JP2006033493A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006033493A
JP2006033493A JP2004210326A JP2004210326A JP2006033493A JP 2006033493 A JP2006033493 A JP 2006033493A JP 2004210326 A JP2004210326 A JP 2004210326A JP 2004210326 A JP2004210326 A JP 2004210326A JP 2006033493 A JP2006033493 A JP 2006033493A
Authority
JP
Japan
Prior art keywords
color filter
plane
filter array
imaging device
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210326A
Other languages
Japanese (ja)
Inventor
Takayuki Hayashi
孝行 林
Michihiro Yamagata
道弘 山形
Kazutake Boku
一武 朴
Yasuhiro Tanaka
康弘 田中
Kenichi Hayashi
謙一 林
Yoshimasa Fushimi
吉正 伏見
Shigeki Murata
茂樹 村田
Hiroaki Okayama
裕昭 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004210326A priority Critical patent/JP2006033493A/en
Publication of JP2006033493A publication Critical patent/JP2006033493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive imaging apparatus where crosstalk is suppressed and the number of components and mandays are reduced. <P>SOLUTION: Respective microlenses 21 in a microlens array 20 form subject images in a plurality of pixels 11 of an imaging device 10. A first color filter array 31 is arranged on a subject side compared with the imaging device 10, and a second color filter array 32 is arranged between the first color filter array 31 and the imaging device 10. The first and second color filter arrays 31 and 32 are provided with at least 2 kinds of color filters of the same arrangement. The color filters provided in the first and second color filter arrays 31 and 32 and the microlenses 10 correspond to each other by one to one. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は撮像装置に関する。特に、多数の画素を有する固体撮像素子の被写体側の平面内に複数の微小レンズを配列した微小レンズアレイを配置した撮像装置に関する。   The present invention relates to an imaging apparatus. In particular, the present invention relates to an imaging apparatus in which a microlens array in which a plurality of microlenses are arranged in a plane on the subject side of a solid-state imaging device having a large number of pixels is arranged.

近年市場規模が大きくなりつつあるデジタルスチルカメラの市場においては、より携帯性に優れた小型・薄型のカメラに対するニーズが高まってきている。信号処理を担うLSI等の回路部品は、配線パターンの微細化などにより高機能で小型化が進んでいる。また、記録メディアも小型・大容量のものが廉価にて入手できるようになってきている。しかしながら、レンズとCCDやCMOSなどの固体撮像素子とで構成される撮像系の小型化は未だ十分とは言えず、より携帯性に優れたカメラを実現するためにも小型の撮像系の開発が要望されている。   In the market of digital still cameras whose market scale has been increasing in recent years, there is an increasing need for small and thin cameras with superior portability. Circuit components such as LSIs that are responsible for signal processing are highly functional and miniaturized due to miniaturization of wiring patterns. In addition, recording media having a small size and a large capacity are becoming available at a low price. However, the downsizing of an imaging system composed of a lens and a solid-state imaging device such as a CCD or CMOS is still not sufficient, and the development of a small imaging system has been developed in order to realize a more portable camera. It is requested.

撮像系の小型化を実現するための構成として、平面上に複数の微小レンズを配列したレンズアレイ光学系を用いた撮像装置が知られている。従来の光軸上に複数のレンズを並べた光学系は、光軸方向に長くなるため体積が増大し、またレンズ径が大きいため収差が大きくなるという問題を有していた。これに対して、レンズアレイ光学系は、光軸方向に薄くでき、かつ個々の微小レンズ径が小さいため収差を比較的小さく抑えることが可能である。   As a configuration for realizing downsizing of an imaging system, an imaging apparatus using a lens array optical system in which a plurality of minute lenses are arranged on a plane is known. A conventional optical system in which a plurality of lenses are arranged on the optical axis has a problem that the volume increases because the lens becomes long in the optical axis direction, and the aberration increases because the lens diameter is large. On the other hand, the lens array optical system can be made thin in the optical axis direction, and each microlens diameter is small, so that the aberration can be kept relatively small.

このようなレンズアレイを用いた撮像装置が特許文献1に開示されている。この撮像装置は、図6に示すように、被写体側から順に、複数の微小レンズ111aが同一平面内に配列された微小レンズアレイ111と、各微小レンズ111aからの光信号が互いに混信しないように分離するための格子枠状の隔壁112aからなる隔壁層112と、多数の光電変換素子113aが同一平面内に配置された受光素子アレイ113とを備える。1つの微小レンズ111aと、これに対応する、隔壁112aによって分離された1つの空間と、複数の光電変換素子113aとが、1つの結像ユニット115を構成する。個々の結像ユニット115において、微小レンズ111aが、対応する複数の光電変換素子113a上に被写体像を結像する。これにより、結像ユニット115ごとに撮影画像が得られる。この撮影画像の解像度は1つの結像ユニット115を構成する光電変換素子113aの数(画素数)に依存する。被写体に対する個々の微小レンズ111aの相対的位置が異なることにより、複数の光電変換素子113a上に形成される被写体像の結像位置が結像ユニット115ごとに異なる。その結果、得られる撮影画像は結像ユニット115ごとに異なる。この互いに異なる複数の撮影画像を信号処理することにより、一つの画像を得ることができる。   An imaging apparatus using such a lens array is disclosed in Patent Document 1. As shown in FIG. 6, in this imaging apparatus, a microlens array 111 in which a plurality of microlenses 111a are arranged in the same plane in order from the subject side, and optical signals from the microlenses 111a do not interfere with each other. A partition layer 112 including a grid frame partition 112a for separation and a light receiving element array 113 in which a large number of photoelectric conversion elements 113a are arranged in the same plane are provided. One microlens 111a, the corresponding one space separated by the partition 112a, and the plurality of photoelectric conversion elements 113a constitute one imaging unit 115. In each imaging unit 115, the micro lens 111a forms an object image on the corresponding plurality of photoelectric conversion elements 113a. As a result, a captured image is obtained for each imaging unit 115. The resolution of the captured image depends on the number of photoelectric conversion elements 113a (the number of pixels) constituting one imaging unit 115. Since the relative positions of the individual microlenses 111a with respect to the subject are different, the imaging positions of the subject images formed on the plurality of photoelectric conversion elements 113a are different for each imaging unit 115. As a result, the obtained captured image is different for each imaging unit 115. One image can be obtained by performing signal processing on a plurality of different captured images.

この撮像装置では、個々の結像ユニット115を構成する画素数は少ないため、個々の結像ユニット115から得られる撮影画像の画質は低いが、複数の結像ユニット115においてそれぞれ得られる少しずつずれた撮影画像を用いて信号処理して画像を再構築することにより、多数の光電変換素子で撮影した場合と同様の画質の映像を得ることができる。   In this imaging apparatus, since the number of pixels constituting each image forming unit 115 is small, the image quality of the captured image obtained from each image forming unit 115 is low, but the image obtained in each of the plurality of image forming units 115 is slightly shifted. By reconstructing the image by performing signal processing using the captured image, it is possible to obtain a video image having the same image quality as that obtained by capturing with a large number of photoelectric conversion elements.

図6の撮像装置では、微小レンズ111aからの光がこの微小レンズ111aと対応しない隣の結像ユニット115の光電変換素子113aに入射する(この現象を「クロストーク」と呼ぶ)と、高画質の画像を再構築できなかったり、迷光が発生して画質が劣化したり、光損失を生じたりする。従って、クロストークを防止するために、隔壁層112が用いられている。特許文献1では、これと同様の効果は、隔壁層112に代えて、結像ユニット115ごとに偏向方向が直交するように偏向透過フィルタを配置した偏向フィルタアレイを微小レンズアレイ111面及び受光素子アレイ113面にそれぞれ配置しても得られると記載されている。
特開2001−61109号公報
In the image pickup apparatus of FIG. 6, when light from the minute lens 111a is incident on the photoelectric conversion element 113a of the adjacent imaging unit 115 that does not correspond to the minute lens 111a (this phenomenon is referred to as “crosstalk”), high image quality is obtained. The image cannot be reconstructed, stray light is generated and the image quality is deteriorated, or light loss is caused. Therefore, the partition layer 112 is used to prevent crosstalk. In Patent Document 1, the same effect is obtained by replacing the partition layer 112 with a deflection filter array in which a deflection transmission filter is disposed so that the deflection direction is orthogonal to each imaging unit 115 and the surface of the micro lens array 111 and the light receiving element. It is described that it can also be obtained by arranging each on the surface of the array 113.
JP 2001-61109 A

しかしながら、上記の図6の撮像装置に使用される隔壁層112は、各結像ユニット115に対応する隔壁112aを形成するために、ステンレス鋼などを微細加工して高精度に組み立てられて作成される。従って、工程が煩雑で、コスト高となる。また、得られた隔壁層112と微小レンズアレイ111及び受光素子アレイ113とを相対的位置を厳密に管理しながら組み立てる必要があり、組立作業が煩雑となる。   However, the partition wall layer 112 used in the above-described imaging device of FIG. 6 is formed by finely assembling stainless steel or the like with high precision in order to form the partition walls 112a corresponding to the imaging units 115. The Therefore, the process is complicated and the cost is increased. Further, it is necessary to assemble the obtained partition wall layer 112, the microlens array 111, and the light receiving element array 113 while strictly managing the relative positions, and the assembling work becomes complicated.

また、隔壁層112の代わりに使用される偏向フィルタアレイは、回折格子や屈折型光学素子を用いて作成されるため、部品点数や組み立て工数が増加する。   In addition, since the deflection filter array used instead of the partition wall layer 112 is formed using a diffraction grating or a refractive optical element, the number of parts and the number of assembly steps increase.

本発明は、従来の上記の撮像装置が有する問題を解決し、クロストークが抑制でき、且つ部品点数や工数が低減された安価な撮像装置を提供することを目的とする。   An object of the present invention is to solve the problems of the conventional imaging apparatus described above, and to provide an inexpensive imaging apparatus that can suppress crosstalk and reduce the number of parts and man-hours.

本発明の撮像装置は、第1平面内に配置された光電変換機能を有する多数の画素を備える固体撮像素子と、第2平面内に配置された複数の微小レンズを備える微小レンズアレイとを有する。1つの前記微小レンズに対して複数の前記画素が対応し、それぞれの前記微小レンズが対応する複数の前記画素に被写体像を結像する。   The imaging device of the present invention includes a solid-state imaging device including a large number of pixels having a photoelectric conversion function arranged in a first plane, and a microlens array including a plurality of microlenses arranged in a second plane. . A plurality of pixels correspond to one minute lens, and a subject image is formed on the plurality of pixels corresponding to each minute lens.

本発明の撮像装置は、更に、前記第1平面に対して被写体側の第3平面内に配置された少なくとも2種以上のカラーフィルタを備える第1カラーフィルタアレイと、前記第1カラーフィルタアレイのカラーフィルタと同じ配置で前記第3平面と前記第1平面との間に位置する第4平面内に配置された少なくとも2種以上のカラーフィルタを備える第2カラーフィルタアレイとを有し、前記第1カラーフィルタアレイの前記カラーフィルタと前記微小レンズ、及び前記第2カラーフィルタアレイの前記カラーフィルタと前記微小レンズとは、いずれも一対一に対応している。   The imaging apparatus of the present invention further includes a first color filter array including at least two or more color filters arranged in a third plane on the subject side with respect to the first plane, and the first color filter array. A second color filter array comprising at least two or more kinds of color filters arranged in a fourth plane located between the third plane and the first plane in the same arrangement as the color filter, The color filter and the micro lens of one color filter array and the color filter and the micro lens of the second color filter array all correspond one to one.

本発明によれば、同じカラーフィルタ配置を有する第1カラーフィルタアレイと第2カラーフィルタアレイとを備えるので、従来の撮像装置において必須であった隔壁層や偏光フィルタアレイを用いることなく、クロストークの発生を抑制できる。   According to the present invention, since the first color filter array and the second color filter array having the same color filter arrangement are provided, the crosstalk can be achieved without using the partition layer and the polarization filter array that are essential in the conventional imaging device. Can be suppressed.

クロストークを抑制できるので、画質劣化を少なくできること、また、迷光の発生を抑えることができることなどにより、高画質画像を撮影できる。   Since crosstalk can be suppressed, image quality deterioration can be reduced, and generation of stray light can be suppressed.

また、隔壁層や偏光フィルタアレイが不要であるので、組立作業を簡素化でき、また部品点数を削減できるので、安価な撮像装置を提供できる。更に、部品精度や組立精度を向上できるので、高品質の撮像装置を提供できる。   Further, since the partition layer and the polarizing filter array are unnecessary, the assembling work can be simplified and the number of parts can be reduced, so that an inexpensive imaging device can be provided. Furthermore, since the component accuracy and assembly accuracy can be improved, a high-quality imaging device can be provided.

本発明の上記撮像装置において、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤色光を透過するカラーフィルタと、緑色光を透過するカラーフィルタと、青色光を透過するカラーフィルタとを含むことが好ましい。これにより、カラー撮影を行うことができる。   In the imaging device of the present invention, the first color filter array and the second color filter array include a color filter that transmits red light, a color filter that transmits green light, and a color filter that transmits blue light. It is preferable to include. Thereby, color photography can be performed.

また、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイにおいて、同種のカラーフィルタが相互に隣り合わないように、前記2種以上のカラーフィルタが市松模様状に配置されていることが好ましい。これにより、クロストークを低減できる。   In the first color filter array and the second color filter array, it is preferable that the two or more types of color filters are arranged in a checkered pattern so that the same type of color filters are not adjacent to each other. Thereby, crosstalk can be reduced.

また、前記第3平面は、前記第2平面に対して被写体側に位置することが好ましい。これにより、撮像装置の全体の厚みを薄くしながら、第1カラーフィルタアレイと第2カラーフィルタアレイとの間の間隔を比較的大きく確保できるので、クロストークの低減効果が向上する。   The third plane is preferably located on the subject side with respect to the second plane. As a result, a relatively large distance between the first color filter array and the second color filter array can be ensured while reducing the overall thickness of the imaging device, thereby improving the crosstalk reduction effect.

あるいは、前記第3平面は、前記第2平面と前記第4平面との間に位置し、前記第3平面と前記第4平面とが離間していることが好ましい。この構成でも、第1カラーフィルタアレイと第2カラーフィルタアレイとの間の間隔を確保することによりクロストークを低減することができる。   Alternatively, it is preferable that the third plane is located between the second plane and the fourth plane, and the third plane and the fourth plane are separated from each other. Even in this configuration, it is possible to reduce crosstalk by securing a space between the first color filter array and the second color filter array.

また、前記第2カラーフィルタアレイは、固体撮像素子の入射面に近接して、又は前記入射面上に配置されていることが好ましい。これにより、第2カラーフィルタアレイと固体撮像素子との間でのクロストークを低減できる。   Further, it is preferable that the second color filter array is disposed in the vicinity of or on the incident surface of the solid-state imaging device. Thereby, the crosstalk between the second color filter array and the solid-state imaging device can be reduced.

また、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤外光を透過するカラーフィルタ及び/又は紫外光を透過するカラーフィルタを含んでいても良い。これにより、赤外線及び/又は紫外線による撮影が可能となる。   The first color filter array and the second color filter array may include a color filter that transmits infrared light and / or a color filter that transmits ultraviolet light. Thereby, photographing with infrared rays and / or ultraviolet rays can be performed.

また、前記固体撮像素子の多数の前記画素からの信号のうち、同種の前記カラーフィルタに対応する前記画素からの信号のみを選択的に抽出する抽出回路を更に備えていても良い。これにより、所望する特定の波長帯の光のみを選択して撮影することが可能となる。   An extraction circuit may be further provided that selectively extracts only signals from the pixels corresponding to the same type of color filter from among the signals from many pixels of the solid-state imaging device. As a result, it is possible to select and shoot only light in a specific wavelength band desired.

前記固体撮像素子は、CCDであっても良い。あるいは、CMOSであっても良い。   The solid-state image sensor may be a CCD. Alternatively, it may be a CMOS.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1の撮像装置の概略構成を示した斜視図である。図2は、本発明の実施の形態1の撮像装置の、微小レンズの光軸を含む面での部分断面図である。図3(A)は、本発明の実施の形態1の撮像装置において、固体撮像素子からの信号の処理の概略を示した図である。図3(B)は、本発明の実施の形態1の撮像装置において、1つの結像ユニットを構成する受光部を示した斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view showing a schematic configuration of the imaging apparatus according to Embodiment 1 of the present invention. FIG. 2 is a partial cross-sectional view of the imaging apparatus according to Embodiment 1 of the present invention on the plane including the optical axis of the microlens. FIG. 3A is a diagram showing an outline of processing of signals from the solid-state imaging device in the imaging apparatus according to Embodiment 1 of the present invention. FIG. 3B is a perspective view showing a light receiving unit constituting one imaging unit in the imaging apparatus according to Embodiment 1 of the present invention.

図1から図3において、10は第1平面内に縦横方向に配列された多数の画素11を備える固体撮像素子(例えば、CCDやCMOS)、20は、第1平面と平行で且つ離間した第2平面内に縦横方向に配列された複数の微小レンズ21を備える微小レンズアレイである。   1 to 3, reference numeral 10 denotes a solid-state imaging device (for example, CCD or CMOS) having a large number of pixels 11 arranged in the first plane in the vertical and horizontal directions, and 20 denotes a first parallel and spaced apart from the first plane. The microlens array includes a plurality of microlenses 21 arranged in two planes in the vertical and horizontal directions.

31は、第1平面と平行で、且つ第1平面よりも被写体側の第3平面内に縦横方向に配列された複数のカラーフィルタを備える第1カラーフィルタアレイである。32は、第1平面と平行で、且つ第3平面と第1平面との間に位置する第4平面内に縦横方向に配列された複数のカラーフィルタを備える第2カラーフィルタアレイである。本実施の形態では、第1及び第2カラーフィルタアレイ31,32は、赤色光を選択的に透過するカラーフィルタRと、緑色光を選択的に透過するカラーフィルタGと、青色光を選択的に透過するカラーフィルタBとを備え、これらが格子枠状に区分された各領域内に市松模様状に配置されている。第1カラーフィルタアレイ31と第2カラーフィルタアレイ32とは、カラーフィルタR,G,Bの配置に関して同一である。   A first color filter array 31 includes a plurality of color filters that are parallel to the first plane and arranged in the vertical and horizontal directions in a third plane closer to the subject than the first plane. Reference numeral 32 denotes a second color filter array including a plurality of color filters arranged in the vertical and horizontal directions in a fourth plane that is parallel to the first plane and located between the third plane and the first plane. In the present embodiment, the first and second color filter arrays 31 and 32 selectively select a color filter R that selectively transmits red light, a color filter G that selectively transmits green light, and blue light. And a color filter B that is transparent to each other, and these are arranged in a checkered pattern in each region divided into a lattice frame shape. The first color filter array 31 and the second color filter array 32 are the same with respect to the arrangement of the color filters R, G, and B.

1つの微小レンズ21に対して、第1カラーフィルタアレイ31を構成する赤・緑・青のうちの何れか一色のカラーフィルタ、第2カラーフィルタアレイ32を構成する赤・緑・青のうちの何れか一色のカラーフィルタ、及び複数の画素11が対応し、これらによって1つの結像ユニット40が構成される。同じ結像ユニット40を構成する第1カラーフィルタアレイ31のカラーフィルタの色と第2カラーフィルタアレイ32のカラーフィルタの色とは一致する。   For one minute lens 21, one of the red, green, and blue color filters constituting the first color filter array 31 and the red, green, and blue constituting the second color filter array 32. Any one color filter and the plurality of pixels 11 correspond to each other, and one imaging unit 40 is configured by these. The color of the color filter of the first color filter array 31 and the color of the color filter of the second color filter array 32 constituting the same imaging unit 40 are the same.

被写体からの光束は、第1カラーフィルタアレイ31にて赤緑青の何れかの色光のみが選択されてこれを透過し、複数の微小レンズ21に入射する。各微小レンズ21は、対応する複数の画素11上に被写体像を形成する。微小レンズ21を出射した赤緑青の何れかの色光は、画素11に達する前に、第2カラーフィルタアレイ32に入射する。第2カラーフィルタアレイ32の各カラーフィルタは、入射光のうち、自身のカラーフィルタの色と同じ色光のみを透過させる。   For the light flux from the subject, only the red, green, and blue color light is selected by the first color filter array 31, passes therethrough, and enters the plurality of microlenses 21. Each microlens 21 forms a subject image on a plurality of corresponding pixels 11. Any of the red, green, and blue color light emitted from the minute lens 21 enters the second color filter array 32 before reaching the pixel 11. Each color filter of the second color filter array 32 transmits only the same color light as the color of its own color filter among the incident light.

本実施の形態の撮像装置は、上記の構成によりクロストークを防止できる。これを図2を用いて説明する。   The imaging device according to the present embodiment can prevent crosstalk with the above configuration. This will be described with reference to FIG.

例えば、被写体からの光線R1は、第1カラーフィルタアレイ31の赤色のカラーフィルタRに入射して、赤色の波長帯の光のみがこれを通過し、微小レンズ21を通過後、第2カラーフィルタアレイ32の赤色のカラーフィルタRに入射する。この入射光は赤色の波長帯の光であるから、このカラーフィルタRを通過することができ、画素11上に赤色の被写体像を形成する。   For example, the light ray R1 from the subject enters the red color filter R of the first color filter array 31, and only the light in the red wavelength band passes through the second color filter after passing through the minute lens 21. The light enters the red color filter R of the array 32. Since this incident light is light in the red wavelength band, it can pass through this color filter R, and a red subject image is formed on the pixel 11.

一方、光線R1よりも大きな入射角で撮像装置に入射する被写体からの光線R2は、第1カラーフィルタアレイ31の赤色のカラーフィルタRに入射して、赤色の波長帯の光のみがこれを通過し、微小レンズ21を通過後、第2カラーフィルタアレイ32の隣の結像ユニットを構成する緑色のカラーフィルタGに入射する。緑色のカラーフィルタGはこの赤色の波長帯の入射光を通過させない。従って、光線R2を構成する如何なる波長帯の光も画素11に達しない。   On the other hand, the light ray R2 from the subject incident on the imaging device at an incident angle larger than the light ray R1 is incident on the red color filter R of the first color filter array 31, and only light in the red wavelength band passes through it. After passing through the minute lens 21, the light enters the green color filter G constituting the imaging unit adjacent to the second color filter array 32. The green color filter G does not pass incident light in the red wavelength band. Therefore, light in any wavelength band constituting the light ray R2 does not reach the pixel 11.

このように、本発明の撮像装置は、各結像ユニット40が同一色のカラーフィルタを光軸方向に2層備えている。更に、第1及び第2カラーフィルタアレイ31,32では色の異なるカラーフィルタR,G,Bが市松模様を構成するように配置されている。即ち、任意の1つのカラーフィルタの色と、このカラーフィルタの4つの辺を挟んで縦横方向に隣り合う4つのカラーフィルタの色とが異なるように、カラーフィルタR,G,Bが配置されている。この結果、上記光線R2のように、第1カラーフィルタアレイ31を通過後、第2カラーフィルタアレイ32に入射するまでの間に縦横方向に隣り合う結像ユニット40間の境界を越える光線は第2カラーフィルタアレイ32を通過することができない。従って、クロストークの発生を防止することができる。これにより、画質劣化を少なくでき、また、迷光の発生を抑えることができる。この結果、高画質画像を撮影することができる。   As described above, in the imaging apparatus of the present invention, each imaging unit 40 includes two layers of color filters of the same color in the optical axis direction. Further, in the first and second color filter arrays 31 and 32, the color filters R, G, and B having different colors are arranged so as to form a checkered pattern. That is, the color filters R, G, and B are arranged so that the color of an arbitrary color filter and the colors of four color filters adjacent in the vertical and horizontal directions across the four sides of the color filter are different. Yes. As a result, like the light ray R2, light rays that pass through the first color filter array 31 and enter the second color filter array 32 before exceeding the boundary between the imaging units 40 adjacent in the vertical and horizontal directions It cannot pass through the two-color filter array 32. Therefore, occurrence of crosstalk can be prevented. As a result, image quality deterioration can be reduced and the occurrence of stray light can be suppressed. As a result, a high quality image can be taken.

更に、CCDや液晶表示素子に使用されるカラーフィルタにおいて汎用されているカラーフィルタアレイと同様にして、例えば第1カラーフィルタアレイ31を微小レンズアレイ20上に、第2カラーフィルタアレイ32を固体撮像素子10上に、それぞれ形成すれば良く、上述した従来の撮像装置の隔壁や偏向フィルタアレイに比べて製造を格段に簡単化でき、また、部品点数も削減できる。更に、第1及び第2カラーフィルタアレイ31,32自身の精度や微小レンズアレイ20及び固体撮像素子10に対する精度も従来に比べて向上できるので、品質が向上し且つ安定する。   Further, in the same manner as a color filter array that is widely used in color filters used for CCDs and liquid crystal display elements, for example, the first color filter array 31 is placed on the microlens array 20 and the second color filter array 32 is solid-state imaged. They may be formed on the element 10 respectively, and the manufacturing can be greatly simplified and the number of components can be reduced as compared with the partition walls and the deflection filter array of the conventional imaging device described above. Furthermore, the accuracy of the first and second color filter arrays 31 and 32 themselves and the accuracy of the microlens array 20 and the solid-state imaging device 10 can be improved as compared with the prior art, so the quality is improved and stabilized.

上記の実施の形態では、第1カラーフィルタアレイ31は微小レンズアレイ20よりも被写体側に、第2カラーフィルタアレイ32は微小レンズアレイ20と固体撮像素子10との間に配置されているが、第1及び第2カラーフィルタアレイ31,32の配置は、クロストークの発生が抑制できればこれに限定されない。例えば、第1カラーフィルタアレイ31及び第2カラーフィルタアレイ32を微小レンズアレイ20と固体撮像素子10との間に配置しても良い。この場合、第1カラーフィルタアレイ31と第2カラーフィルタアレイ32とは光軸方向に所定の距離だけ離間させることが好ましい。両者が近接していると、入射角が大きな光線は隣り合う結像ユニット40間の境界を越えてしまうので、2枚のカラーフィルタアレイ31,32を用いたことが実質的に無意味となる。   In the above embodiment, the first color filter array 31 is disposed closer to the subject than the minute lens array 20, and the second color filter array 32 is disposed between the minute lens array 20 and the solid-state imaging device 10. The arrangement of the first and second color filter arrays 31 and 32 is not limited to this as long as the occurrence of crosstalk can be suppressed. For example, the first color filter array 31 and the second color filter array 32 may be disposed between the minute lens array 20 and the solid-state imaging device 10. In this case, the first color filter array 31 and the second color filter array 32 are preferably separated by a predetermined distance in the optical axis direction. If the two are close to each other, a light beam having a large incident angle exceeds the boundary between the adjacent imaging units 40, so that it is substantially meaningless to use the two color filter arrays 31 and 32. .

但し、第1カラーフィルタアレイ31、第2カラーフィルタアレイ32、及び微小レンズアレイ20の配置順序にかかわらず、第1カラーフィルタアレイ31よりも固体撮像素子10寄りに配置される第2カラーフィルタアレイ32は、固体撮像素子10の入射面に近接して、又は固体撮像素子10の入射面上に配置されていることが好ましい。これにより、第2カラーフィルタアレイ32を通過した光線が、隣り合う結像ユニット40間の境界を越えた後、固体撮像素子10に入射するのを低減することができる。即ち、第2カラーフィルタアレイ32と固体撮像素子10との間でのクロストークの発生を低減できる。   However, regardless of the arrangement order of the first color filter array 31, the second color filter array 32, and the micro lens array 20, the second color filter array arranged closer to the solid-state imaging device 10 than the first color filter array 31. 32 is preferably disposed in the vicinity of the incident surface of the solid-state image sensor 10 or on the incident surface of the solid-state image sensor 10. Thereby, it is possible to reduce the incidence of the light beam that has passed through the second color filter array 32 after exceeding the boundary between the adjacent imaging units 40 to the solid-state imaging device 10. That is, the occurrence of crosstalk between the second color filter array 32 and the solid-state imaging device 10 can be reduced.

次に、固体撮像素子10の各受光部11に入射した光束から画像を得る方法を図3(A)及び図3(B)を用いて説明する。   Next, a method for obtaining an image from a light beam incident on each light receiving portion 11 of the solid-state imaging device 10 will be described with reference to FIGS. 3 (A) and 3 (B).

図3(A)に示すように、結像ユニット40ごとに、微小レンズアレイ20の微小レンズ21は、被写体90の像91を固体撮像素子10上に結像する。固体撮像素子10の各受光部(画素)11は入射した光束を光電変換する。ここで、固体撮像素子10の水平軸をx軸、垂直軸をy軸とし、位置(x,y)にある受光部11からの信号をI(x,y)とすると、固体撮像素子10に含まれる全ての受光部11についての信号I(x,y)が読み出される(ステップ101)。   As shown in FIG. 3A, the micro lens 21 of the micro lens array 20 forms an image 91 of the subject 90 on the solid-state image sensor 10 for each imaging unit 40. Each light receiving unit (pixel) 11 of the solid-state image sensor 10 photoelectrically converts an incident light beam. Here, assuming that the horizontal axis of the solid-state imaging device 10 is the x-axis, the vertical axis is the y-axis, and the signal from the light receiving unit 11 at the position (x, y) is I (x, y), the solid-state imaging device 10 Signals I (x, y) for all included light receiving units 11 are read (step 101).

次に、この各受光部11からの信号I(x,y)を結像ユニット40ごとに分割する。即ち、図3(B)に示すように、受光部11がm列×n行に配置された結像ユニット40内の第i列、第k行の位置にある受光部11の位置を(i,k)(m,n)とし、この受光部11からの信号をI(i,k)(m,n)とすると、上記各信号I(x,y)を結像ユニット40内における信号I(i,k)(m,n)として取り扱う。この結果、結像ユニット40ごとにm列×n行の画素からなる画像が再構成される(ステップ103)。 Next, the signal I (x, y) from each light receiving unit 11 is divided for each imaging unit 40. That is, as shown in FIG. 3B, the position of the light receiving unit 11 at the position of the i th column and the k th row in the imaging unit 40 in which the light receiving units 11 are arranged in m columns × n rows is represented by (i , K) (m, n), and I (i, k) (m, n) as the signal from the light receiving section 11, the signals I (x, y) are the signals I in the imaging unit 40. (I, k) Handled as (m, n) . As a result, an image composed of pixels of m columns × n rows is reconstructed for each imaging unit 40 (step 103).

その後、異なる結像ユニット40間において、信号I(i,k)(m,n)を処理して1枚の画像を再構築する(ステップ105)。この信号処理としては、上記特許文献1に記載された方法を用いることができ、その詳細説明を省略する。結像ユニット40内における被写体像91の形成位置が結像ユニット40ごとに異なるために、位置(i,k)が同じ受光部11からの信号I(i,k)(m,n)は結像ユニット40ごとに異なる。従って、1つの結像ユニット40に含まれる受光部11の数(m×n個)を遙かに超えた高解像度の画像が得られる。 Thereafter, the signal I (i, k) (m, n) is processed between different image forming units 40 to reconstruct one image (step 105). As this signal processing, the method described in Patent Document 1 can be used, and detailed description thereof is omitted. Since the formation position of the subject image 91 in the imaging unit 40 is different for each imaging unit 40, the signal I (i, k) (m, n) from the light receiving unit 11 having the same position (i, k ) is connected. Different for each image unit 40. Therefore, a high-resolution image far exceeding the number (m × n) of the light receiving parts 11 included in one imaging unit 40 is obtained.

(実施の形態2)
図4は、本発明の実施の形態2に係る撮像装置に搭載される第1,第2カラーフィルタアレイ71,72のカラーフィルタの配置を示した正面図である。図5は、本発明の実施の形態2に係る撮像装置において固体撮像素子からの信号の処理の流れを示したブロック図である
本実施の形態の撮像装置は、実施の形態1で示した3種のカラーフィルタR,G,Bを備える第1,第2カラーフィルタアレイ31,32に代えて、図4に示す第1,第2カラーフィルタアレイ71,72が使用される。この第1,第2カラーフィルタアレイ71,72は、実施の形態1で示した第1,第2カラーフィルタアレイ31,32と同様に、赤色光を選択的に透過するカラーフィルタR、緑色光を選択的に透過するカラーフィルタG、及び青色光を選択的に透過するカラーフィルタBに加えて、更に赤外光を選択的に透過するカラーフィルタIRを備える。この4種のカラーフィルタR,G,B,IRが、結像ユニット40に対応して格子枠状に区分された各領域内に市松模様状に配置されている。実施の形態1と同様に、隣り合うカラーフィルタの色は同一ではない。これにより、実施の形態1で説明したのと同様に、第1カラーフィルタアレイ71を通過後、第2カラーフィルタアレイ72に入射するまでの間に隣り合う結像ユニット40間の境界を越える光線は第2カラーフィルタアレイ72を通過することができない。従って、クロストークの発生を防止することができる。
(Embodiment 2)
FIG. 4 is a front view showing the arrangement of the color filters of the first and second color filter arrays 71 and 72 mounted on the imaging apparatus according to Embodiment 2 of the present invention. FIG. 5 is a block diagram showing a flow of processing of signals from the solid-state imaging device in the imaging apparatus according to Embodiment 2 of the present invention. The imaging apparatus of this embodiment is the same as that shown in 3 of Embodiment 1. Instead of the first and second color filter arrays 31 and 32 having the color filters R, G, and B, the first and second color filter arrays 71 and 72 shown in FIG. 4 are used. Similar to the first and second color filter arrays 31 and 32 shown in the first embodiment, the first and second color filter arrays 71 and 72 are color filters R and green light that selectively transmit red light. In addition to a color filter G that selectively transmits blue light and a color filter B that selectively transmits blue light, a color filter IR that selectively transmits infrared light is further provided. The four types of color filters R, G, B, and IR are arranged in a checkered pattern in each region divided into a lattice frame corresponding to the imaging unit 40. As in the first embodiment, the colors of adjacent color filters are not the same. Thus, as described in the first embodiment, the light beam that passes through the first color filter array 71 and passes the boundary between the adjacent imaging units 40 before entering the second color filter array 72. Cannot pass through the second color filter array 72. Therefore, occurrence of crosstalk can be prevented.

更に、本実施の形態2では、このような撮像装置からの出力信号は図5に示す映像回路50により以下のように処理される。即ち、固体撮像素子10の各受光部11は被写体90の光信号を光電変換し、出力する。映像回路50内の抽出回路51は、固体撮像素子10からの信号のうち、カラーフィルタの色が同一である結像ユニット40に含まれる受光部11からの信号を選択的に抽出する。加算回路52は、抽出回路51で抽出された単色の信号に対して図3(A)及び図3(B)で説明した処理を行い単色の高解像度の画像を再構築する。   Furthermore, in the second embodiment, the output signal from such an imaging apparatus is processed as follows by the video circuit 50 shown in FIG. That is, each light receiving unit 11 of the solid-state imaging device 10 photoelectrically converts the optical signal of the subject 90 and outputs it. An extraction circuit 51 in the video circuit 50 selectively extracts a signal from the light receiving unit 11 included in the imaging unit 40 having the same color of the color filter from the signals from the solid-state imaging device 10. The adder circuit 52 performs the processing described in FIGS. 3A and 3B on the monochrome signal extracted by the extraction circuit 51 to reconstruct a monochrome high-resolution image.

例えば、抽出回路51が、固体撮像素子10からの信号のうち、赤、緑、青の3色のカラーフィルタR,G,Bに対応する結像ユニット40からの信号を抽出すると、加算回路52は、赤、緑、青の3色の画像を再構築する。この3色の画像を合成すれば、表示装置60にカラー画像を表示することができる。   For example, when the extraction circuit 51 extracts signals from the imaging unit 40 corresponding to the three color filters R, G, and B of red, green, and blue from the signals from the solid-state imaging device 10, the addition circuit 52. Reconstructs a three-color image of red, green and blue. If these three color images are combined, a color image can be displayed on the display device 60.

また、抽出回路51が、固体撮像素子10からの信号のうち、赤外光のカラーフィルタIRに対応する結像ユニット40からの信号のみを抽出すると、加算回路52は、赤外光の画像を再構築する。従って、表示装置60に赤外線撮影画像を表示することができる。   When the extraction circuit 51 extracts only the signal from the imaging unit 40 corresponding to the infrared light color filter IR from the signals from the solid-state imaging device 10, the addition circuit 52 extracts the infrared light image. Rebuild. Therefore, an infrared image can be displayed on the display device 60.

このように、本実施の形態によれば、第1,第2カラーフィルタアレイ71,72がカラーフィルタR,G,Bに加えてカラーフィルタIRを備えているために、実施の形態1と同様にカラー撮影を行うことができるのはもちろん、夜間などの肉眼では視認できない暗闇での赤外線撮影も行うことができる。   Thus, according to the present embodiment, since the first and second color filter arrays 71 and 72 include the color filter IR in addition to the color filters R, G, and B, the same as in the first embodiment. In addition to being able to perform color photography, it is also possible to perform infrared photography in the dark that cannot be seen with the naked eye, such as at night.

もちろん、抽出回路51が、赤、緑、青の3色のうちの任意の1色又は2色に対応する結像ユニット40からの信号のみを抽出して、所望する色の画像を得ることも可能である。   Of course, the extraction circuit 51 may extract only signals from the imaging unit 40 corresponding to any one or two of the three colors of red, green, and blue to obtain an image of a desired color. Is possible.

本実施の形態2では、第1,第2カラーフィルタアレイ71,72が赤外光を選択的に透過するカラーフィルタIRを備えていたが、カラーフィルタIRに代えて、又はこれに加えて紫外光を選択的に透過するカラーフィルタを備えていても良い。また、赤外光や紫外光以外の特定の波長帯の光のみを透過させるカラーフィルタを備えていても良い。   In the second embodiment, the first and second color filter arrays 71 and 72 include the color filter IR that selectively transmits infrared light. However, instead of or in addition to the color filter IR, the ultraviolet filter is used. A color filter that selectively transmits light may be provided. Moreover, you may provide the color filter which permeate | transmits only the light of specific wavelength bands other than infrared light and ultraviolet light.

本発明の撮像装置の利用分野は特に制限はないが、小型・薄型でありながら高解像度画像を得ることができるので、例えばデジタルスチルカメラ、携帯電話、ノート型パソコン、PDAなどの各種携帯型情報端末などに利用することができる。   The field of application of the image pickup apparatus of the present invention is not particularly limited, but it can obtain a high-resolution image while being small and thin. For example, various portable information such as a digital still camera, a mobile phone, a notebook computer, and a PDA. It can be used for terminals.

図1は、本発明の実施の形態1の撮像装置の概略構成を示した分解斜視図である。FIG. 1 is an exploded perspective view showing a schematic configuration of the imaging apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の撮像装置の、微小レンズの光軸を含む面での断面図である。FIG. 2 is a cross-sectional view of the imaging apparatus according to Embodiment 1 of the present invention on a plane including the optical axis of the microlens. 図3(A)は、本発明の実施の形態1の撮像装置において、固体撮像素子からの信号の処理の概略を示した図である。図3(B)は、本発明の実施の形態1の撮像装置において、1つの結像ユニットを構成する受光部を示した斜視図である。FIG. 3A is a diagram showing an outline of processing of signals from the solid-state imaging device in the imaging apparatus according to Embodiment 1 of the present invention. FIG. 3B is a perspective view showing a light receiving unit constituting one imaging unit in the imaging apparatus according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2の撮像装置におけるカラーフィルタアレイを示した正面図である。FIG. 4 is a front view showing a color filter array in the imaging apparatus according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2の撮像装置において固体撮像素子からの信号の処理の概略を示したブロック図である。FIG. 5 is a block diagram showing an outline of processing of signals from the solid-state imaging device in the imaging apparatus according to Embodiment 2 of the present invention. 図6は、従来の撮像装置の概略構成を示した分解斜視図である。FIG. 6 is an exploded perspective view showing a schematic configuration of a conventional imaging apparatus.

符号の説明Explanation of symbols

10 固体撮像素子
11 画素
20 微小レンズアレイ
21 微小レンズ
31,71 第1カラーフィルタアレイ
32,72 第2カラーフィルタアレイ
40 結像ユニット
50 映像回路
51 抽出回路
52 加算回路
60 表示装置
90 被写体
DESCRIPTION OF SYMBOLS 10 Solid-state image sensor 11 Pixel 20 Micro lens array 21 Micro lens 31, 71 1st color filter array 32, 72 2nd color filter array 40 Imaging unit 50 Video circuit 51 Extraction circuit 52 Addition circuit 60 Display apparatus 90 Subject

Claims (10)

第1平面内に配置された光電変換機能を有する多数の画素を備える固体撮像素子と、第2平面内に配置された複数の微小レンズを備える微小レンズアレイとを有し、1つの前記微小レンズに対して複数の前記画素が対応し、それぞれの前記微小レンズが対応する複数の前記画素に被写体像を結像する撮像装置であって、
更に、前記第1平面に対して被写体側の第3平面内に配置された少なくとも2種以上のカラーフィルタを備える第1カラーフィルタアレイと、前記第1カラーフィルタアレイのカラーフィルタと同じ配置で前記第3平面と前記第1平面との間に位置する第4平面内に配置された少なくとも2種以上のカラーフィルタを備える第2カラーフィルタアレイとを有し、
前記第1カラーフィルタアレイの前記カラーフィルタと前記微小レンズ、及び前記第2カラーフィルタアレイの前記カラーフィルタと前記微小レンズとは、いずれも一対一に対応していることを特徴とする撮像装置。
One said micro lens which has a solid-state image sensor provided with many pixels which have the photoelectric conversion function arrange | positioned in a 1st plane, and a micro lens array provided with several micro lens arrange | positioned in a 2nd plane A plurality of the pixels corresponding to each other, and each of the microlenses corresponds to a plurality of the pixels that form an image of a subject,
A first color filter array including at least two or more color filters disposed in a third plane on the subject side with respect to the first plane; and the same arrangement as the color filters of the first color filter array. A second color filter array comprising at least two or more color filters disposed in a fourth plane located between the third plane and the first plane;
The image pickup apparatus according to claim 1, wherein the color filter and the minute lens of the first color filter array and the color filter and the minute lens of the second color filter array all correspond one to one.
前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤色光を透過するカラーフィルタと、緑色光を透過するカラーフィルタと、青色光を透過するカラーフィルタとを含む請求項1に記載の撮像装置。   2. The imaging according to claim 1, wherein the first color filter array and the second color filter array include a color filter that transmits red light, a color filter that transmits green light, and a color filter that transmits blue light. apparatus. 前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイにおいて、同種のカラーフィルタが相互に隣り合わないように、前記2種以上のカラーフィルタが市松模様状に配置されている請求項1に記載の撮像装置。   2. The two or more types of color filters are arranged in a checkered pattern in the first color filter array and the second color filter array so that the same type of color filters are not adjacent to each other. Imaging device. 前記第3平面は、前記第2平面に対して被写体側に位置する請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the third plane is located on a subject side with respect to the second plane. 前記第3平面は、前記第2平面と前記第4平面との間に位置し、前記第3平面と前記第4平面とが離間している請求項1に記載の撮像装置。   The imaging device according to claim 1, wherein the third plane is located between the second plane and the fourth plane, and the third plane and the fourth plane are separated from each other. 前記第2カラーフィルタアレイは、固体撮像素子の入射面に近接して、又は前記入射面上に配置されている請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the second color filter array is disposed in proximity to or on the incident surface of a solid-state imaging element. 前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤外光を透過するカラーフィルタ及び/又は紫外光を透過するカラーフィルタを含む請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the first color filter array and the second color filter array include a color filter that transmits infrared light and / or a color filter that transmits ultraviolet light. 前記固体撮像素子の多数の前記画素からの信号のうち、同種の前記カラーフィルタに対応する前記画素からの信号のみを選択的に抽出する抽出回路を更に備える請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, further comprising: an extraction circuit that selectively extracts only signals from the pixels corresponding to the color filters of the same type from among a number of signals from the pixels of the solid-state imaging device. 前記固体撮像素子がCCDである請求項1に記載の撮像装置。   The imaging device according to claim 1, wherein the solid-state imaging device is a CCD. 前記固体撮像素子がCMOSである請求項1に記載の撮像装置。   The imaging device according to claim 1, wherein the solid-state imaging device is a CMOS.
JP2004210326A 2004-07-16 2004-07-16 Imaging apparatus Pending JP2006033493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210326A JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210326A JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006033493A true JP2006033493A (en) 2006-02-02

Family

ID=35899295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210326A Pending JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006033493A (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181220A (en) * 2007-01-23 2008-08-07 Ricoh Co Ltd Personal authentication apparatus and personal authentication method
KR20110010784A (en) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US20120050589A1 (en) * 2010-08-25 2012-03-01 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same
CN102944305A (en) * 2012-11-12 2013-02-27 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
JP2013157606A (en) * 2013-02-08 2013-08-15 Toshiba Corp Solid state imaging device
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
WO2015016382A1 (en) * 2013-07-31 2015-02-05 Ricoh Company, Limited Imaging apparatus
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
JP2015524202A (en) * 2012-06-01 2015-08-20 オステンド・テクノロジーズ・インコーポレーテッド Spatio-temporal light field camera
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2016162983A1 (en) * 2015-04-08 2016-10-13 日立マクセル株式会社 Vehicle-mounted camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
CN113242964A (en) * 2018-11-05 2021-08-10 ams传感器德国有限公司 Photoelectric sensor for color measurement
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects

Cited By (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JP2008181220A (en) * 2007-01-23 2008-08-07 Ricoh Co Ltd Personal authentication apparatus and personal authentication method
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
KR101733443B1 (en) 2008-05-20 2017-05-10 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
KR20110010784A (en) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
JP2011523538A (en) * 2008-05-20 2011-08-11 ペリカン イメージング コーポレイション Image capture and processing using monolithic camera arrays with different types of imagers
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
JP2015109667A (en) * 2008-05-20 2015-06-11 ペリカン イメージング コーポレイション Capturing and processing of images using monolithic camera array with heterogeneous imagers
KR101588877B1 (en) 2008-05-20 2016-01-26 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US20120050589A1 (en) * 2010-08-25 2012-03-01 Kabushiki Kaisha Toshiba Solid-state imaging device
US8711267B2 (en) 2010-08-25 2014-04-29 Kabushiki Kaisha Toshiba Solid-state imaging device
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same
CN103650143A (en) * 2011-07-29 2014-03-19 索尼公司 Imaging element and method for manufacturing same
EP2738811A1 (en) * 2011-07-29 2014-06-04 Sony Corporation Imaging element and method for manufacturing same
EP2738811A4 (en) * 2011-07-29 2015-04-01 Sony Corp Imaging element and method for manufacturing same
US9380277B2 (en) 2011-07-29 2016-06-28 Sony Corporation Imaging device with reduced color mixing and method of manufacturing the same
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9930272B2 (en) 2012-06-01 2018-03-27 Ostendo Technologies, Inc. Spatio-temporal light field cameras
JP2015524202A (en) * 2012-06-01 2015-08-20 オステンド・テクノロジーズ・インコーポレーテッド Spatio-temporal light field camera
US9681069B2 (en) 2012-06-01 2017-06-13 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9712764B2 (en) 2012-06-01 2017-07-18 Ostendo Technologies, Inc. Spatio-temporal light field cameras
TWI615633B (en) * 2012-06-01 2018-02-21 傲思丹度科技公司 Spatio-temporal light field cameras
US9779515B2 (en) 2012-06-01 2017-10-03 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9774800B2 (en) 2012-06-01 2017-09-26 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
CN102944305A (en) * 2012-11-12 2013-02-27 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
CN102944305B (en) * 2012-11-12 2014-08-13 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
JP2013157606A (en) * 2013-02-08 2013-08-15 Toshiba Corp Solid state imaging device
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods
WO2015016382A1 (en) * 2013-07-31 2015-02-05 Ricoh Company, Limited Imaging apparatus
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
JPWO2016162983A1 (en) * 2015-04-08 2017-12-07 マクセルホールディングス株式会社 Vehicle mounted camera
US10725216B2 (en) 2015-04-08 2020-07-28 Maxell, Ltd. Onboard camera
WO2016162983A1 (en) * 2015-04-08 2016-10-13 日立マクセル株式会社 Vehicle-mounted camera
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US11592334B2 (en) * 2018-11-05 2023-02-28 ams Sensors Germany GmbH Photosensors for color measurement
CN113242964A (en) * 2018-11-05 2021-08-10 ams传感器德国有限公司 Photoelectric sensor for color measurement
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Similar Documents

Publication Publication Date Title
JP2006033493A (en) Imaging apparatus
US9681057B2 (en) Exposure timing manipulation in a multi-lens camera
JP5399215B2 (en) Multi-lens camera device and electronic information device
JP5538553B2 (en) Solid-state imaging device and imaging apparatus
US8111982B2 (en) Imaging device and electronic camera
JP5503458B2 (en) Solid-state imaging device and imaging apparatus
WO2013042323A1 (en) Light field imaging device and image processing device
JP2008005488A (en) Camera module
KR20120039501A (en) Image pickup device and solid-state image pickup element
WO2005043893A1 (en) Imaging device
JP2013546249A5 (en)
JP2002204462A (en) Image pickup device and its control method and control program and storage medium
JP4512504B2 (en) Microlens mounted single-plate color solid-state imaging device and image input device
JP5997149B2 (en) Solid-state imaging device, imaging apparatus, and signal processing method
JP5894573B2 (en) Solid-state imaging device, imaging device, and signal processing method
US20150116562A1 (en) Compact spacer in multi-lens array module
JP5852006B2 (en) Solid-state imaging device, imaging device, and signal processing method
JP5634614B2 (en) Imaging device and imaging apparatus
US8842203B2 (en) Solid-state imaging device and imaging apparatus
JP2006019918A (en) Imaging device
RU2589750C2 (en) Mobile device with optical elements
KR100868279B1 (en) Method of creating colour image, imaging device and imaging module
JPWO2020059050A1 (en) Image sensor, image sensor, imaging method and program
JP2010062608A (en) Image element
JP2005142668A (en) Image pickup apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309