JP2006035928A - Road surface state determining method and device, and road surface state determining program - Google Patents

Road surface state determining method and device, and road surface state determining program Download PDF

Info

Publication number
JP2006035928A
JP2006035928A JP2004215452A JP2004215452A JP2006035928A JP 2006035928 A JP2006035928 A JP 2006035928A JP 2004215452 A JP2004215452 A JP 2004215452A JP 2004215452 A JP2004215452 A JP 2004215452A JP 2006035928 A JP2006035928 A JP 2006035928A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
ground
wheel
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215452A
Other languages
Japanese (ja)
Inventor
Yukio Nakao
幸夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004215452A priority Critical patent/JP2006035928A/en
Publication of JP2006035928A publication Critical patent/JP2006035928A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately determining a road surface state even if there is road surface gradient and the road surface gradient is changed, and even if a driving manner of a vehicle is different (FF/FR). <P>SOLUTION: The road surface state determining method for determining the state of the road surface on which a vehicle travels, inputs a detection value of a clinometer equipped to the vehicle, inputs rotation speed information of a wheel from a wheel rotation speed detecting means attached to the vehicle, obtains ground speed and ground acceleration along a traveling surface from the rotation speed information of driven wheels, obtains a tilting angle of the road surface from the detection value of the clinometer and the ground acceleration, obtains a slip ratio from the rotation speed information of driving wheels and the ground speed, and determines a friction coefficient and the ease of sliding between the road surface and tires during traveling by using a relationship between the slip ratio, the ground acceleration, and the tilting angle of the road surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、路面状態のうちの路面とタイヤとのあいだのスリップ率、摩擦係数および滑りやすさを判定する方法および装置、ならびに路面状態判定プログラムに関する。   The present invention relates to a method and apparatus for determining a slip ratio, a friction coefficient, and slipperiness between a road surface and a tire in a road surface state, and a road surface state determination program.

車両に装着された4つの車輪の回転速度情報を用いて路面とタイヤとのあいだの摩擦係数を判定する路面状態判定装置は、たとえば特許文献1に開示されている。GPS受信電波から求められる位置および絶対時間情報、外部から得られた天気情報、および車載センサから得られた外気温度情報から、現在の天候に適応するように車両を制御することは、たとえば特許文献2に開示されている。ナビゲーション装置から得た情報にもとづき操舵および車速制御を支援する車両走行制御装置は、たとえば特許文献3に開示されている。また、GPSによって得られる車両の移動速度情報を車両の絶対速度として利用することで、走行中の車両の駆動輪のスリップ率を計算し、またGPS速度情報を時間微分することで車両の加速度を求め、この加速度とスリップ率の関係から、走行中の路面の滑りやすさを判定しようとするものも知られており、これにより4輪駆動への応答も可能になっている。   For example, Patent Document 1 discloses a road surface state determination device that determines a friction coefficient between a road surface and a tire using rotational speed information of four wheels mounted on a vehicle. Controlling a vehicle to adapt to the current weather from position and absolute time information obtained from GPS received radio waves, weather information obtained from the outside, and outside air temperature information obtained from a vehicle-mounted sensor is, for example, Patent Document 2 is disclosed. A vehicle travel control device that supports steering and vehicle speed control based on information obtained from a navigation device is disclosed in Patent Document 3, for example. In addition, by using the moving speed information of the vehicle obtained by GPS as the absolute speed of the vehicle, the slip ratio of the driving wheel of the running vehicle is calculated, and the acceleration of the vehicle is obtained by differentiating the GPS speed information with respect to time. It is also known that there is known a technique for determining the slipperiness of the road surface during traveling from the relationship between the acceleration and the slip ratio, thereby enabling a response to four-wheel drive.

また、発進時の駆動輪と従動輪の回転開始時期によって、旋回発進時でも路面の状態を判定することが特許文献5に開示されている。   Further, Patent Document 5 discloses that the state of the road surface is determined even at the start of turning based on the rotation start timing of the driving wheel and the driven wheel at the time of starting.

特開2001−253334号公報JP 2001-253334 A 特開2000−82198号公報JP 2000-82198 A 特開平10−119807号公報JP-A-10-119807 特開2000−79835号公報JP 2000-79835 A

前記のように、路面の滑りやすさに関する発明は種々なされているが、その中で、通常走行時にリアルタイムに車両の滑りやすさを検出する方法が開示されているのは、特許文献1のみである。特許文献2は天候によって滑りやすさを推定し、特許文献3は操舵したときの舵角反力によって滑りやすさを推定し、特許文献4は前後輪の回転開始時期の違いにより滑りやすさを推定するものであって、いずれも路面勾配は考慮されていない。すなわち、前記の文献には路面勾配まで考慮して滑りやすさを推定する技術は開示されていない。   As described above, various inventions related to slipperiness of the road surface have been made. Among them, only Patent Document 1 discloses a method for detecting slipperiness of a vehicle in real time during normal driving. is there. Patent Document 2 estimates the slipperiness according to the weather, Patent Document 3 estimates the slipperiness by the rudder angle reaction force when steering, and Patent Document 4 indicates the slipperiness due to the difference in the rotation start timing of the front and rear wheels. In all cases, the road gradient is not considered. That is, the above-mentioned document does not disclose a technique for estimating the ease of slipping in consideration of the road surface gradient.

また、特許文献1が最もリアルタイムに滑りやすさを判定する技術を開示しているが、たとえば同じアスファルト舗装の路面状況であっても、平坦路から上り坂に変わった場合、特許文献1の方法では線形近似するためのデータ蓄積中に走行抵抗が変化するために、スリップ率と加速度の関係が大きく変化する。すなわち、スリップ率が大きくなっても加速度が大きくならない。このため、相関係数が低下し、線形近似できなくなる。したがって、もしその上り坂が一定の勾配であるなら、上り坂になってからしばらくのあいだ、走行抵抗の値が同じであるデータが集まるまで、路面の判定ができない状態が発生する。同様に、路面の勾配が変化し続けると、路面判定値が求められない。   Moreover, although patent document 1 is disclosing the technique which determines slipperiness most in real time, even if it is the road surface condition of the same asphalt pavement, for example, when it changes from a flat road to an uphill, the method of patent document 1 is disclosed. Then, since the running resistance changes during data accumulation for linear approximation, the relationship between the slip ratio and the acceleration changes greatly. That is, even if the slip ratio increases, the acceleration does not increase. For this reason, a correlation coefficient falls and it becomes impossible to perform linear approximation. Therefore, if the uphill has a constant slope, a state in which the road surface cannot be determined until data having the same running resistance value is collected for a while after the uphill is reached. Similarly, if the slope of the road surface continues to change, the road surface determination value cannot be obtained.

本発明は、傾斜計による路面勾配情報を加味することで、GPSなどの高額な装置を使用せずに、路面に勾配があっても正確な路面状態判定を実現することを目的としている。   An object of the present invention is to realize accurate road surface condition determination even when there is a gradient on a road surface without using an expensive device such as a GPS by adding road surface gradient information obtained by an inclinometer.

本発明の第1の態様は、車両が走行している路面の状態を判定する路面状態判定方法であって、車両に備えられる傾斜計の検出値を入力する工程と、車両に取り付けられた車輪回転速度検出手段から車輪の回転速度情報を入力する工程と、当該車輪回転速度情報に基づき車両の対地速度および対地加速度を算出する工程と、前記傾斜計の検出値と前記対地加速度とから路面の傾斜角度を算出する工程とを有し、前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面の状態を判定することを特徴としている。   A first aspect of the present invention is a road surface state determination method for determining a state of a road surface on which a vehicle is traveling, the step of inputting a detection value of an inclinometer provided in the vehicle, and a wheel attached to the vehicle From the step of inputting wheel rotation speed information from the rotation speed detection means, the step of calculating the ground speed and ground acceleration of the vehicle based on the wheel rotation speed information, the detected value of the inclinometer and the ground acceleration, A step of calculating an inclination angle, and determining a state of the road surface during traveling based on the wheel rotation speed information and the inclination angle of the road surface.

さらに詳しくは、従動輪の回転速度情報から走行面に沿った対地速度および対地加速度を求め、前記傾斜計の検出値と該対地加速度とから前記路面の傾斜角度を求め、ついで駆動輪の回転速度情報と前記対地速度とからスリップ率を求めることを含み、該スリップ率、前記対地加速度および前記路面の傾斜角度との関係を用いて走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する。   More specifically, the ground speed and ground acceleration along the traveling surface are obtained from the rotational speed information of the driven wheel, the inclination angle of the road surface is obtained from the detected value of the inclinometer and the ground acceleration, and then the rotational speed of the driving wheel. Determining the slip ratio from the information and the ground speed, and determining the coefficient of friction between the road surface and the tire and the slipperiness using the relationship between the slip ratio, the ground acceleration, and the inclination angle of the road surface To do.

本発明の第2の態様は、車両が走行している路面の状態を判定する路面状態判定装置であって、
水平に対する車両の傾斜角度を検知する手段と、車両に装着された車輪の回転速度を検出する手段と、当該車輪回転速度情報に基づき車両の対地速度および対地加速度を算出する手段と、前記傾斜検知手段によって得られる情報と前記対地加速度に基づいて路面の傾斜角度を算出する手段とを備え、前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面とタイヤとの摩擦係数および滑りやすさを判定することを含む路面情報判定装置である。
A second aspect of the present invention is a road surface state determination device that determines a state of a road surface on which a vehicle is traveling,
Means for detecting a tilt angle of the vehicle with respect to the horizontal; means for detecting a rotational speed of a wheel mounted on the vehicle; means for calculating a ground speed and a ground acceleration of the vehicle based on the wheel rotational speed information; Means for calculating an inclination angle of the road surface based on the information obtained by the means and the ground acceleration, and a friction coefficient and a slip between the road surface and the tire during traveling by the wheel rotational speed information and the inclination angle of the road surface. It is a road surface information determination apparatus including determining ease.

本発明の第3の態様は、車両が走行している路面の状態を判定するためにコンピュータを、
水平に対する車両の傾斜角度、および車両に装着された車輪の回転速度を記憶するメモリ手段、
前記車輪の回転速度に基づいて車両の対地速度および対地加速度を算出する手段、
前記車両の傾斜角度および前記対地加速度とから路面の傾斜角度を算出する手段、および
前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する手段として機能させるための路面状態判定プログラムである。
In a third aspect of the present invention, a computer is used to determine the state of the road surface on which the vehicle is traveling.
Memory means for storing the inclination angle of the vehicle with respect to the horizontal and the rotational speed of the wheel mounted on the vehicle;
Means for calculating the ground speed and ground acceleration of the vehicle based on the rotational speed of the wheels;
The means for calculating the inclination angle of the road surface from the inclination angle of the vehicle and the ground acceleration, and the coefficient of friction and the slipperiness between the road surface and the tire during running are determined by the wheel rotation speed information and the inclination angle of the road surface. It is a road surface condition determination program for functioning as a determination means.

走行中の車両において、車両に取り付けられた車輪回転速度検出手段から得られる車輪の回転速度情報と、傾斜計によって得られる車両の傾斜角度情報を用いて路面の滑りやすさを判定する方法および装置が提供され、路面の勾配の変化時や、登り勾配路面走行時および下り勾配路面走行時でも、路面とタイヤとの摩擦係数および滑りやすさの推定が可能になり、車両の性能および安全性を高めることができる。   Method and apparatus for determining the slipperiness of a road surface in a running vehicle using wheel rotation speed information obtained from wheel rotation speed detection means attached to the vehicle and vehicle inclination angle information obtained by an inclinometer This makes it possible to estimate the friction coefficient and slipperiness between the road surface and tires even when the road surface changes in slope, or when driving on an uphill or downhill road surface, thereby improving vehicle performance and safety. Can be increased.

また、GPSの電波が届かないトンネル内であっても、路面の勾配が変化しているときや、登り勾配路面走行時および下り勾配路面走行時を含む路面状態の判定が可能である。   Further, even in a tunnel where GPS radio waves do not reach, it is possible to determine road surface conditions including when the road surface slope is changing, and when traveling on an upward slope road surface and traveling on a downward slope road surface.

図1、図2および図3を参照して説明する。車両は前輪駆動車を想定している。図1中、Mは車両の質量、Gは重力加速度、θは路面の勾配、Tは車輪の回転速度、Tfは前輪の回転速度、Trは後輪の回転速度、aは駆動力による加速度である。ここで、車輪回転速度は車輪の回転角速度×車輪の動荷重半径である。   A description will be given with reference to FIGS. 1, 2, and 3. The vehicle is assumed to be a front-wheel drive vehicle. In FIG. 1, M is the mass of the vehicle, G is the gravitational acceleration, θ is the gradient of the road surface, T is the rotational speed of the wheel, Tf is the rotational speed of the front wheel, Tr is the rotational speed of the rear wheel, and a is the acceleration due to the driving force. is there. Here, the wheel rotation speed is the rotation angular velocity of the wheel × the dynamic load radius of the wheel.

タイヤが発生する力Fは、各輪がスリップ率Sによって生じるμ−S特性に従った反力FTの総和である。前輪右をfr、前輪左をfl、後輪右をrr、後輪左をrlで表わす。2輪駆動車の場合、従動輪はスリップしないものとみなすと、車両の対地速度VRは、
R=(Trl+Trr)/2
スリップ率は、
Sfl=(Tfl−VR)/Tfl
Sfr=(Tfr−VR)/Tfr
であり、タイヤの駆動力は、
F=FTfr+FTfl
FTfr=μ-s(Sfr)
FTfl=μ-s(Sfl)
である。
The force F generated by the tire is the sum of the reaction forces FT according to the μ-S characteristics generated by the slip ratio S of each wheel. The front wheel right is indicated by fr, the front wheel left is indicated by fl, the rear wheel right is indicated by rr, and the rear wheel left is indicated by rl. For two-wheel drive vehicle, the driven wheel is deemed not to slip, ground speed V R of the vehicle,
V R = (Trl + Trr) / 2
Slip rate is
Sfl = (Tfl−V R ) / Tfl
Sfr = (Tfr−V R ) / Tfr
And the driving force of the tire is
F = FTfr + FTfl
FTfr = μ-s (Sfr)
FTfl = μ-s (Sfl)
It is.

ここで、駆動輪のスリップ率Sを、左右輪の平均
S=(Sfl+Sfr)/2
で代表すると、タイヤが発生する駆動力Fは、駆動輪がスリップ率Sによって生じた、μ−S特性に従った反力であるので、
F=2(μ-s(S))
で表わせる。車両質量をMとすると、駆動輪タイヤが発生する力により、
F=M・a
に相当する加速度aを生ずる結果となる。
Here, the slip ratio S of the drive wheels is defined as the average of the left and right wheels S = (Sfl + Sfr) / 2
For example, the driving force F generated by the tire is a reaction force generated by the slip rate S of the driving wheel according to the μ-S characteristic.
F = 2 (μ-s (S))
It can be expressed as If the vehicle mass is M, due to the force generated by the drive wheel tire,
F = M · a
As a result, an acceleration a corresponding to

車両の対地速度をVR、対地加速度をVR’とすると、傾斜計の検出値は重力加速度Gと車両の走行面に沿った対地加速度(の反力)VR’とのベクトル和Xの向きαである(図1)。 When the ground speed of the vehicle is V R and the ground acceleration is V R ′, the detected value of the inclinometer is the vector sum X of the gravitational acceleration G and the ground acceleration (reaction force) V R ′ along the traveling surface of the vehicle. The direction α (FIG. 1).

路面の傾斜角度による重量加速度Gの影響を考慮すると、駆動力Fと対地加速度VR’との関係は、移動方向の水平に対する角度情報(路面の傾斜角度)をθ(登り方向を正)として、
F=M・a=M・VR’+M・Gsinθ
となる(図2)。車両の質量Mは省略できて、
a=VR’+Gsinθ
ゆえに、μ−S特性が左右の駆動輪で同じで、かつ1次式で近似できるとすると、駆動輪のスリップ率Sの平均と、VR’+Gsinθの関係を線形近似することでμ-S勾配の推定すなわち滑りやすさの判定が可能となる(図3)。
Considering the influence of the weight acceleration G due to the road surface inclination angle, the relationship between the driving force F and the ground acceleration V R ′ is that the angle information (inclination angle of the road surface) with respect to the horizontal in the moving direction is θ (the climb direction is positive). ,
F = M ・ a = M ・ V R '+ M ・ Gsinθ
(FIG. 2). The vehicle mass M can be omitted,
a = V R '+ Gsinθ
Therefore, if the μ-S characteristics are the same for the left and right drive wheels and can be approximated by a linear expression, the average of the slip ratio S of the drive wheels and the relationship between V R ′ + Gsin θ can be linearly approximated by It is possible to estimate the gradient, that is, to determine slipperiness (FIG. 3).

この勾配の大きさを、基準値(アスファルト走行時の値)と比較することで路面の滑りやすさを推定できる。   The slipperiness of the road surface can be estimated by comparing the magnitude of this gradient with a reference value (value during asphalt travel).

ここで、このスリップ率と駆動力を求めるにあたって、路面の凹凸による外乱の影響を除くため、サンプリング時間ごとに得られた所定の個数のデータ、たとえば50個のデータを移動平均処理する。データの数を減らさずに、データの変動の影響を小さくするために、短時間のサンプリング時間、たとえば数十msごとにデータをサンプリングし、このサンプリング時間で得られた変動の大きいデータを移動平均する。ついでスリップ率と駆動力の1次式の関係を得るために、所定の個数、たとえば20個ごとの最小自乗近似法による直線近似を行ない、この処理をサンプリング時間ごとに移動計算する。   Here, when calculating the slip ratio and the driving force, a moving average process is performed on a predetermined number of data obtained every sampling time, for example, 50 data, in order to eliminate the influence of disturbance due to road surface unevenness. In order to reduce the effect of data fluctuations without reducing the number of data, data is sampled every short sampling time, for example every several tens of ms, and the data with large fluctuations obtained in this sampling time is moving average To do. Next, in order to obtain the relationship of the linear expression of the slip ratio and the driving force, linear approximation is performed by a least square approximation method for every predetermined number, for example, 20 pieces, and this process is calculated by movement at every sampling time.

本発明によれば、路面勾配による走行抵抗変化を加速度情報に加味することによって、平坦路でない道路を走行している場合でも、路面の滑りやすさを判定することが可能になる。また、登り勾配路面走行時および下り勾配路面走行時でも、正確な路面の滑りやすさを判定でき、そのうえ前輪駆動でも後輪駆動でも同じロジックで判定できる。   According to the present invention, by adding the travel resistance change due to the road surface gradient to the acceleration information, it is possible to determine the slipperiness of the road surface even when traveling on a road that is not a flat road. In addition, it is possible to determine whether the road surface is slippery accurately even when traveling on an uphill road surface or on a downhill road surface. In addition, the same logic can be used for both front wheel driving and rear wheel driving.

実施の形態
本発明の実施の形態にかかわる路面状態判定装置のブロック図を図6に示す。路面状態判定装置10は傾斜計1から入力装置3を介して傾斜角度αを入力して、メモリ5に記憶する。また車輪速検出装置2から車輪回転速度情報を入力してメモリ5に記憶する。車輪速検出装置2からの車輪回転速度情報は車輪の回転によって生じるパルスであってもよい。その場合は入力されるパルスの周期またはある時間間隔のパルス数から車輪回転速度を算出することができる。CPU4はメモリ5におかれたプログラムを実行する。本実施の形態ではメモリ5を1つに記載しているが、プログラムをROM(読み出し専用メモリ)に、演算データをRAM(ランダムアクセスメモリ)に記憶するよう分けてもよい。また、判定した路面状態を表示する路面状態表示装置7や、路面状態判定情報を利用する車両駆動制御装置8が接続される。
Embodiment FIG. 6 is a block diagram of a road surface condition determination apparatus according to an embodiment of the present invention. The road surface condition determination device 10 inputs the inclination angle α from the inclinometer 1 via the input device 3 and stores it in the memory 5. Further, wheel rotational speed information is inputted from the wheel speed detecting device 2 and stored in the memory 5. The wheel rotation speed information from the wheel speed detection device 2 may be a pulse generated by the rotation of the wheel. In that case, the wheel rotation speed can be calculated from the period of the input pulses or the number of pulses at a certain time interval. The CPU 4 executes a program stored in the memory 5. In this embodiment, only one memory 5 is described, but the program may be stored in a ROM (read only memory) and the operation data may be stored in a RAM (random access memory). Further, a road surface state display device 7 that displays the determined road surface state and a vehicle drive control device 8 that uses the road surface state determination information are connected.

つぎに動作について説明する。メモリ5に入力された従動輪の回転速度情報のデータ列から車両の対地速度VR(従動輪の回転角速度×動荷重半径)を算出する。算出される対地速度VRをさらに微分して対地加速度VR’を算出する。対地加速度VR’を算出するには差分法によってもよいし、高次の微分係数を使用する近似式によってもよい。対地加速度VR’と傾斜計検出値αから路面の傾斜角度θを計算する。 Next, the operation will be described. The vehicle ground speed V R (the rotational angular speed of the driven wheel × dynamic load radius) is calculated from the data string of the rotational speed information of the driven wheel input to the memory 5. The ground acceleration V R ′ is calculated by further differentiating the calculated ground speed V R. The ground acceleration V R ′ may be calculated by a difference method or an approximate expression using a higher-order differential coefficient. The road inclination angle θ is calculated from the ground acceleration V R ′ and the inclinometer detection value α.

一方、駆動輪の回転角速度と所与の車輪動荷重半径とから駆動輪の回転速度Vtを算出し、駆動輪回転速度Vtと路面に沿った対地速度VRとの差からスリップ率Sを計算する。対地加速度および路面勾配による重力加速度の和VR’+Gsinθと、スリップ率とを順次計算し、連続する複数の加速度およびスリップ率の組からμ−S勾配を一次近似で推定する。 On the other hand, it calculates the rotational speed V t of the drive wheel from the rotational angular velocity of the drive wheel and a given wheel dynamic load radius, the difference slip ratio of S and ground speed V R along the drive wheel rotation speed V t and the road surface Calculate Gravity acceleration sum V R '+ Gsinθ by ground acceleration and road surface gradient and slip rate are sequentially calculated, and a μ-S gradient is estimated by a first-order approximation from a set of a plurality of successive accelerations and slip rates.

得られた推定値を路面状態表示装置または車両駆動制御装置に出力する。   The obtained estimated value is output to the road surface state display device or the vehicle drive control device.

なお、本実施の形態では、傾斜計から不定間隔に傾斜角度αを入力する例を記載したが、車輪回転速度情報入力にあわせて一定間隔に傾斜計検出値を入力してもよい。一定間隔に入力する場合、時間間隔は決められており、計算が簡単になる。   In the present embodiment, an example in which the inclination angle α is input from the inclinometer at an indefinite interval is described, but the inclinometer detection value may be input at a constant interval in accordance with the wheel rotation speed information input. When inputting at a fixed interval, the time interval is fixed, and the calculation is simplified.

さらに、一定時間間隔毎に読み込んだ車輪回転速度、車両の対地速度または対地加速度、および路面の傾斜角度(移動方向の水平面に対する角度)に、所定の個数の移動平均処理を施してもよい。移動平均処理を施すことによって、ノイズの影響をキャンセルでき、安定した結果を得ることができる。また、精度の高い路面摩擦係数を速やかに計算することができるという効果がある。   Furthermore, a predetermined number of moving average processes may be performed on the wheel rotation speed, the vehicle ground speed or ground acceleration, and the road surface inclination angle (angle with respect to the horizontal plane in the movement direction) read at regular time intervals. By performing the moving average process, the influence of noise can be canceled and a stable result can be obtained. In addition, there is an effect that a highly accurate road surface friction coefficient can be quickly calculated.

そして、この判定された路面摩擦係数の情報をABS(アンチロックブレーキシステム)装置やTRC(トラクションコントロール)装置などに用いることにより、路面摩擦係数に応じた最適な制御を行なうことができる。また、低摩擦係数路面と判定された場合、運転者に滑りやすい路面であると注意を促すことができる。   By using the determined road surface friction coefficient information in an ABS (anti-lock brake system) device, a TRC (traction control) device, or the like, optimal control according to the road surface friction coefficient can be performed. Further, when it is determined that the road surface has a low friction coefficient, the driver can be alerted that the road surface is slippery.

たとえばABS装置では、走行中の路面摩擦係数を本発明の路面状態判定装置から入力して、路面摩擦係数に応じたブレーキ操作力の上限を設定することができる。ABS装置では、時々刻々スリップ(タイヤロック)していることを検出して、リアルタイムにブレーキ操作力を調節するものであるが、路面状態に応じてブレーキ操作力の上限を設定することによって、タイヤロックする直前の最大制動力を得ることが可能になり、より安全確実な制動を実現できる可能性がある。その結果、雨が降り始めた路面、雨によって埃が洗い流された路面、積雪路面(温度によって滑りやすさが異なる)をスタッドレスタイヤを装着して走行する場合、凍結した路面、砂利道などの路面とタイヤの状況に応じたブレーキ制御が可能になる。   For example, in the ABS device, the road surface friction coefficient during traveling can be input from the road surface state determination device of the present invention, and the upper limit of the brake operation force according to the road surface friction coefficient can be set. The ABS device detects slipping (tire lock) every moment and adjusts the brake operation force in real time. By setting the upper limit of the brake operation force according to the road surface condition, It becomes possible to obtain the maximum braking force immediately before locking, and there is a possibility that safer and more reliable braking can be realized. As a result, when driving on a road surface that has started to rain, a road surface in which dust has been washed away by rain, or a snowy road surface (the slipperiness varies depending on the temperature) with studless tires, the road surface such as a frozen road or a gravel road And brake control according to tire conditions.

TRC装置では、路面摩擦係数を本発明の路面状態判定装置から入力して、たとえば、左右輪の駆動力配分を調節したり、路面摩擦係数に応じた駆動力の上限を設定して発進・加速時のスリップをなくし、より効果的な車両の駆動制御を実現できる可能性がある。たとえば、雪の坂道でも適正な駆動力に制御して、スリップすることを回避できる。   In the TRC device, the road surface friction coefficient is input from the road surface condition determination device of the present invention, for example, the driving force distribution of the left and right wheels is adjusted, or the upper limit of the driving force according to the road surface friction coefficient is set to start / accelerate There is a possibility that time slip can be eliminated and more effective vehicle drive control can be realized. For example, slipping can be avoided by controlling to an appropriate driving force even on a snowy slope.

また、たとえば湿ったアスファルトの滑りやすさ数値を基準として、それよりも滑りやすさが大きい(駆動力に対するスリップ率の傾きが大きい)場合に、滑りやすいと判定し警報ブザーを鳴動したり警告灯を点灯するなどして、運転者に注意を促すことができる。   Also, for example, if the slipperiness of wet asphalt is larger than that of the standard (the slope of the slip ratio with respect to the driving force is large), it will be judged as slippery and an alarm buzzer will sound. The driver can be alerted by turning on the.

比較例
アスファルト路面で平坦路から坂道に入る場合の例
車両:Audi A4(前輪駆動)
場所:住友ゴム(株)岡山TC近郊の平坦路から上り坂へ進入する路面
速度:40〜50km/h 2名乗車
傾斜計データは、株式会社東海理化製の傾斜センサーを用いて、AD変換して入力した。
Comparative example Example of entering a slope from a flat road on an asphalt road Vehicle: Audi A4 (front wheel drive)
Place: Sumitomo Rubber Co., Ltd. Road surface speed approaching uphill from Okayama TC suburbs: 40-50km / h 2 people inclinometer data is AD converted using a tilt sensor manufactured by Tokai Rika Co., Ltd. Entered.

本比較例においては、車輪回転速度の検出は車輪の回転によって生ずるパルスの数を、一定の周期でカウントしている。カウントする周期は、50msecである。傾斜計データを取り込む周期は、車輪回転速度を検出するためのパルスをカウントする周期と一致させている。また、検出した車輪回転速度と傾斜計データは、検出周期1秒周期分にわたって移動平均をとっている。   In this comparative example, the wheel rotation speed is detected by counting the number of pulses generated by the wheel rotation at a constant period. The counting cycle is 50 msec. The period for capturing the inclinometer data is made to coincide with the period for counting pulses for detecting the wheel rotation speed. The detected wheel rotation speed and inclinometer data are moving averages over a detection period of 1 second.

使用した演算装置は、CPUが日本電気(株)製 3シリーズマイコン、動作クロック16MHz、作業用メモリ容量760Byteである。データ取り込み装置と、PCは日本IBM(株)製 ThinkPad 240である。   The arithmetic unit used is a 3 series microcomputer manufactured by NEC Corporation, an operation clock of 16 MHz, and a working memory capacity of 760 bytes. The data capturing device and the PC are ThinkPad 240 manufactured by IBM Japan.

図4は勾配角度情報を使用しない従来の方法による加速度−スリップ率算定値をプロットしたものである。傾斜計を使用せず、路面の勾配を考慮しない従来の方法では、勾配が変化している路面においてスリップ率と加速度との関係式が、一次式で近似することができないので、路面摩擦係数を算出することができず、路面状態判定ができない状態があることがわかる。   FIG. 4 is a plot of acceleration-slip rate calculation values by a conventional method that does not use gradient angle information. In the conventional method that does not use the inclinometer and does not consider the road surface gradient, the relationship between the slip ratio and acceleration cannot be approximated by a linear equation on the road surface where the gradient is changing. It can be seen that there is a state where the road surface state cannot be determined because it cannot be calculated.

一方、本発明の方法による駆動加速度−スリップ率算定値をプロットしたのが図5である。図5に示されるとおりスリップ率は、路面の勾配で補正された駆動加速度の一次関数として近似できるので、路面摩擦係数を常に推定することができる。   On the other hand, FIG. 5 is a plot of drive acceleration-slip ratio calculation values according to the method of the present invention. As shown in FIG. 5, the slip ratio can be approximated as a linear function of the driving acceleration corrected by the road surface gradient, so that the road surface friction coefficient can always be estimated.

従来の方法によるスリップ率と、本発明の方法によるスリップ率とを比較すると、平坦路を走行している部分に相当する0.03〜0.15m/s2ではグラフは一致するが、登り勾配にさしかかったところから、図4では折れ曲がっており(図4のグラフの屈曲点)、それより大きい加速度の領域では上方にシフトしてしまっている。したがって、勾配が変化する路面では加速度に対するスリップ率が変動し、路面摩擦係数を推定することができない。それに対して、本発明の方法による駆動加速度−スリップ率(図5)では、勾配にさしかかったところから、それ以降でも加速度(駆動加速度)に対するスリップ率は直線上にのるので、路面勾配が変動しても正しく路面摩擦係数を推定することができる。 Comparing the slip rate according to the conventional method and the slip rate according to the method of the present invention, the graphs agree at 0.03 to 0.15 m / s 2 corresponding to the portion running on a flat road, but the climbing slope From the point of approach, it is bent in FIG. 4 (the inflection point in the graph of FIG. 4), and shifted upward in a region of acceleration larger than that. Therefore, the slip ratio with respect to acceleration varies on the road surface where the gradient changes, and the road surface friction coefficient cannot be estimated. On the other hand, in the driving acceleration-slip ratio (FIG. 5) according to the method of the present invention, the slip ratio with respect to the acceleration (driving acceleration) is on a straight line from the point of approaching the gradient, so the road surface gradient varies. Even so, the road surface friction coefficient can be correctly estimated.

本比較例では路面摩擦係数の推定のために、20個のスリップ率算定値を使用したので、実質のリードタイム(最初のデータ入力から路面摩擦係数推定値が最初に出力されるまでの時間)は2secであった。以後は50msec毎の路面摩擦係数推定値が出力されるので、路面状態判定として有効であるといえる。   In this comparative example, 20 slip ratio calculated values were used to estimate the road surface friction coefficient, so the actual lead time (time from the first data input until the road surface friction coefficient estimated value was first output) Was 2 sec. Thereafter, the road surface friction coefficient estimation value is output every 50 msec, which can be said to be effective as road surface condition determination.

さらに、本発明を実際の車両に適用した場合の効果を以下に記載する。   Further, effects obtained when the present invention is applied to an actual vehicle will be described below.

本実施例では、路面の滑りやすさを判定する前記路面滑りやすさ推定値(スリップ率/駆動加速度)は、0.0525前後の値を安定して出力できた。   In this example, the estimated value (slip rate / driving acceleration) for determining the slipperiness of the road surface for determining the slipperiness of the road surface could stably output a value of around 0.0525.

一方この車両が、滑りやすい路面を走行した場合の路面滑りやすさ推定値は、住友ゴム岡山TC内の各種滑りやすい路面を走行したときの平均値として0.058が得られている。また、同じく岡山TC内の乾燥アスファルト路面を走行したときの路面滑りやすさ推定値は0.051付近であり、たとえば基準値を0.05として、前記滑りやすさ推定値が0.055を超えた場合に滑りやすいと判定し、警報ブザーを鳴動させることによって、運転者に滑りやすい危険な状態であることを伝えることができる。   On the other hand, the estimated value of slipperiness when the vehicle travels on a slippery road surface is 0.058 as an average value when traveling on various slippery road surfaces in Sumitomo Rubber Okayama TC. Similarly, the estimated value of slipperiness when driving on a dry asphalt road surface in Okayama TC is around 0.051, for example, when the reference value is 0.05, the estimated slipperiness exceeds 0.055. If it is determined that the vehicle is slippery and the alarm buzzer is sounded, it is possible to inform the driver that the vehicle is slippery and dangerous.

本実施例の走行では誤報を発生せずに、つねに滑りやすい路面ではないことを示し続けることができる。   In the traveling of the present embodiment, it is possible to continue to show that the road surface is not always slippery without generating a false alarm.

傾斜計の検出値および車両の対地加速度と路面の傾斜角度との関係を説明する図である。It is a figure explaining the relationship between the detected value of an inclinometer, the ground acceleration of a vehicle, and the inclination angle of a road surface. 本発明の路面勾配を考慮する路面状態推定を説明する図である。It is a figure explaining the road surface state estimation which considers the road surface gradient of this invention. スリップ率と加速度の関係を表す図である。It is a figure showing the relationship between a slip ratio and acceleration. 比較例の従来の方法による加速度−スリップ率算定値をプロットした図である。It is the figure which plotted the acceleration-slip ratio calculation value by the conventional method of a comparative example. 比較例の本発明の方法による駆動加速度−スリップ率算定値をプロットした図である。It is the figure which plotted the driving acceleration-slip ratio calculation value by the method of this invention of a comparative example. 本発明の実施の形態にかかわる路面状態判定装置のブロック図である。1 is a block diagram of a road surface condition determination apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 傾斜計
2 車輪速検出装置
3 入力装置
4 CPU
5 メモリ
6 出力装置
7 路面状態表示装置
8 車両駆動制御装置
10 路面状態判定装置
1 Inclinometer 2 Wheel speed detection device 3 Input device 4 CPU
DESCRIPTION OF SYMBOLS 5 Memory 6 Output device 7 Road surface state display apparatus 8 Vehicle drive control apparatus 10 Road surface state determination apparatus

Claims (9)

車両が走行している路面の状態を判定する路面状態判定方法であって、車両に備えられる傾斜計の検出値を入力する工程と、車両に取り付けられた車輪回転速度検出手段から車輪の回転速度情報を入力する工程と、当該車輪回転速度情報に基づき車両の対地速度および対地加速度を算出する工程と、前記傾斜計の検出値と前記対地加速度とから路面の傾斜角度を算出する工程とを有し、前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面とタイヤとの摩擦係数および滑りやすさを判定することを含む路面状態判定方法。 A road surface state determination method for determining a state of a road surface on which a vehicle is traveling, the step of inputting a detection value of an inclinometer provided in the vehicle, and a wheel rotation speed from a wheel rotation speed detection means attached to the vehicle. A step of inputting information, a step of calculating a ground speed and a ground acceleration of the vehicle based on the wheel rotational speed information, and a step of calculating a slope angle of the road surface from the detected value of the inclinometer and the ground acceleration. And determining a friction coefficient and slipperiness between the running road surface and the tire based on the wheel rotation speed information and the inclination angle of the road surface. 前記車輪回転速度情報が、所定の時間間隔で読み込まれる車輪速度検出手段の車輪回転パルスの周期および該パルス数から算出される車輪回転速度であり、
該車輪回転速度を算出する車輪回転速度検知の時間間隔に同期して、前記傾斜計の検出値を読み込み、従動輪の回転速度情報から走行面に沿った対地速度および対地加速度を求め、前記傾斜計の検出値と該対地加速度とから前記路面の傾斜角度を求め、ついで駆動輪の回転速度情報と前記対地速度とからスリップ率を求めることを含み、
該スリップ率、前記対地加速度および前記路面の傾斜角度との関係を用いて走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する請求項1記載の路面状態判定方法。
The wheel rotation speed information is a wheel rotation speed calculated from the cycle of the wheel rotation pulse of the wheel speed detection means read at predetermined time intervals and the number of pulses,
The detection value of the inclinometer is read in synchronization with the time interval of wheel rotation speed detection for calculating the wheel rotation speed, the ground speed and the ground acceleration along the traveling surface are obtained from the rotation speed information of the driven wheel, and the inclination Determining the inclination angle of the road surface from the detected value of the meter and the ground acceleration, and then determining the slip ratio from the rotational speed information of the drive wheels and the ground speed,
2. The road surface condition determination method according to claim 1, wherein a friction coefficient and slipperiness between a running road surface and a tire are determined using the relationship between the slip ratio, the ground acceleration, and the inclination angle of the road surface.
一定時間間隔毎に読み込んだ車輪回転速度、車両の対地速度または対地加速度、および路面の傾斜角度に、所定の個数の移動平均処理を施す請求項2記載の路面状態判定方法。 3. The road surface condition determination method according to claim 2, wherein a predetermined number of moving average processes are performed on the wheel rotation speed, the vehicle ground speed or ground acceleration, and the road surface inclination angle read at regular time intervals. 車両が走行している路面の状態を判定する路面状態判定装置であって、水平に対する車両の傾斜角度を検知する手段と、車両に装着された車輪の回転速度を検出する手段と、当該車輪回転速度情報に基づき車両の対地速度および対地加速度を算出する手段と、前記傾斜検知手段によって得られる情報と前記対地加速度に基づいて路面の傾斜角度を算出する手段とを備え、前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面とタイヤとの摩擦係数および滑りやすさを判定することを含む路面状態判定装置。 A road surface state determination device for determining the state of a road surface on which a vehicle is traveling, the means for detecting the inclination angle of the vehicle with respect to the horizontal, the means for detecting the rotational speed of a wheel mounted on the vehicle, and the wheel rotation Means for calculating the ground speed and ground acceleration of the vehicle based on the speed information, means for calculating the inclination angle of the road surface based on the information obtained by the tilt detecting means and the ground acceleration, and the wheel rotational speed information; A road surface state determination device including determining a friction coefficient and slipperiness between a running road surface and a tire based on an inclination angle of the road surface. 前記車輪回転速度情報が、所定の時間間隔で読み込まれる車輪速度検出手段の車輪回転パルスの周期および該パルス数から算出される車輪回転速度であり、
該車輪回転速度を算出する車輪回転速度検知の時間間隔に同期して、前記傾斜計の検出値を読み込み、従動輪の回転速度情報から走行面に沿った車両の対地速度および対地加速度を求め、前記傾斜計の検出値と該対地加速度とから前記路面の傾斜角度を求め、ついで駆動輪の回転速度情報と前記対地速度とからスリップ率を求めることを含み、
該スリップ率、前記対地加速度および前記路面の傾斜角度との関係を用いて走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する請求項4記載の路面状態判定装置。
The wheel rotation speed information is a wheel rotation speed calculated from the cycle of the wheel rotation pulse of the wheel speed detection means read at predetermined time intervals and the number of pulses,
In synchronization with the time interval of wheel rotation speed detection for calculating the wheel rotation speed, the detected value of the inclinometer is read, and the ground speed and ground acceleration of the vehicle along the traveling surface are obtained from the rotational speed information of the driven wheel, Determining the inclination angle of the road surface from the detected value of the inclinometer and the ground acceleration, and then determining the slip ratio from the rotational speed information of the drive wheels and the ground speed,
The road surface condition determination device according to claim 4, wherein a friction coefficient and slipperiness between the road surface and the tire during traveling are determined using the relationship between the slip ratio, the ground acceleration, and the inclination angle of the road surface.
一定時間間隔毎に読み込んだ車輪回転速度、車両の対地速度または対地加速度、および路面の傾斜角度に、所定の個数の移動平均処理を施す請求項5記載の路面状態判定装置。 6. The road surface condition judging device according to claim 5, wherein a predetermined number of moving average processes are performed on the wheel rotational speed, the ground speed or ground acceleration of the vehicle, and the inclination angle of the road surface, which are read at regular time intervals. 車両が走行している路面の状態を判定するためにコンピュータを、
水平に対する車両の傾斜角度、および車両に装着された車輪の回転速度を記憶するメモリ手段、
前記車輪の回転速度に基づいて車両の対地速度および対地加速度を算出する手段、
前記車両の傾斜角度および前記対地加速度とから路面の傾斜角度を算出する手段、および
前記車輪回転速度情報と前記路面の傾斜角度とによって、走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する手段として機能させるための路面状態判定プログラム。
To determine the condition of the road on which the vehicle is running,
Memory means for storing the inclination angle of the vehicle with respect to the horizontal and the rotational speed of the wheel mounted on the vehicle;
Means for calculating the ground speed and ground acceleration of the vehicle based on the rotational speed of the wheels;
The means for calculating the inclination angle of the road surface from the inclination angle of the vehicle and the ground acceleration, and the coefficient of friction and the slipperiness between the road surface and the tire during running are determined by the wheel rotation speed information and the inclination angle of the road surface. A road surface state determination program for functioning as a determination unit.
前記車輪回転速度情報が、所定の時間間隔で読み込まれる車輪速度検出手段の車輪回転パルスの周期および該パルス数から算出される車輪回転速度であり、
該車輪回転速度を算出する車輪回転速度検知の時間間隔に同期して、前記傾斜計の検出値を読み込み、従動輪の回転速度情報から走行面に沿った対地速度および対地加速度を求め、前記傾斜計の検出値と該対地加速度とから前記路面の傾斜角度を求め、ついで駆動輪の回転速度情報と前記対地速度とからスリップ率を求めることを含み、
該スリップ率、前記対地加速度および前記路面の傾斜角度との関係を用いて走行中の路面とタイヤとの摩擦係数および滑りやすさを判定する請求項7記載の路面状態判定プログラム。
The wheel rotation speed information is a wheel rotation speed calculated from the cycle of the wheel rotation pulse of the wheel speed detection means read at predetermined time intervals and the number of pulses,
The detection value of the inclinometer is read in synchronization with the time interval of wheel rotation speed detection for calculating the wheel rotation speed, the ground speed and the ground acceleration along the traveling surface are obtained from the rotation speed information of the driven wheel, and the inclination Determining the inclination angle of the road surface from the detected value of the meter and the ground acceleration, and then determining the slip ratio from the rotational speed information of the drive wheels and the ground speed,
8. The road surface condition determination program according to claim 7, wherein a friction coefficient and slipperiness between a running road surface and a tire are determined using the relationship between the slip ratio, the ground acceleration, and the inclination angle of the road surface.
一定時間間隔毎に算出される車輪回転速度、車両の対地速度または対地加速度、および路面の傾斜角度に、所定の個数の移動平均処理を施すステップを含む請求項8記載の路面状態判定プログラム。 9. The road surface condition determination program according to claim 8, further comprising a step of applying a predetermined number of moving average processes to the wheel rotation speed, the ground speed or ground acceleration of the vehicle, and the inclination angle of the road surface calculated at regular time intervals.
JP2004215452A 2004-07-23 2004-07-23 Road surface state determining method and device, and road surface state determining program Pending JP2006035928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215452A JP2006035928A (en) 2004-07-23 2004-07-23 Road surface state determining method and device, and road surface state determining program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215452A JP2006035928A (en) 2004-07-23 2004-07-23 Road surface state determining method and device, and road surface state determining program

Publications (1)

Publication Number Publication Date
JP2006035928A true JP2006035928A (en) 2006-02-09

Family

ID=35901396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215452A Pending JP2006035928A (en) 2004-07-23 2004-07-23 Road surface state determining method and device, and road surface state determining program

Country Status (1)

Country Link
JP (1) JP2006035928A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219031B2 (en) * 2005-03-31 2007-05-15 Nissan Technical Center North America, Inc. Rumble strip responsive systems: discrimination of types of rumble strips
WO2012127568A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Drive assist apparatus, and information processing apparatus for vehicles
KR101716417B1 (en) * 2015-10-30 2017-03-15 현대위아(주) Rough road detection method for vehicle
WO2020066082A1 (en) * 2018-09-28 2020-04-02 株式会社Jvcケンウッド Vehicle recording control device, vehicle recording device, vehicle recording control method, and program
WO2020066083A1 (en) * 2018-09-28 2020-04-02 株式会社Jvcケンウッド Vehicle recording control device, vehicle recording device, vehicle recording control method, and program
CN111497844A (en) * 2019-01-29 2020-08-07 罗伯特·博世有限公司 Control method and control device for vehicle coasting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249101A (en) * 1996-03-15 1997-09-22 Tokico Ltd Brake controller
JP2000079835A (en) * 1998-09-04 2000-03-21 Toyota Motor Corp Road surface condition detecting device for vehicle
JP2001130390A (en) * 1999-10-09 2001-05-15 Robert Bosch Gmbh Control method and device for vehicle
JP2001253334A (en) * 2000-03-09 2001-09-18 Sumitomo Rubber Ind Ltd Device and method for determining coefficient of road surface friction
JP2002166826A (en) * 2000-11-29 2002-06-11 Nissan Diesel Motor Co Ltd Rollover preventing device for vehicle
JP2002362345A (en) * 2001-06-07 2002-12-18 Sumitomo Rubber Ind Ltd Road surface condition determining device and method and determining program of road surface condition
JP2004142555A (en) * 2002-10-23 2004-05-20 Sumitomo Rubber Ind Ltd Method, device and program for determining road surface friction coefficient

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249101A (en) * 1996-03-15 1997-09-22 Tokico Ltd Brake controller
JP2000079835A (en) * 1998-09-04 2000-03-21 Toyota Motor Corp Road surface condition detecting device for vehicle
JP2001130390A (en) * 1999-10-09 2001-05-15 Robert Bosch Gmbh Control method and device for vehicle
JP2001253334A (en) * 2000-03-09 2001-09-18 Sumitomo Rubber Ind Ltd Device and method for determining coefficient of road surface friction
JP2002166826A (en) * 2000-11-29 2002-06-11 Nissan Diesel Motor Co Ltd Rollover preventing device for vehicle
JP2002362345A (en) * 2001-06-07 2002-12-18 Sumitomo Rubber Ind Ltd Road surface condition determining device and method and determining program of road surface condition
JP2004142555A (en) * 2002-10-23 2004-05-20 Sumitomo Rubber Ind Ltd Method, device and program for determining road surface friction coefficient

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219031B2 (en) * 2005-03-31 2007-05-15 Nissan Technical Center North America, Inc. Rumble strip responsive systems: discrimination of types of rumble strips
WO2012127568A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Drive assist apparatus, and information processing apparatus for vehicles
EP2688054A1 (en) * 2011-03-18 2014-01-22 Toyota Jidosha Kabushiki Kaisha Drive assist apparatus, and information processing apparatus for vehicles
US9180885B2 (en) 2011-03-18 2015-11-10 Toyota Jidosha Kabushiki Kaisha Drive assist apparatus, and information processing apparatus for vehicles
EP2688054A4 (en) * 2011-03-18 2015-12-02 Toyota Motor Co Ltd Drive assist apparatus, and information processing apparatus for vehicles
KR101716417B1 (en) * 2015-10-30 2017-03-15 현대위아(주) Rough road detection method for vehicle
WO2020066082A1 (en) * 2018-09-28 2020-04-02 株式会社Jvcケンウッド Vehicle recording control device, vehicle recording device, vehicle recording control method, and program
WO2020066083A1 (en) * 2018-09-28 2020-04-02 株式会社Jvcケンウッド Vehicle recording control device, vehicle recording device, vehicle recording control method, and program
CN111497844A (en) * 2019-01-29 2020-08-07 罗伯特·博世有限公司 Control method and control device for vehicle coasting

Similar Documents

Publication Publication Date Title
US6202020B1 (en) Method and system for determining condition of road
JP2003341538A (en) Vehicular state detecting device
US20090319129A1 (en) Motor vehicle driver assisting method
US7389170B2 (en) Method and apparatus for judging road surface conditions and program for judging road surface conditions
JPH1178442A (en) Device and method for detecting worn state of tire
US20080319626A1 (en) Road-Surface Condition Estimating Device
JP2003004128A (en) Device and method for determining grade road surface and program for determining grade
JP2001334921A (en) Estimating device for surface friction coefficient of vehicle
US20070150156A1 (en) Method and system for road surface friction coefficient estimation
JP3515040B2 (en) Road surface friction coefficient determination method
JP3869685B2 (en) Two-wheeled vehicle air pressure drop detecting device and method, and two-wheeled vehicle decompression determination program
JP2006035928A (en) Road surface state determining method and device, and road surface state determining program
JP4668571B2 (en) Road surface state determination method and apparatus, and road surface state determination program
US7499786B2 (en) System and method for determining when to update a surface estimation value indicative of a condition of a roadway surface
JP5183275B2 (en) Road surface state determination device and method, and road surface state determination program
JP4414547B2 (en) Road surface friction coefficient judging apparatus and method
US6917864B2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
JP2002274357A (en) Road surface condition discriminating device and method and discriminating program for road surface condition
JP4636991B2 (en) Road surface state estimation device and method, and road surface state estimation program
JP4028842B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP7103010B2 (en) Road surface condition judgment device, method and program
JP2008018940A (en) Method and device for detecting lowering of tire pressure, and program for determining reduction of tire pressure
JP2004161116A (en) Road surface condition determination method and device thereof, and road surface condition determination program
JP4606623B2 (en) Tire selection apparatus and method, and tire selection program
CN116443014B (en) Anti-skid control method and device for vehicle driving

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714