JP2006033908A - Method, device and program for estimating amount of power generation of solar light generating system - Google Patents

Method, device and program for estimating amount of power generation of solar light generating system Download PDF

Info

Publication number
JP2006033908A
JP2006033908A JP2004204714A JP2004204714A JP2006033908A JP 2006033908 A JP2006033908 A JP 2006033908A JP 2004204714 A JP2004204714 A JP 2004204714A JP 2004204714 A JP2004204714 A JP 2004204714A JP 2006033908 A JP2006033908 A JP 2006033908A
Authority
JP
Japan
Prior art keywords
power generation
amount
solar radiation
prediction
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004204714A
Other languages
Japanese (ja)
Other versions
JP3984604B2 (en
Inventor
Mitsuru Kudo
満 工藤
Isao Nakamura
功 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004204714A priority Critical patent/JP3984604B2/en
Publication of JP2006033908A publication Critical patent/JP2006033908A/en
Application granted granted Critical
Publication of JP3984604B2 publication Critical patent/JP3984604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To predict the amount of the power generation of a solar light generating system, at intervals shorter than the forecast interval of weather forecast, and also to reduce estimation errors. <P>SOLUTION: An amount-of-insolation prediction relation deriving part 16A derives an amount-of-insolation prediction relation, based on the weather phenomena observed in the past and the amount of insolation preserved in the past in the installation area of a solar light generating system 2 recorded in a history DB 14A. An amount-of-insolation prediction calculation part 17A predicts the amount of insolation by inputting the weather forecast on the prediction target day or in the prediction target time zone to the area received with a weather information reception part 11 and the amount of insolation measured in the area before the time of prediction execution on the prediction target day received with an amount-of-insolation reception part 12 into the amount-of-insolation prediction relation. The amount of power generation is predicted by inputting the predicted amount of insolation and the weather forecast on the prediction target day or in the prediction target time zone into a solar light generating system model 18 capable of computing the amount of power generation from the information about the amount of insolation and the temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電システムの発電量予測方法および装置に関するものである。   The present invention relates to a power generation amount prediction method and apparatus for a solar power generation system.

太陽光発電システムは、石油等の化石燃料に依存しない無限エネルギーとして注目され、CO2の排出権問題やRPS(Renewable Portfolio Standard)制度の導入により、今後さらにその価値が向上することが予想されている。また、太陽光発電システムは気象条件により発電量が変動する非常に不安定な発電設備であるため、その発電量の予測が可能となれば、適用範囲はさらに広がるものと考えられる。 Photovoltaic power generation systems are attracting attention as infinite energy that does not depend on fossil fuels such as oil, and the value of CO 2 emission rights and the introduction of the Renewable Portfolio Standard (RPS) system are expected to further increase their value in the future. Yes. In addition, the photovoltaic power generation system is a very unstable power generation facility whose power generation amount fluctuates depending on weather conditions. Therefore, if the power generation amount can be predicted, the scope of application can be further expanded.

太陽光発電システムの発電量を予測する従来の方法として、月別・時間帯別の天気現象別に、平均発電量をあらかじめ計算するとともにデータベース化しておき、天気予報により予報された天気現象に対してデータベースより平均発電量を引用することにより予測する方法がある。また、太陽光発電システムの発電量は日射量に大きく依存するため、日射量を予測することが発電量を予測することに繋がる。この日射量の予測に関しても、時間帯別の天気現象別に、日射量を正規化した平均晴天指数をあらかじめデータベース化しておき、天気予報により予報された天気現象に対してデータベースより晴天指数を引用することにより予測する方法(非特許文献1)がある。さらに、気象衛星の雲画像を利用した予測方法(非特許文献2)も検討されている。
平成10年電気学会電力・エネルギー部門大会、P444 平成15年電気学会全国大会、P215
As a conventional method of predicting the amount of power generated by a solar power generation system, the average power generation amount is calculated in advance for each weather phenomenon for each month and time zone, and a database is created for the weather phenomenon predicted by the weather forecast. There is a method of predicting by quoting the average power generation amount. Moreover, since the power generation amount of the solar power generation system greatly depends on the solar radiation amount, predicting the solar radiation amount leads to predicting the power generation amount. Regarding the forecast of solar radiation, an average clear sky index with normalized solar radiation is stored in a database for each weather phenomenon by time zone, and the clear sky index is quoted from the database for the weather phenomenon predicted by the weather forecast. There is a method (Non-patent Document 1) that predicts by this. Furthermore, a prediction method using a cloud image of a meteorological satellite (Non-Patent Document 2) is also being studied.
1998 IEEJ Power and Energy Division Conference, P444 2003 Annual Meeting of the Institute of Electrical Engineers of Japan, P215

上述した従来の方法では、発電量または日射量の予測間隔が、天気予報の予報間隔(3時間)に依存するため、一時間間隔など比較的短時間の間隔の予測が必要な場合には不向きである。また、予測の修正も天気予報の発表時間に依存するため、天気の変動が多い日などは予測誤差が大きいと考えられる。さらに、気象衛星の画像情報の利用については、特殊な衛星情報受信装置が必要なため、汎用的ではない。   In the conventional method described above, the prediction interval of the power generation amount or the solar radiation amount depends on the forecast interval (3 hours) of the weather forecast. Therefore, it is not suitable when it is necessary to predict a relatively short interval such as one hour interval. It is. In addition, since the correction of the prediction depends on the announcement time of the weather forecast, it is considered that the prediction error is large on a day with a lot of weather fluctuations. Furthermore, the use of weather satellite image information is not versatile because a special satellite information receiver is required.

本発明の目的は、天気予報の予報間隔よりも短い間隔の予測が可能であるとともに、予測誤差を減少させることが可能な、太陽光発電システムの発電量予測方法および装置を提供することにある。   An object of the present invention is to provide a method and an apparatus for predicting a power generation amount of a solar power generation system that can predict an interval shorter than a forecast interval of a weather forecast and reduce a prediction error. .

本発明の第1の態様によれば、太陽光発電システム予測装置における太陽光発電システムの発電量予測方法は、
日射量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、該地域において過去に計測された日射量とを基に日射量予測式を導出するステップと、
日射量予測計算手段が、該地域に対する予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に該地域において計測された日射量とを前記日射量予測式に入力することにより、該地域における日射量を予測するステップと、
日射量予測計算手段が、予測された日射量と、前記地域に対する予測対象日または予測対象時間帯についての気温予報とを、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルに入力することにより、前記太陽光発電システムの発電量を予測するステップと
を有する。
本発明の第2の態様によれば、太陽光発電システム予測装置における太陽光発電システムの発電量予測方法は、
日射量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、該地域において過去に計測された日射量と、該地域における大気外日射量を基に日射量予測式を導出するステップと、
日射量予測計算手段が、該地域に対する予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に該地域において計測された日射量と、前記大気外日射量を前記日射量予測式に入力することにより、該地域における日射量を予測するステップと、
発電量予測計算手段が、予測された日射量と、前記地域に対する予測対象日または予測対象時間帯についての気温予報とを、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルに入力することにより、前記太陽光発電システムの発電量を予測するステップと
を有する。
According to the first aspect of the present invention, the photovoltaic power generation system power generation amount prediction method in the solar power generation system prediction apparatus comprises:
A step for deriving a solar radiation amount prediction formula based on a weather phenomenon observed in the past in a region where the solar power generation system is installed and a solar radiation amount measured in the past in the region;
The solar radiation amount prediction calculation means inputs the weather forecast for the prediction target date or the prediction target time zone for the region and the solar radiation amount measured in the region before the prediction execution time of the prediction target date into the solar radiation amount prediction formula Predicting the amount of solar radiation in the area,
The solar radiation amount calculation means can calculate the power generation amount from the predicted solar radiation amount and the temperature forecast for the prediction target date or the prediction target time zone for the region from the information of the solar radiation amount and the temperature. Predicting the amount of power generated by the solar power generation system by inputting it into the power generation system model.
According to the 2nd aspect of this invention, the electric power generation amount prediction method of the solar power generation system in a solar power generation system prediction apparatus is the following.
The solar radiation amount prediction formula deriving means predicts the solar radiation amount based on the weather phenomenon observed in the past in the region where the photovoltaic power generation system is installed, the solar radiation amount measured in the past in the region, and the solar radiation amount outside the atmosphere in the region. Deriving an expression;
The solar radiation amount prediction calculation means calculates the weather forecast for the prediction target date or the prediction target time zone for the region, the solar radiation amount measured in the region before the prediction execution time of the prediction target date, and the outdoor solar radiation amount. Predicting the amount of solar radiation in the area by inputting into the solar radiation amount prediction formula; and
The solar power generation amount calculation means can calculate the predicted solar radiation amount and the temperature forecast for the prediction target day or the prediction target time zone for the region from the solar radiation amount and temperature information. Predicting the amount of power generated by the solar power generation system by inputting it into the power generation system model.

本発明の第4の態様によれば、太陽光発電システム予測装置における太陽光発電システムの発電量予測方法は、
発電量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、前記太陽光発電システムの発電量実績を時間帯別大気外日射量で除算して得られた実績発電指数とを基に発電量予測式を導出するステップと、
発電量予測計算手段が、該発電量予測式から予測発電指数を求め、これに時間帯別大気外日射量を乗算することにより、前記太陽光発電システムの予測発電量を算出するステップと
を有する。
According to the 4th aspect of this invention, the electric power generation amount prediction method of the solar power generation system in a solar power generation system prediction apparatus is the following.
Results obtained by the power generation amount prediction formula deriving means obtained by dividing the weather phenomenon observed in the past in the installation area of the solar power generation system and the actual power generation amount of the solar power generation system by the solar radiation amount according to the time zone Deriving a power generation amount prediction formula based on the power generation index;
The power generation amount prediction calculating means calculates a predicted power generation amount of the solar power generation system by obtaining a predicted power generation index from the power generation amount prediction formula and multiplying this by the solar radiation amount according to time of day. .

本発明によれば、短時間間隔の予測式を利用することにより、天気予報の予報間隔よりも短時間間隔の予測が可能である。また、当日の日射量または発電量の実績を利用することにより、天気予報では説明できない天候の変動に対応した予測が可能である。   According to the present invention, by using a prediction formula for a short time interval, it is possible to predict a short time interval rather than the forecast interval of the weather forecast. Further, by using the actual amount of solar radiation or power generation on the day, it is possible to make a prediction corresponding to a change in weather that cannot be explained by the weather forecast.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
本発明の第1の実施形態として、日射量の計測情報、および気象庁等が発表する時系列天気予報の受信が可能な状況下において、太陽光発電システムの一時間単位の積算発電量を予測する例を説明する。
[First Embodiment]
As the first embodiment of the present invention, the integrated power generation amount of one hour unit of the solar power generation system is predicted under the condition that the measurement information of the solar radiation amount and the time series weather forecast announced by the Japan Meteorological Agency etc. can be received. An example will be described.

図1を参照すると、本実施形態の太陽光発電システム発電力予測装置1Aは、気象情報受信部11と日射量受信部12と履歴DB14Aと日射量予測式導出部16Aと日射量予測計算部17Aと太陽光発電システムモデル18と予測発電量出力部19を有している。   Referring to FIG. 1, a photovoltaic power generation system power generation prediction device 1A according to this embodiment includes a weather information receiving unit 11, a solar radiation amount receiving unit 12, a history DB 14A, a solar radiation amount prediction formula deriving unit 16A, and a solar radiation amount prediction calculating unit 17A. And a photovoltaic power generation system model 18 and a predicted power generation amount output unit 19.

気象情報受信部11は、気象庁等3が発表する天気現象の予報および気温の予報が含まれる天気予報と、気象庁等3が観測した天気現象とを、インターネットや気象情報提供サービスを受けることにより受信するとともに、天気現象を数値化する。日射量受信部12は、太陽光発電システム2が設置されている地域または場所における日射量を計測している日射計4から日射量を受信する。受信信号には4−20mA等のアナログ信号を適用する。履歴DB(データベース)14Aは、受信した天気現象、日射量を記録することが可能なハードディスク等の媒体である。日射量予測式導出部16Aは、履歴データベース14Aの情報(天気現象と日射量)を基に、最小二乗法の計算を行い、日射量予測式を導出する。日射量予測計算部17Aは、日射量予測式導出部16Aにおいて導出された日射量予測式に、太陽光発電システム2が設置された地域に対する、気象情報受信部11で受信された予測対象日または予測対象時間帯について予報天気現象と、日射量受信部12で受信した予測対象日の予測実施時刻前の日射量の情報から日射量予測値を計算する。また、日射量予測計算部内17Aは日射指数量を乗算する機能を有する。太陽光発電システムモデル18は、太陽光発電システム2の太陽電池の等価回路モデル、温度特性モデル、およびコンバータモデルから構成され、太陽電池の設置方位、設置角度、結線形態、設置場所の緯度・経度をあらかじめ設定しておき、日射量予測計算部17Aにおいて予測され予測日射量と、気象情報受信部11で受信された予報気温の情報を基に、I−V特性の計算およびコンバータ損失計算により、発電量を計算する。予測発電量出力部19は、発電量の予測情報を必要とする外部装置に情報を転送するためのネットワークインタフェースを有する。   The meteorological information receiving unit 11 receives a weather forecast including a weather phenomenon forecast and a temperature forecast announced by the Meteorological Agency, etc. 3 and a weather phenomenon observed by the Meteorological Agency etc. 3 by receiving the Internet or a weather information providing service. In addition, the weather phenomenon is digitized. The solar radiation amount receiving unit 12 receives the solar radiation amount from the solar radiation meter 4 that measures the solar radiation amount in an area or place where the solar power generation system 2 is installed. An analog signal such as 4-20 mA is applied to the received signal. The history DB (database) 14A is a medium such as a hard disk capable of recording the received weather phenomenon and the amount of solar radiation. The solar radiation amount prediction formula deriving unit 16A performs the calculation of the least square method based on the information (weather phenomenon and solar radiation amount) in the history database 14A to derive the solar radiation amount prediction formula. The solar radiation amount prediction calculation unit 17A uses the solar radiation amount prediction formula derived by the solar radiation amount prediction formula deriving unit 16A, the prediction target date received by the weather information receiving unit 11 for the area where the solar power generation system 2 is installed, or A predicted amount of solar radiation is calculated from the forecast weather phenomenon and the amount of solar radiation before the prediction execution time received by the solar radiation amount receiving unit 12 for the prediction target time zone. The solar radiation amount prediction calculation unit 17A has a function of multiplying the solar radiation index amount. The solar power generation system model 18 is composed of an equivalent circuit model, a temperature characteristic model, and a converter model of the solar battery of the solar power generation system 2, and the installation orientation, installation angle, connection form, and latitude / longitude of the installation location of the solar battery. Is set in advance, and based on the predicted solar radiation amount predicted by the solar radiation amount prediction calculating unit 17A and the predicted temperature information received by the weather information receiving unit 11, the calculation of the IV characteristic and the converter loss calculation Calculate power generation. The predicted power generation amount output unit 19 has a network interface for transferring information to an external device that requires the prediction information of the power generation amount.

次に、本実施形態を詳しく説明する。   Next, this embodiment will be described in detail.

予測計算を実施する前の工程として、まず、実施日以前一ヶ月程度の時間帯別天気現象と時間帯別日射量を基に、目的変数をn時における日射量、説明変数をn時における天気現象とした回帰分析予測式導出部16Aを実施する。なお、天気現象は晴れ:1、曇り:2、雨:3、雲:4と数値化する。回帰モデルを以下に示す。   As a step before performing the forecast calculation, first, based on the weather phenomenon by time zone and the amount of solar radiation by time zone for about one month before the implementation date, the target variable is the solar radiation amount at n o'clock and the explanatory variable is the weather at n o'clock. The regression analysis prediction formula deriving unit 16A as a phenomenon is executed. The weather phenomenon is digitized as clear: 1, cloudy: 2, rain: 3, and clouds: 4. The regression model is shown below.

i=β0+β11i+ui (1)
ここで、Y:目的変数、X1:説明変数、β0:定数項、β1:回帰係数、u:誤差項、i:標本番号である。回帰係数および定数項を最小二乗法から求め、各時間帯における日射量予測式Aを導出する。
Y i = β 0 + β 1 X 1i + u i (1)
Here, Y is an objective variable, X 1 is an explanatory variable, β 0 is a constant term, β 1 is a regression coefficient, u is an error term, and i is a sample number. The regression coefficient and the constant term are obtained from the least square method, and the solar radiation amount prediction formula A in each time zone is derived.

次に、実施日以前一ヶ月程度の時間帯別天気現象と時間帯別日射量を基に、目的変数をn時における日射量、説明変数1をn時における天気現象、説明変数2をn−1時における日射量とした回帰分析を実施する。説明変数が2つの回帰モデルを以下に示す。   Next, based on the weather phenomenon by time zone and the amount of solar radiation by time zone for about one month before the implementation date, the target variable is the solar radiation amount at n o'clock, the explanatory variable 1 is the weather phenomenon at n o'clock, and the explanatory variable 2 is n− Regression analysis is performed with the amount of solar radiation at 1 o'clock. The regression model with two explanatory variables is shown below.

i=β0+β11i+β22i+ui (2)
ここで、Y:目的変数、X1:説明変数1、X2:説明変数2、β0:定数項、β1:回帰係数1、β2:回帰係数2、u:誤差項、i:標本番号である。回帰係数1、回帰係数2、および定数項を最小二乗法から求め、各時間帯における日射量予測式Bを導出する。以上のように、日射量予測式導出部16Aは時間帯毎の日射量予測式Aおよび日射量予測式Bを毎日導出する。
Y i = β 0 + β 1 X 1i + β 2 X 2i + u i (2)
Here, Y: objective variable, X 1 : explanatory variable 1, X 2 : explanatory variable 2, β 0 : constant term, β 1 : regression coefficient 1, β 2 : regression coefficient 2, u: error term, i: sample Number. The regression coefficient 1, the regression coefficient 2, and the constant term are obtained from the least square method, and the solar radiation amount prediction formula B in each time zone is derived. As described above, the solar radiation amount prediction formula deriving unit 16A derives the solar radiation amount prediction formula A and the solar radiation amount prediction formula B for each time period every day.

第1の実施形態の発電量予測計算のフローを図2に示す。この発電量予測計算フローは、前述した日射量予測式Aおよび日射量予測式B、太陽光発電システムモデル18から構成されており、時系列予報、および計測された実測日射量を基に、太陽光発電システム2の発電量を予測する。以下に計算の流れを説明する。   The flow of the power generation amount prediction calculation of the first embodiment is shown in FIG. This power generation amount prediction calculation flow is composed of the above-mentioned solar radiation amount prediction formula A and solar radiation amount prediction formula B, and the solar power generation system model 18, and based on the time series forecast and the measured actual solar radiation amount, The power generation amount of the photovoltaic system 2 is predicted. The calculation flow will be described below.

まず、インターネット等を利用し、時系列天気予報に含まれる天気予報および気温予報を気象情報受信部11で受信するとともに、前述したように天気を数値化する。また、3時間である予報時間帯に含まれる時刻の予報をすべて同じとした。例えば、12時〜14時の時間帯が晴れの予報である場合、12時、13時、14時において、それぞれ晴れの予報であることとした。次に、日射量予測計算部17Aは、夜間など予測計算実施時に直前の時間帯における実測日射量が存在しない場合、各時間帯の天気予報を各時間帯の日射量予測式Aに入力することにより、各時間帯の予測日射量を計算する。一方、日中など予測計算実施時に直前の時間帯における実測日射量が存在する場合、直前の時間帯における実測日射量を、予測計算実施時間帯の日射量予測式Bに入力することにより、予測計算実施時間帯における予測日射量を計算する。例えば、予測計算を10時に実施した場合、前時間である9時の時間帯における実測日射量と、9時の天気予報を10時予測式Bに入力することにより、10時の時間帯における予測日射量が求められる。ここで、11時の時間帯における日射量の予測について、10時の実測日射量がまだ得られていないため、11時の予測式Bに10時の予測式Bで予測された日射量を入力する。このように、n時の予測式Bにおいて、n−1時の実測日射量が得られない時間帯における日射量の予測計算は、n−1時の時間帯における予測日射量をn−1時の実測日射量として計算する。   First, the weather information receiving unit 11 receives the weather forecast and the temperature forecast included in the time-series weather forecast using the Internet or the like, and also digitizes the weather as described above. In addition, the forecasts for the times included in the forecast time zone of 3 hours are all the same. For example, when the time zone from 12:00 to 14:00 is a sunny forecast, the forecast is sunny at 12:00, 13:00, and 14:00. Next, the solar radiation amount prediction calculation unit 17A inputs the weather forecast for each time zone to the solar radiation amount prediction formula A for each time zone when there is no actually measured solar radiation amount in the immediately preceding time zone when the prediction calculation is performed such as at night. The predicted amount of solar radiation for each time zone is calculated as follows. On the other hand, when there is a measured solar radiation amount in the immediately preceding time zone at the time of predictive calculation such as during the day, the predicted solar radiation amount in the predictive calculation performing time zone is input by inputting the measured solar radiation amount in the immediately preceding time zone into the predicted solar radiation amount formula B. Calculate the predicted amount of solar radiation during the calculation period. For example, when the prediction calculation is performed at 10:00, by inputting the actually measured amount of solar radiation in the 9 o'clock time zone, which is the previous time, and the 9 o'clock weather forecast into the 10 o'clock prediction formula B, the prediction in the 10 o'clock time zone is performed. The amount of solar radiation is required. Here, for the prediction of the amount of solar radiation in the time zone at 11 o'clock, the actual amount of solar radiation at 10 o'clock has not been obtained yet, so the amount of solar radiation predicted by the prediction equation B at 10 o'clock is input to the prediction equation B at 11 o'clock. To do. Thus, in the prediction formula B at n hours, the prediction calculation of the solar radiation amount in the time zone in which the actual solar radiation amount at n-1 hour is not obtained is the prediction solar radiation amount in the time zone at n-1 hour is n-1 hour. Calculated as the actual amount of solar radiation.

以上のように求められる各時間帯における予測日射量と、気温予報を太陽光発電システムモデル18に入力することにより、予測発電量に変換する。以上から、各時間帯における発電量を予測することが可能である。また、時系列天気予報の更新毎、または日射量予測式に入力する任意時間帯別実測日射量の収集完了時刻毎に予測計算を実施し、発電量の予測を修正する。   The predicted solar radiation amount and the temperature forecast in each time zone obtained as described above are input to the solar power generation system model 18 to be converted into the predicted power generation amount. From the above, it is possible to predict the power generation amount in each time zone. In addition, the prediction calculation is performed every time series weather forecast update or every collection completion time of the measured solar radiation amount for each arbitrary time zone input to the solar radiation amount prediction formula to correct the power generation amount prediction.

[第2の実施形態]
第2の実施形態として、日射量の計測情報および気象庁等が発表する時系列天気予報の受信が可能で、大気外日射量の計算が可能な状況下において、太陽光発電システムの一時間単位の積算発電量を予測する例を説明する。
[Second Embodiment]
As a second embodiment, measurement information of solar radiation and time-series weather forecasts announced by the Japan Meteorological Agency, etc. can be received, and the solar radiation system can be calculated on an hourly basis in situations where solar radiation can be calculated. An example of predicting the integrated power generation amount will be described.

図3を参照すると、本発明の第2の実施形態の太陽光発電システム発電量予測装置1Bは気象情報受信部11と日射量受信部12と履歴DB14Aと大気外日射量計算部15と日射量予測式導出部16Bと日射量予測計算部17Bと太陽光発電システムモデル18と予測発電量出力部19を有している。なお、図1中と同じ参照番号の構成要素は同じ機能を有している。   Referring to FIG. 3, a photovoltaic power generation system power generation amount prediction device 1B according to the second embodiment of the present invention includes a weather information receiving unit 11, a solar radiation amount receiving unit 12, a history DB 14A, an outdoor solar radiation amount calculating unit 15, and a solar radiation amount. A prediction formula deriving unit 16B, a solar radiation amount prediction calculating unit 17B, a solar power generation system model 18, and a predicted power generation amount output unit 19 are provided. In addition, the component of the same reference number as FIG. 1 has the same function.

大気外日射量計算部15は、緯度および経度、日時に対応した大気外日射量を計算する。なお、大気外日射量は日時毎に決まった日射量であるため、事前に計算しておき、履歴DB14Aに記録しておくことも可能である。日射量予測式導出部16Bは、履歴DB14Aの情報(天気現象と日射量)と、大気外日射量計算部15で計算された大気外日射量を基に最小二乗法の演算を行い、日射量予測式を導出する。日射量予測計算部17Bは、日射量予測式導出部16Bにおいて導出された日射量予測式と、日射量受信部12で受信した日射量と、大気外日射量計算部15で計算された大気外日射量から日射量予測値を計算する。   The atmospheric solar radiation amount calculation unit 15 calculates the outdoor solar radiation amount corresponding to the latitude, longitude, and date / time. In addition, since the solar radiation amount outside the atmosphere is a solar radiation amount determined for each date and time, it can be calculated in advance and recorded in the history DB 14A. The solar radiation amount prediction formula deriving unit 16B performs an operation of the least square method based on the information (weather phenomenon and solar radiation amount) in the history DB 14A and the outdoor solar radiation amount calculated by the outdoor solar radiation amount calculating unit 15, and the solar radiation amount A prediction formula is derived. The solar radiation amount prediction calculation unit 17B is a solar radiation amount prediction formula derived by the solar radiation amount prediction formula deriving unit 16B, the solar radiation amount received by the solar radiation amount receiving unit 12, and the outdoor solar radiation amount calculating unit 15 Calculate the predicted amount of solar radiation from the amount of solar radiation.

次に、本実施形態を詳しく説明する。   Next, this embodiment will be described in detail.

予測計算を実施する前の工程として、まず、過去の例えば一年間における時間帯別天気現象と、時間帯別日射量を大気外日射量で割ることにより正規化された日射指数を基に、目的変数をn時における日射指数、説明変数をn時における天気現象とした回帰分析を日射量予測式導出部16Bで実施する。なお、天気現象は第1の実施形態と同様に数値化する。また、大気外日射量とは、地球大気の上端に達した地点における日射量であり、緯度、経度、月日、時刻によって決まった値となる。この大気外日射量が、地球の大気中を通過するうちに雲などにより減衰し、地表面に到達する日射量が太陽電池に照射される日射量となる。   As a step before performing the forecast calculation, first, based on the weather phenomenon by time zone in the past, for example, one year, and the solar radiation index normalized by dividing the solar radiation amount by time zone by the solar radiation amount outside the atmosphere, The solar radiation amount prediction formula deriving unit 16B performs regression analysis with the variable being the solar radiation index at n o'clock and the explanatory variable being the weather phenomenon at n o'clock. The weather phenomenon is quantified as in the first embodiment. Further, the solar radiation amount outside the atmosphere is the solar radiation amount at the point where the upper end of the earth's atmosphere is reached, and is a value determined by the latitude, longitude, date, and time. This extraneous solar radiation amount is attenuated by clouds while passing through the earth's atmosphere, and the solar radiation amount reaching the ground surface is the solar radiation amount irradiated to the solar cell.

回帰モデルを式(1)に示す。第1の実施形態と同様に回帰係数および定数項を求め、各時間帯における日射指数予測式Aを導出する。   A regression model is shown in Formula (1). Similar to the first embodiment, the regression coefficient and the constant term are obtained, and the solar radiation index prediction formula A in each time zone is derived.

次に、過去の例えば一年間における時間帯別天気現象と、時間帯別日射量を大気外日射量で割ることにより正規化された日射指数を基に、目的変数をn時における日射指数、説明変数1をn時における天気現象、説明変数2をn−1時における日射指数とした回帰分析を実施する。説明変数が2つの回帰モデルを式(2)に示す。第1の実施形態と同様に回帰係数1、回帰係数2、および定数項を求め、各時間帯における日射指数予測式Bを導出する。以上のように、時間帯毎の日射指数予測式Aおよび日射指数予測式Bを日射量予測式導出部16Bで導出する。   Next, based on the weather phenomenon by time zone in the past, for example in the past, and the solar radiation index normalized by dividing the solar radiation amount by time zone by the solar radiation amount outside the atmosphere, the objective variable is the solar radiation index at n o'clock, explanation A regression analysis is performed with the variable 1 as the weather phenomenon at n o'clock and the explanatory variable 2 as the solar radiation index at n−1 o'clock. Equation (2) shows a regression model with two explanatory variables. Similar to the first embodiment, the regression coefficient 1, the regression coefficient 2, and the constant term are obtained, and the solar radiation index prediction formula B in each time zone is derived. As described above, the solar radiation index prediction formula A and the solar radiation index prediction formula B for each time zone are derived by the solar radiation amount prediction formula deriving unit 16B.

第2の実施形態の発電量予測計算のフローを図4に示す。この発電量予測計算フローは、前述した日射指数予測式Aおよび日射指数予測式B、太陽光発電システムモデル18と大気外日射量計算式から構成されており、時系列予報、および計測される実測発電量を基に、太陽光発電システム2の発電量を予測する。   FIG. 4 shows a flow of power generation amount prediction calculation of the second embodiment. This power generation amount prediction calculation flow is composed of the above-mentioned solar radiation index prediction formula A and solar radiation index prediction formula B, the photovoltaic power generation system model 18 and the atmospheric solar radiation amount calculation formula. Based on the power generation amount, the power generation amount of the solar power generation system 2 is predicted.

まず、インターネット等を利用し、時系列天気予報に含まれる天気予報および気温予報を気象情報受信部11で受信し、第1の実施形態と同様に天気予報に含まれる天気現象を数値化するとともに、一時間毎に整理する。次に、夜間など予測計算実施時に直前の時間帯における実測発電量が存在しない場合、各時間帯の天気予報を、各時間帯の日射指数予測式Aに入力することにより、各時間帯の予測日射指数を予測する。一方、日中など予測計算実施時に直前の時間帯における実測発電量が存在する場合、直前の時間帯における実測発電量と、同時刻の気温とを太陽光発電モデル18に入力し、実測発電量を日射量に変換し、該日射量を日射量からの発電量への平均変換効率から実測日射量に変換し、これを大気外日射量で割ることにより、実測日射指数とし、予測計算実施時間帯の日射指数予測式Bに入力することにより、予測計算実施時間帯における予測日射指数を計算する。例えば、予測計算を10時に実施した場合、前時間である9時の時間帯における実測日射指数と、天気予報から得られる9時の天気現象の予報とともに10時予測式Bに入力することにより、10時の時間帯における予測日射指数が求められる。ここで、11時の時間帯における日射指数の予測について、10時の実測日射指数がまだ得られていないため、11時の予測式Bに10時の予測式Bで予測された日射指数を入力する。このように、n時の予測式Bにおいて、n−1時の実測日射指数が得られない時間帯における日射指数の予測計算は、n−1時の時間帯における予測日射指数をn−1時の実測日射指数として計算する。   First, the weather information receiving unit 11 receives the weather forecast and the temperature forecast included in the time series weather forecast using the Internet or the like, and quantifies the weather phenomenon included in the weather forecast as in the first embodiment. Organize every hour. Next, when there is no measured power generation in the previous time zone when predictive calculation is performed, such as at night, the weather forecast for each time zone is input to the solar radiation index prediction formula A for each time zone to predict each time zone. Predict solar radiation index. On the other hand, when there is a measured power generation amount in the immediately preceding time zone when predictive calculation is performed, such as during the daytime, the measured power generation amount in the immediately preceding time zone and the temperature at the same time are input to the solar power generation model 18 and the measured power generation amount is calculated. Is converted into the actual solar radiation amount from the average conversion efficiency from the solar radiation amount to the power generation amount, and is converted into the actual solar radiation amount to obtain the actual solar radiation index. By inputting into the solar radiation index prediction formula B of the belt, the predicted solar radiation index in the predicted calculation execution time zone is calculated. For example, when the prediction calculation is performed at 10 o'clock, by inputting into the 10 o'clock prediction formula B together with the measured solar radiation index in the 9 o'clock time zone, which is the previous time, and the 9 o'clock weather phenomenon forecast obtained from the weather forecast, The predicted solar radiation index in the 10 o'clock time zone is obtained. Here, for the prediction of the solar radiation index in the 11:00 time zone, the actual solar radiation index at 10 o'clock has not yet been obtained, so the solar radiation index predicted by the prediction formula B at 10 o'clock is input to the prediction formula B at 11:00. To do. Thus, in the prediction formula B at n hours, the prediction calculation of the solar radiation index in the time zone where the actual solar radiation index at n-1 o'clock is not obtained is the prediction solar radiation index in the time zone at n-1 o'clock at n-1 o'clock. Calculated as the measured solar radiation index.

以上のように求められた各時間帯における予測日射指数に大気外日射量をかけ、予測日射量に戻すとともに、気温予報を太陽光発電システムモデル18に入力することにより、予測発電量に変換する。以上から、各時間帯における発電量を予測することが可能である。また、第1の実施形態と同様に、時系列天気予報の更新毎、または日射量予測式に入力する任意時間帯別実測日射量の収集完了時刻毎に予測計算を実施し、発電量の予測を修正する。   The predicted solar radiation index in each time zone obtained as described above is multiplied by the amount of solar radiation outside the atmosphere to return to the predicted solar radiation amount, and the temperature forecast is input to the solar power generation system model 18 to be converted into the predicted power generation amount. . From the above, it is possible to predict the power generation amount in each time zone. Similarly to the first embodiment, the prediction calculation is performed every time the time series weather forecast is updated, or every time when the collection of the actual solar radiation amount for each arbitrary time zone input to the solar radiation amount prediction formula is completed, thereby predicting the power generation amount. To correct.

[第3の実施形態]
本発明の第3の実施形態として、太陽光発電システムの発電量計測情報、および気象庁等が発表する時系列天気予報の受信が可能な状況下において、太陽光発電システムの一時間単位の積算発電量を予測する例を説明する。
[Third Embodiment]
As a third embodiment of the present invention, in a situation where it is possible to receive the power generation amount measurement information of the solar power generation system and the time series weather forecast announced by the Japan Meteorological Agency, etc., the integrated power generation in one hour unit of the solar power generation system An example of predicting the amount will be described.

図5を参照すると、本実施形態の太陽光発電システム発電量予測装置1Cは気象情報受信部11と発電量受信部13と履歴DB14Bと発電量予測式導出部20Aと発電量予測計算部21Aと予測発電量出力部19を有している。なお、図1、図3中と同じ参照番号の構成要素は同じ機能を有している。   Referring to FIG. 5, the photovoltaic power generation system power generation amount prediction device 1 </ b> C of the present embodiment includes a weather information reception unit 11, a power generation amount reception unit 13, a history DB 14 </ b> B, a power generation amount prediction formula deriving unit 20 </ b> A, and a power generation amount prediction calculation unit 21 </ b> A. A predicted power generation output unit 19 is provided. In addition, the component of the same reference number as FIG. 1, FIG. 3 has the same function.

発電量受信部13は太陽光発電システム2の発電出力を計測している電力計5から電力量を受信する。履歴DB14Bは、受信した天気現象、発電量を記録することが可能なハードディスク等の記録媒体である。発電量予測式導出部20Aは履歴DB14Bの情報(天気現象、発電量)を基に、最小二乗法の計算を行い、発電量予測式を導出する。発電量予測計算部21Aは、発電量予測式導出部20Aにおいて導出された発電量予測式と、発電量受信部13で受信された発電量から発電量を予測する。   The power generation amount receiving unit 13 receives the power amount from the wattmeter 5 that measures the power generation output of the solar power generation system 2. The history DB 14B is a recording medium such as a hard disk capable of recording received weather phenomena and power generation amount. The power generation amount prediction formula deriving unit 20A performs the calculation of the least square method based on the information (weather phenomenon, power generation amount) in the history DB 14B to derive the power generation amount prediction formula. The power generation amount prediction calculation unit 21A predicts the power generation amount from the power generation amount prediction formula derived by the power generation amount prediction formula deriving unit 20A and the power generation amount received by the power generation amount receiving unit 13.

次に、本実施形態を詳しく説明する。   Next, this embodiment will be described in detail.

予測計算を実施する前の工程として、まず、実施日以前一ヶ月程度の時間帯別天気現象と時間帯別発電量を基に、目的変数をn時における日射量、説明変数をn時における天気現象とした回帰分析を発電量予測式導出部20Aで実施する。なお、天気現象は第1、第2の実施形態と同様に数値化する。回帰モデルを式(1)に示す。第1の実施形態と同様に回帰係数および定数項を求め、各時間帯における発電量予測式Aを導出する。   As a step before performing the forecast calculation, first, based on the weather phenomenon by time zone and power generation amount by time zone for about one month before the implementation date, the target variable is the solar radiation amount at n o'clock and the explanatory variable is the weather at n o'clock. The regression analysis as a phenomenon is performed by the power generation amount prediction formula deriving unit 20A. The weather phenomenon is quantified in the same manner as in the first and second embodiments. A regression model is shown in Formula (1). Similar to the first embodiment, the regression coefficient and the constant term are obtained, and the power generation amount prediction formula A in each time zone is derived.

次に、実施日以前一ヶ月程度の時間帯別天気現象と時間帯別発電量を基に、目的変数をn時における発電量、説明変数1をn時における天気現象、説明変数2をn−1時における発電量とした回帰分析を実施する。説明変数が2つの回帰モデルを式(2)に示す。第1、第2の実施形態と同様に回帰係数1、回帰係数2、および定数項を求め、各時間帯における発電量予測式Bを導出する。以上のように、時間帯毎の発電量予測式Aおよび発電量予測式Bを発電量予測式導出部20Aで毎日導出する。   Next, based on the weather phenomenon by time zone and the power generation amount by time zone for about one month before the implementation date, the target variable is the power generation amount at n o'clock, the explanatory variable 1 is the weather phenomenon at n o'clock, and the explanatory variable 2 is n− A regression analysis is performed with the amount of power generated at 1 o'clock. Equation (2) shows a regression model with two explanatory variables. Similarly to the first and second embodiments, the regression coefficient 1, the regression coefficient 2, and the constant term are obtained, and the power generation amount prediction formula B in each time zone is derived. As described above, the power generation amount prediction formula A and the power generation amount prediction formula B for each time period are derived daily by the power generation amount prediction formula deriving unit 20A.

第3の実施形態の発電量予測計算のフローを図6に示す。この発電量予測計算フローは、前述した発電量予測式Aおよび発電量予測式Bから構成されており、時系列予報、および計測された実測発電量を基に、太陽光発電システム2の発電量を予測する。以下に計算の流れを説明する。   FIG. 6 shows a flow of the power generation amount prediction calculation of the third embodiment. This power generation amount prediction calculation flow is composed of the power generation amount prediction formula A and the power generation amount prediction formula B described above, and the power generation amount of the photovoltaic power generation system 2 based on the time series forecast and the measured actual power generation amount. Predict. The calculation flow will be described below.

まず、インターネット等を利用し、時系列天気予報に含まれる天気予報を気象情報受信部11で受信するとともに、前述したように天気を数値化する。また、3時間である予報時間帯に含まれる時刻の予報をすべて同じとした。例えば、12時〜14時の時間帯が晴れの予報である場合、12時、13時、14時において、それぞれ晴れの予報であることとした。次に、予測計算時が日没後から日の出前の場合、各時間帯の天気予報を各時間帯の発電量予測式Aに入力することにより、各時間帯の予測発電量を計算する。一方、予測計算時が日の出から日の入りまでの場合、直前の時間帯における実測発電量を、予測計算実施時間帯の発電量予測式Bに入力することにより、予測計算実施時間帯における予測発電量を計算する。例えば、予測計算を10時に実施した場合、前時間である9時の時間帯における実測発電量と、9時の天気予報とともに10時予測式Bに入力することにより、10時の時間帯における予測発電量が求められる。ここで、11時の時間帯における発電量の予測について、10時の実測発電量がまだ得られていないため、11時の予測式Bに10時の予測式Bで予測された発電量を入力する。このように、n時の予測式Bにおいて、n−1時の実測発電量が得られない時間帯における予測計算は、n−1時の時間帯における予測発電量をn−1時の実測発電量として計算する。以上から、各時間帯における発電量を予測することが可能である。   First, by using the Internet or the like, the weather information included in the time series weather forecast is received by the weather information receiving unit 11, and the weather is digitized as described above. In addition, the forecasts for the times included in the forecast time zone of 3 hours are all the same. For example, when the time zone from 12:00 to 14:00 is a sunny forecast, the forecast is sunny at 12:00, 13:00, and 14:00. Next, when the prediction calculation time is from sunset to before sunrise, the predicted power generation amount for each time zone is calculated by inputting the weather forecast for each time zone to the power generation amount prediction formula A for each time zone. On the other hand, when the prediction calculation time is from sunrise to sunset, the predicted power generation amount in the predicted calculation execution time zone is obtained by inputting the actual power generation amount in the previous time zone into the power generation amount prediction formula B in the prediction calculation execution time zone. calculate. For example, when the prediction calculation is performed at 10:00, by inputting into the 10:00 prediction formula B together with the actually measured power generation amount at 9 o'clock, which is the previous time, and the weather forecast at 9 o'clock, prediction in the 10:00 time zone The amount of power generation is required. Here, for the prediction of the power generation amount in the 11:00 time zone, the actual power generation amount at 10 o'clock is not yet obtained, so the power generation amount predicted by the prediction equation B at 10 o'clock is input to the prediction equation B at 11:00. To do. As described above, in the prediction formula B at n hours, the prediction calculation in the time zone in which the actual measured power generation amount at n-1 o'clock is not obtained is the estimated power generation amount in the time zone at n-1 o'clock. Calculate as a quantity. From the above, it is possible to predict the power generation amount in each time zone.

[第4の実施形態]
本発明の第4の実施形態として、太陽光発電システムの発電量計測情報、および気象庁等が発表する時系列天気予報の受信が可能な状況下において、太陽光発電システムの一時間単位の積算発電量を発電指数により予測する例を説明する。
[Fourth Embodiment]
As a fourth embodiment of the present invention, in a situation where it is possible to receive the power generation amount measurement information of the solar power generation system and the time series weather forecast announced by the Japan Meteorological Agency, etc., the hourly integrated power generation of the solar power generation system An example in which the quantity is predicted by the power generation index will be described.

図7を参照すると、本実施形態の太陽光発電システム発電量予測装置1Dは気象情報受信部11と発電量受信部13と大気外日射量算出部15と実績発電指数算出部22と履歴DB14Cと発電量予測式算出部20Bと発電量予測計算部21Bと予測発電量出力部19を有している。なお、図1、図3、図5中と同じ参照番号の構成要素は同じ機能を有している。
実績発電指数算出部22は発電量受信部13で受信した実績発電量を大気外日射量算出部15で算出された時間帯別大気外日射量で除算することにより実績発電指数を算出する。履歴DB14Cは、受信した天気現象、実績発電指数を記録することが可能なハードディスク等の記録媒体である。発電量予測式算出部20Bは履歴DB14Cの情報(天気現象、実績発電指数)を基に発電量予測式を算出する。発電量予測計算部21Bは、発電量予測式算出部20Bにおいて算出された発電量予測式から得られた予測発電指数に時間帯別大気量日射量を乗算し、予測発電量を算出する。
Referring to FIG. 7, the photovoltaic power generation system power generation amount prediction device 1D of this embodiment includes a weather information reception unit 11, a power generation amount reception unit 13, an atmospheric solar radiation amount calculation unit 15, an actual power generation index calculation unit 22, and a history DB 14C. A power generation amount prediction formula calculation unit 20B, a power generation amount prediction calculation unit 21B, and a predicted power generation amount output unit 19 are provided. In addition, the component of the same reference number as FIG.1, FIG.3, FIG.5 has the same function.
The actual power generation index calculation unit 22 calculates the actual power generation index by dividing the actual power generation amount received by the power generation amount reception unit 13 by the outdoor solar radiation amount by time zone calculated by the outdoor solar radiation amount calculation unit 15. The history DB 14C is a recording medium such as a hard disk capable of recording the received weather phenomenon and the actual power generation index. The power generation amount prediction formula calculation unit 20B calculates a power generation amount prediction formula based on information (weather phenomenon, actual power generation index) in the history DB 14C. The power generation amount prediction calculation unit 21B calculates the predicted power generation amount by multiplying the predicted power generation index obtained from the power generation amount prediction formula calculated by the power generation amount prediction formula calculation unit 20B by the solar radiation amount for each time zone.

本実施形態は、前日までの運用中の天気予報(晴:1、曇:2・・・)と発電量実績から求められる発電指数実績(=発電量実績÷大気外日射量)を基に、目的変数:n時発電指数、説明変数1:n時天気現象、説明変数2:n−1時発電指数実績とした重回帰分析による予測式Bと、目的変数:n時発電指数、説明変数:天気現象とした単回帰分析による予測式Aを導出する。例えば、4月1日からの天気予報および発電量実績がある場合、5月2日の予測計算は、4月1日から5月1日までをサンプルとした予測式を用いる。5月5日の予測計算は、4月1日から5月4日までをサンプルとした予測式を用いる。これら予測式から求められる予測発電指数は、これに対象となる大気外日射量を乗算することにより、予測発電量に変換される。   This embodiment is based on a power generation index result (= actual power generation result ÷ outside atmospheric solar radiation amount) obtained from the weather forecast (sunny: 1, cloudiness: 2...) In operation up to the previous day and the actual power generation amount. Objective variable: n hour power generation index, explanatory variable 1: n hour weather phenomenon, explanatory variable 2: prediction formula B by multiple regression analysis with the power generation index result of n-1 hour, objective variable: n hour power generation index, explanatory variable: A prediction formula A based on a single regression analysis as a weather phenomenon is derived. For example, when there is a weather forecast and an actual power generation amount from April 1, the prediction calculation for May 2 uses a prediction formula with samples from April 1 to May 1 as samples. The prediction calculation for May 5 uses a prediction formula using samples from April 1 to May 4 as samples. The predicted power generation index obtained from these prediction formulas is converted into a predicted power generation amount by multiplying the predicted power generation index by the amount of solar radiation in the atmosphere.

予測式Aは夜間や前日からでも天気予報さえあれば、予測可能であるが天気予報への依存性が高いため、天気予報が外れた場合や、同じ天気現象でも発電量は安定しないため予測精度は低い。一方、予測式Bは前時間の実績と天気予報の両方から予測するため、比較的予測精度は向上するが、当日に対する予測かつ日の出以降(実績発生以降)でないと予測計算が不可能である。   Prediction formula A can be predicted as long as there is a weather forecast even at night or on the previous day, but it is highly dependent on the weather forecast. Is low. On the other hand, since the prediction formula B predicts from both the actual results of the previous time and the weather forecast, the prediction accuracy is relatively improved. However, the prediction calculation is not possible unless the prediction is for the current day and after the sunrise (after the actual occurrence).

第4の実施形態の発電量予測計算のフローを図8に示す。   FIG. 8 shows a flow of power generation amount prediction calculation of the fourth embodiment.

予測対象日となる日付を大気外日射量計算式に入力し、予測対象日における時間帯別大気外日射量を算出する(ステップ101)。天気予報および前日の実績(天気現象)を受信し、天気実績を履歴DB14Cに蓄積する(ステップ102)。履歴DB14C内のサンプルから時間帯別に予測式Aを導出し、履歴DB14C内のサンプルから時間帯別に予測式Bを導出する(ステップ103)。天気予報を予報式A群に入力する(ステップ104)。予測計算時に直前の実績発電量が存在しない、または予測対象が翌日の場合、時間帯別に予測式Aを計算し、予測発電指数Aを算出する(ステップ104)。予測発電指数Aに大気外日射量を時間帯別に乗算し、予測発電量Aを算出する(ステップ105)。実績発電量を受信する(ステップ106)。受信した実績発電量を大気外日射量で除算し、実績発電指数を算出し、実績発電指数をDB14Cに蓄積する(ステップ107)。実績発電指数(n−1時)と時間帯別天気予報を予測式群Bに入力し、n時予測式Bの計算結果(n時予測発電指数)を実績発電指数(n時)と仮定し、天気予報(n+1時)とともにn+1時予測式Bに入力し、以降の時間帯においても、同様に転がし計算する。時間帯別に予測式Bを計算し、予測発電指数Bを算出する(ステップ108)。予測発電指数Bに大気外日射量を時間帯別に乗算し、予測発電量Bを算出する(ステップ109)。   The date that is the prediction target date is input to the outdoor solar radiation amount calculation formula, and the outdoor solar radiation amount by time zone on the prediction target date is calculated (step 101). The weather forecast and the previous day's results (weather phenomenon) are received, and the weather results are stored in the history DB 14C (step 102). The prediction formula A is derived for each time zone from the samples in the history DB 14C, and the prediction formula B is derived for each time zone from the samples in the history DB 14C (step 103). The weather forecast is input to the forecast formula group A (step 104). If there is no previous actual power generation amount at the time of the prediction calculation or the prediction target is the next day, the prediction formula A is calculated for each time zone, and the predicted power generation index A is calculated (step 104). The predicted power generation amount A is calculated by multiplying the predicted power generation index A by the amount of solar radiation outside the atmosphere for each time period (step 105). The actual power generation amount is received (step 106). The received actual power generation amount is divided by the atmospheric solar radiation amount to calculate the actual power generation index, and the actual power generation index is stored in the DB 14C (step 107). The actual power generation index (n-1 o'clock) and the weather forecast for each time zone are input to the prediction formula group B, and the calculation result (n hour predicted power generation index) of the n hour prediction formula B is assumed to be the actual power generation index (n hour). Then, it is input to the n + 1 o'clock prediction formula B together with the weather forecast (n + 1 o'clock), and the same rolling calculation is performed in subsequent time zones. The prediction formula B is calculated for each time zone, and the predicted power generation index B is calculated (step 108). The predicted power generation amount B is calculated by multiplying the predicted power generation index B by the amount of solar radiation outside the atmosphere for each time period (step 109).

本実施形態は、予測式が日々更新する予測式である学習機能を有しており、太陽光発電システムモデルを介さないため、日射量から発電量への変換誤差がなく、大気外日射量を利用した正規化によるサンプルの季節依存性が低減される。   This embodiment has a learning function that is a prediction formula that is updated daily by the prediction formula, and does not go through a solar power generation system model, so there is no conversion error from solar radiation to power generation, and the amount of solar radiation outside the atmosphere is calculated. The seasonal dependence of the sample due to the normalization used is reduced.

なお、以上の実施形態において、日射量予測式、発電予測式を予め導出しておけば、履歴DB14A、14B、14C、日射量予測式導出部16A、16B、発電量予測式導出部20A、20Bは不要である。   In the above embodiment, if the solar radiation amount prediction formula and the power generation prediction formula are derived in advance, the history DBs 14A, 14B and 14C, the solar radiation amount prediction formula deriving units 16A and 16B, and the power generation amount prediction formula deriving units 20A and 20B. Is unnecessary.

また、太陽光発電システム発電量予測装置の機能は専用のハードウェアにより実現されるもの以外に、その機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するものであってもよい。コンピュータ読み取り可能な記録媒体とは、フレキシブルディスク、光磁気ディスク、CD−ROM等の記録媒体、コンピュータシステムに内蔵されるハードディスク装置等の記憶装置を指す。さらに、コンピュータ読み取り可能な記録媒体は、インターネットを介してプログラムを送信する場合のように、短時間の間、動的にプログラムを保持するもの(伝送媒体もしくは伝送波)、その場合のサーバとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。   In addition to the function of the photovoltaic power generation system power generation amount prediction device realized by dedicated hardware, a program for realizing the function is recorded on a computer-readable recording medium, and the recording medium is recorded on the recording medium. The recorded program may be read into a computer system and executed. The computer-readable recording medium refers to a recording medium such as a flexible disk, a magneto-optical disk, and a CD-ROM, and a storage device such as a hard disk device built in a computer system. Furthermore, a computer-readable recording medium is a server that dynamically holds a program (transmission medium or transmission wave) for a short period of time, as in the case of transmitting a program via the Internet, and a server in that case. Some of them hold programs for a certain period of time, such as volatile memory inside computer systems.

本発明の第1の実施形態の太陽光発電システム発電量予測装置のブロック図である。It is a block diagram of the photovoltaic power generation system electric power generation amount prediction apparatus of the 1st Embodiment of this invention. 第1の実施形態における発電量予測計算のフローチャートである。It is a flowchart of the electric power generation amount prediction calculation in 1st Embodiment. 本発明の第2の実施形態の太陽光発電システム発電量予測装置のブロック図である。It is a block diagram of the photovoltaic power generation system electric power generation amount prediction apparatus of the 2nd Embodiment of this invention. 第2の実施形態における発電量予測計算のフローチャートである。It is a flowchart of the electric power generation amount prediction calculation in 2nd Embodiment. 本発明の第3の実施形態の太陽光発電システム発電量予測装置のブロック図である。It is a block diagram of the photovoltaic power generation system electric power generation amount prediction apparatus of the 3rd Embodiment of this invention. 第3の実施形態における発電量予測計算のフローチャートである。It is a flowchart of the electric power generation amount prediction calculation in 3rd Embodiment. 本発明Aの第4の実施形態の太陽光発電システム発電量予測装置のブロック図である。It is a block diagram of the photovoltaic power generation system electric power generation amount prediction apparatus of 4th Embodiment of this invention A. FIG. 第4の実施形態における発電量予測計算のフローチャートである。It is a flowchart of the electric power generation amount prediction calculation in 4th Embodiment.

符号の説明Explanation of symbols

1A、1B、1C 太陽光発電システム発電量予測装置
2 太陽光発電システム
3 気象庁等
4 日射計
5 電力計
11 気象情報受信部
12 日射量受信部
13 発電量受信部
14A、14B、14C 履歴DB
15 大気外日射量計算部
16A、16B 日射量予測式導出部
17A、17B 日射量予測計算部
18 太陽光発電システムモデル
19 予測発電量出力部
20A、20B 発電量予測式導出部
21A、21B 発電量予測計算部
22 実績発電指数算出部
101〜109 ステップ
1A, 1B, 1C Photovoltaic power generation system power generation amount prediction device 2 Photovoltaic power generation system 3 Japan Meteorological Agency 4 Solar radiation meter 5 Wattmeter 11 Meteorological information reception unit 12 Solar radiation reception unit 13 Power generation reception unit 14A, 14B, 14C History DB
15 Solar radiation amount calculation unit 16A, 16B Solar radiation amount prediction formula deriving unit 17A, 17B Solar radiation amount prediction calculation unit 18 Solar power generation system model 19 Predicted power generation amount output unit 20A, 20B Power generation amount prediction formula deriving unit 21A, 21B Power generation amount Prediction calculation unit 22 Actual power generation index calculation unit 101-109 steps

Claims (17)

太陽光発電システム予測装置において太陽光発電システムの発電量を予測する方法であって、
日射量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、該地域において過去に計測された日射量とを基に日射量予測式を導出するステップと、
日射量予測計算手段が、該地域に対する予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に該地域において計測された日射量とを前記日射量予測式に入力することにより、該地域における日射量を予測するステップと、
発電量予測計算手段が、予測された日射量と、前記地域に対する予測対象日または予測対象時間帯についての気温予報とを、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルに入力することにより、前記太陽光発電システムの発電量を予測するステップと
を有する太陽光発電システムの発電量予測方法。
A method for predicting a power generation amount of a solar power generation system in a solar power generation system prediction device,
A step for deriving a solar radiation amount prediction formula based on a weather phenomenon observed in the past in a region where the solar power generation system is installed and a solar radiation amount measured in the past in the region;
The solar radiation amount prediction calculation means inputs the weather forecast for the prediction target date or the prediction target time zone for the region and the solar radiation amount measured in the region before the prediction execution time of the prediction target date into the solar radiation amount prediction formula Predicting the amount of solar radiation in the area,
The solar power generation amount calculation means can calculate the predicted solar radiation amount and the temperature forecast for the prediction target day or the prediction target time zone for the region from the solar radiation amount and temperature information. Predicting the amount of power generated by the solar power generation system by inputting it into the power generation system model.
太陽光発電システム予測装置において太陽光発電システムの発電量を予測する方法であって、
日射量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、該地域において過去に計測された日射量と、該地域における大気外日射量を基に日射量予測式を導出するステップと、
日射量予測計算手段が、該地域に対する予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に該地域において計測された日射量と、前記大気外日射量を前記日射量予測式に入力することにより、該地域における日射量を予測するステップと、
発電量予測計算手段が、予測された日射量と、前記地域に対する予測対象日または予測対象時間帯についての気温予報とを、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルに入力することにより、前記太陽光発電システムの発電量を予測するステップと
を有する太陽光発電システムの発電量予測方法。
A method for predicting a power generation amount of a solar power generation system in a solar power generation system prediction device,
The solar radiation amount prediction formula deriving means predicts the solar radiation amount based on the weather phenomenon observed in the past in the region where the photovoltaic power generation system is installed, the solar radiation amount measured in the past in the region, and the solar radiation amount outside the atmosphere in the region. Deriving an expression;
The solar radiation amount prediction calculation means calculates the weather forecast for the prediction target date or the prediction target time zone for the region, the solar radiation amount measured in the region before the prediction execution time of the prediction target date, and the outdoor solar radiation amount. Predicting the amount of solar radiation in the area by inputting into the solar radiation amount prediction formula; and
The solar power generation amount calculation means can calculate the predicted solar radiation amount and the temperature forecast for the prediction target day or the prediction target time zone for the region from the solar radiation amount and temperature information. Predicting the amount of power generated by the solar power generation system by inputting it into the power generation system model.
太陽光発電システム予測装置において太陽光発電システムの発電量を予測する方法であって、
発電量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、過去に計測された前記太陽光発電システムの発電量とを基に発電量予測式を導出するステップと、
発電量予測計算手段が、該地域に対する予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に計測された前記太陽光発電システムの発電量とを該発電量予測式に入力することにより、前記太陽光発電システムの発電量を予測するステップと
を有する太陽光発電システムの発電量予測方法。
A method for predicting a power generation amount of a solar power generation system in a solar power generation system prediction device,
A step of deriving a power generation amount prediction formula based on a weather phenomenon observed in the past in a region where the solar power generation system is installed and a power generation amount of the solar power generation system measured in the past. When,
The power generation amount prediction calculation means predicts the power generation amount of the weather forecast for the prediction target date or the prediction target time zone for the region and the power generation amount of the solar power generation system measured before the prediction execution time of the prediction target day. Predicting the amount of power generated by the solar power generation system by inputting into the equation.
太陽光発電システム予測装置において太陽光発電システムの発電量を予測する方法であって、
発電量予測式導出手段が、太陽光発電システムの設置地域において過去に観測された天気現象と、前記太陽光発電システムの発電量実績を時間帯別大気外日射量で除算して得られた実績発電指数を基に発電量予測式を導出するステップと、
発電量予測計算手段が、前記発電量予測式から予測発電指数を求め、これに時間帯別大気外日射量を乗算することにより、前記太陽光発電システムの予測発電量を算出するステップと
を有する太陽光発電システムの発電量予測方法。
A method for predicting a power generation amount of a solar power generation system in a solar power generation system prediction device,
Results obtained by the power generation amount prediction formula deriving means obtained by dividing the weather phenomenon observed in the past in the installation area of the solar power generation system and the actual power generation amount of the solar power generation system by the solar radiation amount according to the time zone Deriving a power generation prediction formula based on the power generation index;
The power generation amount prediction calculating means calculates a predicted power generation amount of the solar power generation system by obtaining a predicted power generation index from the power generation amount prediction formula and multiplying this by an hourly outdoor solar radiation amount. A method of predicting the amount of power generated by a solar power generation system
請求項1または2に記載の前記日射量予測式導出手段または請求項3または4に記載の前記発電量予測式導出手段は、前記日射予測式または前記発電量予測式を、前記地域において過去に観測された任意時間帯別の天気現象と、該地域において過去に計測された任意時間帯別の日射量または、過去に計測された前記太陽光発電システムの任意時間帯別の発電量とを基に、予測対象時間帯の天気現象と、予測対象時間帯の直前の時間帯における日射量または発電量とを説明変数とし、予測対象時間帯の日射量または発電量を目的変数とした回帰分析の実施により、時間帯別に導出する、太陽光発電システムの発電量予測方法。   The solar radiation amount prediction formula deriving unit according to claim 1 or 2, or the power generation amount prediction formula deriving unit according to claim 3 or 4, wherein the solar radiation prediction formula or the power generation amount prediction formula is obtained in the past in the region. Based on the observed weather phenomenon for each arbitrary time zone and the amount of solar radiation for each arbitrary time zone measured in the past in the region or the amount of power generation for each arbitrary time zone of the solar power generation system measured in the past. In addition, the regression analysis with the weather phenomenon in the forecast time zone and the solar radiation or power generation amount in the time zone immediately before the forecast time zone as explanatory variables and the solar radiation or power generation amount in the forecast time zone as the objective variable A method for predicting the amount of power generation of a solar power generation system, which is derived for each time zone by implementation. 前記日射量予測式導出手段または前記発電量予測式導出手段は、回帰分析の分析対象となるサンプル期間を、予測計算実施日の前日以前の任意期間に観測された任意時間帯別の天気現象と、同期間に計測された前記地域の任意時間帯別の日射量または、同期間に計測された前記太陽光発電システムの任意時間帯別の発電量とし、毎日回帰分析を実施することにより、前記日射量予測式または前記発電量予測式を毎日更新する、請求項5に記載の太陽光発電システムの発電量予測方法。   The solar radiation amount prediction formula deriving unit or the power generation amount prediction formula deriving unit is configured to select a sample period as an analysis target of regression analysis as a weather phenomenon according to an arbitrary time zone observed in an arbitrary period before the day before the prediction calculation execution date. By performing daily regression analysis with the amount of solar radiation by the arbitrary time zone of the region measured during the same period or the amount of power generation by the arbitrary time period of the solar power generation system measured during the same period, The power generation amount prediction method for a solar power generation system according to claim 5, wherein the solar radiation amount prediction formula or the power generation amount prediction formula is updated every day. 前記日射量予測計算手段または前記発電量予測計算手段は、日の出から日の入りの間に予測計算を実施した場合、前記日射量予測式または前記発電量予測式を利用し、日没後から日の出前に予測計算を実施した場合、天気予報のみを入力とした日射量または発電量の予測式を利用する、請求項5または6に記載の太陽光発電システムの発電量予測方法。   When the solar radiation amount prediction calculation unit or the power generation amount prediction calculation unit performs a prediction calculation between sunrise and sunset, the solar radiation amount prediction formula or the power generation amount prediction formula is used to predict after sunset and before sunrise. The method for predicting a power generation amount of a solar power generation system according to claim 5 or 6, wherein, when the calculation is performed, a prediction formula for a solar radiation amount or a power generation amount using only a weather forecast as an input is used. 請求項1から3のいずれかの発電量予測計算手段は、予測対象日において、天気予報の更新時刻毎または、前記日射量予測式または前記発電量予測式に入力する任意時間帯別の日射量または任意時間帯別の発電量の情報収集完了時刻毎に発電量の予測を修正する、請求項5または6に記載の太陽光発電システムの発電量予測方法。   The power generation amount prediction calculation means according to any one of claims 1 to 3, wherein the amount of solar radiation for each forecast time is input for each update time of the weather forecast, or in the solar radiation amount prediction formula or the power generation amount prediction formula. The power generation amount prediction method of the solar power generation system according to claim 5 or 6, wherein the prediction of the power generation amount is corrected at each time of completion of information collection of the power generation amount for each arbitrary time zone. 前記日射量予測計算手段または前記発電量予測計算手段は、前記日射量予測式または前記発電量予測式について、時間帯nの予測式の予測結果を、時間帯n+1の予測式に入力する直前の時間帯における日射量または発電量として入力する、請求項6または7に記載の太陽光発電システムの発電量予測方法。   The solar radiation amount prediction calculation unit or the power generation amount prediction calculation unit immediately before inputting the prediction result of the prediction formula of the time zone n to the prediction formula of the time zone n + 1 for the solar radiation amount prediction formula or the power generation amount prediction formula. The method for predicting a power generation amount of a solar power generation system according to claim 6 or 7, wherein the method is input as a solar radiation amount or a power generation amount in a time zone. 前記日射量予測式導出手段または前記発電量予測式導出手段は、前記日射量予測式または前記発電量予測式の導出および入力に用いる天気現象を数値化する、請求項1から4のいずれかに記載の太陽光発電システムの発電量予測方法。   5. The solar radiation amount prediction formula deriving unit or the power generation amount prediction formula deriving unit quantifies a weather phenomenon used for deriving and inputting the solar radiation amount prediction formula or the power generation amount prediction formula. The power generation amount prediction method of the described solar power generation system. 前記日射量予測計算手段は、予測対象日の予測実施時刻前に計測された前記太陽光発電システムの発電量と、前記地域における同時刻の気温とを、前記太陽光発電システムモデルに入力することにより、前記発電量を日射量に変換し、該日射量を該日射量予測式に入力する、請求項2に記載の太陽光発電システムの発電量予測方法。   The solar radiation amount prediction calculating means inputs the power generation amount of the solar power generation system measured before the prediction execution time of the prediction target day and the temperature at the same time in the region to the solar power generation system model. The power generation amount prediction method for the solar power generation system according to claim 2, wherein the power generation amount is converted into a solar radiation amount, and the solar radiation amount is input to the solar radiation amount prediction formula. 前記日射量予測計算手段は、前記日射量を大気外日射量で除算することにより、前記日射量を正規化された日射指数に変換し、該日射指数を予測計算実施時間帯の日射指数予測式に入力することにより予測日射指数を計算し、該予測日射指数に該大気外日射量を乗算することにより予測日射量に戻し、該予測日射量を気温予報と共に前記太陽光発電システムモデルに入力する、請求項11に記載の太陽光発電システムの発電量予測方法。   The solar radiation amount prediction calculating means converts the solar radiation amount into a normalized solar radiation index by dividing the solar radiation amount by the atmospheric solar radiation amount, and the solar radiation index is a solar radiation index prediction formula for a predicted calculation execution time zone. To calculate the predicted solar radiation index, multiply the predicted solar radiation index by the solar radiation amount outside the atmosphere to return to the predicted solar radiation amount, and input the predicted solar radiation amount to the photovoltaic system model together with the temperature forecast The power generation amount prediction method of the solar power generation system according to claim 11. 太陽光発電システムの発電量を予測する装置であって、
前記太陽光発電システムの設置地域の天気現象を受信する気象情報受信部と、
前記設置地域における日射量を計測または受信する日射量計測/受信部と、
前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測時間帯についての天気予報と、前記日射量計測受信部で計測または受信された、予測対象日の予測実施時刻前に前記設置地域で計算された日射量とを、前記設置地域の過去の天気現象および過去の日射量を基に導出された日射量予測式に入力することにより、前記設置地域における日射量を予測する予測計算部と、
予測された日射量と、前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測対象時間帯についての気温情報とを入力し、発電量を予測する、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルと
を有する太陽光発電システム発電量予測装置。
An apparatus for predicting the amount of power generated by a solar power generation system,
A meteorological information receiving unit for receiving a weather phenomenon in an installation area of the solar power generation system;
A solar radiation measurement / reception unit for measuring or receiving solar radiation in the installation area;
The weather forecast received by the weather information receiver for the forecast area or forecast time zone for the installation area, and the forecast target date before the forecast execution time measured or received by the solar radiation measurement receiver Predicting the amount of solar radiation in the installation area by inputting the amount of solar radiation calculated in the installation area into a solar radiation amount prediction formula derived based on the past weather phenomenon and the past solar radiation amount in the installation area A calculation unit;
Input the predicted solar radiation amount and the temperature information about the prediction target date or the prediction target time zone for the installation area received by the weather information receiving unit, and predict the power generation amount. A solar power generation system power generation amount prediction device comprising: a solar power generation system model capable of calculating a power generation amount from a solar power generation system model.
太陽光発電システムの発電量を予測する装置であって、
前記太陽光発電システムの設置地域の天気現象を受信する気象情報受信部と、
前記設置地域における日射量を計測または受信する日射量計測/受信部と、
前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測時間帯についての天気予報と、前記日射量計測受信部で計測または受信された、予測対象日の予測実施時刻前に前記設置地域で計算された日射量と、大気外日射量を、前記設置地域の過去の天気現象および当該地域の過去の日射量を基に導出された日射量予測式に入力することにより、前記設置地域における日射量を予測する予測計算部と、
予測された日射量と、前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測対象時間帯についての気温情報とを入力し、発電量を予測する、日射量と気温の情報から発電量を計算することが可能な太陽光発電システムモデルと
を有する太陽光発電システム発電量予測装置。
An apparatus for predicting the amount of power generated by a solar power generation system,
A meteorological information receiving unit for receiving a weather phenomenon in an installation area of the solar power generation system;
A solar radiation measurement / reception unit for measuring or receiving solar radiation in the installation area;
The weather forecast received by the weather information receiver for the forecast area or forecast time zone for the installation area, and the forecast target date before the forecast execution time measured or received by the solar radiation measurement receiver By inputting the solar radiation amount calculated in the installation area and the solar radiation amount outside the atmosphere into the solar radiation amount prediction formula derived based on the past weather phenomenon in the installation area and the past solar radiation amount in the area, A prediction calculator for predicting the amount of solar radiation in the area;
Input the predicted solar radiation amount and the temperature information about the prediction target date or the prediction target time zone for the installation area received by the weather information receiving unit, and predict the power generation amount. A solar power generation system power generation amount prediction device comprising: a solar power generation system model capable of calculating a power generation amount from a solar power generation system model.
太陽光発電システムの発電量を予測する装置であって、
前記太陽光発電システムの設置地域の天気現象を受信する気象情報受信部と、
前記太陽光発電システムが発電した発電量を受信する発電量受信部と、
前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測対象時間帯についての天気現象と、前記発電量受信部で受信された、予測対象日の予測実施時刻前に計測された前記太陽光発電システムの発電量とを、前記設置地域の過去の天気現象と、前記太陽光発電システムの過去に計測された発電量を基に導出された発電量予測式に入力することにより、前記太陽光発電システムの発電量を予測する発電量予測部と
を有する、太陽光発電システム発電量予測装置。
An apparatus for predicting the amount of power generated by a solar power generation system,
A meteorological information receiving unit for receiving a weather phenomenon in an installation area of the solar power generation system;
A power generation amount receiving unit for receiving the power generation amount generated by the solar power generation system;
The weather information about the forecast target date or the forecast target time zone for the installation area received by the meteorological information receiving unit, and the forecasted time received by the power generation amount receiving unit, measured before the forecast execution time By inputting the power generation amount of the solar power generation system into the past weather phenomenon of the installation area and the power generation amount prediction formula derived based on the power generation amount measured in the past of the solar power generation system, A solar power generation system power generation amount prediction device, comprising: a power generation amount prediction unit that predicts a power generation amount of the solar power generation system.
太陽光発電システムの発電量を予測する装置であって、
前記太陽光発電システムの設置地域の天気現象を受信する気象情報受信部と、
前記太陽光発電システムが発電した発電量を受信する発電量受信部と、
前記太陽光発電システムの設置地域の時間帯別大気外日射量を算出する大気外日射量算部と、
前記発電量を前記時間帯別大気外日射量で除算して実績発電指数を算出する実績発電指数算出部と、
前記気象情報受信部で受信された、前記設置地域に対する予測対象日または予測対象時間帯についての天気現象と、前記実績発電指数算出部で算出された実績発電指数を基に導出された発電量予測式から求められる予測発電指数に時間帯別大気外日射量を乗算することにより、前記太陽光発電システムの予測発電量を算出する発電予測部と
を有する、太陽光発電システム発電量予測装置。
An apparatus for predicting the amount of power generated by a solar power generation system,
A meteorological information receiving unit for receiving a weather phenomenon in an installation area of the solar power generation system;
A power generation amount receiving unit for receiving the power generation amount generated by the solar power generation system;
An outdoor solar radiation amount calculation unit for calculating an outdoor solar radiation amount by time zone of the installation area of the solar power generation system;
An actual power generation index calculation unit that calculates the actual power generation index by dividing the generated power amount by the amount of solar radiation according to the time period;
Power generation amount prediction derived based on the weather phenomenon about the prediction target date or the prediction target time zone received by the weather information receiving unit and the actual power generation index calculated by the actual power generation index calculation unit A solar power generation system power generation amount prediction device, comprising: a power generation prediction unit that calculates a predicted power generation amount of the solar power generation system by multiplying a predicted power generation index obtained from the formula by an amount of solar radiation by time of day.
請求項1から12のいずれかに記載の太陽光発電システムの発電量予測方法をコンピュータで実行するためのプログラム。   The program for performing the electric power generation amount prediction method of the solar power generation system in any one of Claim 1 to 12 with a computer.
JP2004204714A 2004-07-12 2004-07-12 Method, apparatus, and program for predicting power generation amount of solar power generation system Active JP3984604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204714A JP3984604B2 (en) 2004-07-12 2004-07-12 Method, apparatus, and program for predicting power generation amount of solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204714A JP3984604B2 (en) 2004-07-12 2004-07-12 Method, apparatus, and program for predicting power generation amount of solar power generation system

Publications (2)

Publication Number Publication Date
JP2006033908A true JP2006033908A (en) 2006-02-02
JP3984604B2 JP3984604B2 (en) 2007-10-03

Family

ID=35899581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204714A Active JP3984604B2 (en) 2004-07-12 2004-07-12 Method, apparatus, and program for predicting power generation amount of solar power generation system

Country Status (1)

Country Link
JP (1) JP3984604B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281060A (en) * 2006-04-04 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Power generation prediction method for photovoltaic power generation system, device, and program
JP2008077561A (en) * 2006-09-25 2008-04-03 Nippon Telegr & Teleph Corp <Ntt> Energy prediction method, energy prediction device and program
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2009060704A (en) * 2007-08-31 2009-03-19 Univ Of Fukui Method and device for controlling photovoltaic power generating system
JP2010016989A (en) * 2008-07-03 2010-01-21 Sharp Corp Electric power generating system
JP2010130762A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP2010239856A (en) * 2009-01-19 2010-10-21 Commissariat A L'energie Atomique Method of forecasting electrical production of photovoltaic device
JP2011053168A (en) * 2009-09-04 2011-03-17 Japan Weather Association Method, device, and program for prereading amount of solar radiation
WO2011039586A1 (en) * 2009-09-29 2011-04-07 パナソニック電工株式会社 Electric power management system
JP2011087372A (en) * 2009-10-14 2011-04-28 Nec Engineering Ltd Method and device for forecasting amount of power generated by solar power generating system
JP2011124287A (en) * 2009-12-08 2011-06-23 Sony Corp Electric power generation volume estimating apparatus, electric power generation volume estimating system, electric power generation amount estimating method, and computer program
JP2011142790A (en) * 2010-01-08 2011-07-21 Fuji Electric Co Ltd Prediction system of solar power generation amount and prediction method of solar power generation amount
JP2011159199A (en) * 2010-02-03 2011-08-18 Gifu Univ System and method for predicting generation amount of electricity of photovoltaic power generator
JP2011216604A (en) * 2010-03-31 2011-10-27 Ihi Scube:Kk Method and device for predicting power generation amount of photovoltaic power generation system
JP2011215672A (en) * 2010-03-31 2011-10-27 Tokyo Electric Power Co Inc:The Information processor, power generation output estimation method and program
WO2011158363A1 (en) * 2010-06-17 2011-12-22 株式会社四国総合研究所 Solar radiation intensity prediction system and photovoltaic power generation output prediction system
JP2012010489A (en) * 2010-06-25 2012-01-12 Hitachi Ltd Simultaneous commensurate device, its control method, and its program
JP2012029412A (en) * 2010-07-21 2012-02-09 Toshiba Corp Power system monitoring and control apparatus
JP2012044089A (en) * 2010-08-23 2012-03-01 Mitsubishi Electric Corp Amount of generated power estimation system
JP2012043857A (en) * 2010-08-16 2012-03-01 Tokyo Electric Power Co Inc:The Bright and clear time determination device and photovoltaic power generation amount prediction system
JP2012089749A (en) * 2010-10-21 2012-05-10 Toshiba Corp Power generation amount prediction method for natural energy generating equipment
JP2012114989A (en) * 2010-11-22 2012-06-14 Chubu Electric Power Co Inc Automatic voltage regulator for distribution line, and method of regulation
JP2013084736A (en) * 2011-10-07 2013-05-09 Chugoku Electric Power Co Inc:The Photovoltaic power generation output estimating device and photovoltaic power generation output estimating method
JP2013099143A (en) * 2011-11-01 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> Prediction model construction device, method and program, and power generation amount prediction device and method
JP2013529051A (en) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド Photovoltaic power generation prediction system and method
JP2013164286A (en) * 2012-02-09 2013-08-22 Toshiba Corp Solar radiation amount prediction method, photovoltaic power generation output prediction method and system
JP2014063372A (en) * 2012-09-21 2014-04-10 Toshiba Corp Apparatus and method for predicting power generation capacity
JP2015042130A (en) * 2013-08-23 2015-03-02 中国電力株式会社 Voltage adjustment device, and voltage adjustment method
JP2015138864A (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Output estimation method and apparatus of photovoltaic power generator and electric power system monitoring apparatus using the same
JP2016052192A (en) * 2014-08-29 2016-04-11 日本無線株式会社 Independent power supply system and control method thereof
WO2016072474A1 (en) * 2014-11-06 2016-05-12 エコノミックインデックス株式会社 Information processing device, method, and program
KR101635450B1 (en) * 2015-01-02 2016-07-01 상명대학교서울산학협력단 PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information
WO2016108420A1 (en) * 2014-12-31 2016-07-07 (주)가교테크 Solar radiation prediction method
JP2016123170A (en) * 2014-12-24 2016-07-07 中国電力株式会社 Prediction apparatus
WO2016121202A1 (en) * 2015-01-30 2016-08-04 日本電気株式会社 Prediction device, prediction method, and program
JP2016220494A (en) * 2015-05-26 2016-12-22 東京電力ホールディングス株式会社 Support system for power generation amount estimation learning in photovoltaic power generation
JP2017005990A (en) * 2012-04-20 2017-01-05 京セラ株式会社 Management server, local weather information creation system, and local weather information creation method
WO2017026010A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
JP2018501582A (en) * 2015-08-31 2018-01-18 中国科学院広州能源研究所 Output power classification prediction system applied to the entire life cycle of photovoltaic power generation system
CN108075496A (en) * 2017-12-27 2018-05-25 云南电网有限责任公司 A kind of new energy power station performance indicator method for rolling computation for adapting to short-term time scale
WO2019021438A1 (en) * 2017-07-27 2019-01-31 三菱電機株式会社 Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program
JP2019035706A (en) * 2017-08-21 2019-03-07 中国電力株式会社 Power generation output prediction device
KR20190131808A (en) * 2018-05-17 2019-11-27 한국전자통신연구원 Apparatus and method for estimating the power generation of photovoltaic generator
WO2023181231A1 (en) * 2022-03-24 2023-09-28 日本電気株式会社 Prediction device, prediction system, prediction method, and recording medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566435B (en) * 2012-02-17 2013-10-02 冶金自动化研究设计院 Performance prediction and fault alarm method for photovoltaic power station
EP2905861B1 (en) 2012-10-01 2022-02-23 Fujitsu Limited Power distribution management device, pattern extraction method, and pattern extraction program
CN103971167B (en) * 2013-01-31 2017-11-17 国际商业机器公司 Predict the method and system of the generated output of photovoltaic power generation equipment

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281060A (en) * 2006-04-04 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Power generation prediction method for photovoltaic power generation system, device, and program
JP2008077561A (en) * 2006-09-25 2008-04-03 Nippon Telegr & Teleph Corp <Ntt> Energy prediction method, energy prediction device and program
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2009060704A (en) * 2007-08-31 2009-03-19 Univ Of Fukui Method and device for controlling photovoltaic power generating system
JP2010016989A (en) * 2008-07-03 2010-01-21 Sharp Corp Electric power generating system
JP2010130762A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP2010239856A (en) * 2009-01-19 2010-10-21 Commissariat A L'energie Atomique Method of forecasting electrical production of photovoltaic device
JP2011053168A (en) * 2009-09-04 2011-03-17 Japan Weather Association Method, device, and program for prereading amount of solar radiation
WO2011039586A1 (en) * 2009-09-29 2011-04-07 パナソニック電工株式会社 Electric power management system
CN102668300A (en) * 2009-09-29 2012-09-12 松下电器产业株式会社 Electric power management system
US9088182B2 (en) 2009-09-29 2015-07-21 Panasonic Intellectual Property Management Co., Ltd. Electric power management system
JP2011087372A (en) * 2009-10-14 2011-04-28 Nec Engineering Ltd Method and device for forecasting amount of power generated by solar power generating system
JP2011124287A (en) * 2009-12-08 2011-06-23 Sony Corp Electric power generation volume estimating apparatus, electric power generation volume estimating system, electric power generation amount estimating method, and computer program
US9218577B2 (en) 2009-12-08 2015-12-22 Sony Corporation Electric power generation amount estimation device, electric power generation amount estimation system, electric power generation amount estimation method and computer program
JP2011142790A (en) * 2010-01-08 2011-07-21 Fuji Electric Co Ltd Prediction system of solar power generation amount and prediction method of solar power generation amount
JP2011159199A (en) * 2010-02-03 2011-08-18 Gifu Univ System and method for predicting generation amount of electricity of photovoltaic power generator
JP2011216604A (en) * 2010-03-31 2011-10-27 Ihi Scube:Kk Method and device for predicting power generation amount of photovoltaic power generation system
JP2011215672A (en) * 2010-03-31 2011-10-27 Tokyo Electric Power Co Inc:The Information processor, power generation output estimation method and program
JP2013529051A (en) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド Photovoltaic power generation prediction system and method
JP5723362B2 (en) * 2010-06-17 2015-05-27 株式会社四国総合研究所 Solar radiation intensity prediction system and photovoltaic power generation output prediction system
WO2011158363A1 (en) * 2010-06-17 2011-12-22 株式会社四国総合研究所 Solar radiation intensity prediction system and photovoltaic power generation output prediction system
JP2012010489A (en) * 2010-06-25 2012-01-12 Hitachi Ltd Simultaneous commensurate device, its control method, and its program
JP2012029412A (en) * 2010-07-21 2012-02-09 Toshiba Corp Power system monitoring and control apparatus
JP2012043857A (en) * 2010-08-16 2012-03-01 Tokyo Electric Power Co Inc:The Bright and clear time determination device and photovoltaic power generation amount prediction system
JP2012044089A (en) * 2010-08-23 2012-03-01 Mitsubishi Electric Corp Amount of generated power estimation system
JP2012089749A (en) * 2010-10-21 2012-05-10 Toshiba Corp Power generation amount prediction method for natural energy generating equipment
JP2012114989A (en) * 2010-11-22 2012-06-14 Chubu Electric Power Co Inc Automatic voltage regulator for distribution line, and method of regulation
JP2013084736A (en) * 2011-10-07 2013-05-09 Chugoku Electric Power Co Inc:The Photovoltaic power generation output estimating device and photovoltaic power generation output estimating method
JP2013099143A (en) * 2011-11-01 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> Prediction model construction device, method and program, and power generation amount prediction device and method
JP2013164286A (en) * 2012-02-09 2013-08-22 Toshiba Corp Solar radiation amount prediction method, photovoltaic power generation output prediction method and system
JP2017005990A (en) * 2012-04-20 2017-01-05 京セラ株式会社 Management server, local weather information creation system, and local weather information creation method
JP2014063372A (en) * 2012-09-21 2014-04-10 Toshiba Corp Apparatus and method for predicting power generation capacity
JP2015042130A (en) * 2013-08-23 2015-03-02 中国電力株式会社 Voltage adjustment device, and voltage adjustment method
JP2015138864A (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Output estimation method and apparatus of photovoltaic power generator and electric power system monitoring apparatus using the same
WO2015111473A1 (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Photovoltaic power generator output estimation method and device, and power system monitoring device using same
US10211777B2 (en) 2014-01-22 2019-02-19 Hitachi, Ltd. Photovoltaic power generator output estimation method and device, and power system monitoring device using same
JP2016052192A (en) * 2014-08-29 2016-04-11 日本無線株式会社 Independent power supply system and control method thereof
WO2016072474A1 (en) * 2014-11-06 2016-05-12 エコノミックインデックス株式会社 Information processing device, method, and program
JP2016123170A (en) * 2014-12-24 2016-07-07 中国電力株式会社 Prediction apparatus
WO2016108420A1 (en) * 2014-12-31 2016-07-07 (주)가교테크 Solar radiation prediction method
KR101635450B1 (en) * 2015-01-02 2016-07-01 상명대학교서울산학협력단 PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information
WO2016121202A1 (en) * 2015-01-30 2016-08-04 日本電気株式会社 Prediction device, prediction method, and program
JP2016220494A (en) * 2015-05-26 2016-12-22 東京電力ホールディングス株式会社 Support system for power generation amount estimation learning in photovoltaic power generation
JPWO2017026010A1 (en) * 2015-08-07 2018-01-18 三菱電機株式会社 Photovoltaic power generation amount prediction apparatus and solar power generation amount prediction method
WO2017026010A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
US10963602B2 (en) 2015-08-07 2021-03-30 Mitsubishi Electric Corporation Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
JP2018501582A (en) * 2015-08-31 2018-01-18 中国科学院広州能源研究所 Output power classification prediction system applied to the entire life cycle of photovoltaic power generation system
WO2019021438A1 (en) * 2017-07-27 2019-01-31 三菱電機株式会社 Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program
JPWO2019021438A1 (en) * 2017-07-27 2020-04-02 三菱電機株式会社 Photovoltaic power generation prediction device, photovoltaic power generation prediction system, prediction method and program
JP2019035706A (en) * 2017-08-21 2019-03-07 中国電力株式会社 Power generation output prediction device
CN108075496A (en) * 2017-12-27 2018-05-25 云南电网有限责任公司 A kind of new energy power station performance indicator method for rolling computation for adapting to short-term time scale
KR20190131808A (en) * 2018-05-17 2019-11-27 한국전자통신연구원 Apparatus and method for estimating the power generation of photovoltaic generator
KR102192067B1 (en) * 2018-05-17 2020-12-16 한국전자통신연구원 Apparatus and method for estimating the power generation of photovoltaic generator
WO2023181231A1 (en) * 2022-03-24 2023-09-28 日本電気株式会社 Prediction device, prediction system, prediction method, and recording medium

Also Published As

Publication number Publication date
JP3984604B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3984604B2 (en) Method, apparatus, and program for predicting power generation amount of solar power generation system
Tahir et al. Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review
Zhang et al. A solar time based analog ensemble method for regional solar power forecasting
Haupt et al. Building the Sun4Cast system: Improvements in solar power forecasting
US11009536B2 (en) Method and system for estimating energy generation based on solar irradiance forecasting
US10963602B2 (en) Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
Bugała et al. Short-term forecast of generation of electric energy in photovoltaic systems
Focken et al. Short-term prediction of the aggregated power output of wind farms—a statistical analysis of the reduction of the prediction error by spatial smoothing effects
Lorenz et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems
JP5940922B2 (en) Renewable energy prediction device
JP2007281060A (en) Power generation prediction method for photovoltaic power generation system, device, and program
Yang et al. A novel ARX-based multi-scale spatio-temporal solar power forecast model
Yaniktepe et al. The global solar radiation estimation and analysis of solar energy: Case study for Osmaniye, Turkey
Haupt et al. Blending distributed photovoltaic and demand load forecasts
JP2008077561A (en) Energy prediction method, energy prediction device and program
JP2014217092A (en) Generated power prediction device, method for predicting generated power, and program for predicting generated power
Nomiyama et al. A study on global solar radiation forecasting using weather forecast data
Candanedo et al. Preliminary assessment of a weather forecast tool for building operation
Yousuf et al. Estimating the average diffuse solar radiation based on multiple parameters: a case study of arid climate zone of Pakistan
Masevhe et al. Assessment of photovoltaic power output using the estimated global solar radiation at Vuwani Science Resources Centre
Tina et al. Comparative assessment of PV plant performance models considering climate effects
Rao Kasagani et al. Modeling of solar photovoltaic power using a two-stage forecasting system with operation and weather parameters
Suksamosorn et al. Influential variable selection for improving solar forecasts from numerical weather prediction
KR20180023078A (en) Prediction method of generation quantity in solar energy generation using weather information
Khalyasmaa et al. Photovoltaic power plant production operational forecast based on its short-term forecasting model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350