of how the injection ratio of the intake pipe injection and the in-cylinder injection changes.

或は、請求項5のように、吸気管噴射と筒内噴射との噴射割合と内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する収束温度マップを記憶手段に記憶しておき、内燃機関の運転中に前記記憶手段に記憶されている前記収束温度マップを検索して、現在の吸気管噴射と筒内噴射との噴射割合における内燃機関の運転条件に応じた前記排気系部品の収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めるようにしても良い。このようにすれば、1つの収束温度マップを検索するだけで、現在の吸気管噴射と筒内噴射との噴射割合における内燃機関の運転条件に応じた収束温度を求めることができる。   Alternatively, as in claim 5, the storage means stores a convergence temperature map that defines the relationship between the injection ratio of the intake pipe injection and the in-cylinder injection, the operating conditions of the internal combustion engine, and the convergence temperature of the exhaust system components. The exhaust temperature according to the operating condition of the internal combustion engine at the current injection ratio of the intake pipe injection and the in-cylinder injection is searched by searching the convergence temperature map stored in the storage means during the operation of the internal combustion engine. An estimated temperature of the exhaust system part may be obtained by obtaining a convergence temperature of the system part and filtering the convergence temperature with a predetermined temperature change time constant. In this way, the convergence temperature corresponding to the operating condition of the internal combustion engine at the current injection ratio of the intake pipe injection and the in-cylinder injection can be obtained by searching only one convergence temperature map.

ところで、内燃機関の運転条件によって排出ガスの温度や排出ガス流量(排気系部品の周辺を流れる排気熱量)が変化するため、排気系部品の温度が収束温度に達するまでの遅れ時間(すなわち温度変化時定数)は、内燃機関の運転条件によって変化する。この点を考慮して、請求項6のように、内燃機関の運転条件と前記温度変化時定数との関係を規定する温度変化時定数マップを記憶手段に記憶しておき、内燃機関の運転中に前記記憶手段に記憶されている前記温度変化時定数マップを検索して現在の内燃機関の運転条件に応じた温度変化時定数を求め、この温度変化時定数で前記収束温度をフィルタ処理することで排気系部品の推定温度を求めるようにすると良い。このようにすれば、内燃機関の運転条件によって排出ガスの温度や排出ガス流量が変化するのに対応して温度変化時定数を変化させることができて、内燃機関の運転条件に応じた適正な温度変化時定数を設定することができ、排気系部品温度の推定精度を更に向上させることができる。但し、本発明は、演算処理の簡略化のために、温度変化時定数マップを省略して、温度変化時定数を一定値にしても良い。   By the way, the exhaust gas temperature and the exhaust gas flow rate (the amount of exhaust heat flowing around the exhaust system parts) change depending on the operating conditions of the internal combustion engine, so the delay time until the exhaust system part temperature reaches the convergence temperature (that is, the temperature change) (Time constant) varies depending on the operating conditions of the internal combustion engine. Considering this point, a temperature change time constant map that defines the relationship between the operating condition of the internal combustion engine and the temperature change time constant is stored in the storage means, and the internal combustion engine is operating. The temperature change time constant map stored in the storage means is searched to obtain a temperature change time constant according to the current operating condition of the internal combustion engine, and the convergence temperature is filtered by this temperature change time constant. It is preferable to obtain the estimated temperature of the exhaust system parts. In this way, the temperature change time constant can be changed in response to changes in the exhaust gas temperature and the exhaust gas flow rate depending on the operating conditions of the internal combustion engine, so that the appropriate temperature according to the operating conditions of the internal combustion engine can be obtained. The temperature change time constant can be set, and the estimation accuracy of the exhaust system component temperature can be further improved. However, in the present invention, in order to simplify the arithmetic processing, the temperature change time constant map may be omitted and the temperature change time constant may be set to a constant value.

尚、温度推定の対象となる排気系部品は、排出ガスを浄化する触媒又は排出ガスセンサであったり(請求項7)、これ以外の排気系部品(例えば排気タービン等)であっても良い。   The exhaust system component that is the target of temperature estimation may be a catalyst or exhaust gas sensor for purifying exhaust gas (Claim 7), or other exhaust system component (for example, an exhaust turbine).

また、請求項8のように、前記排気系部品の推定温度が所定の上限温度に達したときに噴射量補正手段により燃料噴射量を増量補正するようにすると良い。燃料噴射量の増量補正は、排出ガスの温度を低下させる効果があり、排気系部品の温度を所定の上限温度以下に抑えることができる。   According to another aspect of the present invention, when the estimated temperature of the exhaust system component reaches a predetermined upper limit temperature, the fuel injection amount may be corrected to be increased by the injection amount correction means. The increase correction of the fuel injection amount has an effect of lowering the temperature of the exhaust gas, and the temperature of the exhaust system parts can be suppressed to a predetermined upper limit temperature or less.

以下、本発明を実施するための最良の形態を具体化した4つの実施例1〜4を説明する。   Hereinafter, four Examples 1 to 4 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって駆動されるスロットルバルブ16が設けられ、このスロットルバルブ16の開度(スロットル開度)がスロットル開度センサ17によって検出される。   A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 driven by a motor 15 such as a DC motor is provided on the downstream side of the air flow meter 14, and an opening degree (throttle opening degree) of the throttle valve 16 is detected by a throttle opening degree sensor 17.

また、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20には、それぞれ吸気ポートに燃料を噴射する燃料噴射弁21が設けられている。   A surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and the intake manifold 20 for each cylinder is provided with a fuel injection valve 21 for injecting fuel into the intake port. Yes.

エンジン11のシリンダ上部には、各気筒毎にそれぞれ燃料を筒内に直接噴射する燃料噴射弁22が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ23が取り付けられ、各点火プラグ23の火花放電によって筒内の混合気に着火される。   A fuel injection valve 22 that directly injects fuel into each cylinder is attached to the upper part of the cylinder of the engine 11. A spark plug 23 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 23.

エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ24等が取り付けられている。また、クランク軸(図示せず)の外周側には、所定のクランク角毎にクランク角信号を出力するクランク角センサ25が取り付けられている。このクランク角センサ25の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 24 or the like for detecting the cooling water temperature is attached to the cylinder block of the engine 11. A crank angle sensor 25 that outputs a crank angle signal at every predetermined crank angle is attached to the outer peripheral side of the crankshaft (not shown). Based on the output signal of the crank angle sensor 25, the crank angle and the engine speed are detected.

一方、エンジン11の排気管26には、排出ガスを浄化する触媒27が設けられ、この触媒27の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ28(空燃比センサ、酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 26 of the engine 11 is provided with a catalyst 27 for purifying exhaust gas, and an exhaust gas sensor 28 (air-fuel ratio sensor) for detecting the air-fuel ratio or rich / lean of the exhaust gas is provided upstream of the catalyst 27. , Oxygen sensors, etc.).

上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御ルーチンを実行することで、エンジン運転条件に応じて、燃料噴射方式を、吸気ポートの燃料噴射弁21による吸気管噴射(吸気ポート噴射)と、シリンダ上部の燃料噴射弁22による筒内噴射とのいずれか一方に切り換えると共に、燃料噴射量や噴射時期、点火時期等を制御する。   Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various control routines stored in a built-in ROM (storage medium), thereby changing the fuel injection method according to the engine operating conditions and the fuel in the intake port. While switching to one of intake pipe injection (intake port injection) by the injection valve 21 and in-cylinder injection by the fuel injection valve 22 at the upper part of the cylinder, the fuel injection amount, injection timing, ignition timing, and the like are controlled.

更に、このECU30は、後述する図2の排気系部品温度推定ルーチンを実行することで、排気系部品(触媒27又は排出ガスセンサ28)の温度を推定する。ここで、本実施例1の排気系部品温度の推定方法を説明する。   Further, the ECU 30 estimates the temperature of the exhaust system component (the catalyst 27 or the exhaust gas sensor 28) by executing an exhaust system component temperature estimation routine of FIG. Here, the exhaust system component temperature estimation method of the first embodiment will be described.

吸気管噴射と筒内噴射について、それぞれエンジン運転条件と排気系部品の収束温度との関係を規定する収束温度マップをECU30の不揮発性メモリであるROM(記憶手段)に記憶しておき、エンジン運転中に、前記ROMに記憶されている現在の燃料噴射方式に応じた収束温度マップを検索して、現在の燃料噴射方式とエンジン運転条件に応じた排気系部品の収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理(なまし処理、一次遅れ処理等)することで、排気系部品の推定温度を求める。ここで、「収束温度」とは、エンジン運転条件が変化しない定常運転時に最終的に一定となる温度のことである。一般的には、排気系部品の温度が収束温度に達する前にエンジン運転条件が変化することが多く、エンジン運転条件の変化の前後で収束温度が異なってくる。実際には、エンジン運転条件が変化してから、排気系部品の温度が変化後のエンジン運転条件に対応する収束温度に達するまでには暫く時間がかかるため、本実施例1では、排気系部品の温度が時間遅れをもって収束温度に達するまでの温度変化の挙動を、一次遅れ等の遅れを持つ温度変化と見なし、現在のエンジン運転条件に対応する収束温度を所定の温度変化時定数でフィルタ処理(なまし処理、一次遅れ処理等)することで推定するようにしている。   For the intake pipe injection and the in-cylinder injection, a convergence temperature map that defines the relationship between the engine operating conditions and the convergence temperature of the exhaust system parts is stored in a ROM (storage means) that is a nonvolatile memory of the ECU 30, and the engine operation is performed. The convergence temperature map corresponding to the current fuel injection method stored in the ROM is searched to determine the convergence temperature of the exhaust system parts according to the current fuel injection method and the engine operating conditions. Is subjected to filter processing (smoothing processing, first-order lag processing, etc.) with a predetermined temperature change time constant to obtain the estimated temperature of the exhaust system parts. Here, the “convergence temperature” is a temperature that finally becomes constant during steady operation where the engine operating conditions do not change. In general, the engine operating conditions often change before the temperature of the exhaust system parts reaches the convergence temperature, and the convergence temperature differs before and after the change of the engine operating conditions. Actually, since it takes some time for the temperature of the exhaust system parts to reach the convergence temperature corresponding to the engine operating condition after the change after the engine operating conditions change, the exhaust system parts in the first embodiment. The temperature change behavior until the temperature reaches the convergence temperature with a time delay is regarded as a temperature change with a delay such as a primary delay, and the convergence temperature corresponding to the current engine operating conditions is filtered with a predetermined temperature change time constant (Smoothing process, first-order lag process, etc.) are used for estimation.

ところで、エンジン運転条件によって排出ガスの温度や排出ガス流量(排気系部品の周辺を流れる排気熱量)が変化するため、排気系部品温度が収束温度に達するまでの遅れ時間(すなわち温度変化時定数)は、エンジン運転条件によって変化する。この点を考慮して、本実施例1では、エンジン運転条件と温度変化時定数との関係を規定する温度変化時定数マップをECU30のROMに記憶しておき、エンジン運転中に前記ROMに記憶されている前記温度変化時定数マップを検索して現在のエンジン運転条件に応じた温度変化時定数を求め、この温度変化時定数で前記収束温度をフィルタ処理することで、排気系部品の推定温度を求めるようにしている。このようにすれば、エンジン運転条件によって排出ガスの温度や排出ガス流量が変化するのに対応して温度変化時定数を変化させることができて、エンジン運転条件に応じた適正な温度変化時定数を設定することができる。   By the way, the exhaust gas temperature and the exhaust gas flow rate (the amount of exhaust heat flowing around the exhaust system parts) change depending on the engine operating conditions, so the delay time until the exhaust system part temperature reaches the convergence temperature (that is, the temperature change time constant) Varies depending on engine operating conditions. In consideration of this point, in the first embodiment, a temperature change time constant map that defines the relationship between the engine operating conditions and the temperature change time constant is stored in the ROM of the ECU 30 and stored in the ROM during engine operation. The temperature change time constant map is searched to obtain a temperature change time constant according to the current engine operating condition, and the convergence temperature is filtered by this temperature change time constant, so that the estimated temperature of the exhaust system parts Asking for. In this way, the temperature change time constant can be changed in response to changes in the exhaust gas temperature and the exhaust gas flow rate depending on the engine operating conditions, and the appropriate temperature change time constant corresponding to the engine operating conditions can be changed. Can be set.

この場合、収束温度マップや温度変化時定数マップのパラメータとして用いるエンジン運転条件は、排出ガス流量や排出ガス温度を変化させる要因になるものであれば良く、例えば、エンジン回転速度、吸入空気量(又は燃料噴射量)、空燃比、冷却水温、外気温、車速(走行風による冷却効果)、点火時期等の中から選択すれば良い。本実施例1では、排出ガス流量や排出ガス温度への影響が大きいエンジン回転速度と吸入空気量(又は燃料噴射量)や収束温度マップや温度変化時定数マップのパラメータとして用いるようにしている。   In this case, the engine operating condition used as a parameter of the convergence temperature map or the temperature change time constant map may be any factor that changes the exhaust gas flow rate or the exhaust gas temperature. For example, the engine rotation speed, the intake air amount ( Alternatively, the fuel injection amount), air-fuel ratio, cooling water temperature, outside air temperature, vehicle speed (cooling effect by traveling wind), ignition timing, etc. may be selected. In the first embodiment, the engine rotational speed, the intake air amount (or fuel injection amount), the convergence temperature map, and the temperature change time constant map that have a great influence on the exhaust gas flow rate and the exhaust gas temperature are used.

以上説明した本実施例1の排気系温度の推定は、ECU30によって図2の排気系部品温度推定ルーチンに従って実行される。本ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう排気系温度推定手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、現在の燃料噴射方式が吸気管噴射であるか否かを判定し、吸気管噴射であれば、ステップ102に進み、ECU30のROMに記憶されている吸気管噴射用の収束温度マップを検索して、吸気管噴射における現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた排気系部品の収束温度を算出する。一方、ステップ101で、筒内噴射と判定されれば、ステップ103に進み、ECU30のROMに記憶されている筒内噴射用の収束温度マップを検索して、筒内噴射における現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた排気系部品の収束温度を算出する。この際、エンジン回転速度が高くなるほど、また、吸入空気量(又は燃料噴射量)が多くなるほど、排出ガス流量が増加して排気熱量が増加することを考慮して、収束温度マップは、エンジン回転速度が高くなるほど、また、吸入空気量(又は燃料噴射量)が多くなるほど、排気系部品の収束温度が高くなるように設定されている。   The estimation of the exhaust system temperature of the first embodiment described above is executed by the ECU 30 according to the exhaust system component temperature estimation routine of FIG. This routine is executed at a predetermined cycle during engine operation, and serves as exhaust system temperature estimation means in the claims. When this routine is started, first, at step 101, it is determined whether or not the current fuel injection method is intake pipe injection. If it is intake pipe injection, the routine proceeds to step 102 and is stored in the ROM of the ECU 30. A convergence temperature map for intake pipe injection is searched, and a convergence temperature of exhaust system components corresponding to the current engine speed and intake air amount (or fuel injection amount) in intake pipe injection is calculated. On the other hand, if it is determined in step 101 that the in-cylinder injection is performed, the process proceeds to step 103, where a convergence temperature map for in-cylinder injection stored in the ROM of the ECU 30 is searched, and the current engine speed in the in-cylinder injection. And the convergence temperature of the exhaust system parts according to the intake air amount (or fuel injection amount). At this time, considering that the higher the engine rotation speed and the larger the intake air amount (or fuel injection amount), the higher the exhaust gas flow rate and the higher the exhaust heat amount, the convergence temperature map is calculated based on the engine rotation speed. The convergence temperature of the exhaust system parts is set to be higher as the speed is higher and as the intake air amount (or fuel injection amount) is increased.

以上のようにして、ステップ102又は103で、排気系部品の収束温度を算出した後、ステップ104に進み、ECU30のROMに記憶されている温度変化時定数マップを検索して、現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた温度変化時定数を算出する。この後、ステップ105に進み、温度変化時定数を使用して収束温度をフィルタ処理(なまし処理、一次遅れ処理等)することで、排気系部品の推定温度を算出して本ルーチンを終了する。   As described above, after the convergence temperature of the exhaust system parts is calculated in step 102 or 103, the process proceeds to step 104, the temperature change time constant map stored in the ROM of the ECU 30 is searched, and the current engine speed is calculated. A temperature change time constant according to the speed and the intake air amount (or fuel injection amount) is calculated. Thereafter, the routine proceeds to step 105, where the convergence temperature is filtered using the temperature change time constant (smoothing process, first-order lag process, etc.), thereby calculating the estimated temperature of the exhaust system parts and ending this routine. .

図3に示す温度補正ルーチンは、ECU30によって燃料噴射量の演算タイミングに同期して実行され、特許請求の範囲でいう噴射量補正手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ111で、上記排気系部品温度推定ルーチンで算出した排気系部品の推定温度が所定の上限温度以上であるか否かを判定し、排気系部品の推定温度が上限温度未満であれば、燃料噴射量の補正は不要と判断して、本ルーチンを終了する。   The temperature correction routine shown in FIG. 3 is executed by the ECU 30 in synchronism with the calculation timing of the fuel injection amount, and serves as injection amount correction means in the claims. When this routine is started, first, in step 111, it is determined whether or not the estimated temperature of the exhaust system component calculated in the exhaust system component temperature estimation routine is equal to or higher than a predetermined upper limit temperature, and the exhaust system component is estimated. If the temperature is lower than the upper limit temperature, it is determined that correction of the fuel injection amount is unnecessary, and this routine ends.

一方、ステップ111で、排気系部品の推定温度が上限温度以上であると判定された場合は、ステップ112に進み、燃料噴射量を増量補正して本ルーチンを終了する。この燃料噴射量を増量補正により、排出ガスの温度が低下するため、排気系部品の温度が上限温度以下に抑えられる。   On the other hand, if it is determined in step 111 that the estimated temperature of the exhaust system component is equal to or higher than the upper limit temperature, the process proceeds to step 112, the fuel injection amount is increased and the routine is terminated. By correcting the fuel injection amount to be increased, the temperature of the exhaust gas is lowered, so that the temperature of the exhaust system parts can be suppressed to the upper limit temperature or less.

以上説明した本実施例1によれば、燃料噴射方式を切り換えると、排出ガスの温度や排出ガス流量が変化して、排気系部品の温度上昇量が変化するのに対応して、排気系部品の収束温度を推定する収束温度マップが切り換えられるため、温度センサを使用せずに、燃料噴射方式に応じて排気系部品の温度を精度良く推定することができる。   According to the first embodiment described above, when the fuel injection method is switched, the temperature of the exhaust gas and the flow rate of the exhaust gas change, and the temperature rise amount of the exhaust system component changes. Therefore, the temperature of the exhaust system parts can be accurately estimated according to the fuel injection method without using a temperature sensor.

しかも、本実施例1では、排気系部品の収束温度をフィルタ処理する際の温度変化時定数をエンジン運転条件に応じて設定するようにしたので、エンジン運転条件によって排出ガスの温度や排出ガス流量が変化するのに対応して温度変化時定数を変化させることができて、エンジン運転条件に応じた適正な温度変化時定数を設定することができる。   Moreover, in the first embodiment, the temperature change time constant when filtering the convergence temperature of the exhaust system parts is set according to the engine operating conditions, so the exhaust gas temperature and exhaust gas flow rate depend on the engine operating conditions. As the temperature changes, the temperature change time constant can be changed, and an appropriate temperature change time constant according to the engine operating conditions can be set.

尚、本実施例1では、温度変化時定数マップについては、吸気管噴射と筒内噴射とで同じマップを使用するようにしたが、吸気管噴射用の温度変化時定数マップと筒内噴射用の温度変化時定数マップとを作成して、2つの温度変化時定数マップの中から燃料噴射方式に応じた温度変化時定数マップを選択するようにしても良い。   In the first embodiment, as the temperature change time constant map, the same map is used for the intake pipe injection and the in-cylinder injection, but the temperature change time constant map for the intake pipe injection and the in-cylinder injection are used. And a temperature change time constant map corresponding to the fuel injection method may be selected from the two temperature change time constant maps.

勿論、本発明は、演算処理の簡略化のために、温度変化時定数マップを省略して、温度変化時定数を一定値にしても良い。   Of course, the present invention may omit the temperature change time constant map and set the temperature change time constant to a constant value in order to simplify the arithmetic processing.

上記実施例1では、吸気管噴射と筒内噴射について、それぞれ収束温度マップを設けるようにしたが、図4に示す本発明の実施例2では、吸気管噴射と筒内噴射について、いずれか一方を特定の燃料噴射方式として、この特定の燃料噴射方式のみに収束温度マップを設け、特定の燃料噴射方式と他の燃料噴射方式との間の収束温度の差とエンジン運転条件との関係を規定する温度差マップをECU30のROMに記憶しておき、エンジン運転中に、ROMに記憶されている収束温度マップを検索して、前記特定の燃料噴射方式における現在のエンジン運転条件に応じた排気系部品の収束温度を求め、現在の燃料噴射方式が特定の燃料噴射方式と異なる場合は、前記温度差マップを検索して現在のエンジン運転条件に応じた温度差を求め、この温度差によって前記特定の燃料噴射方式における収束温度を補正し、この収束温度を所定の温度変化時定数でフィルタ処理することで排気系部品の推定温度を求めるようにしている。   In the first embodiment, the convergence temperature map is provided for each of the intake pipe injection and the in-cylinder injection. However, in the second embodiment of the present invention shown in FIG. 4, either the intake pipe injection or the in-cylinder injection is selected. As a specific fuel injection method, a convergence temperature map is provided only for this specific fuel injection method, and the relationship between the difference in convergence temperature between the specific fuel injection method and other fuel injection methods and the engine operating conditions are specified. The temperature difference map to be stored is stored in the ROM of the ECU 30, and the convergence temperature map stored in the ROM is searched during engine operation, and the exhaust system according to the current engine operating condition in the specific fuel injection method If the current fuel injection method is different from a specific fuel injection method, the temperature difference corresponding to the current engine operating condition is obtained by searching the temperature difference map. The convergence temperature in the particular fuel injection system corrects the time difference, and to obtain the estimated temperature of the exhaust system components by filtering the convergence temperature at a predetermined temperature change time constant.

以上説明した本実施例2の排気系温度の推定は、ECU30によって図4の排気系部品温度推定ルーチンに従って次のように実行される。本ルーチンでは、吸気管噴射を“特定の燃料噴射方式”としている。   The above-described estimation of the exhaust system temperature of the second embodiment is executed by the ECU 30 as follows according to the exhaust system component temperature estimation routine of FIG. In this routine, the intake pipe injection is a “specific fuel injection method”.

本ルーチンが起動されると、まず、ステップ201で、現在の燃料噴射方式を問わず、ECU30のROMに記憶されている吸気管噴射用の収束温度マップを検索して、吸気管噴射における現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた排気系部品の収束温度Tpを算出する。この後、ステップ202に進み、現在の燃料噴射方式が吸気管噴射(特定の燃料噴射方式)であるか否かを判定し、吸気管噴射と判定されれば、上記ステップ201で算出した収束温度Tpをそのまま用いる。   When this routine is started, first, in step 201, regardless of the current fuel injection method, the intake pipe injection convergence temperature map stored in the ROM of the ECU 30 is searched, and the current in the intake pipe injection is searched. A convergence temperature Tp of the exhaust system component corresponding to the engine speed and the intake air amount (or fuel injection amount) is calculated. Thereafter, the process proceeds to step 202, where it is determined whether or not the current fuel injection system is intake pipe injection (specific fuel injection system). If it is determined that the intake pipe injection is performed, the convergence temperature calculated in step 201 is determined. Tp is used as it is.

一方、上記ステップ202で、筒内噴射と判定された場合には、ステップ203に進み、ECU30のROMに記憶されている温度差マップを検索して、現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた温度差ΔTを算出する。この後、ステップ204に進み、上記ステップ201で算出した吸気管噴射での収束温度Tpを、上記ステップ203で算出した温度差ΔTで補正して筒内噴射での収束温度Tdを求める。
Td=Tp+ΔT
On the other hand, if it is determined in step 202 that the in-cylinder injection is performed, the process proceeds to step 203 where a temperature difference map stored in the ROM of the ECU 30 is searched to search for the current engine speed and intake air amount (or A temperature difference ΔT corresponding to the fuel injection amount) is calculated. Thereafter, the process proceeds to step 204, where the convergence temperature Tp calculated in step 201 is corrected by the temperature difference ΔT calculated in step 203 to determine the convergence temperature Td in in-cylinder injection.
Td = Tp + ΔT

以上のようにして、排気系部品の収束温度(Tp又はTd)を算出した後、ステップ205に進み、前記実施例1と同様の方法で温度変化時定数を算出した後、ステップ206に進み、この温度変化時定数を使用して収束温度(Tp又はTd)をフィルタ処理することで、排気系部品の推定温度を算出して本ルーチンを終了する。   After calculating the convergence temperature (Tp or Td) of the exhaust system parts as described above, the process proceeds to step 205, the temperature change time constant is calculated by the same method as in Example 1, and then the process proceeds to step 206. By filtering the convergence temperature (Tp or Td) using this temperature change time constant, the estimated temperature of the exhaust system parts is calculated, and this routine ends.

以上説明した本実施例2でも、前記実施例1と同様の効果を得ることができる。   In the second embodiment described above, the same effect as that of the first embodiment can be obtained.

図5に示す本発明の実施例3では、吸気管噴射と筒内噴射について、それぞれエンジン運転条件と排気系部品の収束温度との関係を規定する収束温度マップをECU30のROMに記憶しておき、エンジン運転中に前記2種類の収束温度マップを検索して、吸気管噴射と筒内噴射についてそれぞれ現在のエンジン運転条件に応じた排気系部品の収束温度を求め、これら2つの収束温度を現在の吸気管噴射と筒内噴射との噴射割合に応じて補間補正することで最終的な収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで排気系部品の推定温度を求めるようにしている。   In the third embodiment of the present invention shown in FIG. 5, a convergence temperature map that defines the relationship between the engine operating conditions and the convergence temperature of exhaust system parts is stored in the ROM of the ECU 30 for intake pipe injection and in-cylinder injection, respectively. The two kinds of convergence temperature maps are searched during engine operation, and the convergence temperatures of the exhaust system parts corresponding to the current engine operating conditions are obtained for the intake pipe injection and the in-cylinder injection, respectively. The final convergence temperature is obtained by interpolation correction according to the injection ratio between the intake pipe injection and the in-cylinder injection, and this convergence temperature is filtered by a predetermined temperature change time constant to estimate the exhaust system part temperature. Asking for.

本実施例3の排気系温度の推定は、ECU30によって図5の排気系部品温度推定ルーチンに従って次のように実行される。まず、ステップ301で、ECU30のROMに記憶されている吸気管噴射用の収束温度マップを検索して、吸気管噴射における現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた排気系部品の収束温度Tpを算出する。この後、ステップ302に進み、ECU30のROMに記憶されている筒内噴射用の収束温度マップを検索して、筒内噴射における現在のエンジン回転速度と吸入空気量(又は燃料噴射量)に応じた排気系部品の収束温度Tdを算出する。   The estimation of the exhaust system temperature in the third embodiment is executed by the ECU 30 according to the exhaust system component temperature estimation routine of FIG. First, in step 301, a convergence temperature map for intake pipe injection stored in the ROM of the ECU 30 is searched, and exhaust according to the current engine speed and intake air quantity (or fuel injection quantity) in the intake pipe injection. A convergence temperature Tp of the system part is calculated. Thereafter, the routine proceeds to step 302, where a convergence temperature map for in-cylinder injection stored in the ROM of the ECU 30 is searched, and according to the current engine rotation speed and intake air amount (or fuel injection amount) in in-cylinder injection. The convergence temperature Td of the exhaust system parts is calculated.

この後、ステップ303に進み、2つの収束温度Tp,Tdを現在の吸気管噴射と筒内噴射との噴射割合に応じて補間補正することで最終的な収束温度を求める。この後、ステップ304に進み、前記実施例1と同様の方法で温度変化時定数を算出した後、ステップ305に進み、この温度変化時定数を使用して収束温度をフィルタ処理することで、排気系部品の推定温度を算出して本ルーチンを終了する。   Thereafter, the process proceeds to step 303, where the final convergence temperature is obtained by interpolating and correcting the two convergence temperatures Tp and Td in accordance with the injection ratio of the current intake pipe injection and in-cylinder injection. Thereafter, the process proceeds to step 304, and the temperature change time constant is calculated by the same method as in the first embodiment. Then, the process proceeds to step 305, and the convergence temperature is filtered using the temperature change time constant, so that the exhaust gas is exhausted. The estimated temperature of the system part is calculated, and this routine ends.

以上説明した本実施例3では、吸気管噴射と筒内噴射との噴射割合がどの様に変化しても、2種類の収束温度マップを用いて収束温度を算出することができる利点がある。   The third embodiment described above has an advantage that the convergence temperature can be calculated using two types of convergence temperature maps regardless of how the injection ratio of the intake pipe injection and the in-cylinder injection changes.

図6に示す本発明の実施例4では、吸気管噴射と筒内噴射との噴射割合とエンジン運転条件(エンジン回転速度と吸入空気量又は燃料噴射量)と排気系部品の収束温度との関係を規定する収束温度マップをECU30のROMに記憶している。そして、図6の排気系部品温度推定ルーチンが起動されると、まずステップ401で、ECU30のROMに記憶されている収束温度マップをを検索して、現在のエンジン回転速度と吸入空気量(又は燃料噴射量)と噴射割合に応じた排気系部品の収束温度を算出する。この後、ステップ402に進み、前記実施例1と同様の方法で温度変化時定数を算出した後、ステップ403に進み、この温度変化時定数を使用して収束温度をフィルタ処理することで、排気系部品の推定温度を算出して本ルーチンを終了する。   In the fourth embodiment of the present invention shown in FIG. 6, the relationship between the injection ratio of intake pipe injection and in-cylinder injection, engine operating conditions (engine speed and intake air amount or fuel injection amount), and the convergence temperature of exhaust system components. Is stored in the ROM of the ECU 30. Then, when the exhaust system component temperature estimation routine of FIG. 6 is started, first, in step 401, a convergence temperature map stored in the ROM of the ECU 30 is searched, and the current engine speed and intake air amount (or The convergence temperature of the exhaust system parts according to the fuel injection amount) and the injection ratio is calculated. Thereafter, the process proceeds to step 402, the temperature change time constant is calculated by the same method as in the first embodiment, and then the process proceeds to step 403, where the convergence temperature is filtered using the temperature change time constant, thereby exhausting. The estimated temperature of the system part is calculated, and this routine ends.

本実施例4では、1つの収束温度マップを検索するだけで、現在の吸気管噴射と筒内噴射との噴射割合におけるエンジン運転条件に応じた収束温度を求めることができる利点がある。   The fourth embodiment has an advantage that the convergence temperature corresponding to the engine operating condition in the current injection ratio of the intake pipe injection and the in-cylinder injection can be obtained only by searching one convergence temperature map.

尚、図1のシステム構成例では、各気筒の吸気マニホールド20に、それぞれ燃料噴射弁21を設けたが、吸気マニホールド20の上流側の集合吸気通路に燃料噴射弁を設けた構成としても良い。   In the system configuration example of FIG. 1, the fuel injection valve 21 is provided in the intake manifold 20 of each cylinder. However, a fuel injection valve may be provided in the collective intake passage on the upstream side of the intake manifold 20.

また、温度推定の対象となる排気系部品は、触媒27、排出ガスセンサ28の他に、例えば排気タービン等であっても良い。   In addition to the catalyst 27 and the exhaust gas sensor 28, the exhaust system component that is the target of temperature estimation may be, for example, an exhaust turbine.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の排気系部品温度推定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of an exhaust system component temperature estimation routine according to the first embodiment. 温度補正ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a temperature correction routine. 実施例2の排気系部品温度推定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of an exhaust system component temperature estimation routine according to a second embodiment. 実施例3の排気系部品温度推定ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of processing of an exhaust system component temperature estimation routine according to a third embodiment. 実施例4の排気系部品温度推定ルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart illustrating a processing flow of an exhaust system component temperature estimation routine according to a fourth embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、20…吸気マニホールド、21…吸気管噴射用の燃料噴射弁、22…吸気管噴射用の燃料噴射弁、23…点火プラグ、26…排気管、27…触媒(排気系部品)、28…排出ガスセンサ(排気系部品)、30…ECU(排気系温度推定手段,噴射量補正手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 20 ... Intake manifold, 21 ... Fuel injection valve for intake pipe injection, 22 ... Fuel injection valve for intake pipe injection, 23 ... Spark plug, 26 ... exhaust pipe, 27 ... catalyst (exhaust system part), 28 ... exhaust gas sensor (exhaust system part), 30 ... ECU (exhaust system temperature estimating means, injection amount correcting means)

Claims (8)

燃料を吸気管に噴射する吸気管噴射を行う燃料噴射弁と、燃料を筒内に噴射する燃料噴射弁とを備え、燃料噴射方式を、吸気管噴射、筒内噴射、両方の噴射のいずれか切り換えて運転する内燃機関において、
内燃機関の排気通路に設けられた排気系部品の温度を内燃機関の運転条件に基づいて推定する排気系温度推定手段を備え、
前記排気系温度推定手段は、前記排気系部品の温度を推定する方式を現在の燃料噴射方式に応じて切り換えて排気系部品の温度を推定することを特徴とする内燃機関の排気系部品温度推定装置。
A fuel injection valve that performs intake pipe injection that injects fuel into the intake pipe and a fuel injection valve that injects fuel into the cylinder, and the fuel injection method is one of intake pipe injection, in-cylinder injection, or both In an internal combustion engine that operates by switching,
Exhaust system temperature estimating means for estimating the temperature of exhaust system parts provided in the exhaust passage of the internal combustion engine based on operating conditions of the internal combustion engine,
The exhaust system temperature estimation means estimates an exhaust system component temperature by switching a method for estimating the temperature of the exhaust system component according to a current fuel injection system, and estimates an exhaust system component temperature of the internal combustion engine apparatus.
各燃料噴射方式毎に内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する収束温度マップを記憶する記憶手段を備え、
前記排気系温度推定手段は、内燃機関の運転中に前記記憶手段に記憶されている現在の燃料噴射方式に応じた収束温度マップを検索して、現在の燃料噴射方式と内燃機関の運転条件に応じた前記排気系部品の収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めることを特徴とする請求項1に記載の内燃機関の排気系部品温度推定装置。
Storage means for storing a convergence temperature map that defines the relationship between the operating conditions of the internal combustion engine and the convergence temperature of the exhaust system parts for each fuel injection method;
The exhaust system temperature estimating means searches the convergence temperature map corresponding to the current fuel injection method stored in the storage means during operation of the internal combustion engine, and sets the current fuel injection method and the operating condition of the internal combustion engine. 2. The internal combustion engine according to claim 1, wherein a convergence temperature of the exhaust system component is obtained and an estimated temperature of the exhaust system component is obtained by filtering the convergence temperature with a predetermined temperature change time constant. Exhaust system part temperature estimation device.
特定の燃料噴射方式について内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する収束温度マップと、前記特定の燃料噴射方式と他の燃料噴射方式との間の収束温度の差と内燃機関の運転条件との関係を規定する温度差マップを記憶する記憶手段を備え、
前記排気系温度推定手段は、内燃機関の運転中に前記記憶手段に記憶されている前記収束温度マップを検索して、前記特定の燃料噴射方式における現在の内燃機関の運転条件に応じた前記排気系部品の収束温度を求め、現在の燃料噴射方式が前記特定の燃料噴射方式と異なる場合は、前記温度差マップを検索して現在の内燃機関の運転条件に応じた温度差を求め、この温度差によって前記特定の燃料噴射方式における収束温度を補正し、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めることを特徴とする請求項1に記載の内燃機関の排気系部品温度推定装置。
A convergence temperature map that defines the relationship between the operating conditions of the internal combustion engine and the convergence temperature of the exhaust system parts for a specific fuel injection system, and the difference in convergence temperature between the specific fuel injection system and another fuel injection system Storage means for storing a temperature difference map that defines the relationship between the engine and the operating conditions of the internal combustion engine,
The exhaust system temperature estimation means searches the convergence temperature map stored in the storage means during operation of the internal combustion engine, and the exhaust gas according to the current operating condition of the internal combustion engine in the specific fuel injection method If the current fuel injection method is different from the specific fuel injection method, the temperature difference map is searched to obtain the temperature difference according to the current operating condition of the internal combustion engine. 2. The estimated temperature of the exhaust system component is obtained by correcting a convergence temperature in the specific fuel injection method based on the difference and filtering the convergence temperature with a predetermined temperature change time constant. Apparatus for estimating temperature of exhaust system parts of an internal combustion engine.
吸気管噴射と筒内噴射についてそれぞれ内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する2種類の収束温度マップを記憶する記憶手段を備え、
前記排気系温度推定手段は、内燃機関の運転中に前記記憶手段に記憶されている前記2種類の収束温度マップを検索して、吸気管噴射と筒内噴射についてそれぞれ現在の内燃機関の運転条件に応じた前記排気系部品の収束温度を求め、これら2つの収束温度を現在の吸気管噴射と筒内噴射との噴射割合に応じて補間補正することで最終的な収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めることを特徴とする請求項1に記載の内燃機関の排気系部品温度推定装置。
Storage means for storing two types of convergence temperature maps that define the relationship between the operating conditions of the internal combustion engine and the convergence temperatures of the exhaust system parts for the intake pipe injection and the in-cylinder injection,
The exhaust system temperature estimating means searches the two kinds of convergence temperature maps stored in the storage means during operation of the internal combustion engine, and the current operating conditions of the internal combustion engine for intake pipe injection and in-cylinder injection, respectively. The convergence temperature of the exhaust system component corresponding to the above is obtained, and the final convergence temperature is obtained by interpolating and correcting these two convergence temperatures according to the injection ratio of the current intake pipe injection and in-cylinder injection. The exhaust system component temperature estimation device according to claim 1, wherein the estimated temperature of the exhaust system component is obtained by filtering the temperature with a predetermined temperature change time constant.
吸気管噴射と筒内噴射との噴射割合と内燃機関の運転条件と前記排気系部品の収束温度との関係を規定する収束温度マップを記憶する記憶手段を備え、
前記排気系温度推定手段は、内燃機関の運転中に前記記憶手段に記憶されている前記収束温度マップを検索して、現在の吸気管噴射と筒内噴射との噴射割合における内燃機関の運転条件に応じた前記排気系部品の収束温度を求め、この収束温度を所定の温度変化時定数でフィルタ処理することで前記排気系部品の推定温度を求めることを特徴とする請求項1に記載の内燃機関の排気系部品温度推定装置。
Storage means for storing a convergence temperature map that defines the relationship between the injection ratio of intake pipe injection and in-cylinder injection, the operating conditions of the internal combustion engine, and the convergence temperature of the exhaust system parts;
The exhaust system temperature estimation means searches the convergence temperature map stored in the storage means during operation of the internal combustion engine, and operates the internal combustion engine operating conditions at the current injection ratio of intake pipe injection and in-cylinder injection. 2. The internal combustion engine according to claim 1, wherein a convergence temperature of the exhaust system component in accordance with the engine temperature is obtained, and the estimated temperature of the exhaust system component is obtained by filtering the convergence temperature with a predetermined temperature change time constant. Engine exhaust system part temperature estimation device.
前記記憶手段は、内燃機関の運転条件と前記温度変化時定数との関係を規定する温度変化時定数マップを記憶し、
前記排気系温度推定手段は、内燃機関の運転中に前記記憶手段に記憶されている前記温度変化時定数マップを検索して現在の内燃機関の運転条件に応じた温度変化時定数を求め、この温度変化時定数で前記収束温度をフィルタ処理することで前記排気系部品の推定温度を求めることを特徴とする請求項2乃至5のいずれかに記載の内燃機関の排気系部品温度推定装置。
The storage means stores a temperature change time constant map that defines the relationship between operating conditions of the internal combustion engine and the temperature change time constant;
The exhaust system temperature estimating means searches the temperature change time constant map stored in the storage means during operation of the internal combustion engine to obtain a temperature change time constant according to the current operating condition of the internal combustion engine, 6. The exhaust system component temperature estimating apparatus for an internal combustion engine according to claim 2, wherein the estimated temperature of the exhaust system component is obtained by filtering the convergence temperature with a temperature change time constant.
前記排気系部品は、排出ガスを浄化する触媒又は排出ガスセンサであることを特徴とする請求項1乃至6のいずれかに記載の内燃機関の排気系部品温度推定装置。   The exhaust system component temperature estimating device for an internal combustion engine according to any one of claims 1 to 6, wherein the exhaust system component is a catalyst or an exhaust gas sensor for purifying exhaust gas. 前記排気系部品の推定温度が所定の上限温度に達したときに燃料噴射量を増量補正する噴射量補正手段を備えていることを特徴とする請求項1乃至7のいずれかに記載の内燃機関の排気系部品温度推定装置。   The internal combustion engine according to any one of claims 1 to 7, further comprising injection amount correction means for correcting an increase in fuel injection amount when an estimated temperature of the exhaust system component reaches a predetermined upper limit temperature. Exhaust system part temperature estimation device.
JP2004222800A 2004-07-30 2004-07-30 Exhaust system part temperature estimating device of internal combustion engine Pending JP2006037921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222800A JP2006037921A (en) 2004-07-30 2004-07-30 Exhaust system part temperature estimating device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222800A JP2006037921A (en) 2004-07-30 2004-07-30 Exhaust system part temperature estimating device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006037921A true JP2006037921A (en) 2006-02-09

Family

ID=35903159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222800A Pending JP2006037921A (en) 2004-07-30 2004-07-30 Exhaust system part temperature estimating device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006037921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688354B2 (en) 2010-04-08 2014-04-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus
JP2014187832A (en) * 2013-03-25 2014-10-02 Daihatsu Motor Co Ltd On-vehicle power generation system
KR101554973B1 (en) 2013-12-09 2015-09-22 주식회사 현대케피코 method for modelling and controlling exhaust gas temperature of dual system consisted direct injection and port injection
KR101752341B1 (en) 2016-03-31 2017-06-29 주식회사 현대케피코 Apparatus and method for controlling of exhaust system temperature in internal combustion engine
JP2020133513A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Internal combustion engine catalyst warm-up process monitoring device, internal combustion engine catalyst warm-up process monitoring system, data analysis device, and internal combustion engine control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688354B2 (en) 2010-04-08 2014-04-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus
JP2014187832A (en) * 2013-03-25 2014-10-02 Daihatsu Motor Co Ltd On-vehicle power generation system
KR101554973B1 (en) 2013-12-09 2015-09-22 주식회사 현대케피코 method for modelling and controlling exhaust gas temperature of dual system consisted direct injection and port injection
KR101752341B1 (en) 2016-03-31 2017-06-29 주식회사 현대케피코 Apparatus and method for controlling of exhaust system temperature in internal combustion engine
JP2020133513A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Internal combustion engine catalyst warm-up process monitoring device, internal combustion engine catalyst warm-up process monitoring system, data analysis device, and internal combustion engine control device
US11143083B2 (en) 2019-02-20 2021-10-12 Toyota Jidosha Kabushiki Kaisha Catalyst warm-up process monitoring device, system, and method for internal combustion engine, data analysis device, control device for internal combustion engine, and receiver

Similar Documents

Publication Publication Date Title
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP2009024677A (en) Control device for internal combustion engine
JP2009115012A (en) Air-fuel ratio control device of internal combustion engine
JP2007315193A (en) Air-fuel ratio detecting device of internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP2009250086A (en) Abnormality diagnostic system of air-fuel ratio sensor
JP6241147B2 (en) Catalyst temperature estimation device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2006037921A (en) Exhaust system part temperature estimating device of internal combustion engine
JP2006112385A (en) Variable valve timing controller of internal combustion engine
JP5273480B2 (en) Intake air amount control device for internal combustion engine
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP2009167991A (en) Idling operation control device for internal combustion engine
WO2016190092A1 (en) Engine control device
JP2005337186A (en) Controller for internal combustion engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP6361534B2 (en) Control device for internal combustion engine
JP2006037924A (en) Control unit of vehicle
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP5472270B2 (en) Vehicle control device
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine